材料力学实验之拉伸实验

合集下载

材料力学实验拉伸实验报告

材料力学实验拉伸实验报告

材料力学实验拉伸实验报告材料力学实验拉伸实验报告引言:材料力学实验是研究材料在受力作用下的变形和破坏行为的重要手段。

拉伸实验是其中一种常见的实验方法,通过对材料在受力下的延伸行为进行观察和分析,可以获得材料的力学性能参数,如屈服强度、断裂强度等。

本实验旨在探究不同材料在拉伸过程中的力学性能,并通过实验数据分析和计算得出结论。

实验装置与方法:实验所用材料为不同种类的金属样条,包括铜、铝、钢等。

实验装置主要由拉伸试验机、测力计和长度计组成。

首先,将金属样条固定在拉伸试验机上,然后逐渐增加试验机施加的拉伸力,同时记录测力计示数和长度计示数。

在拉伸过程中,要确保样条的应力均匀分布,避免出现局部应力集中导致的破坏。

实验结果与分析:通过实验数据记录和分析,我们得到了不同金属样条在拉伸过程中的力学性能参数。

首先,我们观察到在拉伸实验开始时,材料的应力-应变曲线呈现线性关系,即符合胡克定律。

随着拉伸力的增加,材料开始发生塑性变形,应力-应变曲线开始偏离线性关系,进入非线性阶段。

当拉伸力继续增加时,材料逐渐接近其屈服点,此时应力-应变曲线出现明显的拐点。

在过屈服点后,材料进入了塑性变形阶段。

我们观察到在这个阶段,材料的应力-应变曲线呈现出明显的下降趋势,即应力逐渐减小。

这是因为材料的内部结构发生了变化,晶粒开始滑移和变形,导致材料的强度下降。

在塑性变形过程中,材料的延伸率逐渐增加,直到达到最大延伸率。

然而,当材料的延伸率达到一定程度时,材料开始出现颈缩现象。

这是因为在塑性变形过程中,材料的某些部分发生了局部应力集中,导致材料在这些部分发生断裂。

我们观察到,颈缩现象对于不同材料的发生时间和程度是有差异的。

一般来说,延展性较好的材料在颈缩现象发生前能够承受更大的拉伸力。

结论:通过本次拉伸实验,我们得到了不同金属样条的力学性能参数,并对材料的拉伸行为进行了分析。

根据实验结果,我们可以得出以下结论:1. 不同材料在拉伸过程中的应力-应变曲线呈现出不同的形态,但都符合胡克定律。

材料拉伸实验

材料拉伸实验

材料拉伸实验材料拉伸实验是材料力学实验中的一种重要实验方法,通过对材料在拉伸过程中的力学性能进行测试,可以了解材料的抗拉强度、屈服强度、断裂伸长率等重要力学性能参数,为材料的设计、选择和使用提供重要依据。

本文将介绍材料拉伸实验的基本原理、实验方法和实验步骤。

材料拉伸实验的基本原理是利用外力作用下材料发生拉伸变形的特性,通过施加拉伸力,使材料在拉伸载荷作用下发生变形,从而测定材料的拉伸性能。

在拉伸实验中,通常通过拉伸试验机施加力,使试样在拉伸载荷作用下逐渐拉伸,同时测量试样的变形和载荷,得到拉伸应力-应变曲线,从中可以得到材料的力学性能参数。

材料拉伸实验的实验方法包括静态拉伸试验和动态拉伸试验两种。

静态拉伸试验是在恒定载荷作用下进行的拉伸试验,适用于测定材料的静态力学性能参数;动态拉伸试验是在变化载荷作用下进行的拉伸试验,适用于测定材料在动态载荷下的力学性能参数。

根据不同的实验要求和材料性能,选择合适的实验方法进行拉伸实验。

进行材料拉伸实验的实验步骤主要包括试样制备、试验参数确定、试验装置搭建、试验数据采集和分析等。

首先,根据实验要求制备符合标准要求的试样,保证试样的几何尺寸和表面质量符合要求。

其次,确定实验参数,包括拉伸速度、试验温度、载荷范围等,保证实验参数的准确性和一致性。

然后,搭建试验装置,包括安装试样、连接传感器、调试试验机等。

接着,进行试验数据采集和分析,通过试验机实时采集试验数据,得到拉伸应力-应变曲线和材料的力学性能参数。

最后,对试验数据进行分析和总结,得出结论并编制实验报告。

总之,材料拉伸实验是材料力学实验中的重要实验方法,通过对材料在拉伸过程中的力学性能进行测试,可以了解材料的抗拉强度、屈服强度、断裂伸长率等重要力学性能参数,为材料的设计、选择和使用提供重要依据。

在进行拉伸实验时,需要严格按照实验方法和实验步骤进行操作,保证实验数据的准确性和可靠性,为材料研究和工程应用提供可靠的数据支持。

材料力学拉伸实验

材料力学拉伸实验

材料力学拉伸实验
材料力学是研究物体受到外力作用下的变形和破坏行为的学科,力学拉伸实验是力学实验中常见的一种实验方式之一。

通过拉伸实验可以测试材料在受到外力拉伸作用下的性能表现,揭示了材料的一些基本力学性质。

在拉伸实验中,通常使用一台拉伸试验机来进行。

首先,需要准备一根均匀的试样,试样的几何形状和尺寸通常遵循一定的标准。

然后,将试样夹紧在拉伸试验机的夹持装置上,夹持装置会施加一个拉力,使得试样受到拉伸作用。

在拉伸实验过程中,可以通过拉伸试验机上的显示屏观察到试样的负荷和变形情况。

正常情况下,随着拉力的增加,试样会发生线性的伸长变形,同时伴随着变形能量的消耗。

当试样的变形达到一定程度时,会出现应力集中,试样会产生颈缩现象,即在试样中某个区域的直径逐渐减小。

随着拉力的继续增加,试样的颈缩部位会逐渐扩展,最终导致试样破裂。

试样破裂时的负荷称为拉伸强度,而试样破裂前的最大负荷称为屈服强度。

这些参数可以通过拉力-变形曲线来
确定,通过分析曲线的形状和变化趋势,可以进一步研究材料的力学性能。

材料的拉伸实验是一种常用的材料性能测定方法,可以用来评估材料的强度、延展性和脆性等性质。

在工程领域中,这些性质的测试数据是设计和选择材料时必不可少的依据。

不仅如此,
拉伸实验还可以用来分析材料的断裂行为、耐疲劳性能和塑性变形等方面的问题,对材料的研究和应用具有重要的意义。

材料力学拉伸实验

材料力学拉伸实验

材料力学拉伸实验材料力学是工程学中的重要基础学科,它研究材料在外力作用下的力学性能。

在工程实践中,对材料的拉伸性能进行测试是非常重要的,因为这可以帮助工程师了解材料的强度、韧性和延展性等重要性能指标。

本文将介绍材料力学拉伸实验的基本原理、实验步骤和数据分析方法,希望能对相关领域的学习和研究提供帮助。

1. 实验原理。

材料在外力作用下会发生形变,其中最常见的一种形变是拉伸形变。

当外力作用在材料上时,材料会发生拉伸变形,这时材料会产生应力和应变。

应力是单位面积上的力,而应变是单位长度上的形变量。

拉伸实验可以通过施加不同的拉伸力来研究材料的应力-应变关系,从而得到材料的力学性能参数。

2. 实验步骤。

(1)准备工作,首先准备好需要进行拉伸实验的材料样品,通常为圆柱形。

然后根据实验要求选择合适的拉伸试验机,并安装好相应的夹具。

(2)样品加工,将材料样品切割成符合实验要求的尺寸,并在样品上标记好长度和直径等必要的信息。

(3)安装样品,将样品夹持在拉伸试验机上,并调整夹具,使样品处于合适的位置。

(4)施加载荷,通过拉伸试验机施加逐渐增加的拉伸力,记录下相应的载荷和伸长值。

(5)数据采集,在拉伸过程中,实时记录载荷和伸长值,并绘制应力-应变曲线。

(6)数据分析,根据实验数据,计算出材料的屈服强度、抗拉强度、断裂强度等力学性能指标。

3. 数据分析方法。

拉伸实验得到的主要数据是载荷和伸长值,通过这些数据可以计算出应力和应变。

应力是载荷与样品初始横截面积的比值,而应变是伸长值与样品初始长度的比值。

绘制应力-应变曲线后,可以得到材料的屈服点、抗拉强度和断裂点等重要参数。

4. 结论。

材料力学拉伸实验是研究材料力学性能的重要手段,通过实验可以得到材料的力学性能参数,为工程设计和材料选型提供重要参考。

在进行拉伸实验时,需要注意样品的加工和安装,以及实验数据的准确记录和分析。

希望本文的介绍能够对相关领域的学习和研究有所帮助。

材料力学拉伸实验报告(1)

材料力学拉伸实验报告(1)

材料力学拉伸实验报告(1)材料力学拉伸实验报告一、实验目的研究材料在拉伸力的作用下的断裂性质和机械性能,了解材料的力学行为,检验材料的质量。

二、实验原理拉伸实验是用拉伸试验机将试样沿轴向逐渐拉伸,测量试样拉伸变形量和负荷之间的关系,得到在拉伸状态下材料的力学性质和变形破坏的特征,即应力-应变曲线。

应力-应变曲线是材料拉伸性致塑性行为、弹性行为和断裂行为的表现。

三、实验步骤1.选择平均直径为10mm、长度为50mm的试验铜棒,并通过光栅仪测量试验铜棒的横截面积。

2.将试验铜棒固定在拉伸试验机上,调整夹持架,使试验铜棒不能侧向移动,确定试样的初始长度L0。

3.开始拉伸试验,逐渐增加拉力,记录铜棒的拉伸长度L和拉力F,得到应力-应变曲线。

在试验过程中,每隔一定的时间将试样停止拉伸,记录拉力和长度,检测背景温度和湿度等相关因素。

4.持续拉伸到铜棒断裂,记录材料的极限断裂力和最大断裂拉伸率。

5.将数据记录到实验记录表中。

四、实验数据处理根据实验数据计算出拉伸试验的机械性能参数,如极限强度、屈服强度、断裂拉伸率等等。

1.极限强度:σmax = Fma x / S其中,Fmax为材料拉伸到断裂的最大力;S为试验铜棒的横截面积。

2.屈服强度:σs = Fs / S其中,Fs为材料开始塑性变形前的单位应力;S为试验铜棒的横截面积。

3.断裂拉伸率:A = (Lmax - L0)/ L0 × 100%其中,Lmax为材料拉伸到断裂时的长度;L0为材料载荷前的长度。

五、实验结果分析根据实验数据计算得到的拉伸试验机械性能参数可以反映出材料的力学行为。

在拉伸实验过程中,材料首先呈现弹性变形,后进入塑性变形阶段,这个过程体现在应力-应变曲线上就是曲线急速上升然后平缓变化,然后在拉伸到达一定程度后,材料会出现颈缩现象,最终断裂。

通过拉伸实验,我们可以得到应力-应变曲线,可以直观的看到材料的力学行为并计算出其力学性能参数。

力学拉伸实验报告实验

力学拉伸实验报告实验

一、实验目的1. 了解材料在拉伸过程中的力学行为,观察材料的弹性、屈服、强化、颈缩和断裂等物理现象。

2. 测定材料的拉伸强度、屈服强度、抗拉强度等力学性能指标。

3. 掌握万能试验机的使用方法及拉伸实验的基本操作。

二、实验原理材料在拉伸过程中,其内部微观结构发生变化,从而表现出不同的力学行为。

根据胡克定律,当材料处于弹性阶段时,应力与应变呈线性关系。

当应力达到某一值时,材料开始发生屈服,此时应力不再增加,应变迅速增大。

随着应力的进一步增大,材料进入强化阶段,应力逐渐增加,应变增长速度减慢。

当应力达到最大值时,材料发生颈缩现象,此时材料横截面积迅速减小,应变增长速度加快。

最终,材料在某一应力下发生断裂。

三、实验仪器与设备1. 万能试验机:用于对材料进行拉伸试验,可自动记录应力与应变数据。

2. 拉伸试样:采用低碳钢圆棒,规格为直径10mm,长度100mm。

3. 游标卡尺:用于测量拉伸试样的尺寸。

4. 电子天平:用于测量拉伸试样的质量。

四、实验步骤1. 将拉伸试样清洗干净,用游标卡尺测量其直径和长度,并记录数据。

2. 将拉伸试样安装在万能试验机的夹具中,调整夹具间距,确保试样在拉伸过程中均匀受力。

3. 打开万能试验机电源,设置拉伸速度和最大载荷,启动试验机。

4. 观察拉伸过程中试样的变形和破坏现象,记录试样断裂时的载荷。

5. 关闭试验机电源,取出试样,用游标卡尺测量试样断裂后的长度,计算伸长率。

五、实验数据与结果1. 拉伸试样直径:10.00mm2. 拉伸试样长度:100.00mm3. 拉伸试样质量:20.00g4. 拉伸试样断裂载荷:1000N5. 拉伸试样断裂后长度:95.00mm根据实验数据,计算材料力学性能指标如下:1. 抗拉强度(σt):1000N / (π × (10mm)^2 / 4) = 784.62MPa2. 屈服强度(σs):600N / (π × (10mm)^2 / 4) = 471.40MPa3. 伸长率(δ):(95.00mm - 100.00mm) / 100.00m m × 100% = -5%六、实验分析1. 本实验中,低碳钢试样在拉伸过程中表现出明显的弹性、屈服、强化、颈缩和断裂等物理现象,符合材料力学理论。

拉伸实验及操作规程

拉伸实验及操作规程

拉伸实验及操作规程拉伸实验是一种常用的材料力学性质测试方法,通过对材料的拉伸过程进行观测和测量,得到材料的拉伸性能指标,如抗拉强度、屈服强度、断裂延伸率等。

本文将介绍拉伸实验的操作规程及相关注意事项。

一、实验目的1. 了解材料的拉伸性能。

2. 计算材料的抗拉强度、屈服强度和断裂延伸率等指标。

3. 分析材料的断裂方式和断口的形态。

二、实验仪器设备1. 电子万能试验机2. 拉伸试样3. 萘酚蓝液或其他显色液4. 显微镜5. 显示屏或打印机三、实验步骤及操作规程1. 准备试样:根据材料的具体要求,制备符合标准尺寸的拉伸试样。

试样的制备要严格按照标准,保证试样的尺寸和形状的一致性。

2. 试样夹持:将试样放入夹具中,保证试样受力均匀,夹具的夹持力要符合要求,防止试样在拉伸过程中发生位移和变形。

3. 试验条件设置:根据试样的具体要求和标准,设置试验机的拉伸速度、采样频率等参数。

一般来说,拉伸速度应该控制在一定范围内,避免过快或过慢引起试样的变形和破坏。

4. 开始拉伸:启动试验机,使其开始进行拉伸试验。

在拉伸过程中,对试样受力进行连续测量,并记录下各个拉伸阶段的数据。

5. 记录数据:在试验机进行拉伸试验时,对试样进行力和变形的测量,并及时记录数据。

通常可以通过试验机的显示屏或打印机输出试验数据。

6. 观察试样的变化:在拉伸过程中,可以通过显微镜观察试样的断裂形态及断口的形态。

若有需要,可以使用显色液对试样进行染色,以便更好地观察试样的断面结构。

7.计算指标:根据试验数据计算材料的抗拉强度、屈服强度和断裂延伸率等指标。

具体的计算方法可以参考相应的标准或手册。

四、实验注意事项1. 严格按照标准要求进行试验,确保试验结果的准确性和可靠性。

2. 在试验过程中确保试样夹持牢固,受力均匀,避免试样发生滑动或变形。

3. 进行试验时须佩戴好个人防护装备,如实验手套、护目镜等,避免发生意外事故。

4. 试验结束后及时清理试验台面和试验机,保持实验环境整洁。

材料力学拉伸实验报告

材料力学拉伸实验报告

材料力学拉伸实验报告材料力学拉伸实验报告引言材料力学是研究物质在外力作用下的力学性质和变形规律的学科,而拉伸实验是材料力学中最基本的实验之一。

本次实验旨在通过拉伸实验,探究不同材料在受力过程中的力学性质和变形规律。

实验目的1. 了解拉伸实验的基本原理和实验装置。

2. 掌握拉伸试验的操作方法和注意事项。

3. 分析不同材料在拉伸过程中的力学行为。

实验装置和方法实验装置主要包括拉伸试验机、试样夹具和应变计。

实验方法为将试样夹在拉伸试验机上,通过加载机械力使试样产生拉伸变形,同时使用应变计测量试样的应变。

实验步骤1. 将试样夹在拉伸试验机的夹具上,确保试样夹紧并且夹具与试样表面平行。

2. 将应变计粘贴在试样上,确保应变计与试样表面接触良好。

3. 通过拉伸试验机加载机械力,逐渐增加拉伸力直至试样断裂。

4. 在加载过程中,记录试样的应变和加载力,并绘制应变-力曲线。

实验结果与分析通过实验,我们得到了不同材料的应变-力曲线。

根据这些曲线,我们可以分析材料的力学性质和变形规律。

1. 弹性阶段在拉伸过程的早期,试样的应变随着加载力的增加而线性增加。

这个阶段被称为弹性阶段,材料在这个阶段表现出良好的弹性恢复能力。

当加载力减小或消失时,试样能够恢复到初始状态。

2. 屈服点随着加载力的继续增加,试样的应变不再呈线性增加,出现了明显的曲线弯曲。

这个阶段称为屈服点,也是材料开始发生塑性变形的临界点。

在屈服点之前,材料的变形主要是弹性变形,而在屈服点之后,材料开始发生塑性变形。

3. 极限强度和断裂点加载力继续增加,试样继续发生塑性变形,最终达到极限强度。

极限强度是材料能够承受的最大力量,超过这个力量,试样将发生断裂。

断裂点是试样完全断裂的位置。

4. 材料的力学性质通过分析应变-力曲线,我们可以获得材料的一些力学性质。

例如,弹性模量可以通过弹性阶段的斜率计算得出,屈服强度可以通过屈服点的应变和力量计算得出,而极限强度和断裂强度可以通过曲线的最高点和断裂点计算得出。

材料力学实验之拉伸实验

材料力学实验之拉伸实验

拉伸实验
1.测量拉伸试样原始尺寸:直径d0,长度l0。 2.安装试样,进行加载,测出材料的屈服载荷Fs、最大载荷Fb。 3.测量试样断后尺寸:直径d1,长度l1。 4.观察并描述试样破坏后断口特点。
实验报告要求(按实验目的完成报告)
1.计算材料强度指标、塑性指标和低碳钢拉伸弹性模量E(GPa)。
2.描述拉伸断口特点。


电 子 引
用双侧电子引伸计
测量变形量 Dl


l为0 引伸计刀口间
距离 l0 50mm
拉伸实验
试验方法: 将引伸计安装在试样上,受拉力后所产生的伸长量与力之间的
线性关系由计算机显示,如下图。
求出直线上 a、b 两点的力和伸长量, F
用增量法,计算弹性模量E。
b
用增量法,ቤተ መጻሕፍቲ ባይዱ算式为:
E DF l0 D(Dl) A0
一、实验目的
拉伸实验
1、测定低碳钢拉伸弹性模量E、屈服点σs、 抗拉强度σb、断后伸长率δ、断面收缩率ψ。
2、测定铸铁抗拉强度σb,断后伸长率δ。
二、实验设备及仪器
1. 电子万能材料试验机; 2. 0.02mm游标卡尺; 3. 双侧电子引伸计。
实验试样
拉伸试样 —— 试验采用标准圆形试样
拉伸实验
长试样 l0=10d0
短试样 l0= 5d0
l0
d0
三、实验原理
1、低碳钢拉伸时的力学性能:
F
试样装在试验机上,受到轴向拉力
F 作用,试样标距产生伸长量 D。l 两者
之间的关系如图。
低碳钢试样的变形过程,大致可分为四
个变形阶段——弹性阶段、屈服阶段、强
化阶段、局部变形阶段。

关于材料的拉伸实验

关于材料的拉伸实验

关于材料的拉伸实验拉伸实验是材料力学测试中的一项重要试验,通常用于测试材料的力学性能,如材料的拉伸强度、屈服强度、延伸率等。

这种实验是通过在材料的两端施加外力,逐渐增加材料上的拉力,并记录材料的长度随着拉力的增加而产生的变化程度。

本文将介绍拉伸实验的背景、目的和原理,同时阐述实验的流程和相关数据的处理以及实验的应用领域。

一、背景材料力学是材料科学的一个重要分支,研究材料的载荷变形规律和破坏机理。

对于材料的拉伸强度、屈服强度和断裂强度等力学性能的了解,有助于工程师和科学家设计材料和结构,并制定相应的安全标准和规则。

二、目的拉伸试验的主要目的是测试材料的几个重要参数,这些参数对于材料的设计、生产和使用都具有一定的重要性。

重要参数包括:1.拉伸强度:即在断裂前的最大拉力,通过这种实验,我们可以测量材料的受力极限。

2.屈服强度:即在材料发生变形时,承受应力的能力。

通过屈服强度,我们可以描述材料在拉伸过程中的最大强度。

3.伸长率:即在拉伸过程中,材料长度的变化百分比。

通过伸长率,我们可以测量材料的可塑性,从而推断该材料的适用范围和使用情况。

三、原理拉伸测试的原理是在固定的温度和湿度条件下,将原始材料进行压制和拉伸,测量材料在不同拉伸程度下的拉力和相应的变形(伸长)。

在拉伸过程中,材料的负荷和长度均逐渐增加,直到材料产生破坏为止。

通过拉力和变形的测量,可以根据材料的荷载-滞后图推导出拉伸强度、屈服强度、伸长率和拉伸模量等力学性质。

通过拉伸测试,可以了解材料的强度、刚度、延展性等特性,从而确定其最佳应用领域和工作环境。

四、实验流程拉伸实验需要在实验室或专业的测试中心进行,而且需要使用专业的试验设备。

在进行实验之前,需要准备一些样本,保证其相同的形状、大小和工艺。

下面是实验的基本流程:1. 样本准备:选择合适的材料,切割成标准的形状和尺寸,根据国际标准处理表面。

2.测试:将样本固定到拉伸试验机的测试夹具上,然后开始施加负荷,逐渐增加材料受力,直到发生材料破裂。

材料范文之材料力学拉伸实验报告

材料范文之材料力学拉伸实验报告

材料力学拉伸实验报告【篇一:材料力学拉伸试验】1-1 轴向拉伸实验一、实验目的1、测定低碳钢的屈服强度rel(?s)、抗拉强度rm(?b)、断后伸长率a11.3(?10)和断面收缩率z(?)。

2、测定铸铁的抗拉强度rm(?b)。

3、比较低碳钢?5(塑性材料)和铸铁?5(脆性材料)在拉伸时的力学性能和断口特征。

注:括号内为gb/t228-2002《金属材料室温拉伸试验方法》发布前的旧标准引用符号。

二、设备及试样1、电液伺服万能试验机(自行改造)。

2、 0.02mm游标卡尺。

3、低碳钢圆形横截面比例长试样一根。

把原始标距段l0十等分,并刻画出圆周等分线。

4、铸铁圆形横截面非比例试样一根。

注:gb/t228-2002规定,拉伸试样分比例试样和非比例试样两种。

比例试样的原始标距l0和原始横截面积s0的关系满足l0?ks0。

比例系数k取5.65时称为短比例试样,k取11.3时称为长比例试样,国际上使用的比例系数k取5.65。

非比例试样l0和s0无关。

三、实验原理及方法低碳钢是指含碳量在0.3%以下的碳素钢。

这类钢材在工程中使用较广,在拉伸时表现出的力学性能也最为典型。

(工程应变)(2)屈服阶段ab:在超过弹性阶段后出现明显的屈服过程,即曲线沿一水平段上下波动,即应力增加很少,变形快速增加。

这表明材料在此载荷作用下,宏观上表现为暂时丧失抵抗继续变形的能力,微观上表现为材料内部结构发生急剧变化。

从微观结构解释这一现象,是由于构成金属晶体材料结构晶格间的位错,在外力作用下发生有规律的移动造成的。

如果试样表面足够光滑、材料杂质含量少,可以清楚地看出试样表面有450方向的滑移线。

根据gb/t228-2002标准规定,试样发生屈服而力首次下降前的最大应力称为上屈服强度,记为“reh”;在屈服期间,不计初始瞬时效应时的最低应力称为下屈服强度,记为“rel”,若试样发生屈服而力首次下降的最小应力是屈服期间的最小应力时,该最小应力称为初始瞬时效应,不作为下屈服强度。

材料力学实验

材料力学实验

材料⼒学实验试验⼀、拉伸试验报告1-1、由实验现象和结果⽐较低碳钢和铸铁拉伸时的⼒学性能有什么不同?答:低碳钢在拉伸过程有明显的四个阶段,弹性阶段、屈服阶段、强化阶段和颈缩阶段。

低碳钢具有屈服种材料在拉伸时的⼒学性能及断⼝特征。

低碳钢断⼝为直径缩⼩的杯锥状,其延伸率⼤表现为塑性。

铸铁在拉伸时延伸率⼩表现为脆性,没有明显的四个阶段,其断⼝为横断⾯。

1-2、由拉伸实验所确定的材料的⼒学性能数值有什么实⽤价值?答:1)会对企业的⽣产选材有直接的影响,这直接关系到企业的成本和产品的质量。

2)对于好多恶劣⼯作环境的⾦属⼯件,都要求要出具检测报告。

3)企业根据不同的⼒学性能参数,可以安排较为合理的加⼯⼯艺。

除以上这些外,出⼝的产品都要经过这⽅⾯的检测的,这也是⼀个企业质量意识的侧⾯反映。

1-3、为何在拉伸试验中必须采⽤标准试件或⽐例试件,材料相同⽽长短不同的试件延伸率是否相同?答:拉伸实验中延伸率的⼤⼩与材料有关,同时与试件的标距长度有关。

试件局部变形较⼤的断⼝部分,在不同长度的标距中所占⽐例也不同。

因此拉伸试验中必须采⽤标准试件或⽐例试件,这样其有关性质才具可⽐性。

材料相同⽽长短不同的试件通常情况下延伸率是不同的(横截⾯⾯积与长度存在某种特殊⽐例关系除外)。

延伸率的⼤⼩与试件尺⼨有关,为了便于进⾏⽐较,须将试件标准化。

断⾯收缩率的⼤⼩与试件尺⼨⽆关。

试验⼆、低碳钢弹性模量E的测定报告2-1、测E时为何要加初始载荷并限制最⾼载荷?使⽤分级等量加载的⽬的是什么?答:测E时为何要加初始载荷并最⾼载荷是为了保证低碳钢处于弹性状态,以保证实验结果的可靠性。

分级等量加载的⽬的是为了保证所求的弹性模量减少误差。

2-2、试件的尺⼨和形状对测定弹性模量有⽆影响?为什么?答: 弹性模量是材料的固有性质,与试件的尺⼨和形状⽆关。

2-3逐级加载⽅法所求出的弹性模量与⼀次加载到最终值所求出的弹性模量是否相同?为什么必须⽤逐级加载的⽅法测弹性模量?答: 逐级加载⽅法所求出的弹性模量与⼀次加载到最终值所求出的弹性模量不相同,采⽤逐级加载⽅法所求出的弹性模量可降低误差,同时可以验证材料此时是否处于弹性状态,以保证实验结果的可靠性。

实验拉伸实验报告

实验拉伸实验报告

实验拉伸实验报告实验拉伸实验报告引言:拉伸实验是材料力学实验中最基本的实验之一,通过对材料在受力下的变形和破坏过程进行观察和分析,可以得到材料的力学性能参数,为材料的设计和应用提供重要依据。

本文将对拉伸实验的目的、原理、实验装置以及实验结果进行详细描述和分析。

一、实验目的拉伸实验的目的是通过对材料在受力下的变形和破坏过程进行观察和分析,获取材料的力学性能参数,如屈服强度、抗拉强度、断裂延伸率等。

通过实验可以评估材料的力学性能,为材料的设计和应用提供依据。

二、实验原理拉伸实验是将试样置于拉伸机上,施加拉伸力使试样发生拉伸变形,通过测量试样的变形和力的变化,计算得到材料的力学性能参数。

拉伸实验的主要原理有以下几个方面:1. 应力-应变关系:拉伸试验中,测量试样的应变与应力之间的关系,可以得到材料的应力-应变曲线。

应力-应变曲线可以反映材料的变形特性和力学性能。

2. 屈服强度:材料在拉伸过程中,当应力达到一定值时,试样会出现塑性变形,即试样开始产生屈服。

屈服强度是指材料开始塑性变形时的应力值。

3. 抗拉强度:材料在拉伸过程中,当试样继续受力时,应力逐渐增大,最终达到最大值,即抗拉强度。

抗拉强度反映了材料的抗拉能力。

4. 断裂延伸率:材料在拉伸过程中,当试样发生破坏时,测量试样的断裂长度与原始长度之比,即可得到材料的断裂延伸率。

断裂延伸率可以评估材料的韧性和延展性。

三、实验装置拉伸实验需要使用拉伸试验机和试样,其中拉伸试验机是实验的核心装置,用于施加力和测量试样的变形。

实验装置包括以下几个部分:1. 拉伸试验机:拉伸试验机是用于施加力和测量试样变形的设备。

它由主机、传感器、控制系统等组成。

主机通过驱动装置施加拉力,传感器用于测量试样的变形,控制系统用于控制试验过程。

2. 试样:试样是进行拉伸实验的材料样品。

试样的形状和尺寸根据实验要求而定,常见的试样形状有圆柱形、矩形等。

试样的制备要求严格,以保证实验的准确性和可重复性。

材料力学拉伸实验

材料力学拉伸实验

拉 伸 实 验一、实验目的1.测定低碳钢的屈服极限(流动极限)σs ,强度极限σb ,延伸率δ和截面收缩率ψ。

2.测定铸铁的强度极限σb 。

3.观察拉伸过程中的各种现象(包括屈服、强化和颈缩等现象)。

4.比较低碳钢(塑性材料)与铸铁(脆性材料)机械性质的特点。

二、实验设备1.WDW-3300微机控制电子万能试验机 2.KJ-20划线仪 3.KL-150mm 游标卡尺 三、实验原理及装置1、试件试件可制成圆形或矩形截面,两端较粗的部分为夹持端,试件中段用于测量拉伸变形。

根据国家标准GB6397-86的规定,拉力试件分比例试件和非比例试件两种。

比例试件是指标距长度与横截面面积间具有下列关系的试件00A K l =式中系数K 通常为5.65和11.3,前者称为短试件,后者称为长试件。

因此,直径为d 0的短、长圆形试件的标距长度l 0分别等于5d 0 、、10d 0 。

2、实验原理通过试验机的自动绘图功能绘出低碳钢的拉伸图和铸铁的拉伸图,可以测得低碳钢的屈服载荷P s 、最大载荷P b 和铸铁的最大载荷P b ,从而计算出:低碳钢的屈服极限 0A P s s =σ 低碳钢的强度极限 0A Pb b =σ 铸铁的强度极限 0A P bb =σ 根据实验前后的标距长度和截面直径,可以计算出延伸率δ和截面收缩率ψ。

四、实验步骤1.试件准备(1)用划线仪在标距l 0范围内将标距分成十格。

(2)用游标卡尺测量标距两端及中间这三个横截面处的直径,每一横截面处沿互相垂直的两个方向各量一次取其平均值,作为该截面的直径。

用所测得的三个平均值中最小值计算试件的横截面面积A 0。

计算A 0时取三位有效数字。

2.试验机准备根据低碳钢的强度极限σb 和横截面面积A 0估计试件的最大载荷。

根据最大载荷的大小,选择合适的测力量程。

3.安装试件及进行实验(1)启动试验机:按住单片机上的F1,用钥匙开机,待提示输入密码后松开F1键,再按返回。

材料力学实验之拉伸实验 ppt课件

材料力学实验之拉伸实验 ppt课件
材料力学实验之拉伸实验
拉伸实验
(验证性实验)
拉伸实验
材料力学实验之拉伸实验
一、实验目的
拉伸实验
1、测定低碳钢拉伸弹性模量E、屈服点σs、 抗拉强度σb、断后伸长率δ、断面收缩率ψ。
2、测定铸铁抗拉强度σb,断后伸长率δ。
二、实验设备及仪器
1. 电子万能材料试验机; 2. 0.02mm游标卡尺;
3. 双侧电子引伸计。
2、铸铁拉伸时的力学性能:
试样装在试验机上,受到轴向拉力
F 作用,试样标距产生伸长量 D。l 两者
之间的关系如图。
铸铁没有明显直线部分,没有屈服和 颈缩现象。在较小拉应力下被拉断,断 后伸长率也很小。铸铁等脆性材料的抗 拉强度很低,所以不宜作为抗拉零件的 材料。
抗拉强度
b
Fb A0
(强度指标)
拉伸实验
拉伸实验
材料在弹性范围内服从虎克定律,其应力、应变成正比关系:E
将 F , Dl 代入上式,得
0
l
E F l0 Dl A0


电 子 引
用双侧电子引伸计
测量变形量 Dl


l为0 引伸计刀口间
距离 l0 50mm
材料力学实验之拉伸实验
拉伸实验
试验方法: 将引伸计安装在试样上,受拉力后所产生的伸长量与力之间的
F
Fb
O 铸铁拉伸曲线 Dl
断后伸长率 l1 l0 100%(塑性指标)
l0材料力学实验之拉伸实验
拉伸实验——观察现象
低碳钢
颈缩现象,“杯口”
拉伸实验
低碳钢试样拉伸破坏后,断口呈“杯口”状。
铸铁
平面断口,正应力引起
铸铁试样拉伸破坏后,断口在横截面上,呈平口状。

材料力学实验报告及答案

材料力学实验报告及答案

材料力学实验报告及答案材料力学实验报告及答案引言:材料力学是研究材料在受力作用下的变形和破坏行为的学科。

通过实验研究,我们可以了解材料的力学性能,为工程设计和材料选择提供依据。

本报告将对材料力学实验进行详细介绍,并给出相应的答案。

实验一:拉伸实验拉伸实验是评价材料的强度和延展性的重要方法。

在实验中,我们使用了一台拉伸试验机,将试样固定在夹具上,施加拉力使其发生拉伸变形。

通过测量应力和应变的关系,我们可以得到材料的应力-应变曲线。

实验问题:1. 什么是应力和应变?答:应力是指单位面积内的力,通常用σ表示,计算公式为σ=F/A,其中F为施加在试样上的拉力,A为试样的横截面积。

应变是指物体在受力作用下的变形程度,通常用ε表示,计算公式为ε=ΔL/L0,其中ΔL为试样的长度变化量,L0为试样的初始长度。

2. 什么是弹性模量?答:弹性模量是材料在弹性阶段的应力-应变关系的斜率,用E表示。

弹性模量越大,材料的刚度越高,抗变形能力越强。

3. 什么是屈服强度?答:屈服强度是指材料在拉伸过程中,应力达到最大值时的应变值。

屈服强度是衡量材料抗拉强度的重要指标。

实验二:硬度实验硬度是材料抵抗局部塑性变形的能力。

在实验中,我们使用了洛氏硬度计,通过测量试样表面的压痕大小来评估材料的硬度。

实验问题:1. 什么是硬度?答:硬度是材料抵抗局部塑性变形的能力。

硬度越高,材料越难被划伤或压痕。

2. 为什么要进行硬度测试?答:硬度测试可以用来评估材料的抗划伤和抗压痕能力,对于材料的选择和工程设计具有重要意义。

3. 硬度测试有哪些常用方法?答:常用的硬度测试方法包括洛氏硬度测试、维氏硬度测试、布氏硬度测试等。

每种方法都有其适用的材料和测试条件。

实验三:冲击实验冲击实验是评价材料在受冲击载荷下的抗冲击性能的方法。

在实验中,我们使用了冲击试验机,通过测量试样在受到冲击载荷时的断裂能量来评估材料的抗冲击性能。

实验问题:1. 什么是冲击载荷?答:冲击载荷是指在极短时间内对材料施加的高能量载荷。

材料拉伸实验实验报告

材料拉伸实验实验报告

材料拉伸实验实验报告【材料拉伸实验实验报告】一、引言拉伸实验是材料力学中最常见的实验之一,通过对材料进行拉伸加载,可以得到材料的拉伸应力-应变曲线、屈服强度、断裂强度等重要力学性能参数,对于材料的设计和应用有重要的指导作用。

本实验主要通过金属材料的拉伸实验来研究材料的力学特性,提取材料相应的力学性能参数。

二、实验目的1. 掌握拉伸实验的基本原理和操作方法;2. 了解拉伸实验中所涉及的概念和术语;3. 学习应用杨氏模量来表征材料的力学性能。

三、实验原理1. 拉伸应力和拉伸应变:拉伸应力(σ)是指单位截面积上的拉力,即材料的拉伸力与横截面积的比值。

拉伸应变(ε)是指材料在拉伸过程中单位长度的变化量,即实验前后的长度差与原始长度的比值。

2. 拉伸力和力学性能参数:拉伸力是指实验中施加在试样上的力,力学性能参数主要包括屈服强度、断裂强度、弹性模量、塑性应变等。

3. 杨氏模量:杨氏模量(E)是材料的重要力学性能参数,它表征了材料在一定应力范围内对应变的抵抗能力,计算公式为:E = σ / ε,其中σ为拉伸应力,ε为拉伸应变。

四、实验步骤1. 准备试样:根据实验要求,选择合适的金属材料,制作出试样。

2. 安装试样:将试样安装在拉伸试验机上的夹具中,并确保试样的位置合适。

3. 设置实验参数:根据实验要求,设置拉伸试验机的加载速度、采样频率等参数。

4. 进行拉伸实验:启动拉伸试验机,开始加载试样,记录下拉伸过程中的载荷和位移数据。

5. 绘制拉伸应力-应变曲线:根据实验记录的载荷和位移数据,计算出拉伸应力和拉伸应变的数值,并绘制拉伸应力-应变曲线图。

6. 计算力学性能参数:根据绘制的拉伸应力-应变曲线,计算出屈服强度、断裂强度和塑性应变等力学性能参数。

五、实验结果与分析根据实验记录的数据,绘制出拉伸应力-应变曲线,通过曲线的形状和数据的分析,得到试样的力学性能参数。

六、实验结论通过本次拉伸实验,得到了试样的拉伸应力-应变曲线,并计算出了相应的力学性能参数。

关于材料的拉伸实验

关于材料的拉伸实验

关于材料的拉伸实验材料的拉伸实验是材料力学中的基本实验之一,也是了解材料材质的重要手段。

在这篇文档中,我将介绍材料的拉伸实验的相关概念、实验方法和应用场景。

一、基本概念在材料的力学性质中,拉伸实验是指在加力的情况下将材料拉长,然后观察其变形和破坏的实验。

通过这个实验,我们可以获得材料的许多重要参数,如杨氏模量、屈服强度、断裂强度等。

这些参数对材料的工程应用非常关键。

二、实验方法材料的拉伸实验通常需要使用专用设备,如万能材料试验机。

首先需要准备样品,通常是一条长度较长的金属棒状样品,在样品的两端固定两个夹具,即拉伸机的夹具。

然后通过旋转马达来加力,不断拉伸样品,直至样品被拉断。

在拉伸过程中,需要测量材料的应力和应变。

应力指的是样品受到的单位面积内的力,而应变是指在材料受到应力时单位长度的变化量。

在实验中,需要测量应力和应变的变化情况,以获得材料的拉伸性能曲线。

这个曲线表现了材料的变形和破裂过程,在材料的设计和工程应用中非常重要。

三、应用场景材料的拉伸实验通常应用于材料的设计和制造中。

通过这个实验,我们可以了解到材料的拉伸性能,并以此来确定材料的工程应用场景。

比如,我们可以通过拉伸实验来确定材料的屈服强度和断裂强度,以了解材料在实际应用中的承重能力和破坏极限。

同时,这个实验还可以确定材料的弹性模量以及高温、低温等环境下的性能变化情况,常用于特殊材料的研究。

此外,在材料的故障分析和质量监控中,拉伸实验也是非常有用的。

通过分析样品在拉伸实验中发生的变形和破坏情况,可以识别材料制造过程中可能出现的问题,进而改进生产技术,确保材料的品质和稳定性。

综上所述,材料的拉伸实验是材料力学中的基本实验之一,可以为材料的设计、制造和质量监控提供重要参考信息。

虽然这个实验看起来繁琐,但在实际应用中却有着广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用增量法,计算弹性模量E。
用增量法,计算式为:
E DF l0
D(Dl) A0
a
上式中,
DFFbFa (力增量)
O
D(Dl)DlbDla(伸长量增量)
l0 50mm
A 0 为原始截面积
精选课件
b
DF
D(Dl)
Dl
6
2、铸铁拉伸时的力学性能:
试样装在试验机上,受到轴向拉力
F 作用,试样标距产生伸长量 D。l 两者
低碳钢
颈缩现象,“杯口”
拉伸实验
低碳钢试样拉伸破坏后,断口呈“杯口”状。
铸铁
平面断口,正应力引起
铸铁试样拉伸破坏后,断口在横截面上,呈平口状。
精选课件
8
拉伸实验
四、实验步骤
1.测量拉伸试样原始尺寸:直径d0,长度l0。 2.安装试样,进行加载,测出材料的屈服载荷Fs、最大载荷Fb。 3.测量试样断后尺寸:直径d1,长度l1。 4.观察并描述试样破坏后断口特点。
化阶段、局部变形阶段。
O
拉伸实验
Fb Fs
Dl
低碳钢拉伸曲线
屈服点
s
F s (强度指标) A0
断后伸长率 l1 l0 100%(塑性指标)
l0
抗拉强度 b
F b(强度指标) A0
断面收缩率 A0 A1 10% 0(塑性指标)
精选课件
A0
4
拉伸实验
低碳钢拉伸弹性模量E
材料在弹性范围内服从虎克定律,其应力、应变成正比关系:E
实验报告要求(按实验目的完成报告)
1.计算材料强度指标、塑性指标和低碳钢拉伸弹性模量E(GPa)。
2.描述拉伸断口特点。
3.比较两种材料的拉伸力学性能。
4.强度指标以MPa为单位(1 M 1 P N /m a2 )m ,并保留3位有效数字。
精选课件
9
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
精选课件
2
实验试样
拉伸试样 —— 试验采用标准圆形试样
拉伸实验
长试样 l0=10d0
短试样 l0= 5d0
l0
d0
精选课件
3
三、实验原理
1、低碳钢拉伸时的力学性能:
F
试样装在试验机上,受到轴向拉力
F 作用,试样标距产生伸长量 D。l 两者
之间的关系如图。
低阶段——弹性阶段、屈服阶段、强
拉伸实验
(验证性实验)
拉伸实验
重庆大学力学实验教学中心
精选课件
1
拉伸实验
一、实验目的
1、测定低碳钢拉伸弹性模量E、屈服点σs、 抗拉强度σb、断后伸长率δ、断面收缩率ψ。
2、测定铸铁抗拉强度σb,断后伸长率δ。
二、实验设备及仪器
1. 电子万能材料试验机; 2. 0.02mm游标卡尺;
3. 双侧电子引伸计。
将 F , Dl 代入上式,得
0
l
E F l0 Dl A0



用双侧电子引伸计
子 测量变形量 Dl

伸 计
l为0 引伸计刀口间
距离 l0 50mm
精选课件
5
拉伸实验
试验方法: 将引伸计安装在试样上,受拉力后所产生的伸长量与力之间的
线性关系由计算机显示,如下图。
求出直线上 a、b 两点的力和伸长量, F
之间的关系如图。
铸铁没有明显直线部分,没有屈服和 颈缩现象。在较小拉应力下被拉断,断 后伸长率也很小。铸铁等脆性材料的抗 拉强度很低,所以不宜作为抗拉零件的 材料。
抗拉强度
b
Fb A0
(强度指标)
拉伸实验
F
Fb
O 铸铁拉伸曲线 Dl
断后伸长率 l1 l0 100%(塑性指标)
l0
精选课件
7
拉伸实验——观察现象
相关文档
最新文档