西安交大创新物理实验综述报告题库

合集下载

物理实验创新题选

物理实验创新题选

例 6 、某同学用如图 8 甲所示的实验装置,做《用双缝 干涉测光的波长》的实验,他用带有游标尺的测量头 ( 如图 8 乙所示 ) 测量相邻两条亮条纹间的距离△ x. 转动 测量头的手轮,使分划板的中心刻线对齐某一条亮条 纹(将这一条纹确定为第一亮条纹)的中心,此时游标尺 上的示数情况如图 8丙所示;转动测量头的手轮,使分 划板的中心刻线对齐第 6亮条纹的中心,此时游标尺上 的示数情况如图8丁所示,则图8丙的示数 0.15 8.95 mm. 如果实 x1=_______mm ;图 8 丁的示数 x2= ______ 验中所用的双缝间的距离 d=0.20mm,双缝到屏的距离 L=60cm,则计算波长的表达式λ= d(x2–x1)/5L (用已知 量和直接测量量的 符号表示).根据以上 数据,可得实验中测 出的光的波长λ -7 5.9 × 10 = _______ m.
( 3)将测量头的分划板中心刻线与某条亮纹中心 对齐,将该亮纹定为第1条亮纹,此时手轮上的示数 如图2所示。然后同方向转动测量头,使分划板中心 刻线与第 6 条亮纹中心对齐,记下此时图 3 中手轮上 13.870 的 示 数 ________mm , 求 得 相 邻 亮 纹 的 间 距 Δx 为 _______mm 。 2.310 (4)已知双缝间距 d为2.0×10-4m,测得双缝到屏 dΔx/l ,求得所 的距离 l 为 0.700m ,由计算式 λ = ________ 6.6×102 测红光波长为__________nm 。 Δx= (13.870-2.320)/5 =11.550/5=2.310mm λ= dΔx/l= 6.6×10-7m = 6.6×102nm
(选填:偏大、偏小或不变).
例 4.已知电动玩具小车在水平面上运动过程所受阻力 与速度成正比。接通电源后小车的电动机以额定功率 运转。为测定该电动机的额定功率,首先用弹簧秤以 2.0N的水平恒力,拉动小车沿水平面运动,小车尾部 夹有纸带,运动过程中打点计时器打出的部分纸带如 图a所示;然后换掉纸带,接通小车的电动机,电动机 以额定功率工作,让小车仍在该水平面上运动,打点 计时器打出的部分纸带如图b所示。(两图中每相邻两 个计数点之间都还有打点计时器打下的4个点未画出, 电源频率为50Hz。相邻计数点间的距离已标在图上, 单位 mm 。)由以上两步操作可知:小车所受阻力大 小与速度大小的比例系数为 5Ns/m ;小车上电动机 的额定功率为 0.45W 。 A B C D E F G H 图a 解:由图a得va=0.4m/s 30 34 37 39 40 40 40 mm 由图b得 vb=0.3m/s A B C D E F G H 图b k=fa/va =F/va= 5Ns/m 23 27 29 30 30 30 30 mm fb=kvb =1.5N P= fbvb =0.45W

西安交通大学第二附属中学南校区物理机械运动实验综合测试卷(word含答案)

西安交通大学第二附属中学南校区物理机械运动实验综合测试卷(word含答案)

一、初二物理机械运动实验易错压轴题(难)1.如图甲是测平均速度的实验装置。

(1)实验的原理是___________;(2)实验中为了便于测量小车的运动时间,斜面应保持___________(选填“较小”或“较大”)坡度;(3)由实验测量可知,小车通过上半程的平均速度___________(选填“小于”“大于”或“等于”)小车通过下半程的平均速度,表明小车做的是___________(选填“匀速”或“加速”)运动;(4)实验过程中某一时刻秒表示数如图乙所示,则读数为___________s。

【来源】山东省潍坊市昌乐县2019-2020学年八年级(上)期中学业质量检测物理试题【答案】svt=较小小于加速 337.5s【解析】【分析】(1)实验的原理是svt =。

(2)若要计时方便,应使所用的时间长些。

(3)小车在下滑过程中做加速运动。

(4)秒表的中间的表盘代表分钟,周围的大表盘代表秒,秒表读数是两个表盘的示数之和。

【详解】(1)[1]测平均速度的实验原理是svt =。

(2)[2]斜面坡度越大,小车沿斜面向下加速运动越快,过某点的时间会越短,计时会越困难,所以为使计时方便,斜面坡度应较小。

(3)[3][4]由实验测量可知,小车通过上半程的平均速度小于小车通过下半程的平均速度,小车做的是加速运动。

(4)[5]由图可知:在秒表的中间表盘上,1min中间有两个小格,所以一个小格代表0.5min,指针在“5”和“6”之间,所以分针指示的时间为5min;偏向“6”一侧,说明大表盘的读数应读大于30s;在秒表的大表盘上,1s之间有10个小格,所以一个小格代表0.1s,指针在37.5s处,所以秒针指示的时间为37.5s,则该秒表的读数为5min+37.5s=300s+37.5s=337.5s2.如图所示是测量小车沿斜面下滑的平均速度的实验.(1)该实验目的是练习用___和_____测平均速度.(2)该实验原理是_______(3)实验时应保持斜面的倾角较小,这是为了减小测量_____(填“路程”或“时间”)时造成的误差.(4)斜面倾角不变时,小车由静止释放,小车通过的路程越长,其平均速度越_____(填“大”或“小”);小车由静止释放,通过相同路程,斜面的倾角越大,小车运动的平均速度越_____(填“大”或“小”).(5)实验时观察到,小车沿斜面顶端下滑到斜面底端的运动是____直线运动.(选填“匀速”或“变速”)(6)实验中测得路程s1上的平均速度为v1,路程s2上的平均速度为v2,路程s3上的平均速度为v3.那么,v1、v2、v3的大小关系是_______.(选填>、<、=)【来源】2019年广东省深圳市育才第二中学中考一模物理试题【答案】刻度尺秒表v=st时间大大变速<【解析】【分析】(1)公式v=st既能用于匀速直线运动求速度,又能用于变速直线运动求平均速度;实验中要用刻度尺测量路程,用秒表测量时间.(2)若要计时方便,应使所用的时间长些.(3)斜面倾角不变时,小车由静止释放,小车通过的路程越长,其平均速度越大.【详解】(1)平均速度是指某段时间内的路程与这段时间的比值,要测出速度,应测量出小车运动的距离和时间,所以要用到刻度尺和秒表;故实验的目的是练习用刻度尺和秒表测平均速度(2)实验原理为v=st;(3)斜面坡度越大,小车沿斜面向下加速运动越快,过某点的时间会越短,计时会越困难,所以为使计时方便,减小测量时间的误差,斜面坡度应小些;(4) 斜面倾角不变时,小车由静止释放,小车通过的路程越长,其平均速度越大;小车由静止释放,通过相同路程,斜面的倾角越大,小车运动的平均速度越大;(5)实验时观察到,小车沿斜面顶端下滑到斜面底端的速度越来越大,故是变速直线运动.(6)由于小车在下滑过程中做加速运动,所以上半段的平均速度最小,下半段的平均速度最大,全程的平均速度居中,因此v2<v3.3.在“探究纸锥下落的快慢”的活动中,小明制作了一个直径8.0cm的纸锥,某次实验用频闪照相机拍摄得到如图所示的照片,已知:频闪照相机每隔0.25s曝光一次,照片中纸锥的直径是0.8cm,照片中A到G的长度L=8.4cm。

2021年全国大学生物理实验竞赛(创新)命题类题目

2021年全国大学生物理实验竞赛(创新)命题类题目

2021年全国大学生物理实验竞赛(创新)命题类题目一、实验题目题目1:虹与霓设计与再现目的1)观测虹与霓的光学现象2)研究虹与霓特性及其影响因素3)制作虹与霓的实验研究装置要求1)设计实验方案(含原理)2)搭建研究虹与霓的实验装置3)讨论相关实验参数题目2:粘滞系数测量目的1)观测流体的粘滞现象2)研究流体粘滞特性及其影响因素3)测量流体粘滞系数要求1)设计实验方案(含原理)2)制作一个实验装置3)给出实验结果并讨论测量精度和不确定度题目3:随机目的1)搭建实验装置,展示某一个随机物理现象2)研究该随机物理现象的内在规律3)量化描述该随机物理过程要求1)设计实验方案(含原理)2)制作一个实验装置3)给出实验结果并讨论测量精度和不确定度题目4:热变形目的1)研究某一物质的热变形特性2)制作一个利用该物质热变形特性的实际应用装置要求1)设计实验方案(含原理)2)测量并描述热变形特性3)制作一个热变形应用装置并讨论相关指标题目5:磁场目的1) 搭建能够产生磁场的实验装置,并对磁场进行测量表征2) 制作一个利用磁场特性的实际应用装置或实验研究装置要求1) 设计实验方案(含原理)2) 测量并描述磁场3) 制作一个利用磁场特性的实验研究或应用装置并讨论相关指标二、考核方式(规范)1、文档含研究报告、PPT 和介绍视频等,主要包括以下内容:1)描述对题意的理解,目标定位2) 实验原理和设计方案(理论和实验模型)3) 装置的设计(含系统误差分析)4)装置的实现5) 实验数据测量与分析6) 性能指标(包括测量范围、精确度、响应时间等)7) 创新点8)结论与展望9)参考文献2、实物装置1) 规格:尺寸、重量2) 成本3) 使用条件及配套要求2021年全国大学生物理实验竞赛(创新)工作委员会2021年3月21日。

西安交大大物仿真实验

西安交大大物仿真实验

大物仿真实验报告班级:****学号:****姓名:****刚体的转动惯量一实验目的1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二实验原理1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:M = Iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg –t=ma,在t时间内下落的高度为h=at2/2。

刚体受到张力的力矩为T r和轴摩擦力力矩M f。

由转动定律可得到刚体的转动运动方程:T r - M f =Iβ。

绳与塔轮间无相对滑动时有a =rβ,上述四个方程得到:m(g - a)r - M f = 2hI/rt2 (2)M f与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式: mgr = 2hI/rt2 (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量I。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:A.作m – 1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:M = K1/ t2 (4)式中K1 = 2hI/gr2为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

从m – 1/t2图中测得斜率K1,并用已知的h、r、g值,由K1 = 2hI/gr2求得刚体的I。

西安交大版大学物理上学习指导作业及选择题答案参考答案

西安交大版大学物理上学习指导作业及选择题答案参考答案

西安交⼤版⼤学物理上学习指导作业及选择题答案参考答案第⼀章质点运动学第⼆章运动与⼒第三章动量与⾓动量- 1 -第四章功和能第五章刚体的转动第六章狭义相对论基础- 2 -第七章振动第⼋章波动- 3 -第九章温度和⽓体动理论第⼗章热⼒学第⼀定律- 4 -- 5 -第⼗⼀章热⼒学第⼆定律第⼀章质点运动学课后作业1、⼀质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=?==v v 2分- 6 -()x x xd 62d 020+=v v v 2分()2 213xx +=v 1分2、⼀质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t=vv 0d 4d tt tv 2=t 2 3分v d =x /d t 2=t 2 t t x txx d 2d 020=x 2= t 3 /3+x 0 (SI) 2分3、⼀质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是⼤于零的常量,求从0=t 开始到切向加速度与法向加速度⼤⼩相等时所经历的时间.- 7 -解: ct b t S +==d /d v 1分c t a t ==d /d v 1分()R ct b a n /2+= 1分根据题意: a t = a n 1分即 ()R ct b c /2+=解得 cbc R t -=1分4、如图所⽰,质点P 在⽔平⾯内沿⼀半径为R =2 m 的圆轨道转动.转动的⾓速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的⼤⼩.- 8 -解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω 1分24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2 = 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分22s /32/m R a n ==v 1分()8.352/122=+=nt a a a m/s 2 1分5、⼀敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地⾯h =10 m 时,⼀⼩孩竖直向上抛出⼀球.球相对于电梯初速率200=v m/s .试问:(1) 从地⾯算起,球能达到的最⼤⾼度为多⼤? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地⾯的初速度=+='v v v 030 m/s 1分抛出后上升⾼度 9.4522='=gh v m/s 1分- 9 -离地⾯⾼度 H = (45.9+10) m =55.9 m 1分(2) 球回到电梯上时电梯上升⾼度=球上升⾼度2021)(gt t t -+=v v v 1分08.420==gt vs 1分6、在离⽔⾯⾼h ⽶的岸上,有⼈⽤绳⼦拉船靠岸,船在离岸S 处,如图所⽰.当⼈以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的⼤⼩.解:设⼈到船之间绳的长度为l ,此时绳与⽔⾯成θ⾓,由图可知222s h l +=将上式对时间t 求导,得题1-4图tss t l ld d 2d d 2=- 10 -根据速度的定义,并注意到l ,s 是随t 减少的,∴ t sv v t l v d d ,d d 0-==-=船绳即θcos d d d d 00v v s l t l s l t s v ==-=-=船或 sv s h s lv v 02/1220)(+==船将船v 再对t 求导,即得船的加速度320222022002)(d d d d d d sv h s v s l s v slv s v v s t sl t l st v a =+-=+-=-==船船- 11 -第⼆章运动与⼒课后作业1、⼀⼈在平地上拉⼀个质量为M 的⽊箱匀速前进,如图. ⽊箱与地⾯间的摩擦系数µ=0.6.设此⼈前进时,肩上绳的⽀撑点距地⾯⾼度为h =1.5 m ,不计箱⾼,问绳长l 为多长时最省⼒?解:设绳⼦与⽔平⽅向的夹⾓为θ,则l h /sin =θ.⽊箱受⼒如图所⽰,匀速前进时, 拉⼒为F , 有F cos θ-f =0 2分F sin θ+N -Mg =0 f =µN得θµθµs i n c o s +=MgF 2分- 12 -令0)s i n (c o s )c o s s i n (d d 2=++--=θµθθµθµθMg F ∴ 6.0tg ==µθ,637530'''?=θ 2分且 0d d 22>θF∴ l =h / sin θ=2.92 m 时,最省⼒.2、⼀质量为60 kg 的⼈,站在质量为30 kg 的底板上,⽤绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳⼦不可伸长.欲使⼈和底板能以1 m/s 2的加速度上升,⼈对绳⼦的拉⼒T 2多⼤?⼈对底板的压⼒多⼤? (取g =10 m/s 2)N- 13 -解:⼈受⼒如图(1) 图2分a m g m N T 112=-+ 1分底板受⼒如图(2) 图2分 a m g m N T T 2221=-'-+ 2分212T T = 1分 N N ='由以上四式可解得 a m m g m g m T )(421212+=--∴ 5.2474/))((212=++=a g m m T N 1分 5.412)(21=-+=='T a g m N N N 1分3、⼀条轻绳跨过⼀轻滑轮(滑轮与轴间摩擦可忽略),在绳的⼀端挂⼀质量为m 1的物体,在另⼀侧有⼀质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地⾯的加速度各是多少?环与绳间的摩擦⼒多⼤?- 14 -解:因绳⼦质量不计,所以环受到的摩擦⼒在数值上等于绳⼦张⼒T .设m 2相对地⾯的加速度为2a ',取向上为正;m 1相对地⾯的加速度为a 1(即绳⼦的加速度),取向下为正. 1分111a m T g m =- 2分 222a m g m T =-2分 212a a a -=' 2分解得 2122211)(m m a m g m m a ++-= 1分21212)2(m m m m a g T +-=1分2121212)(m m a m g m m a +--=' 1分- 15 -4、⼀条质量分布均匀的绳⼦,质量为M 、长度为L ,⼀端拴在竖直转轴OO ′上,并以恒定⾓速度ω在⽔平⾯上旋转.设转动过程中绳⼦始终伸直不打弯,且忽略重⼒,求距转轴为r 处绳中的张⼒T ( r ).解:取距转轴为r 处,长为d r 的⼩段绳⼦,其质量为 ( M /L ) d r . (取元,画元的受⼒图) 2分由于绳⼦作圆周运动,所以⼩段绳⼦有径向加速度,由⽜顿定律得:T ( r )-T ( r + d r ) = ( M / L ) d r r ω2 令 T ( r )-T (r + d r ) = - d T ( r ) 得 d T =-( M ω2 / L ) r d r 4分由于绳⼦的末端是⾃由端 T (L ) = 0 1分有r r L M T Lrr T d )/(d 2)(??-=ω∴ )2/()()(222L r L M r T -=ω 3分O- 16 -第三章动量与⾓动量课后作业1、如图,⽤传送带A 输送煤粉,料⽃⼝在A 上⽅⾼h =0.5 m 处,煤粉⾃料⽃⼝⾃由落在A 上.设料⽃⼝连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的⽔平速度匀速向右移动.求装煤的过程中,煤粉对A 的作⽤⼒的⼤⼩和⽅向.(不计相对传送带静⽌的煤粉质重)解:煤粉⾃料⽃⼝下落,接触传送带前具有竖直向下的速度gh 20=v 1分设煤粉与A 相互作⽤的?t 时间内,落于传送带上的煤粉质量为 t q m m ?=?1分设A 对煤粉的平均作⽤⼒为f,由动量定理写分量式:0-?=?v m t f x 1分)(00v m t f y ?--=? 1分- 17 -将 t q m m ?=?代⼊得 v m x q f =, 0v m y q f = ∴ 14922=+=y x f f f N 2分 f与x 轴正向夹⾓为α = arctg (f x / f y ) = 57.4° 1分由⽜顿第三定律煤粉对A 的作⽤⼒f ′= f = 149 N ,⽅向与图中f相反.2分2、质量为1 kg 的物体,它与⽔平桌⾯间的摩擦系数µ = 0.2 .现对物体施以F = 10t (SI)的⼒,(t 表⽰时刻),⼒的⽅向保持⼀定,如图所⽰.如t = 0时物体静⽌,则t = 3 s 时它的速度⼤⼩v 为多少?解:由题给条件可知物体与桌⾯间的正压⼒mg F N +?=30sin 1分物体要有加速度必须 N F µ≥?30cos 2分即 mg t µµ≥-)3(5, 0s 256.0t t =≥ 1分物体开始运动后,所受冲量为 ?-?=tt t N F I 0d )30cos (µ- 18 -)(96.1)(83.3022t t t t ---= t = 3 s, I = 28.8 N s 2分则此时物体的动量的⼤⼩为 I m =v速度的⼤⼩为 8.28==mIv m/s 2分3、⼀炮弹发射后在其运⾏轨道上的最⾼点h =19.6 m 处炸裂成质量相等的两块.其中⼀块在爆炸后1秒钟落到爆炸点正下⽅的地⾯上.设此处与发射点的距离S 1=1000 m ,问另⼀块落地点与发射地点间的距离是多少?(空⽓阻⼒不计,g =9.8 m/s 2)解:因第⼀块爆炸后落在其正下⽅的地⾯上,说明它的速度⽅向是沿竖直⽅向的.利⽤ 2t g t h '+'=211v ,式中t '为第⼀块在爆炸后落到地⾯的时间.可解得v 1=14.7 m/s ,竖直向下.取y 轴正向向上, 有v 1y =-14.7 m/s 2分设炮弹到最⾼点时(v y =0),经历的时间为t ,则有S 1 = v x t ① h=221gt ②由①、②得 t =2 s , v x =500 m/s 2分- 19 -以2v表⽰爆炸后第⼆块的速度,则爆炸时的动量守恒关系如图所⽰.x v v m m x =221③0==+y y m m m v v v 1y 22121 ④解出 v 2x =2v x =1000 m/s , v 2y =-v 1y =14.7 m/s 3分再由斜抛公式 x 2= S 1 +v 2x t 2 ⑤y 2=h +v 2y t 2-22gt 21 ⑥落地时 y 2 =0,可得 t 2 =4 s , t 2=-1 s (舍去)故 x 2=5000 m 3分Mmv4、质量为M =1.5 kg 的物体,⽤⼀根长为l =1.25 m 的细绳悬挂在天花板上.今有⼀质量为m =10 g 的⼦弹。

西安交通大学物理实验报告

西安交通大学物理实验报告

西安交通大学物理仿真实验实验报告气垫导轨上的直线运动实验的目的:利用气垫技术精确的测定物体的平均速度、瞬时速度、加速度以当地的重力加速度,通过物体沿斜面自由下滑运动来研究匀变速运动的规律和验证牛顿第二定律。

实验原理:1 .平均速度和瞬时速度的测量做直线运动的物体在时间内的位移为,则物体在时间内的平均速度为 ts v ∆∆= (1) 当时,平均速度趋近于一个极限,即物体在该点的瞬时速度。

我们用来表示瞬时速度t s v t ∆∆=→∆0limt(2)实验上直接用上式测量某点的瞬时速度是很困难的,一般在一定误差范围内,用极短的内的平均速度代替瞬时速度。

2 .匀速直线运动若滑块受一恒力,它将做匀变速直线运动,可采用在导轨一端加一滑轮,通过滑轮旋一重物在滑块上,也可以把气垫导轨一端垫高成一斜面来实现。

采用前者可改变外力,不但可测得加速度,还可以验证牛顿第二定律。

采用后者,因在测量过程中受外界干扰较小,测量误差较小,在测量加速度的基础上,还可以测量当地的重力加速度。

匀变速运动方程如下:at v v +=0 (3)2021at t v s +=(4)as v v 2202+=(5)在斜面上物体从同一位置由静止开始下滑,若测得不同位置处的速度......,,321v v v 为相应的时间......,,321t t t ,以t 为横坐标,为v 纵坐标作图,如果图线是一条直线,证明物体作匀加速直线运动,图线的斜率为加速度a, 截距为t v 。

同样把......,,321v v v 对应处的测出,作t t s -图和s v -2图,若图线是直线,则物体作匀加速直线运动,斜率分别为a 21和a 2,截距分别为a v 和20v 。

3. 重力加速度的测定如图1所时,h 为垫块的高度,L 为斜面长,滑块沿斜面下滑的加速度为L hg g a ==θsin (6)L h a g = (7)4. 验证牛顿第二定律设运动物体的总质量为 M ,作用力为 F ,假设其他耗散力如摩擦力、空气阻力、气垫粘滞力可忽略不计,这时牛顿第二定律可表示为Ma F = (8)F 不变,改变 M, F/a应为一常量,即F增大,a同时增大;若保持MaF减小,a同时减小。

西安交通大学第二附属中学南校区物理物体的运动实验综合测试卷(word含答案)

西安交通大学第二附属中学南校区物理物体的运动实验综合测试卷(word含答案)

一、初二物理 物体的运动实验易错压轴题(难)1.探究小球在斜面上的运动规律如图甲所示,小球以初速度2.0m/s 从A 点沿着足够长的光滑斜面滑下,它在斜面上的速度v 随时间t 均匀变化。

实验数据如下表:t /s0 0.1 0.2 0.3 0.4 0.5 0.6 v /(m ⋅s -1) 2.0 2.5 3.0 3.5 4.0 4.5 5.0(1)小球在斜面上做______运动(选填“匀速”或“变速”);(2)报据表中数据,在图乙中描点并画出小球的v-t 图象______;(3)小球的运动速度v 与时间t 的关系式为v = ______;(4)如图丙所示,以速度v ₁做匀速直线运动的物体在时间t ₁内通过的路程是s ₁=v ₁t ₁,它可以用图线与时间轴所围矩形(阴影部分)的面积表示。

同样,图乙中图线与时间轴所围图形的面积,也能表示这个小球在相应时间t 内通过的路程s 。

上述小球从A 点沿光滑斜面滑下,在时间t 内通过路程的表达式为s =______。

【来源】山东省青岛市市北区2019-2020学年八年级(上)期中物理试题【答案】变速 25t + 22 2.5t t +【解析】【分析】【详解】(1)[1]由表中数据可知,随时间小球的速度变大,则小球在斜面上做变速运动。

(2)[2]报据表中数据,在图乙中描点画出小球的v-t 图象如图所示:(3)[3]由图像可知,小球的运动速度与时间成一次函数关系,且小球的初速度为2m/s ,则运动速度v 与时间t 的关系式为03m/s 2m/s 250.6sv v v t t t t ∆=+=+=+∆ (4)[4]小球从A 点沿光滑斜面滑下,图线与时间轴所围图形的面积为路程,则在时间t 内通过路程的表达式为20()(225)2 2.522v v t t t s t t +++===+2.在“测量物体运动的平均速度”实验中。

(1)如图甲所示,小球从高处沿斜面由静止开始滚下,频闪照相机记录了小球在相同时间内通过的路程。

新版西安交大大物仿真实验报告1-新版-精选.pdf

新版西安交大大物仿真实验报告1-新版-精选.pdf

大学物理仿真实验---热敏电阻温度特性曲线实验实验名称:热敏电阻温度特性曲线实验一.实验简介:热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。

与一般常用的金属电阻相比,它有大得多的电阻温度系数值。

热敏电阻作为温度传感器具有用料省、成本低、体积小等优点,可以简便灵敏地测量微小温度的变化,在很多科学研究领域都有广泛的应用。

二.实验目的:了解热敏电阻的电阻—温度特性及测温原理,学习惠斯通电桥的原理及使用方法,学习坐标变换、曲线改直的技巧。

三.实验原理:半导体热敏电阻的电阻—温度特性热敏电阻的电阻值与温度的关系为:A,B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为:R t是在温度为t时的电阻值。

惠斯通电桥的工作原理如图所示:四个电阻R0,R1,R2,Rx组成一个四边形,即电桥的四个臂,其中Rx就是待测电阻。

在四边形的一对对角A和C之间连接电源,而在另一对对角B和D之间接入检流计G。

当B和D两点电位相等时,G中无电流通过,电桥便达到了平衡。

平衡时必有Rx = (R1/R2)·R0,(R1/R2)和R0都已知,Rx即可求出。

电桥灵敏度的定义为:式中ΔRx指的是在电桥平衡后Rx的微小改变量,Δn越大,说明电桥灵敏度越高。

实验仪器四.实验装置:直流单臂电桥、检流计、待测热敏电阻和温度计、调压器。

五.实验内容:从室温开始,每隔5°C测量一次Rt,直到85°C。

撤去电炉,使水慢慢冷却,测量降温过程中,各对应温度点的Rt。

求升温和降温时的各Rt的平均值,然后绘制出热敏电阻的Rt-t特性曲线。

求出t=50°C点的电阻温度系数。

作ln Rt ~ (1 / T)曲线,时)。

确定式(1)中常数A和B,再由(2)式求α (50°C六.实验所测数据:?不同T所对应的Rt 值????R t均值,1 / T,及ln R t的值七.数据处理:1.热敏电阻的R t-t特性曲线数据点连线作图在图上找到T=50所对应的点做切线,可以求得切线的斜率:K=(500-0)/(0-85)=5.88 由由此计算出:α=-0.031二次拟合的曲线:在图上找到T=50所对应的点做切线,可以求得切线的斜率:K=(495-0)/(0-84)=5.89由由此计算出:α=--0.030.2.ln R t -- (1 / T)曲线仿真实验画出图线如下图所示但计算机仿真实验画出的曲线图中A的值计算有误,正确的A=0.0153.将图修正后如下:A=0.0153,B=3047.5383由此写出R t= 0.0153由此当T=50时,α=-0.030八、思考题1. 如何提高电桥的灵敏度?答:电桥的灵敏度和电源电压,检流计的灵敏度成正比,因此提高电源电压,检流计的灵敏度能提高电桥灵敏度。

西安交通大学第二附属中学南校区物理光现象实验综合测试卷(word含答案)

西安交通大学第二附属中学南校区物理光现象实验综合测试卷(word含答案)

一、初二物理光现象实验易错压轴题(难)1.小明同学根据课本中的“试一试”,用易拉罐做小孔成像实验.(1)请在图中作出蜡烛AB的像A'B'________.(2)小明发现蜡烛和小孔的位置固定后,像离小孔越远,像就越大,他测出了不同距离时像的高度,填在表格中:请你根据表中的数据在下图坐标中画出h与s的关系图像:____________(3)从图像中可以看出h与s的关系为:_____________________.【答案】见解析所示见解析所示 h与s成正比【解析】(1)根据光的直线传播,分别做出由A、B两点在透明纸上的像,从而得出AB的像,如图所示:(2)根据表格中数据描点,并用平滑的曲线连接起来,如图:(3)从图象中看出;h随s的变大而变大,且增大的倍数相同,即h与s成正比关系;因此,本题正确答案是: (1). 见解析所示 (2). 见解析所示 (3). h与s成正比【的距离】(1)小孔成像是光的直线传播现象;物体上部的光线通过小孔后,射到了光屏的下部;物体下部的光线通过小孔后,射到了光屏的上部,因此通过小孔后所成的像是倒立的像.(2)找出表格中的数据在坐标纸中的对应点,然后连接成平滑的曲线;(3)可以看出,当像离小孔越远,像的大小是变大的.2.小强同学为了探究平面镜成像特点,准备如下器材:各种长度的蜡烛若干、平面境一块、玻璃板一块、白纸一张(如图甲所示)。

(1)除了图甲中画出的器材,本实验中还需要的测量工具是______。

(2)平面M所选的器材是______(选填“平面镜”或“玻璃板”);这样选择,主要是为了便于确定像的______。

(3)小强把蜡烛A点燃放在M前面,再把其它各支蜡烛依次放在M后面适当位置,当某支蜡烛放在后面时,人眼在M的______(选填“前面”或“后面”)观察,看起来那支蜡烛也被点燃了一样。

此时,后面的那支蜡烛与蜡烛A的大小关系是______。

【答案】刻度尺玻璃板位置前面相等【解析】【分析】【详解】略3.探究“平面镜成像特点”吋,选用镀膜玻璃板和两个相同的电子蜡烛a、b可以发光)进行实验,如图所示:(1)为了便于观察蜡烛的像,以下一些做法可行的是__________________;A.将玻璃板镀膜的一面朝向蜡烛aB.在较暗的实验室让a蜡烛发光C.在较暗的实验室让a、b蜡烛都发光D.用手电筒对着玻璃板照射(2)为了在实验中精确测量物距和像距,小王同学在白纸上标记蜡烛a底端上的一个点(图中的A点),在玻璃板后移动另一只蜡烛b,使之和像完全重合,也在白纸上标记蜡烛b 底端上的一个点,量出两点到玻璃板的距离,则蜡烛b上符合实验要求的点是____________;(3)当把蜡烛a远离玻璃板,其在玻璃板中像的大小________(选填“变大”“变小”“不变”)。

西安交通大学第二附属中学南校区物理物态变化实验综合测试卷(word含答案)

西安交通大学第二附属中学南校区物理物态变化实验综合测试卷(word含答案)

一、初二物理物态变化实验易错压轴题(难)1.探究水沸腾时温度变化的特点:(1)如图甲、乙所示,是小明同学在实验中,用数码相机拍摄的水沸腾前和沸腾时的两张照片,其中_____是水沸腾时的情况;(2)实验前,向烧杯中倒入热水而不是冷水,这样做是为了_____;(3)由实验数据绘制出温度随时间变化的图像,如图丙所示。

根据记录的数据,水的沸点是_____℃;可得出水沸腾时温度变化的特点:不断吸热,温度_____。

【答案】甲缩短实验加热时间 98 不变【解析】【分析】【详解】(1)[1]水沸腾时,烧杯中水的温度是均匀的,气泡上升时,受到水的压强越来越小,那么气泡体积会变大,从甲、乙两图可以看到,甲是水沸腾时的情况。

(2)[2]实验前,向烧杯中倒入热水而不是冷水,因为冷水加热,需要更长时间才能达到想要的温度,用热水会缩短实验加热时间。

(3)[3]从图丙可以看到,第4min开始,水的温度保持在98℃不变,可以推测水的沸点是98℃。

[4]可得出水沸腾时温度变化的特点:不断吸热,但是温度保持不变。

2.如图甲是“探究固体熔化时温度的变化规律”的实验装置.(1)图甲的实验装置中还缺少的一件测量器材是________,实验时把石棉网垫在烧杯下,并将试管放在水中加热,是为了使固体粉末受热________(均匀/不均匀).(2)若某时刻温度计的示数如图乙所示,则此时温度计的读数为________℃.(3)下表是实验中记录的数据.根据表中数据可知,该物质是________(晶体/非晶体).(4)能反映上述固体熔化时温度变化规律的是图丙中的________(a/b).【答案】秒表均匀 46 晶体 a【解析】(1)本实验中需要的测量仪器有温度计和秒表,由图知该实验缺少的器材为秒表;实验时把石棉网垫在烧杯下,并将试管放在水中加热,是为了使固体粉末受热均匀.(2)由图知,该温度计的每一小格表示1℃,故该温度计的示数为46℃.(3)由表格中的数据可以看出,从第4min到第8min,该物质的温度保持在48℃不变,故该物质为晶体.(4)a图中有一段图像温度保持不变,所以a为晶体的熔化图像,b图中的图线温度不断升高,为非晶体的熔化图像,故能反映上述固体熔化时温度变化规律的是a图.故答案为(1)秒表;均匀 (2)46 (3)晶体 (4)a.3.在做“观察水沸腾”的实验时。

西南交通大学大学物理实验期末试题汇总大二

西南交通大学大学物理实验期末试题汇总大二

误差理论_05 出题:物理实验中心 用误差限 0.10mm 的钢直尺测量钢丝长度,11 次的测量数据为:(单位:mm) 45.8、25.8、25.7、25.5、25.6、25.8、 25.6、25.5、25.4、25.7、25.6。钢丝的测量结果为(D) A) l =25.62 0.04 m B) l =27.4 2.1 m C) l =25.62 m 0.06 m D) l =25.6 0.1 m
误差理论_11 出题:物理实验中心
以下关于最后结果表达式 x=x u 的叙述中正确的是(B) 它说明物理量 x 的真值一定包含在 x u ~ x u 中 它说明物理量 X 的真值包含在 x u ~ x u 中的概率为 68.3% 物理量 x 的真值为 x u 或 x u
误差理论_12 出题:物理实验中心 直接测量量 x 的合成不确定度的表述形式为(C):
误差理论_32 出题:物理实验中心
对某物体的长度进行测量,得到结果:L=12.340 0.010 cm,则下列表述中正确的是(B)
A) 该物体的长度真值介于 12.330~12.350 cm 之间 B) 该物体的长度真值在 12.330~12.350 cm 之间的概率为 0.683 C) 该物体的长度真值为 12.340 cm 概率为 0.683 D) 该物体的长度真值为 12.330 cm 或 12.350 cm 的概率为 0.683
误差理论_29 出题:物理实验中心 从分度值 0.02 mm 的游标卡尺读出下列数据,正确的答案是(C) A) 7.382 cm B) 1.437 cm
C) 11.36 cm D) 12.489 cm
误差理论_30 出题:物理实验中心 直接测量量合成不确定度的计算公式为(B)
(xi - x)2

西安交通大学物理仿真实验报告合集

西安交通大学物理仿真实验报告合集

西安交通大学物理仿真实验报告合集1. 凯特摆测重力加速度2. 良导体热导率的动态法测量3. 受迫振动4. 钢丝杨氏模量测定5. 傅里叶光学实验大学物理仿真实验——凯特摆测重力加速度实验报告姓名:班级:学号:一.实验目的学习凯特摆设计的技巧与结构;掌握一种测量重力加速度比较准确的方法。

二.原理简述图1是复摆示意图,设一质量为m 的刚体,其重心G 到转轴O 的距离为h ,绕O 轴的转动惯量为I ,当摆幅很小时,刚体绕O 轴摆动的周期T 为:mghIT π2= (1) 式中g 为当地的重力加速度.设复摆绕通过重心G 的轴的转动惯量为G I ,当G 轴与O 轴平行时,有2mh I I G += (2)代入(1)得:mghmh I T G 22+=π(3) 对比单摆周期公式glT π2= 可得 mh mh I l G 2+= (4) l 称为复摆的等效摆长。

因此只要测出周期和等效摆长便可求得重力加速度。

下图是凯特摆摆杆的示意图。

对凯特摆而言,两刀口间的距离就是该摆的等效摆长l 。

在实验中当两刀口位置确定后,通过调节A 、B 、C 、D 四摆锤的位置可使正、倒悬挂时的摆动周期1T 和2T 基本相等。

由公式(3)可得12112mh mh I T G +=π (5)22222mh mh I T G +=π (6)其中1T 和1h 为摆绕O 轴的摆动周期和O 轴到重心G 的距离。

当21T T ≈时,l h h =+21即为等效摆长。

由式(5)和(6)消去G I ,可得:b a l h T T l T T g +=--++=)2(2241222122212π (7) 此式中,l 、1T 、2T 都是可以精确测定的量,而1h 则不易测准。

由此可知,a 项可以精确求得,而b 项则不易精确求得。

但当21T T =以及|2|1l h -的值较大时,b 项的值相对a 项是非常小的,这样b 项的不精确对测量结果产生的影响就微乎其微了。

西安交通大学大学物理仿真实验报告解析

西安交通大学大学物理仿真实验报告解析

西安交通大学大学物理仿真实验报告一——核磁共振实验名称:核磁共振。

实验目的:观察核磁共振稳态吸收现象,掌握核磁共振的实验原理和方法,测量1H和19F的γ值和g值。

实验仪器:核磁共振仪,样品(水和聚四氟乙稀),磁铁的实验平台。

实验原理:核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。

核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。

从经典力学观点看,具有磁矩μ和角动量P的粒子,在外磁场B中受到一个力矩L的作用:L=μ×B此力矩使角动量发生变化:dP/dt=L故dμ/dt=ϒμ×B若B0是稳恒的且沿Z方向,则上式表示μ绕B进动,进动频率ω=ϒB,若在XY平面内加一个旋转场B1,其旋转频率为ω,旋转方向与μ进动方向一致,因而μ也绕B1进动,结果使ϴ角增大,表示粒子从B1中获得能量。

如果实验时外磁场为B,在该稳恒磁场区域又叠加一个电磁波作用于氢核,如果电磁波的能量hv0恰好等于这时氢核两能级的能量差Bg NµN,即hv0=B0g NµN ,即有g N =,从而得pN meg2⋅=γ其中µN =5.05*10-27 J·T-1=5.05*10-23 J·G-1,用扫场法测量时,共振条件在调制场的一个周期内被满足两次,所以在示波器上观察到有两个峰的共振吸收信号。

此时若调节射频场的频率,则吸收曲线上的吸收峰将左右移动。

当这些吸收峰间距相等时,则说明在这个频率下的共振磁场为B0。

实验内容:(1)观测1H的核磁共振信号。

样品用纯水,先找出共振信号,再分别改变的大小,观察共振信号位置,形状变化。

(2)观测1H和ϒN,g N分别记录下六组不同磁铁间矩d时所对应的以及相应的共振频率ν,再计算ϒN,g N(3)测量19F样品用聚四氟乙稀,分别记录下三组不同磁铁间矩d时所对应的以及相应的共振频率ν,再计算ϒN,gN实验过程及原始数据:同样的方法,测量六组数据,得到如下表格:项目v/kHz B/*104Td/mm10.18 14236 352910.39 14073 349410.67 13776 344611.02 13612 338711.33 13327 333411.65 13153 3280改用外扫法,如图:记录数据如下:项目v/kHz B/*104Td/mm10.08 14226 354310.33 14078 349910.65 13766 344911.06 13619 337711.29 13318 333511.55 13154 3282再测19F的g这样得到实验数据:v/kHz B/*104T项目d/mm10.08 14854 354610.72 14407 343811.21 13956 3354改用外扫法:记录实验数据:项目 d/mm v/kHzB/*104T10.18 14839 3536 10.67 144173435 11.23139673359数据处理:1. 测量1()H 的γ因子和g 因子由21836B N p em μμ==得:21836p B m e μ= 将实验数据代入原理中所述公式,得到 g=5.571,误差为因此,2.测量19()F的 因子和g因子代入数据求得g=5.195因此,西安交通大学大学物理仿真实验报告二——钢丝杨氏模量测定实验名称:钢丝杨氏模量测定实验目的:1.测量钢丝杨氏模量;2.掌握利用光杠杆测定微小形变的方法;3.采用逐差法和作图法得出测量结果,掌握这两种数据处理的方法。

西安交大创新物理实验综述报告题库.doc

西安交大创新物理实验综述报告题库.doc

西安交大创新物理实验综述报告题库创新物理实验综述报告硕4006班周阳31140080031.磁共振系列实验1.1词条解释外文名:SpinMagneticResonancePhenomenon磁共振指的是自旋磁共振(spinmagneticresonance)现象。

其意义上较广,包含核磁共振(nuclearmagneticresonance,NMR)、电子顺磁共振(electronparamagneticresonance,EPR)或称电子自旋共振(electronspinresonance,ESR)。

此外,人们日常生活中常说的磁共振,是指磁共振成像(MagneticResonanceImaging,MRI),其是利用核磁共振现象制成的一类用于医学检查的成像设备。

1.2发展简史磁共振是在固体微观量子理论和无线电微波电子学技术发展的基础上被发现的。

1945年首先在顺磁性Mn盐的水溶液中观测到顺磁共振,第二年,又分别用吸收和感应的方法发现了石蜡和水中质子的核磁共振;用波导谐振腔方法发现了Fe、Co和Ni薄片的铁磁共振。

1950年在室温附近观测到固体Cr2O3的反铁磁共振。

1953年在半导体硅和锗中观测到电子和空穴的回旋共振。

1953年和1955年先后从理论上预言和实验上观测到亚铁磁共振。

随后又发现了磁有序系统中高次模式的静磁型共振(1957)和自旋波共振(1958)。

1956年开始研究两种磁共振耦合的磁双共振现象。

这些磁共振被发现后,便在物理、化学、生物等基础学科和微波技术、量子电子学等新技术中得到了广泛的应用。

例如顺磁固体量子放大器,各种铁氧体微波器件,核磁共振谱分析技术和核磁共振成像技术及利用磁共振方法对顺磁晶体的晶场和能级结构、半导体的能带结构和生物分子结构等的研究。

原子核和基本粒子的自旋、磁矩参数的测定也是以各种磁共振原理为基础发展起来的。

磁共振成像技术由于其无辐射、分辨率高等优点被广泛的应用于临床医学与医学研究。

西安交通大学大学物理实验绪论答案

西安交通大学大学物理实验绪论答案

西安交通大学大学物理实验绪论答案1、15.学习科学知识的价值之一,是主动将所学知识创造性地服务于社会。

如“声音的传播需要介质”就有许多实际应用。

下列发明成果应用了这一知识的是()[单选题] *A.验钞机B.望远镜C.真空玻璃(正确答案)D.体温计2、下列关于声音的说法正确的是()[单选题]A.调节电视机音量改变了声音的音调B.房间的窗户安装双层中空玻璃是在传播过程中减弱噪声(正确答案)C.能从不同乐器中分辨出小提琴的声音主要是因为响度不同D.用大小不同的力先后敲击同一音叉,音叉发声的音色不同3、45.关于电冰箱,下列说法正确的是()[单选题] *A.将水放入冷冻室,水会液化B.打开冷冻室的门会看到“白气”,这是汽化现象C.冷冻室侧壁有时会有霜,这是水蒸气凝固形成的D.食品在冷藏室里能保鲜,利用了制冷剂汽化吸热(正确答案)4、加速度方向与速度变化的方向相同,大小成正比. [判断题] *对错(正确答案)5、磁场的基本性质是对放入其中的导体有力的作用[判断题] *对错(正确答案)答案解析:磁场的基本性质是对放入其中的磁体有力的作用6、87.把一个实心铁块放入盛满水的容器中,溢出水的质量是5g,若把铁块放入盛满酒精的容器中,则溢出酒精的质量是()(ρ酒精=8×103kg/m3,ρ水=0×103kg/m3)[单选题] *A.5gB.5gC.4g(正确答案)D.36g7、做匀速直线运动的物体,速度越大,受到的合力也就越大[判断题] *对错(正确答案)答案解析:匀速直线运动的物体合力为零8、14.自习课上,老师能根据声音辨别出哪位同学在说话,依据的是声音的()[单选题] *A.音调B.音色(正确答案)C.响度D.频率9、26.下列现象中,属于升华的现象是()[单选题] *A.夏天,冰棍周围冒“白气”B.冬天,玻璃窗上结冰花C.衣箱中的樟脑丸逐渐变小(正确答案)D.夏天,水缸外壁“出汗”10、4.月球上的重力加速度也是8 m/s [判断题] *对错(正确答案)11、小明在蹦床上做游戏,从接触床面到运动至最低点的过程中,他的重力势能减小,蹦床的弹性势能增大[判断题] *对(正确答案)错答案解析:小明的动能先增大后减小12、估测在实际生活中的应用十分广泛,下列所估测的数据中最接近实际的是()[单选题]A.健康的成年人脉搏跳动一次的时间约为10sB.一般教室的高度约为6mC.我国10元纸币的票面长度约为14cm(正确答案)D.去年北京夏天的最高气温为26℃13、12.沪上知名品牌﹣﹣南汇8424西瓜即将上市。

西安交通大学大学物理仿真试验

西安交通大学大学物理仿真试验

西安交通大学大学物理仿真试验实验题目:用单摆测量物体重力加速度2140504096 自动化44 滕家伟一、实验简介单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。

本实验的目的是进行简单设计性实验基本方法的训练,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源,提出进行修正和估算的方法。

二、实验原理1、单摆的一级近似的周期公式为由此通过测量周期T,摆长l求重力加速度.2、不确定度均分原理在间接测量中,每个独立测量的量的不确定度都会对最终结果的不确定度有贡献。

如果已知各测量之间的函数关系,可写出不确定度传递公式,并按均分原理,将测量结果的总不确定度均匀分配到各个分量中,由此分析各物理量的测量方法和使用的仪器,指导实验。

一般而言,这样做比较经济合理。

对测量结果影响较大的物理量,应采用精度较高的仪器,而对测量结果影响不大的物理量,就不必追求高精度仪器。

三、实验仪器1、单摆仪实际照片和程序中的显示操作提示:拖动摆球让摆球摆动用鼠标左键或者右键点击摆线末端的旋钮来增大或者减小摆线长2、游标卡尺实际照片和程序中的显示操作提示:可以拖动副尺部分,改变测量卡口张开的大小可以用鼠标左键或者右键点击锁定旋钮,来锁住或者解锁副尺3、螺旋测微器实际照片和程序中的显示操作提示:鼠标左键或者右键点击转轴可以向上或者向下旋转转轴鼠标左键或者右键点击锁,可以锁定或者解锁4、电子秒表实际照片和程序中的显示操作提示:鼠标点击开始暂停按钮可以开始或者暂停计时鼠标点击复位按钮可以对秒表复位5、米尺实际照片和程序中的显示操作提示:用鼠标拖动左侧全景图中的白色区域,改变右侧放大区域对应的位置在右侧图中拖动米尺,可以改变米尺位置四、实验内容1、用误差均分原理设计一单摆装置,测量重力加速度g.设计要求:(1) 根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法.(2) 写出详细的推导过程,试验步骤.(3) 用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%.可提供的器材及参数:游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用).假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s;米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s.2、. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求.五、实验数据记录3、单摆长度L=90.50cm六、实验数据处理及分析g=4π2l/T2=4×3.14²×0.9146/(1.925)²≈9.75 N/kgE=∆g=0.05×100%=0.5%误差分析:实验中单摆的长度测量和周期测量的误差会使实验结果有误差,单摆长度偏长,g偏大,单摆长度偏短,g偏小,周期偏大,g偏小,周期偏小,g偏大。

西工大与西安交大期末复习考研备考大学物理题库 八、跨章节综合题

西工大与西安交大期末复习考研备考大学物理题库 八、跨章节综合题

八、跨篇章综合题一、选择题(共4题)选择题:假设一电梯室正在自由下落,电梯室天花板下悬一单摆(摆球质量为m ,摆长为l ).若使单摆摆球带正电荷,电梯室地板上均匀分布负电荷,那么摆球受到方向向下的恒定电场力F .则此单摆在该电梯室内作小角度摆动的周期为:( )A 、 Fmlπ2 .B 、 Flmπ2 . C 、 Fmlπ2 . D 、 mlFπ2 . 答案: C 难度:易选择题:图示为一固定的均匀带正电荷的圆环,通过环心O 并垂直于环面有一固定的绝缘体细棒,细棒上套着一个带负电的小球.假定起始时,小球在离O 较远的P 点,初速度为零,不计小球与细棒间摩擦,则小球将:( ) A 、 沿轴线向O 点运动,最后停止于O 点不动. B 、 沿轴线经O 点到达对称点P ′处停止不再运动. C 、 以O 点为平衡位置,沿轴线作振幅为A 的简谐振动.D 、 以O 点为平衡位置,沿轴线在PP ′两点的范围内作非简谐振动.答案: D 难度:易选择题:在水平均匀磁场中,一质量为m 的环形细导线自由悬挂在非弹性线上,沿着环流过的电流为I ,环相对铅直轴作微小的扭转振动的周期为T ,则磁场的磁感应强度的大小为 ( )A 、 22IT mπB 、24IT mπ C 、 23IT mD 、 232ITmπ答案: A 难度:中选择题:设氢原子的动能等于氢原子处于温度为T 的热平衡状态时的平均动能,氢原子的质量为m ,那么此氢原子的德布罗意波长为 ( )A 、 mkT h3=λ.B 、 mkT h5=λ.C 、 h mkT3=λ.D 、 hmkT5=λ.答案: A 难度:易二、填空题(共4题)填空题:在场强为E(方向垂直向上)的均匀电场中,有一个质量为m 、带有正电荷q 的小球,该球用长为L 的细线悬挂着.当小球作微小摆动时,其摆动周期T =_____________________ . 题目图片:答案:)/(2m qE g L-π3分难度:中填空题:一圆形平面载流线圈可绕过其直径的固定轴转动,将此装置放入均匀磁场中,并使磁场方向与固定轴垂直,若保持线圈中的电流不变,且初始时线圈平面法线与磁场方向有一夹角,那么此线圈将作______________________运动;若初始时刻线圈平面法线与磁场方向的夹角很小,则线圈的运动简化为________________.答案:机械振动2分;简谐振动 2分 难度:易填空题:已知中子的质量是m =1.67×10-27 kg ,当中子的动能等于温度为T = 300K的热平衡中子气体的平均动能时,其德布罗意波长为____________. (h =6.63×10-34 J ·s ,k =1.38×10-23 J ·K -1 )答案: 1.46 Å 3分 难度:易填空题:若用加热方法使处于基态的氢原子大量激发,那么最少要使氢原子气体的温度升高________________K .(假定氢原子在碰撞过程中可交出其热运动动能的一半) (玻尔兹曼常量k =1.38×10-23 J ·K -1,1 eV =1.60×10-19 J)答案: 15.8×104 3分 难度:中三、计算题(共19题)计算题:如图所示,一半径为R 的均匀带正电荷的细圆环,总电荷为Q .沿圆环轴线(取为x 轴,原点在环心O )放一根拉紧的光滑细线,线上套着一颗质量为m 、带负电荷-q 的小珠.今将小珠放在偏离环心O 很小距离b 处由静止释放,试分析小珠的运动情况并写出其运动方程.题目图片:答案:解:用场强叠加或电势梯度可求出圆环轴线上x 的场强为2/3220)(4x R QxE +π=ε 在x << R 处,场强近似为 304R QxE επ≈ 3分小珠在该处受到电场力为 kx R qQxF -=π-=304ε 式中k 为正值(304RqQk επ=),负号表示小珠受力方向与位移方向相反, 因而小珠作简谐振动. 2分 由牛顿第二定律,有 ma kx =-得到 0d d 222=+x txω 2分 其解为 )cos(φω+=t A x 由初始条件 x 0 = b 、v 0 = 0 可知A = b ,φ = 0 ∴ t mR qQb x 4cos30επ= 3分 难度:中计算题:半径为R 的均匀带电圆环上,总电荷为+Q .沿圆环轴线放一条拉紧的细线,线上套一颗质量为m 、电荷为-q 的小珠.当移动小珠使其偏离环心O 点很小距离时释放,若忽略小珠与细线间的摩檫,试证小珠将在细线上O 点附近作简谐振动,并求其振动频率. 题目图片:答案:解:把圆环轴线取作x 轴,环心O 点取作坐标原点.在离环心距离为x 处,带电圆环的场强为:])(4/[2/3220x R Qx E +π=ε 4分小珠受到的电场力为: ])(4/[2/3220x R qQx qE F +π-=-=ε 2分因x << R ,故 )4/(30R qQx F επ-≈kx -=式中 0)4/(30>π=R qQ k ε 2分 所以小珠的运动是以O 点为平衡位置的简谐振动.小珠的振动频率为:2/1033)]16/([2//m R qQ m k ενπ=π= 2分 难度:中计算题:如图所示,在场强为E 的均匀电场中,静止地放入一电矩为p、转动惯量为J 的电偶极子.若电矩p与场强E 之间的夹角θ很小,试分析电偶极子将作什么运动,并计算电偶极子从静止出发运动到p与E 方向一致时所经历的最短时间. 题目图片:pEθ答案:解:电偶极子在均匀电场中受力等于零,但受到一力偶矩 E p M⨯= 其大小为 θθpE pE M ≈=sin 3分 由转动定律可知, βθJ pE =- (β为角加速度)即 0d d 22=+θθJ pEt3分 可见,电偶极子将作角谐振动.其角频率为J pE /=ω 1分电偶极子从静止出发,转动到第一次使p与E 方向一致,需用四分之一周期的时间,即 pEJT t 24π==3分 难度:中计算题:一均匀带电球体,电荷体密度为ρ.在球体中开一直径通道,设此通道极细,不影响球体中的电荷及电场的原有分布.今将一电子放入此通道中除球心以外的任意处,试分析电子将作什么运动,并计算电子从通道口的一端从静止出发运动到另一端需经历多长时间.答案:解:按高斯定理求得球体内的电场强度分布为 03/ερr E = 如图选x 轴沿通道方向,原点在球心上,则通道内场强分布为 03/ερx E =电子在通道内任一位置受电场力为 )3/(0ερx e eE f -=-= 3分按牛顿第二定律,其动力学方程为 )3/(0ερx e -ma =即 03d d 022=+x me t x ερ可见电子将作简谐振动. 2分 电子从静止出发,由通道口一端运动到另一端需历时半个周期. )3/(0m e ερω=则 )/(3/2/0ρεωe m T t π=π== 3分 难度:中计算题:在两块水平大平行金属板之间建立起场强E竖直向上的均匀静电场,在此电场中用一长为l 的绳挂一个质量为m 、电荷为+q 的带电小球,求此小球作小幅度摆动的周期.答案:解:分析摆球受力如图:沿切向列牛顿方程 ma f mg e =+-θθsin sin 当θ很小时 l r /sin =θ 2分m f mg t r a e /sin )(/d d 22θ+-==)/()(ml r qE mg +-=)/()(ml r qE mg --=r 2ω-= 1分其中 )/()(2ml qE mg -=ω , qEmg mlT -π=π=22ω2分难度:中计算题:一质量为m 、电荷为-q 的粒子,在半径为R 、电荷为Q (>0)的均匀带电球体中沿径向运动.试证明粒子作简谐振动,并求其振动频率.证:由高斯定理求得球内场强为r R QE 304επ=粒子受力: r R qQqE F 304επ-=-= 由牛顿第二定律: ma F =∴ r R qQ 304επ-22d d t r m = , 22d d tr 0430=π+r mR qQ ε 3分 粒子沿径向作简谐振动, 其频率:3024mR qQ εωπ= , 304212mR qQεωνππ=π= 2分计算题:三个电荷均为q 的点电荷,分别放在边长为a 的正三角形的三个顶点上,如图所示.求:(1) 在三角形中心O 处放一个什么样的点电荷q ′可使这四个点电荷都达到受力平衡?(2) 设点电荷q ′的质量为m ,当它沿垂直于三角形平面的轴线作微小振动时的振动周期(重力可忽略不计). 题目图片:qq答案:解:(1) 在O 点放点电荷q ′,要使四个点电荷都受力平衡,必须考虑每一顶点上的点电荷q 受其余三个点电荷作用力的合力为零.顶点之一的点电荷受其余二个顶点的点电荷作用的合力f 为2022024330cos 42aq a q f εεπ=︒π⋅= 2分 而受到q ′的作用力f ′为204/b q q f επ'='204/3a q q επ'= (3/a b =) 2分 由 0='+f f 可得 3/q q -=' 1分 q ′为q 的异号电荷. (2) 当q ′垂直纸面作微小位移x 时,受一回复力F ,按牛顿第二定律222/122220d d )()(43txm x b x x b q q =+⋅+π'ε 4分考虑到 x << 3/a b =,得到 049d d 30222=π+x ma q t x ε 1分 令 m a q 30224/9εωπ=,得到振动周期am qa T 0342εωππ=π= 2分 难度:中计算题:如图所示,一细长小磁针,支在一轴尖O 上,在地磁场的作用下,平衡时指向南北方向;若使磁针偏离平衡位置一个小的角度后释放,它将绕平衡位置往复摆动.经实验测定,小磁针的摆动周期T = 2 s ,小磁针绕O 轴的转动惯量J = 8×10-8 kg ·m 2,地磁场的磁感应强度的水平分量B = 0.3×10-4 T .试求小磁针的等效磁矩. 题目图片:O SNB答案:解:设小磁针的等效磁矩为m p,则小磁针所受力矩为θθB p B p M m m -≈-=sin 1分式中θ为m p与B 间的夹角,负号表示该磁力矩为恢复力矩,由定轴转动定律22d d t J M θ= 1分θθJ B p tm -=22d d 1分 J B p m =2ω, Bp JT m π=2 1分解出 =π=)2(TB J p m 2.63×10-2 A ·m 2 1分 难度:中计算题:在水平匀强磁场中,质量m = 2g 的环形(半径为R )细导线,用一根细线悬挂起来,可以自由转动.当导线环流过强度I = 2A 的电流时,环相对于竖直轴作小幅度扭转振动,振动的周期T = 1.0s .求磁场的磁感应强度B . (细环以直径为轴转动时的转动惯量221mR J =)答案:解∶磁矩 2R I IS p m π== 受磁力矩 θθsin sin 2B R I B p M m π== 2分 按定轴转动定律 βJ M = 细环以直径为轴转动惯量 2/2mR J =2/2/22θβ mR mR M == 2分 把磁力矩代入转动定律 2/2θmR θsin 2B R I π-= 式中的负号是因为磁力矩总是转向θ 变小方向.小扭转时,θ < 5°, sin θ =θ即 θθmIB π-=2 3分 这是扭转振动微分方程,振动圆频率mIBπ=2ω,周期 IB m T π=2∴ =⨯⨯⨯π=π=-2320.1210222IT m B 6.28×10-3T 3分 难度:中计算题:如图所示,一个由10匝均匀细导线构成的正方形线圈,质量为5g ,被悬挂在一根轻细的棉线上,悬点在线框某边中点.线圈处在磁感应强度为B = 5×10-3 T 的均匀磁场中,磁场方向与线圈平面垂直.今在线圈中通以强度为I = 0.6 A 的电流,并使线圈作微小的扭转振动.求振动的周期T . 题目图片:IB×××××××××答案:解∶设线框边长l ,那么它的转动惯量为22261)2(4241212ml l m l m J =+⨯⨯= 2分通电后的磁矩为 2l NI p m =在磁场中受到的磁力矩为 θsin B p M m = 2分 作微小扭转时 θθ≈sin , θθB l NI B p M m 2== 1分由转动定律βJ M =可得, 6/22θθ ml B l NI -= 2分 负号是因为力矩是转向θ 变小的方向.上式表明,线圈是作扭转谐振动,振动圆频率可由下式得出 m NIB /62=ω周期 NIBmT 622π=π=ω2分= 1.05 s 1分 难度:中 计算题:在磁感强度为B的均匀磁场中,一质量为m ,半径为R ,载有电流i 的圆形平面线圈可绕垂直于磁场方向并过线圈直径的固定轴转动.设初始时刻线圈的磁矩沿磁场方向,使线圈转过一个很小的角度后,线圈可在磁场作用下摆动(忽略重力及轴处摩擦的影响),证明当线圈质量一定时, 线圈摆动的周期与线圈半径无关.答案:证: θsin iSB B p M m =⨯=2分由转动定律 θθsin iSB J -= 2分 当θ 很小时 θθiSB J + = 0 1分 式中 221mR J =, 2R S π= ∴ 02122=π+θθB R i mR 1分 02=π+θθm B i , mB i π=22ω 2分 iBm T π=π=22ω 2分 可见若m 一定线圈摆动的周期与线圈半径无关.难度:中计算题:一半径为R 的圆形线圈,通有强度为I 的电流,平面线圈处在均匀磁场B中,B的方向垂直纸面向里,如图.线圈可绕通过它的直径的轴OO '自由转动,线圈对该轴的转动惯量为J .试求线圈在其平衡位置附近做微小振动的周期. 题目图片:I RO O 'B答案:解∶B p M m⨯= θsin B p M m = 1分22d d sin tJ B p m θθ-= 2分在微小振动时θθ≈sin , I R p m 2π=,代入上式有∶0d d 222=π+θθJ BR I t∴ JB R I 2π=ω, IBJ R T π=22分 难度:中计算题:一面积为A 、总电阻为R 的导线环用一根扭转刚度为K 的弹性细丝(被扭转α角时,其弹性恢复扭力矩M K = K α )挂在均匀磁场B中,如图.线圈在yz 平面处于平衡,设线圈绕z 轴的转动惯量为I .现将环从图中位置转过一个小角度θ 后释放之,忽略线圈自感, 试用已知参数写出此线圈的转角与时间的方程. 题目图片:yzB答案:解:当线圈平面从图中位置转过小角度α时,穿过线圈的磁通量为:αΦsin BA =α变化时线圈中感应电动势为 tBA t d d cos d d ααΦ⋅==E 感应电流 ααcos d d tR BA R i ==E 3分磁矩 t R BA iA m d d cos 2αα⋅== 所受磁力矩 tR A B M m d d cos 222αα⋅= 3分 线圈还受到细丝弹性恢复力矩 M K = K α,两者均阻碍线圈运动.∴ 22222d d d d cos tI K t R A B αααα-=+⋅ 3分 ∵ θα≤ 0≈θ ∴ 1cos ≈α∴ 0d d d d 2222=+⋅+αααK t R A B t I其通解为: )sin cos (e 21rt A rt A t +=-βα其中 IRA B 222=β 2β-=I K r 利用初始条件: θα==0t0d d 0==t t α可得 θ=1A , 02=A rt t cos e βθα-= 3分 难度:难计算题:如图,由一绝热材料包围的圆管,横截面积为S ,一端封闭,另一端敞开,中部有一质量为m 的绝热塞子,塞子与管壁的摩擦可忽略,管内装有比热容比为γ的理想气体.设塞子在平衡位置时,气体体积为V ,压强为p ,现在把塞子稍向左移,然后放开,则塞子将振动.若管内气体所进行的过程可看作绝热过程,求塞子振动的周期. 题目图片:答案:解:沿管长方向取坐标x , 设平衡位置x = 0,塞子位移为x 时所受合力为F = d p ·S 1分 绝热过程 pV γ = C 1分 d p ·V γ + p γ V γ-1d V = 0 得 Sx V p V V p p )/(d )/(d γγ-=-=∴ F = d p ·S x S V p 2)/(γ-= 2分动力学方程: 22d d txm x S V p 2)/(γ-= 2分即 22d d tx 02=+mV xS p γ 此式为简谐振动的动力学方程式.圆频率为 2/12))/((mV S p γω= 2分∴ 振动周期 γωp mVS T π=π=22 2分难度:难计算题:氢原子气体在什么温度下的平均平动动能等于使氢原子从基态跃迁到第一激发态所需要的能量?(玻尔兹曼常量k =1.38×10-23 J ·K -1).答案:解:氢原子基态能量 6.131-=E eV 1分 第一激发态能量 4.32//21212-===E n E E eV 1分 假设温度为T ,则kT w )2/3(= 1分据题意12E E w -= 1分 =-=kE E T 3)(2127.88×104 K 1分 难度:计算题:设某气体的分子的平均平动动能与一波长为λ = 4000 Å的光子的能量相等,求该气体的温度.(普朗克常量h =6.63×10-34 J ·s ,玻尔兹曼常量k =1.38×10-23 J ·K -1)答案:解:光子的能量 λν/hc h E == 1分若 E kT w ==231分则 ===)3/(2)3/(2λk hc K E T 2.4×104 K 3分 难度:易计算题:设在碰撞中,原子可交出其动能的一半,如果要用加热的方式使基态氢原子大量激发,试估算氢原子气体的温度至少应为多少? (玻尔兹曼常量k =1.38×10-23 J ·K -1)答案:解:当加热到温度T 时,氢原子的平均动能 kT E 23=碰撞时可交出动能 212321⨯=kT E 2分 因此用加热的方式使之激发,则要求温度T 1满足1212321E E kT -≥ 式中, E 1=-13.6 eV , E 2= E 1 /22 =-3.4 eVk E E T /))(3/4(121-≥ 即 ≥1T 1.6×105 K 3分 难度:难计算题:波长为3500 Å的光子照射某种材料的表面,实验发现,从该表面发出的能量最大的光电子在B =1.5×10-5 T 的磁场中偏转而成的圆轨道半径R =18 cm ,求该材料的逸出功A 是多少电子伏特?(基本电荷e =1.60×10-19C ,电子质量m =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s ,1eV =1.60×10-19J )答案:解: 2)/(v v R m B e = ① 1分A m h +=221v ν ② 1分由① m eBR /)(=v 1分代入② meBR hc m h A 2)(2122-=-=λνv= 4.66×10-19J =2.91 eV 2分 难度:难计算题:一共轴系统的横截面如图所示,外面为石英圆筒,内壁敷上半透明的铝薄膜,内径r 2 =1 cm ,长为20 cm ,中间为一圆柱形钠棒,半径r 1 = 0.6 cm ,长亦为20 cm ,整个系统置于真空中.今用波长λ =3000 Å的单色光照射系统.忽略边缘效应,求平衡时钠棒所带的电荷.已知钠的红限波长为m λ=5400Å,铝的红限波长为mλ'=2960Å.(基本电荷e = 1.60×10-19 C ,普朗克常量 h = 6.63×10-34 J ·s ,真空电容率ε0=8.85×10-12 C 2·N -1·m -2) 题目图片:r 1 r 2钠棒半透明铝膜石英λ答案:解:铝不产生光电效应.钠在光照下,发射光电子,它们的最大初动能为m hc hc m λλ//212-=v ① 2分 这些光电子聚集在铝膜上,使钠棒和铝膜分别带上正、负电荷Q ,当它们间的电势差∆U 达到 e ∆U =221v m ② 2分时,系统达到平衡.由高斯定理,忽略边缘效应情况下,可求出钠棒与铝膜间电场)2/(0lr Q E επ= ③ 1分∆U 1ln 2d 12021r r l Qr E r r επ==⎰ ④ 2分 由式①、②、④得 e ∆U 120ln 2r r l Q eεπ=m hc hc m λλ//212-==v ∴ )11()/ln(2120mr r e lhc Q λλε-π=2分 = 4.01×10-11 C 1分 难度:难四、理论推导与证明题(共4题)理论推导与证明题:一电矩为l q p=的电偶极子,置于场强为E 的均匀电场中,如果将电偶极子的电矩方向偏离平衡位置一个微小角度后释放,则电偶极子将绕平衡位置作简谐振动(转动).已知电偶极子绕自身中心转动的转动惯量为I ,求证其振动频率为 IpEπ=21ν答案:证:当电矩p与场强E 夹角为θ 时,电偶极子受到一个力偶矩M 作用,其大小为 θθθpE pE qEl M ≈==sin sin 3分 此力偶矩是与θ 角反向的,是回复力矩,按转动定律得:22d d tI pE θθ=-即0d d 22=+θθI pEt 令 I pE /2=ω则 0d d 222=+θωθt5分 此即角谐振动的微分方程.其振动频率为IpE π=π=212ων 2分 答案图片:难度:易题目图片:答案:证∶ 沿径向单位长度有n 匝导线, )/(12R R N n -=故d r 宽度有电流 r nI I d d =它的磁矩 r R R NIr r nIr p m d d d 1222-π=π= 2分 总磁矩 ⎰⎰-π==21d d 212RR m m r r R R NI p P )(31313212R R R R NI --π= )(3212122R R R R NI ++π=2分 在磁场B 中受的磁力矩 θsin B P M m = 2分由转动定律 θβ J J M == 即 θ J θsin B P m-= 式中负号是因为力矩转向θ 变小的方向. 在小角度情况下 sin θ = θθθJB P m -= 2分 这是振动微分方程, 所以说线圈作扭转简谐振动.其振动圆频率为JBP m =ω 2分振动的振幅θ 0 和初相φ 0由初始条件决定.)cos(00φθθ+=t JBP m 2分难度:难理论推导与证明题:N 匝导线,密绕成内外示.通有电流I ,放在磁感强度为B的匀强的AA '轴的转动惯量为J .试证:当其偏动是一简谐振动. 写出关于θ 的振动方程.理论推导与证明题:如图所示,瓶内盛有一定质量的理想气体,一横截面为A 的玻璃管通过瓶塞插入瓶内,玻璃管内放有一不漏气又能上下无摩擦地滑动的活塞,质量为m ,设活塞在平衡位置时,瓶内气体的体积为V ,压强为p .现将活塞稍稍移动离开其平衡位置,然后放开,则活塞上下振动,试证明,活塞作简谐振动,且准弹性力为y V pA F )/(2γ-=, 式中 V p C C /=γ ,y 为位移(向下为正). (假设瓶内气体进行的过程为绝热过程)题目图片:答案:证:活塞离开平衡位置时,所受的回复力 A p F •∆-= 2分 由于瓶内气体是作绝热过程,故有 C pV =γ 2分 两边微分: 01=∆+∆-V V p p V γγγ ∴ ∆p = -γp ∆V /V= γpAy /V (y 为活塞位移,Ay V -=∆) 2分 故 F = -γpA 2y /V 2分 即回复力F 与位移y 大小成正比而反向, 故活塞作简谐振动. 2分难度:难证明题:已知原子中电子的轨道磁矩大小p m 和轨道角动量大小L 的关系为L m e p e m 2= 试证明该原子中电子的轨道角动量在外磁场B 中的进动角速度ω的大小为 em eB2=ω答案:证∶原子磁矩在外磁场中所受的力矩为θsin B p M m =θsin 2LB m ee= 2分 在力矩作用下,角动量将发生改变.根据角动量定理有ωθφθ⋅===sin d d sin d d L tL t L M 4分由以上两式有 em eB2=ω 2分难度:难五、错误改正题(共1题)错误改正题:如果室温下( t =27℃)中子的动能与同温度下理想气体分子的平均平动动能相同,则热中子的动能E K =?其德布罗意波长λ =?试指出下面解答错误之处,并给予改正.解: 3107.330031.82323⨯=⨯⨯==RT E K J由 λν/hc h E K ==可得 19104.5/-⨯==K E hc λ Å (中子质量m 0 =1.67×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,玻尔兹曼常量k =1.38×10-23 J ·K -1)答案:答:上述解题是错误的,因为RT E K 23≠ K E hc /≠λ 1分改正: 211021.623-⨯==kT E K J 2分146.0)2/(/2/10===m E h p h K λ nm 2分 难度:中六、回答问题(共1题)回答问题:如果中子的动能与同温度下理想气体分子的平均平动动能相同, 则T =104 K 的热中子通过直径为1 mm 的小孔或障碍物时,将表现出粒子性还是波动性?为什么?(中子质量m 0 =1.67×10-27 kg ,玻尔兹曼常量k =1.38×10-23 J ·K -1,普朗克常量h =6.63×10-34 J ·s)答案:答:将表现出粒子性. 2分因为热中子的动能为 ==kT E K 232.07×10-19 J其德布罗意波长 ==K E m h 02/λ 2.52×10-11 m <<1 mm 3分难度:中。

2019年大物实验.doc

2019年大物实验.doc

西安交通大学考试题课 程___________________系 别___________________ 考试日期: 2003年12月 日专业班号___________________姓 名___________________ 学号___________ 期中 期末物理实验试题(三)一.选择题(选出所有正确答案,每题1分,共10分):1、在三线摆实验中,要求摆盘转角很小,主要目的是_______;A .可以保证摆盘摆动平稳; B.可以保证摆盘转动平稳;C .可以把摆盘的运动看作简谐振动;D.可以把三条摆线看作是等长,减小误差。

2、在弦振动实验中,磁铁的作用是什么?一般应放在______;A. 通电后产生电磁力,放在波腹处;B. 通电后产生电磁力,放在波节处;C. 弦线未通电时吸引产生振动,放在波腹处;D .弦线未通电时吸引产生振动,放在波节处。

3、导热系数实验中,样品B 是放在铜盘A 上加热并最终得出结果的,问导热系数____。

A.与样品直径和厚度有关,与铜盘直径和厚度无关;B.与样品直径和铜盘直径有关,与样品厚度和铜盘厚度无关;C.与样品厚度和铜盘厚度有关,与样品直径和铜盘直径无关;D.与样品和铜盘的直径和厚度都有关。

4、用QJ-24型惠斯通电桥测电阻,若待测电阻值大约有几百欧姆,则比率臂选择为____。

A. 10;B. 1;C. 0.1;D.0.015、使用示波器时,若已经将光点调节合适,在观察某信号源输出信号时,发现示波器荧光屏上仍为一条水平方向的亮线,原因可能是_______。

A.信号源无信号输出;B.信号输入线有故障;C.示波器信号增益太小;D.示波器信号增益太大。

6、在测量电子荷质比时,其他条件不变,若第一次聚焦时的电流为I ,那么,第二次聚焦时的电流是第一次聚焦时电流的________。

A. 21倍; B.2倍 ; C.22倍; D.2倍; 7、分光计调整中,“各减一半”调法的目的是_______。

西安交大大学物理试卷0601

西安交大大学物理试卷0601

[ ] 第 1 页[ ]确定了光电效应的真实性[ ] 第 2 页的速度沿x轴的负方向运动,若从S'系的坐标系中测得此光波在真空中的波速为。

第 3 页第 4 页第 5 页第 6 页大学物理期末考试参考答案(2006.1.9)一、选择题: 1.B 2.A 3.C 4.A 5.B 6.B 7.B 8.D 9.C 10.二、填空题: 1. 1:4:16②; 1:2:4①; 2. 氦气②; 氢气①; 3. 5个③;明②; 4.略③;5. c ③;6.22/sin (π/)a x a ③; 1/34π=0.195②; 7. 1/2②;-1/2①. 8.窄②;电子①;导带①;电子—空穴①三、计算题, 1.C B →和A D →绝热过程:γγγγ----=C C B B T p T p 11,γγγγ----=D D A A T p T p 11②两式相比,并注意到D C B A p p p p == ,,得C D B A T T T T / /=B A →过程吸收热量:)(1A B p T TC Q -=ν③D C →过程放出热量:)(2D C p T T C Q -=ν③ 循环的效率为%251)/1()/1(1)()(1112=-=---=---=-=B C B A B C D C A B p DC p T T T T T T T T T T C T T C Q Q ννη②2.(1) 反射点是固定端,所以反射有相位突变π,反射波的表达式; π])(π2cos[2++=T txA y λ ⑥(2) 合成的驻波的表达式12ππ2cos(2π)cos(2π)22y y y xt A T λ=+=+-②(3) 波腹位置:π2ππ2n x =+λ2)21(λ-=n x ,2,1--=n ①波节位置:2π)12(2ππ2+=+n x λ λn x 21= ,2,1--=n ①3. (1) 求原点O (零级明条纹所在处)上方的第五级明条纹的坐标x ;λδk D xd==④65120050010 6.0 mm0.50kD x dλ-=⨯⨯⨯==② (2 ) 用透明薄膜覆盖在1S 缝后面时,光程差的改变为: ln D dx )1(--'='δ②对零级明条纹:0='δmm9.1350.001.01200)158.1( )1(=⨯⨯-=-='d Dl n x②4.(1) 光栅常数:μm 310mm 3001==d ①光栅方程:λϕk d =sinμm 38.130046.24sin ==λk ④1=k ,不合题意2=k ,即为红光波长μm 69.0=R λ①3=k ,即为蓝光波长μm 46.0=B λ① 4=k ,不合题意(2) 对于红光:8.41069.030013max =⨯⨯==-Rdk λ因此,红光的第4级与蓝光的第6级两谱线还会再次同时出现,②828.03.069.04sin =⨯⨯=='d k Rλϕ︒='9.55ϕ①。

大学物理实验课后习题答案-西安交大张永利主编

大学物理实验课后习题答案-西安交大张永利主编

第一章误差估算与数据处理方法课后习题答案1.指出下列各量有效数字的位数。

(1)kV 有效位数:4 (2)mm 有效位数:3 (3)kg 有效位数:5 (4)自然数有效位数:无限位2.判断下列写法是否正确,并加以改正。

(1)A mA错,0.0350A 有效位数为3位,而35mA 有效位数为2位,二者物理意义不同,不可等同,应改为A mA 。

(2)kg错,测量结果(即最佳估计值)有效数字的最后一位应与不确定度的末位对齐。

测量结果有效数字取位时,应遵循“四舍六入五凑偶”的原则;而且,不确定度应记为“”的形式。

故应将上式改成kg 。

(3)km错,当采用科学计数法表示测量结果时,最佳估计值与不确定度应同时用科学计数法表示,并且10的指数应取一致,还要保证最佳估计值的最后一位与不确定度的末位对齐。

因此,上式应改为。

(4)A 正确。

3.试按有效数字修约规则,将下列各数据保留三位有效数字。

3.8547,2.3429,1.5451,3.8750,5.4349,7.6850,3.6612,6.26383.85 2.34 1.54 3.88 5.43 7.68 3.66 6.26 4.按有效数字的确定规则,计算下列各式。

(1)000.1=U 000123.0=L 010.10=m 40350.0=I 35=0350.0=I 11050.3⨯=()3.0270.53+=m 270.53=m ±()3.03.53±=m ()2000103.274±⨯=h ()kmh 4102.03.27⨯±=()004.0325.4±=x ?6386.08.7537.343=++解:原式 (2)解:原式 (3)解:原式 (4)解:原式5.分别写出下列各式的不确定度传播公式。

(1)(K 为常数)解:(a )绝对不确定度:(b )相对不确定度:其中,、分别表示A 、B 量的合成不确定度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

创新物理实验综述报告硕4006班周阳31140080031.磁共振系列实验1.1词条解释外文名:Spin Magnetic Resonance Phenomenon磁共振指的是自旋磁共振(spin magnetic resonance)现象。

其意义上较广,包含核磁共振(nuclear magnetic resonance, NMR)、电子顺磁共振(electron paramagnetic resonance, EPR)或称电子自旋共振(electron spin resonance, ESR)。

此外,人们日常生活中常说的磁共振,是指磁共振成像(Magnetic Resonance Imaging,MRI),其是利用核磁共振现象制成的一类用于医学检查的成像设备。

1.2发展简史磁共振是在固体微观量子理论和无线电微波电子学技术发展的基础上被发现的。

1945年首先在顺磁性Mn盐的水溶液中观测到顺磁共振,第二年,又分别用吸收和感应的方法发现了石蜡和水中质子的核磁共振;用波导谐振腔方法发现了Fe、Co和Ni薄片的铁磁共振。

1950年在室温附近观测到固体Cr2O3的反铁磁共振。

1953年在半导体硅和锗中观测到电子和空穴的回旋共振。

1953年和1955年先后从理论上预言和实验上观测到亚铁磁共振。

随后又发现了磁有序系统中高次模式的静磁型共振(1957)和自旋波共振(1958)。

1956年开始研究两种磁共振耦合的磁双共振现象。

这些磁共振被发现后,便在物理、化学、生物等基础学科和微波技术、量子电子学等新技术中得到了广泛的应用。

例如顺磁固体量子放大器,各种铁氧体微波器件,核磁共振谱分析技术和核磁共振成像技术及利用磁共振方法对顺磁晶体的晶场和能级结构、半导体的能带结构和生物分子结构等的研究。

原子核和基本粒子的自旋、磁矩参数的测定也是以各种磁共振原理为基础发展起来的。

磁共振成像技术由于其无辐射、分辨率高等优点被广泛的应用于临床医学与医学研究。

一些先进的设备制造商与研究人员一起,不断优化磁共振扫描仪的性能、开发新的组件。

例如:德国西门子公司的1.5T 超导磁共振扫描仪具有神经成像组件、血管成像组件、心脏成像组件、体部成像组件、肿瘤程序组件、骨关节及儿童成像组件等。

其具有高分辨率、磁场均匀、扫描速度快、噪声相对较小、多方位成像等优点。

1.3基本原理磁共振(回旋共振除外)其经典唯象描述是:原子、电子及核都具有角动量,其磁矩与相应的角动量之比称为磁旋比γ。

磁矩M 在磁场B中受到转矩MBsinθ(θ为M与B间夹角)的作用。

此转矩使磁矩绕磁场作进动运动,进动的角频率ω=γB,ωo称为拉莫尔频率。

由于阻尼作用,这一进动运动会很快衰减掉,即M达到与B平行,进动就停止。

但是,若在磁场B的垂直方向再加一高频磁场b(ω)(角频率为ω),则b(ω)作用产生的转矩使M离开B,与阻尼的作用相反。

如果高频磁场的角频率与磁矩进动的拉莫尔(角)频率相等ω=ωo,则b(ω)的作用最强,磁矩M的进动角(M与B角的夹角)也最大。

这一现象即为磁共振。

磁共振也可用量子力学描述:恒定磁场B使磁自旋系统的基态能级劈裂,劈裂的能级称为塞曼能级(见塞曼效应),当自旋量子数S=1/2时,其裂距墹E=gμBB,g为朗德因子,μ为玻尔磁子,e和me为电子的电荷和质量。

外加垂直于B的高频磁场b(ω)时,其光量子能量为啚ω。

如果等于塞曼能级裂距,啚ω=gμBB=啚γB,即ω=γB(啚=h/2π,h为普朗克常数),则自旋系统将吸收这能量从低能级状态跃迁到高能级状态(激发态),这称为磁塞曼能级间的共振跃迁。

量子描述的磁共振条件ω=γB,与唯象描述的结果相同。

当M是顺磁体中的原子(离子)磁矩时,这种磁共振就是顺磁共振。

当M是铁磁体中的磁化强度(单位体积中的磁矩)时,这种磁共振就是铁磁共振。

当M=Mi是亚铁磁体或反铁磁体中第i个磁亚点阵的磁化强度时,这种磁共振就是由 i个耦合的磁亚点阵系统产生的亚铁磁共振或反铁磁共振。

当M是物质中的核磁矩时,就是核磁共振。

这几种磁共振都是由自旋磁矩产生的,可以统一地用经典唯象的旋磁方程dM/dt=γMBsinθ[相应的矢量方程为d M/dt=γ(M×B]来描述。

回旋共振带电粒子在恒定磁场中产生的共振现象。

设电荷为q、质量为m的带电粒子在恒定磁场B中运动,其运动速度为v。

当磁场B与速度v相互垂直时,则带电粒子会受到磁场产生的洛伦兹力作用,使带电粒子以速度v绕着磁场B旋转,旋转的角频率称为回旋角频率。

如果在垂直B的平面内加上高频电场E(ω)(ω为电场的角频率),并且ω=ωc,则这带电粒子将周期性地受到电场E(ω)的加速作用。

因为这与回旋加速器的作用相似,故称回旋共振。

又因为不加高频电场时,这与抗磁性相类似,故亦称抗磁共振。

当v垂直于B时,描述这种共振运动的方程是d(mv)/dt=q(vB),若用量子力学图像描述,可以把回旋共振看作是高频电场引起带电粒子运动状态在磁场中产生的朗道能级间的跃迁,满足共振跃迁的条件是:ω=ωc。

各种固体磁共振在恒定磁场作用下的平衡状态,与在恒定磁场和高频磁场(回旋共振时为高频电场)同时作用下的平衡状态之间,一般存在着固体内部自旋(磁矩)系统(回旋共振时为载流子系统)本身及其与点阵系统间的能量转移和重新分布的过程,称为磁共振弛豫过程,简称磁弛豫。

在自旋磁共振的情形,磁弛豫包括自旋(磁矩)系统内的自旋-自旋(S-S)弛豫和自旋系统与点阵系统间的自旋-点阵(S-L)弛豫。

从一种平衡态到另一种平衡态的弛豫过程所经历的时间称为弛豫时间,它是能量转移速率或损耗速率的量度。

共振线宽表示能级宽度,弛豫时间表示该能态寿命。

磁共振线宽与磁弛豫过程(时间)有密切的联系,按照测不准原理,能级宽度与能态寿命的乘积为常数,即共振线宽与弛豫时间(能量转移速度)成反比。

因此,磁共振是研究磁弛豫过程和磁损耗机制的一种重要方法。

1.4试验方法通常,当外加恒定磁场Be在0.1~1.0T(材料的内磁场BBe)时,各种与电子有关的磁共振频率都在微波频段,而核磁共振频率则在射频频段。

这是因为原子核质量与电子质量之比至少1836倍的缘故。

虽然观测这两类磁共振分别应用微波技术和无线电射频技术,但其实验装置的组成与测量原理却是类似的。

磁共振实验装置由微波(或射频)源、共振系统、磁场系统和检测系统组成,如图3。

微波(或射频)源产生一定角频率ω(或频率扫描)的电磁振荡,送到装有样品的共振系统(共振腔或共振线圈),共振系统中的高频磁场bω[回旋共振时为电场E(ω)]与磁场系统产生的恒定磁场B 垂直,当保持源的频率不变而改变恒定磁场强度(磁场扫描),或保持恒定磁场强度不变而改变源的频率(频率扫描),达到共振条件ω=γH 时,检测系统便可测得样品对高频电磁能量的吸收Pa与磁场B(或频率ω)的关系,即共振吸收曲线,如图4a。

在共振信号微弱(例如核磁共振或顺磁共振)的情况下,可以采用调制技术,测量共振吸收微分曲线,以提高检测灵敏度。

磁共振的重要参数是发生最大共振吸收的共振磁场Bo、共振线宽(相应于最大共振吸收一半的磁场间隔)ΔB、共振吸收强度(最大吸收P或共振曲线面积)和共振曲线形状(包括对称性和精细结构等)。

当共振曲线为洛伦兹线型时,共振微分曲线的极值间隔ΔBpp与共振线宽ΔB具有简单的关系:。

在采用频率扫描代替磁场扫描时,相应的共振曲线和参数中的磁场B都换为角频率ω,如共振频率ωo,共振线宽Δω等。

在特殊情况下,还可以采用脉冲源、傅里叶变换、多次累积等技术来提高灵敏度或分辨率等。

2.超声波2.1词条解释外文名:ultrasonic (waves)超声波是一种频率高于20000赫兹的声波,它的方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。

在医学、军事、工业、农业上有很多的应用。

超声波因其频率下限大于人的听觉上限而得名。

科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹(Hz)。

我们人类耳朵能听到的声波频率为20Hz-20000Hz。

因此,我们把频率高于20000赫兹的声波称为“超声波”。

通常用于医学诊断的超声波频率为1兆赫兹-30兆赫兹。

理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,介质质点振动的频率很高,因而能量很大.在中国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气湿度,这就是超声波加湿器的原理。

如咽喉炎、气管炎等疾病,很难利用血流使药物到达患病的部位,利用加湿器的原理,把药液雾化,让病人吸入,能够提高疗效。

利用超声波巨大的能量还可以使人体内的结石做剧烈的受迫振动而破碎,从而减缓病痛,达到治愈的目的。

超声波在医学方面应用非常广泛,可以对物品进行杀菌消毒。

2.2产生原理声波是物体机械振动状态(或能量)的传播形式。

超声波是指振动频率大于20000Hz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的一般上限(20000Hz),人们将这种听不见的声波叫做超声波。

由于其频率高,因而具有许多特点:首先是功率大,其能量比一般声波大得多,因而可以用来切削、焊接、钻孔等。

再者由于它频率高,波长短,衍射不严重,具有良好的定向性,工业与医学上常用超声波进行超声探测。

[1] 超声和可闻声本质上是一致的,它们的共同点都是一种机械振动模式,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声波频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性,1兆Hz=10^6Hz,即每秒振动100万次,可闻波的频率在16-20000HZ 之间)。

超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律没有本质上的区别。

但是超声波的波长很短,只有几厘米,甚至千分之几毫米。

与可听声波比较,超声波具有许多奇异特性:传播特性──超声波的波长很短,通常的障碍物的尺寸要比超声波的波长大好多倍,因此超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,该特性就越显著。

功率特性──当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。

声波功率就是表示声波做功快慢的物理量。

在相同强度下,声波的频率越高,它所具有的功率就越大。

由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。

空化作用──当超声波在介质的传播过程中,存在一个正负压强的交变周期,在正压相位时,超声波对介质分子挤压,改变介质原来的密度,使其增大;在负压相位时,使介质分子稀疏,进一步离散,介质的密度减小,当用足够大振幅的超声波作用于液体介质时,介质分子间的平均距离会超过使液体介质保持不变的临界分子距离,液体介质就会发生断裂,形成微泡。

相关文档
最新文档