2017江苏省苏州市中考数学真题及答案

合集下载

2017年江苏省苏州市中考数学试卷及解析答案word版

2017年江苏省苏州市中考数学试卷及解析答案word版

2017年江苏省苏州市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.2.(3分)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.63.(3分)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.034.(3分)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣25.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.23706.(3分)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣27.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°8.(3分)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x ﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=09.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112° D.124°10.(3分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)计算:(a2)2=.12.(3分)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为°.13.(3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是环.14.(3分)分解因式:4a2﹣4a+1=.15.(3分)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.16.(3分)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.17.(3分)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C 在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B 的游船速度分别为v1、v2,若回到A、B所用时间相等,则=(结果保留根号).18.(3分)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则=(结果保留根号).三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)计算:|﹣1|+﹣(π﹣3)0.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣2.22.(6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23.(8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m=,n=;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.25.(8分)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x >0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.26.(10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s (即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.27.(10分)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.28.(10分)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE 上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.2017年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.【解答】解:原式=﹣3,故选B.2.(3分)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.6【解答】解:(2+5+5+6+7)÷5=25÷5=5答:这组数据的平均数是5.故选C3.(3分)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.03【解答】解:2.026≈2.03,故选D.4.(3分)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,∴△=(﹣2)2﹣4k=4﹣4k=0,解得:k=1.故选A.5.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.2370【解答】解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数=100﹣30=70名,∴全校持“赞成”意见的学生人数约=2400×=1680(名).故选C.6.(3分)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣2【解答】解:∵点A(m,n)在一次函数y=3x+b的图象上,∴3m+b=n.∵3m﹣n>2,∴﹣b>2,即b<﹣2.故选D.7.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°【解答】解:在正五边形ABCDE中,∠A=×(5﹣2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=(180°﹣108°)=36°.故选B.8.(3分)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x ﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=0【解答】解:∵二次函数y=ax2+1的图象经过点(﹣2,0),∴4a+1=0,∴a=﹣,∴方程a(x﹣2)2+1=0为:方程﹣(x﹣2)2+1=0,解得:x1=0,x2=4,故选A.9.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112° D.124°【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故选:C.10.(3分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8【解答】解:如图,连接BD,DF,DF交PP′于H.由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,∴四边形PP′CD是平行四边形,∵四边形ABCD是菱形,∠A=60°,∴△ABD是等边三角形,∵AF=FB,∴DF⊥AB,DF⊥PP′,在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,∴AE=2,EF=2,∴PE=PF=,在Rt△PHF中,∵∠FPH=30°,PF=,∴HF=PF=,∵DF=4,∴DH=4﹣=,∴平行四边形PP′CD的面积=×8=28.故选A.二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)计算:(a2)2=a4.【解答】解:(a2)2=a4.故答案为:a4.12.(3分)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为50°.【解答】解:∵ED∥OB,∴∠3=∠1,∵点D在∠AOB的平分线OC上,∴∠1=∠2,∴∠2=∠3,∴∠AED=∠2+∠3=50°,故答案为:50.13.(3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是8环.【解答】解:∵按大小排列在中间的射击成绩为8环,则中位数为8.故答案为:8.14.(3分)分解因式:4a2﹣4a+1=(2a﹣1)2.【解答】解:4a2﹣4a+1=(2a﹣1)2.故答案为:(2a﹣1)2.15.(3分)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.【解答】解:如图,∵可选2个方格∴完成的图案为轴对称图案的概率==.故答案为:.16.(3分)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.【解答】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.17.(3分)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C 在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到A、B所用时间相等,则=(结果保留根号).【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),∵Rt△BCD中,∠CBD=90°,∴BC=CD=2(km),∴===.故答案是:.18.(3分)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则=(结果保留根号).【解答】解:连接AC,AG,AC',由旋转可得,AB=AB',AC=AC',∠BAB'=∠CAC',∴=,∴△ABB'∽△ACC',∴=,∵AB'=B'G,∠AB'G=∠ABC=90°,∴△AB'G是等腰直角三角形,∴AG=AB',设AB=AB'=x,则AG=x,DG=x﹣4,∵Rt△ADG中,AD2+DG2=AG2,∴72+(x﹣4)2=(x)2,解得x1=5,x2=﹣13(舍去),∴AB=5,∴Rt△ABC中,AC===,∴==,故答案为:.三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)计算:|﹣1|+﹣(π﹣3)0.【解答】解:原式=1+2﹣1=2.20.(5分)解不等式组:.【解答】解:由x+1≥4,解得x≥3,由2(x﹣1)>3x﹣6,解得x<4,所以不等式组的解集是3≤x<4.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣2.【解答】解:原式=.当时,原式=.22.(6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.【解答】解:(1)设y与x的函数表达式为y=kx+b.将(20,2)、(50,8)代入y=kx+b中,,解得:,∴当行李的质量x超过规定时,y与x之间的函数表达式为y=x﹣2.(2)当y=0时,x﹣2=0,解得:x=10.答:旅客最多可免费携带行李10kg.23.(8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m=8,n=3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为144°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.【解答】解:(1)由两种统计表可知:总人数=4÷10%=40人,∵3D打印项目占30%,∴3D打印项目人数=40×30%=12人,∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数=×360°=144°,故答案为:144;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“1名男生、1名女生”有8种可能.所以P(1名男生、1名女生)=.24.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【解答】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.25.(8分)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x >0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在的图象上,∴k=5,(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m﹣,2).∵点C,D都在的图象上,∴m=2(m﹣),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC=.26.(10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.【解答】解:(1)作AT⊥BD,垂足为T,由题意得,AB=8,AT=,在Rt△ABT中,AB2=BT2+AT2,∴BT=,∵tan∠ABD=,∴AD=6,即BC=6;(2)在图①中,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.∵在图②中,线段MN平行于横轴,∴d1=d2,即P1Q1=P2Q2.∴P1P2∥BD.∴.即.又∵CP1+CP2=7,∴CP1=3,CP2=4.设M,N的横坐标分别为t1,t2,由题意得,CP1=14+1﹣t1,CP2=t2﹣14﹣2,∴t1=12,t2=20.27.(10分)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB,∵OD∥BC,∴∠DOE=∠ABC,∴△DOE~△ABC;(2)证明:∵△DOE~△ABC,∴∠ODE=∠A,∵∠A和∠BDC是所对的圆周角,∴∠A=∠BDC,∴∠ODE=∠BDC,∴∠ODF=∠BDE;(3)解:∵△DOE~△ABC,∴,即S=4S△DOE=4S1,△ABC∵OA=OB,=2S1,∴,即S△BOC∵,∴,∴,即,∴.28.(10分)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=c2+2c+c,解得c=﹣3或c=0(舍去),∴c=﹣3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵直线BE经过点B(3,0),E(1,﹣4),∴利用待定系数法可得直线BE的表达式为y=2x﹣6.∵点F在BE上,∴m=2×2﹣6=﹣2,即点F的坐标为(0,﹣2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,∵S△PQN=S△APM,∴,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,n2﹣4n),R点的坐标为(n,n2﹣4n),N点的坐标为(n,n2﹣2n﹣3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴时,NQ取最小值1.此时Q点的坐标为;②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴时,NQ取最小值1.此时Q点的坐标为.综上可知存在满足题意的点Q,其坐标为或.赠送:初中数学几何模型【模型一】半角型:图形特征:F AB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa B E挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.。

2017年江苏省苏州市中考数学试题(含答案)

2017年江苏省苏州市中考数学试题(含答案)

江苏省苏州市2017年中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•苏州)(﹣3)×3的结果是()A.﹣9 B.0C.9D.﹣6考点:有理数的乘法.分析:根据两数相乘,异号得负,可得答案.解答:解:原式=﹣3×3=﹣9,故选:A.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.2.(3分)(2017•苏州)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°考点:对顶角、邻补角分析:根据对顶角相等可得∠β与∠α的度数相等为30°.解答:解:∵∠α和∠β是对顶角,∠α=30°,∴根据对顶角相等可得∠β=∠α=30°.故选:A.点评:本题主要考查了对顶角相等的性质,比较简单.3.(3分)(2017•苏州)有一组数据:1,3,3,4,5,这组数据的众数为()A.1B.3C.4D.5考点:众数分析:根据众数的概念求解.解答:解:这组数据中3出现的次数最多,故众数为3.故选B点评:本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.4.(3分)(2017•苏州)若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4 B.x≥﹣4 C.x≤4 D.x≥4考点:二次根式有意义的条件分析:二次根式有意义,被开方数是非负数.解答:解:依题意知,x﹣4≥0,解得x≥4.故选:D.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(3分)(2017•苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.考点:几何概率.分析:设圆的面积为6,易得到阴影区域的面积为4,然后根据概率的概念计算即可.解答:解:设圆的面积为6,∵圆被分成6个相同扇形,∴每个扇形的面积为1,∴阴影区域的面积为4,∴指针指向阴影区域的概率==.故选D.点评:本题考查了求几何概率的方法:先利用几何性质求出整个几何图形的面积n,再计算出其中某个区域的几何图形的面积m,然后根据概率的定义计算出落在这个几何区域的事件的概率=.6.(3分)(2017•苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°考点:等腰三角形的性质分析:先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.解答:解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选B.点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.7.(3分)(2017•苏州)下列关于x的方程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1=0考点:根的判别式.专题:计算题.分析:分别计算A、B中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C 进行判断;根据非负数的性质对D进行判断.解答:解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A选项错误;B、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B选项错误;C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,所以C选项正确;D、(x﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2017•苏州)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C.2D.5考点:二次函数图象上点的坐标特征.分析:把点(1,1)代入函数解析式求出a+b,然后代入代数式进行计算即可得解.解答:解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.故选B.点评:本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键.9.(3分)(2017•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km考点:解直角三角形的应用-方向角问题.分析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选C.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.10.(3分)(2017•苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB 在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B′,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)考点:坐标与图形变化-旋转.分析:过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.解答:解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选C.点评:本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.二、填空题(共8小题,每小题3分,共24分)11.(3分)(2017•苏州)的倒数是.考点:倒数.分析:根据乘积为1的两个数倒数,可得一个数的倒数.解答:解:的倒数是,故答案为:.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.12.(3分)(2017•苏州)已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为 5.1×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于510000000有9位,所以可以确定n=9﹣1=8.解答:解:510 000 000=5.1×108.故答案为:5.1×108.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.13.(3分)(2017•苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为4.考点:正方形的性质.分析:根据正方形的对角线等于边长的倍求出边长,再根据正方形的周长公式列式计算即可得解.解答:解:∵正方形ABCD的对角线AC=,∴边长AB=÷=1,∴正方形ABCD的周长=4×1=4.故答案为:4.点评:本题考查了正方形的性质,比较简单,熟记正方形的对角线等于边长的倍是解题的关键.14.(3分)(2017•苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解个门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有240人.考点:用样本估计总体;条形统计图.分析:根据样本的数据,可得样本C占样本的比例,根据样本的比例,可C占总体的比例,根据总人数乘以C占得比例,可得答案.解答:解:C占样本的比例,C占总体的比例是,选修C课程的学生有1200×=240(人),故答案为:240.点评:本题考查了用样本估计总体,先求出样本所占的比例,估计总体中所占的比例.15.(3分)(2017•苏州)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.考点:锐角三角函数的定义;等腰三角形的性质;勾股定理.分析:先过点A作AE⊥BC于点E,求得∠BAE=∠BAC,故∠BPC=∠BAE.再在Rt△BAE中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tan∠BPC=tan∠BAE=.解答:解:过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE=,∴tan∠BPC=tan∠BAE=.故答案为:.点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.16.(3分)(2017•苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为20.考点:二元一次方程组的应用.分析:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,就有4x+9y=120,8x+3y=120,由此构成方程组求出其解即可.解答:解:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,由题意,得,解得:.∴x+y=20.故答案为:20.点评:本题考查了列二元一次房产界实际问题的运用,二元一次方程组的解法的运用,工程问题的数量关系的运用,解答时由工程问题的数量关系建立方程组求出其解是关键.17.(3分)(2017•苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为5.考点:矩形的性质;勾股定理.分析:连接BE,设AB=3x,BC=5x,根据勾股定理求出AE=4x,DE=x,求出x的值,求出AB、BC,即可求出答案.解答:解:如图,连接BE,则BE=BC.设AB=3x,BC=5x,∵四边形ABCD是矩形,∴AB=CD=3x,AD=BC=5x,∠A=90°,由勾股定理得:AE=4x,则DE=5x﹣4x=x,∵AE•ED=,∴4x•x=,解得:x=(负数舍去),则AB=3x=,BC=5x=,∴矩形ABCD的面积是AB×BC=×=5,故答案为:5.点评:本题考查了矩形的性质,勾股定理的应用,解此题的关键是求出x的值,题目比较好,难度适中.18.(3分)(2017•苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是2.考点:切线的性质.分析:作直径AC,连接CP,得出△APC∽△PBA,利用=,得出y=x2,所以x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.解答:解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴=,∵PA=x,PB=y,半径为4∴=,∴y=x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.点评:此题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键.三、解答题(共11小题,共76分)19.(5分)(2017•苏州)计算:22+|﹣1|﹣.考点:实数的运算.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用平方根定义化简,计算即可得到结果.解答:解:原式=4+1﹣2=3.点评:此题考查了实数的运算,熟练掌握运算法则解本题的关键.20.(5分)(2017•苏州)解不等式组:.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:,由①得:x>3;由②得:x≤4,则不等式组的解集为3<x≤4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.(5分)(2017•苏州)先化简,再求值:,其中.考点:分式的化简求值.分析:分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.解答:解:=÷(+)=÷=×=,把,代入原式====.点评:此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.22.(6分)(2017•苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.(6分)(2017•苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.考点:全等三角形的判定与性质;旋转的性质.分析:(1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.解答:(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.点评:本题考查了全等三角形的判定和性质、同角的余角相等、旋转的性质、平行线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.(7分)(2017•苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.考点:两条直线相交或平行问题.专题:计算题.分析:(1)先利用直线y=x上的点的坐标特征得到点M的坐标为(2,2),再把M(2,2)代入y=﹣x+b可计算出b=3,得到一次函数的解析式为y=﹣x+3,然后根据x轴上点的坐标特征可确定A点坐标为(6,0);(2)先确定B点坐标为(0,3),则OB=CD=3,再表示出C点坐标为(a,﹣a+3),D点坐标为(a,a),所以a﹣(﹣a+3)=3,然后解方程即可.解答:解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣a+3),D点坐标为(a,a)∴a﹣(﹣a+3)=3,∴a=4.点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.25.(7分)(2017•苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.考点:列表法与树状图法.专题:计算题.分析:画树状图得出所有等可能的情况数,找出A与C中颜色不同的情况数,即可求出所求的概率.解答:解:画树状图,如图所示:所有等可能的情况有8种,其中A、C两个区域所涂颜色不相同的有4种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.(8分)(2017•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.分析:(1)根据待定系数法,可得函数解析式,根据图象上的点满足函数解析式,可得D 点坐标,根据三角形的面积公式,可得答案;(2)根据BE的长,可得B点的纵坐标,根据点在函数图象上,可得B点横坐标,根据两点间的距离公式,可得答案.解答:解;(1)y=(x>0)的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴.(2)∵BE=,∴.∵BE⊥CD,∴点B的横坐标是,纵坐标是.∴CE=.点评:本题考查了反比例函数k的几何意义,利用待定系数法求解析式,图象上的点满足函数解析式.27.(8分)(2017•苏州)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.考点:圆的综合题.分析:(1)利用圆心角定理进而得出∠BOD=120°,再利用弧长公式求出劣弧的长;(2)利用三角形中位线定理得出BF=AC,再利用圆心角定理得出=,进而得出BF=BD;(3)首先过点B作AE的垂线,与⊙O的交点即为所求的点P,得出BP⊥AE,进而证明△PBG≌△PBF(SAS),求出PG=PF.解答:(1)解:连接OB,OD,∵∠DAB=120°,∴所对圆心角的度数为240°,∴∠BOD=120°,∵⊙O的半径为3,∴劣弧的长为:×π×3=2π;(2)证明:连接AC,∵AB=BE,∴点B为AE的中点,∵F是EC的中点,∴BF为△EAC的中位线,∴BF=AC,∵=,∴+=+,∴=,∴BD=AC,∴BF=BD;(3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,∵BF为△EAC的中位线,∴BF∥AC,∴∠FBE=∠CAE,∵=,∴∠CAB=∠DBA,∵由作法可知BP⊥AE,∴∠GBP=∠FBP,∵G为BD的中点,∴BG=BD,∴BG=BF,在△PBG和△PBF中,,∴△PBG≌△PBF(SAS),∴PG=PF.点评:此题主要考查了圆的综合应用以及全等三角形的判定与性质和弧长公式以及圆心角定理等知识,正确作出辅助线是解题关键.28.(9分)(2017•苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD 沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).考点:圆的综合题.分析:(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.解答:解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.点评:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.29.(10分)(2017•苏州)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a >0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.考点:二次函数综合题.分析:(1)由C在二次函数y=a(x2﹣2mx﹣3m2)上,则其横纵坐标必满足方程,代入即可得到a与c的关系式.(2)求证为定值,一般就是计算出AD、AE的值,然后相比.而求其长,过E、D作x轴的垂线段,进而通过设边长,利用直角三角形性质得方程求解,是求解此类问题的常规思路,如此易得定值.(3)要使线段GF、AD、AE的长度为三边长的三角形是直角三角形,且(2)中=,则可考虑若GF使得AD:GF:AE=3:4:5即可.由AD、AE、F点都易固定,且G 在x轴的负半轴上,则易得G点大致位置,可连接CF并延长,证明上述比例AD:GF:AE=3:4:5即可.解答:(1)解:将C(0,﹣3)代入二次函数y=a(x2﹣2mx﹣3m2),则﹣3=a(0﹣0﹣3m2),解得a=.(2)证明:如图1,过点D、E分别作x轴的垂线,垂足为M、N.由a(x2﹣2mx﹣3m2)=0,解得x1=﹣m,x2=3m,则A(﹣m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,﹣3).∵AB平分∠DAE,∴∠DAM=∠EAN,∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴==.设E坐标为(x,),∴=,∴x=4m,∴E(4m,5),∵AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m,∴==,即为定值.(3)解:如图2,记二次函数图象顶点为F,则F的坐标为(m,﹣4),过点F作FH ⊥x轴于点H.连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.∵tan∠CGO=,tan∠FGH=,∴=,∴OG=3m.∵GF===4,AD===3,∴=.∵=,∴AD:GF:AE=3:4:5,∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为﹣3m.点评:本题考查了二次函数性质、勾股定理及利用直角三角形性质求解边长等知识,总体来说本题虽难度稍难,但问题之间的提示性较明显,所以是一道质量较高的题目.。

江苏省苏州市2017年中考数学试题(精校word版,含答案)

江苏省苏州市2017年中考数学试题(精校word版,含答案)

2017年苏州市初中毕业暨升学考试试卷数学第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()217-÷的结果是A .3B .3-C .13D .13- 2.有一组数据:2,5,5,6,7,这组数据的平均数为A .3B .4C .5D .63.小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为A .2B .2.0C .2.02D .2.034.关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为A .B .1- C.2 D .2-5.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为A .70B .720 C.1680 D .23706.若点(),m n A 在一次函数3y x b =+的图像上,且32m n ->,则b 的取值范围为A .2b >B .2b >- C.2b < D .2b <-7.如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36 C.54 D .728.若二次函数21y ax =+的图像经过点()2,0-,则关于x 的方程()2210a x -+=的实数根为 A .10x =,24x = B .12x =-,26x = C.132x =,252x = D .14x =-,20x = 9.如图,在Rt C ∆AB 中,C 90∠A B = ,56∠A = .以C B 为直径的O 交AB 于点D ,E 是O 上一点,且 CCD E =,连接OE ,过点E 作F E ⊥OE ,交C A 的延长线于点F ,则F ∠的度数为 A .92 B .108 C.112 D .12410.如图,在菱形CD AB 中,60∠A = ,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .B ..8第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.计算:()22a = .12.如图,点D 在∠AOB 的平分线C O 上,点E 在OA 上,D//E OB ,125∠= ,则D ∠AE 的度数为 .13.某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环.14.因式分解:2441a a -+= .15.如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取个涂成黑色,则完成的图案为轴对称图案的概率是 .16.如图,AB 是O 的直径,C A 是弦,C 3A =,C 2C ∠BO =∠AO .若用扇形C OA (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .17.如图,在一笔直的沿湖道路上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60 的方向,在码头B 北偏西45 的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).18.如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号). 三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分5分)()03π-.20. (本题满分5分)解不等式组:()142136x x x +≥⎧⎪⎨->-⎪⎩. 21. (本题满分6分)先化简,再求值:259123x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =-. 22. (本题满分6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元.(1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23. (本题满分8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 ;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有名男生、名女生的概率.24.(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O .(1)求证:C ∆AE ≌D ∆BE ;(2)若142∠=,求D ∠B E 的度数.25.(本题满分8分)如图,在C ∆AB 中,C C A =B ,x AB ⊥轴,垂足为A .反比例函数k y x =(0x >)的图像经过点C ,交AB 于点D .已知4AB =,5C 2B =. (1)若4OA =,求k 的值;(2)连接C O ,若D C B =B ,求C O 的长.26.(本题满分10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形CD AB 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为个单位长度/,移动至拐角处调整方向需要(即在B 、C 处拐弯时分别用时).设机器人所用时间为()s t 时,其所在位置用点P 表示,P 到对角线D B 的距离(即垂线段Q P 的长)为d 个单位长度,其中d 与的函数图像如图②所示.(1)求AB 、C B 的长;(2)如图②,点M 、N 分别在线段F E 、G H 上,线段MN 平行于横轴,M 、N 的横坐标分别为1t 、2t .设机器人用了()1s t 到达点1P 处,用了()2s t 到达点2P 处(见图①).若12C C 7P +P =,求1t 、2t 的值.27.(本题满分10分)如图,已知C ∆AB 内接于O ,AB 是直径,点D 在O 上,D//C O B ,过点D 作D E ⊥AB ,垂足为E ,连接CD 交OE 边于点F .(1)求证:D ∆OE ∽C ∆AB ;(2)求证:DF D ∠O =∠B E ;(3)连接C O ,设D ∆OE 的面积为1S ,四边形C D B O 的面积为2S ,若1227S S =,求sin A 的值.28.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.一、选择题1-5:BCDAC 6-10:DBACA二、填空题11.4a 12.50 13.8 14.()221a - 15. 13 16.12三、解答题19. 解:原式1212=+-=.20. 解:由44x +≥,解得3x ≥,由()2136x x ->-,解得4x <,所以不等式组的解集是34x ≤<.21. 解:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=⋅=++++-+.当2x =-时,原式===. 22. 解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解方程组202508k b k b +=⎧⎨+=⎩,得152k b ⎧=⎪⎨⎪=-⎩,所求函数表达式为125y x =-.(2) 当0y =时,1205x -=,得10x =. 答:旅客最多可免费携带行李10kg .23. 解:(1)8,3m n ==;(2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有8种可能.P ∴( 名男生、名女生)82123==.(如用树状图,酌情相应给分) 24. 解:(1)证明:AE 和BD 相交于点,O AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠ .在AEC ∆和BED ∆中, (),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠ .在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠= ,69BDE C ∴∠=∠= .25.解:(1)作CE AB ⊥,垂足为,,4E AC BC AB == ,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴ 点的坐标为5,22⎛⎫ ⎪⎝⎭, 点C 在k y x=的图象上,5k ∴=.(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴= .,D C ∴两点的坐标分别为33,,,222m m ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭. 点,C D 都在k y x=的图象上,332,6,22m m m C ⎛⎫∴=-∴=∴ ⎪⎝⎭点的坐标为9,22⎛⎫ ⎪⎝⎭.作CF x ⊥轴,垂足为9,,22F OF CF ∴==.在Rt OFC ∆中,222,OC OF CF OC =+∴=. 26. (1)作,AT BD ⊥ 垂足为T ,由题意得,248,.5AB AT == 在Rt ABT ∆中,22232,.5AB BT AT BT =+∴= tan ,6,AD AT ABD AD AB BT∠==∴= 即 6.BC =(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQ P Q .在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ P Q =.1212..CP CP PP BD CB CD ∴∴= 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴== 设,M N 的横坐标分别为12,t t ,由题意得, 11221215,16,12,20.CP t CP t t t =-=-∴==27.解:AB 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠. //,,OD BC DOE ABC DOE ∴∠=∠∴∆ ~ ABC ∆.(2)DOE ∆ ~ ABC ∆.ODE A A ∴∠=∠∠ 和BDC ∠是 BC所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOE ABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭ ,即144ABC DOE S S S ∆∆== ,OA OB = ,12BOC ABC S S ∆∆∴= ,即12BOC S S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++ ,112DBE S S ∆∴= ,12BE OE ∴= ,即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠== . 28.解:(1)CD x 轴,2CD = ,∴ 抛物线对称轴为直线 1.l x =:()1, 2.,0,,2b b OB OC Cc ∴-==-=∴ B 点的坐标为(),0,c - 202,c c c ∴=++ 解得3c =- 或0c = (舍去), 3.c ∴=- (2)设点F 的坐标为()0,.m 对称轴为直线1,l x =∴:点F 关于直线的对称点F 的坐标为()2,m . 直线BE 经过点()()3,0,1,4,B E -∴ 利用待定系数法可得直线BE 的表达式为26y x =- . 因为点F 在BE 上,∴ 2262,m =⨯-=- 即点F 的坐标为()0,2.-(3)存在点Q 满足题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==-=-++ 作,QR PN ⊥ 垂足为,R ()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+-=-++ 1.QR ∴= ①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R --点的坐标为()2,4,n n n N -点的坐标为()2,23.n nn -- ∴ 在Rt QRN ∆中,()223123,2NQ n n =+-∴= 时,NQ 取最小值.此时Q 点的坐标为115,.24⎛⎫- ⎪⎝⎭ ②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n +-同理,()221121,2NQ n n =+-∴=时,NQ 取最小值.此时Q 点的坐标为315,.24⎛⎫- ⎪⎝⎭ 综上所述:满足题意得点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,.24⎛⎫- ⎪⎝⎭。

江苏省苏州市2017年中考数学真题试题(含解析)(真题试卷)

江苏省苏州市2017年中考数学真题试题(含解析)(真题试卷)
(1)若 = 4 ,求 k 的值; (2)连接 C ,若 D = C ,求 C 的长.
【答案】(1) k = 5 (2) OC = 97 2
【解析】 试题分析:(1)利用勾股定理,先求出 C 的坐标,再代入反比例函数即可.(2)利用勾股定理,求 OC 的长 度.
试题解析:(1)作 CE ⊥ AB ,垂足为 E, AC = BC, AB = 4 ,AE = BE = 2.在 Rt BCE 中,
解.
(2)在图①中,连接 P1P2. 过 P1, P2 分别作 BD 的垂线,垂足为 Q1,Q2. 则 P1Q1 P2Q2 .
在图②中,线段 MN 平行于横轴,d1 = d2, 即 P1Q1 = P2Q2 . P1P2
BD. CP1 = CP2 . CB CD
即 CP1 = CP2 . 又 68
CP1 + CP2 = 7,CP1 = 3,CP2 = 4. 设 M , N 的横坐标分别为 t1,t2 ,由题意得,
【答案】D.
【解析】
试题分析: 2.026 2.03故答案选 D.
考点:近似数
D. 2.03
4.关于 x 的一元二次方程 x2 − 2x + k = 0 有两个相等的实数根,则 k 的值为
A.1
B. −1
C. 2
D. −2
【答案】A.
【解析】
试题分析: =4 − 4k = 0 k =1 故答案选 A.
(2)若 1 = 42 ,求 D 的度数.
【答案】( 1)详见解析;(2) BDE = 69
考点:全等三角形的判定与性质
25.(本题满数 y = k ( x 0 ) x
的图像经过点 C ,交 于点 D .已知 = 4, C = 5 . 2

2017年江苏省苏州市中考数学试卷及答案解析

2017年江苏省苏州市中考数学试卷及答案解析

()
A. 3
B. 4
C. 5
D. 6
卷 3.小亮用天平称得一个罐头的质量为 2.026 kg ,用四舍五入法将 2.026 精确到 0.01的近
似值为
()
03
4.关于 x 的一元二次方程 x2 2x k 0 有两个相等的实数根,则 k 的值为
()
D. x1 4 , x2 0
9.如图,在 Rt△ABC 中,∠ACB =90 ,∠A =56 .以 BC 为直径的 O 交 AB 于点 D , E
是 O 上一点,且 CE CD ,连接 OE ,过点 E 作 EF⊥OE ,交 AC 的延长线于点 F ,则
F 的度数为
()
A. 92
B.108
绝密★启用前 在
江苏省苏州市 2017 年中考试卷
数学
本试卷满分 120 分,考试时间 120 分钟.
一、选择题(每小题 2 分,共 20 分) 此 1. (21) 7 的结果是
()
A. 3
B. 3
C. 1
3
D. 1 3
2.有一组数据: 2 , 5 , 5 , 6 , 7 , 这组数据的平均数为
v1 若回到 A、B 所用时间相等,则 v2
(结果保留根号).
18.如图,在矩形 ABCD 中,将∠ABC 绕点 A 按逆时针方向旋转一定角度后, BC 的对应 边 BC 交 CD 边于点 G .连接 BB、CC ,若 AD 7 , CG 4 , AB BG , 则 CC BB (结果保留根号).
22.(6 分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过 规定时,需付的行李费 y (元)是行李质量 x (kg) 的一次函数.已知行李质量为 20 kg

(可修改打印)【中考数学】2017年江苏省苏州市中考数学试卷(详细答案解析)

(可修改打印)【中考数学】2017年江苏省苏州市中考数学试卷(详细答案解析)

2017年江苏省苏州市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.2.(3分)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.63.(3分)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.034.(3分)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣25.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.23706.(3分)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣27.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°8.(3分)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=09.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112° D.124°10.(3分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)计算:(a2)2=.12.(3分)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为°.13.(3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是环.14.(3分)分解因式:4a2﹣4a+1=.15.(3分)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.16.(3分)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.17.(3分)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C 在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B 的游船速度分别为v1、v2,若回到A、B所用时间相等,则=(结果保留根号).18.(3分)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则=(结果保留根号).三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)计算:|﹣1|+﹣(π﹣3)0.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣2.22.(6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23.(8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m=,n=;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.25.(8分)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x >0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.26.(10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s (即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.27.(10分)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.28.(10分)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE 上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.2017年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•苏州)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.【分析】根据有理数的除法法则计算即可.【解答】解:原式=﹣3,故选B.【点评】本题考查有理数的除法法则,属于基础题.2.(3分)(2017•苏州)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.6【分析】把给出的这5个数据加起来,再除以数据个数5,就是此组数据的平均数.【解答】解:(2+5+5+6+7)÷5=25÷5=5答:这组数据的平均数是5.故选C【点评】此题主要考查了平均数的意义与求解方法,关键是把给出的这5个数据加起来,再除以数据个数5.3.(3分)(2017•苏州)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.03【分析】根据题目中的数据和四舍五入法可以解答本题.【解答】解:2.026≈2.03,故选D.【点评】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的表示方法.4.(3分)(2017•苏州)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣2【分析】根据方程的系数结合根的判别式,即可得出△=4﹣4k=0,解之即可得出k值.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,∴△=(﹣2)2﹣4k=4﹣4k=0,解得:k=1.故选A.【点评】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.5.(3分)(2017•苏州)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.2370【分析】先求出100名学生中持“赞成”意见的学生人数,进而可得出结论.【解答】解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数=100﹣30=70名,∴全校持“赞成”意见的学生人数约=2400×=1680(名).故选C.【点评】本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.6.(3分)(2017•苏州)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣2【分析】由点A的坐标结合一次函数图象上点的坐标特征,可得出3m+b=n,再由3m﹣n>2,即可得出b<﹣2,此题得解.【解答】解:∵点A(m,n)在一次函数y=3x+b的图象上,∴3m+b=n.∵3m﹣n>2,∴﹣b>2,即b<﹣2.故选D.【点评】本题考查了一次函数图象上点的坐标特征,根据一次函数图象上点的坐标特征结合3m﹣n>2,找出﹣b>2是解题的关键.7.(3分)(2017•苏州)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°【分析】在等腰三角形△ABE中,求出∠A的度数即可解决问题.【解答】解:在正五边形ABCDE中,∠A=×(5﹣2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=(180°﹣108°)=36°.故选B.【点评】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.8.(3分)(2017•苏州)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x 的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=0【分析】二次函数y=ax2+1的图象经过点(﹣2,0),得到4a+1=0,求得a=﹣,代入方程a(x﹣2)2+1=0即可得到结论.【解答】解:∵二次函数y=ax2+1的图象经过点(﹣2,0),∴4a+1=0,∴a=﹣,∴方程a(x﹣2)2+1=0为:方程﹣(x﹣2)2+1=0,解得:x1=0,x2=4,故选A.【点评】本题考查了二次函数与x轴的交点问题,一元二次方程的解,正确的理解题意是解题的关键.9.(3分)(2017•苏州)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112° D.124°【分析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故选:C.【点评】此题主要考查了圆周角定理以及四边形内角和定理,正确得出∠OCE的度数是解题关键.10.(3分)(2017•苏州)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8【分析】如图,连接BD,DF,DF交PP′于H.首先证明四边形PP′CD是平行四边形,再证明DF⊥PP′,求出DH即可解决问题.【解答】解:如图,连接BD,DF,DF交PP′于H.由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,∴四边形PP′CD是平行四边形,∵四边形ABCD是菱形,∠A=60°,∴△ABD是等边三角形,∵AF=FB,∴DF⊥AB,DF⊥PP′,在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,∴AE=2,EF=2,∴PE=PF=,在Rt△PHF中,∵∠FPH=30°,PF=,∴HF=PF=,∵DF=4,∴DH=4﹣=,∴平行四边形PP′CD的面积=×8=28.故选A.【点评】本题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)(2017•苏州)计算:(a2)2=a4.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(a2)2=a4.故答案为:a4.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.12.(3分)(2017•苏州)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为50°.【分析】根据平行线的性质得到∠3=∠1,根据角平分线的定义得到∠1=∠2,等量代换得到∠2=∠3,由三角形的外角的性质即可得到结论.【解答】解:∵ED∥OB,∴∠3=∠1,∵点D在∠AOB的平分线OC上,∴∠1=∠2,∴∠2=∠3,∴∠AED=∠2+∠3=50°,故答案为:50.【点评】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握平行线的性质是解题的关键.13.(3分)(2017•苏州)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是8环.【分析】11名成员射击成绩处在第6位的是8,则中位数为8.【解答】解:∵按大小排列在中间的射击成绩为8环,则中位数为8.故答案为:8.【点评】本题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.(3分)(2017•苏州)分解因式:4a2﹣4a+1=(2a﹣1)2.【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【解答】解:4a2﹣4a+1=(2a﹣1)2.故答案为:(2a﹣1)2.【点评】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.15.(3分)(2017•苏州)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.【分析】根据轴对称的性质设计出图案即可.【解答】解:如图,∵可选2个方格∴完成的图案为轴对称图案的概率==.故答案为:.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.16.(3分)(2017•苏州)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.【分析】根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.【解答】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)(2017•苏州)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到A、B所用时间相等,则=(结果保留根号).【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD的长,然后在Rt△BCD中求得BC的长,然后根据=求解.【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),∵Rt△BCD中,∠CBD=90°,∴BC=CD=2(km),∴===.故答案是:.【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键.18.(3分)(2017•苏州)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则=(结果保留根号).【分析】先连接AC,AG,AC',构造直角三角形以及相似三角形,根据△ABB'∽△ACC',可得到=,设AB=AB'=x,则AG=x,DG=x﹣4,Rt△ADG中,根据勾股定理可得方程72+(x﹣4)2=(x)2,求得AB的长以及AC的长,即可得到所求的比值.【解答】解:连接AC,AG,AC',由旋转可得,AB=AB',AC=AC',∠BAB'=∠CAC',∴=,∴△ABB'∽△ACC',∴=,∵AB'=B'G,∠AB'G=∠ABC=90°,∴△AB'G是等腰直角三角形,∴AG=AB',设AB=AB'=x,则AG=x,DG=x﹣4,∵Rt△ADG中,AD2+DG2=AG2,∴72+(x﹣4)2=(x)2,解得x1=5,x2=﹣13(舍去),∴AB=5,∴Rt△ABC中,AC===,∴==,故答案为:.【点评】本题主要考查了旋转的性质,相似三角形的判定与性质,等腰直角三角形的性质,解一元二次方程以及勾股定理的综合应用,解决问题的关键是作辅助线构造直角三角形以及相似三角形,依据相似三角形的对应边成比例,将转化为,并依据直角三角形的勾股定理列方程求解,从而得出矩形的宽AB,这也是本题的难点所在.三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)(2017•苏州)计算:|﹣1|+﹣(π﹣3)0.【分析】直接利用绝对值的性质以及二次根式的性质和零指数幂的性质分别化简求出答案.【解答】解:原式=1+2﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)(2017•苏州)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由x+1≥4,解得x≥3,由2(x﹣1)>3x﹣6,解得x<4,所以不等式组的解集是3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2017•苏州)先化简,再求值:(1﹣)÷,其中x=﹣2.【分析】把分式进行化简,再把x的值代入即可求出结果.【解答】解:原式=.当时,原式=.【点评】本题主要考查了分式的混合运算﹣化简求值问题,在解题时要乘法公式的应用进行化简.22.(6分)(2017•苏州)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.【分析】(1)根据(20,2)、(50,8)利用待定系数法,即可求出当行李的质量x超过规定时,y与x之间的函数表达式;(2)令y=0,求出x值,此题得解.【解答】解:(1)设y与x的函数表达式为y=kx+b.将(20,2)、(50,8)代入y=kx+b中,,解得:,∴当行李的质量x超过规定时,y与x之间的函数表达式为y=x﹣2.(2)当y=0时,x﹣2=0,解得:x=10.答:旅客最多可免费携带行李10kg.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用待定系数法求出y与x之间的函数表达式;(2)令y=0,求出x值.23.(8分)(2017•苏州)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m=8,n=3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为144°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.【分析】(1)由航模的人数和其所占的百分比可求出总人数,进而可求出3D打印的人数,则m的值可求出,从而n的值也可求出;(2)由机器人项目的人数所占总人数的百分比即可求出所对应扇形的圆心角度数;(3)应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.【解答】解:(1)由两种统计表可知:总人数=4÷10%=40人,∵3D打印项目占30%,∴3D打印项目人数=40×30%=12人,∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数=×360°=144°,故答案为:144;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1名男生、1名女生”有8种可能.所以P(1名男生、1名女生)=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.24.(8分)(2017•苏州)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;【解答】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.25.(8分)(2017•苏州)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.【分析】(1)利用等腰三角形的性质得出AE,BE的长,再利用勾股定理得出OA 的长,得出C点坐标即可得出答案;(2)首先表示出D,C点坐标进而利用反比例函数图象上的性质求出C点坐标,再利用勾股定理得出CO的长.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在的图象上,∴k=5,(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m﹣,2).∵点C,D都在的图象上,∴m=2(m﹣),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC=.【点评】此题主要考查了等腰三角形的性质以及勾股定理和反比例函数图象上的性质,正确得出C点坐标是解题关键.26.(10分)(2017•苏州)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.【分析】(1)作AT⊥BD,垂足为T,由题意得到AB=8,AT=,在Rt△ABT中,根据勾股定理得到BT=,根据三角函数的定义即可得到结论;(2)如图,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.根据平行线的性质得到d1=d2,得到P1Q1=P2Q2.根据平行线分线段成比例定理得到.设M,N的横坐标分别为t1,t2,于是得到结论.【解答】解:(1)作AT⊥BD,垂足为T,由题意得,AB=8,AT=,在Rt△ABT中,AB2=BT2+AT2,∴BT=,∵tan∠ABD=,∴AD=6,即BC=6;(2)在图①中,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.∵在图②中,线段MN平行于横轴,∴d1=d2,即P1Q1=P2Q2.∴P1P2∥BD.∴.即.又∵CP1+CP2=7,∴CP1=3,CP2=4.设M,N的横坐标分别为t1,t2,由题意得,CP1=15﹣t1,CP2=t2﹣16,∴t1=12,t2=20.【点评】本题考查了动点问题的函数图象,勾股定理矩形的性质,平行线分线段成比例定理,正确的作出辅助线是解题的关键.27.(10分)(2017•苏州)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.【分析】(1)根据圆周角定理和垂直求出∠DEO=∠ACB,根据平行得出∠DOE=∠ABC,根据相似三角形的判定得出即可;(2)根据相似三角形的性质得出∠ODE=∠A,根据圆周角定理得出∠A=∠BDC,推出∠ODE=∠BDC即可;=4S△DOE=4S1,求出S△BOC=2S1,求出2BE=OE,(3)根据△DOE~△ABC求出S△ABC解直角三角形求出即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB,∵OD∥BC,∴∠DOE=∠ABC,∴△DOE~△ABC;(2)证明:∵△DOE~△ABC,∴∠ODE=∠A,∵∠A和∠BDC是所对的圆周角,∴∠A=∠BDC,∴∠ODE=∠BDC,∴∠ODF=∠BDE;(3)解:∵△DOE~△ABC,∴,=4S△DOE=4S1,即S△ABC∵OA=OB,=2S1,∴,即S△BOC∵,∴,∴,即,∴.【点评】本题考查了相似三角形的性质和判定,圆周角定理,平行线的性质,三角形的面积等知识点,能综合运用知识点进行推理是解此题的关键.28.(10分)(2017•苏州)如图,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE 上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.【分析】(1)由条件可求得抛物线对称轴,则可求得b的值;由OB=OC,可用c 表示出B点坐标,代入抛物线解析式可求得c的值;(2)可设F(0,m),则可表示出F′的坐标,由B、E的坐标可求得直线BE的解析式,把F′坐标代入直线BE解析式可得到关于m的方程,可求得F点的坐标;(3)设点P坐标为(n,0),可表示出PA、PB、PN的长,作QR⊥PN,垂足为R,则可求得QR的长,用n可表示出Q、R、N的坐标,在Rt△QRN中,由勾股定理可得到关于n的二次函数,利用二次函数的性质可知其取得最小值时n的值,则可求得Q点的坐标,【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=c2+2c+c,解得c=﹣3或c=0(舍去),∴c=﹣3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵直线BE经过点B(3,0),E(1,﹣4),∴利用待定系数法可得直线BE的表达式为y=2x﹣6.∵点F在BE上,∴m=2×2﹣6=﹣2,即点F的坐标为(0,﹣2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,∵S△PQN=S△APM,∴,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,n2﹣4n),R点的坐标为(n,n2﹣4n),N点的坐标为(n,n2﹣2n﹣3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴时,NQ取最小值1.此时Q点的坐标为;②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴时,NQ取最小值1.此时Q点的坐标为.综上可知存在满足题意的点Q,其坐标为或.【点评】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR的长,用勾股定理得到关于n的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.。

2017年江苏省苏州市中考数学试题及答案

2017年江苏省苏州市中考数学试题及答案

2017年苏州市初中毕业暨升学考试试卷数学第I 卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分在每小题给出的四个选项 中,只有一项是符合题目要求的.1. -21 “7的结果是A . 3B .-3C .1 3 1 D . ——32有 组数据: 2, 5,5,6, 7, 这组数据的平均数为 A . 3B . 4C .5D . 63•小亮用天平称得一个罐头的质量为 2.026 kg ,用四舍五入法将 2.026精确到0.01的近似值为 A . 2 B .2.0C .2.02 D . 2.034.关于x 的一元二次方程X 2 -2x • k =0有两个相等的实数根,则k 的值为A . 1B .-1 C.2D . -25.为了鼓励学生课外阅读,学校公布了 阅读奖励”方案,并设置了 赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了 100名学生的意见,其中持 反对”和 无所 谓”意见的共有30名学生,估计全校持 赞成”意见的学生人数约为6.若点Z m,n 在一次函数y =3x • b 的图像上,且 A . b 2B . b -2C .b 2D . b :: -27.如图,在正五边形 JTCD ;:中,连接,^y • 丁叮:的度数为 A . 30B . 36 C.54 D . 72°A . 70B . 720 C.1680 D . 23703m - n 2,贝U b 的取值范围为8•若二次函数y=ax?+1的图像经过点(—2,0),则关于x的方程a(x —2:+ 1 = 0的实数根3c.「,Z... C3 =90,.二=56 .以三C为直径的U O交二m于点D,C上二CD,连接O!-.,过点上作I :F..「);:,交二C的延长线于点F , 则.F的度数为10•如图,在菱形JTCD中,•丄=60:,丄D=8 , F是兀的中点.过点F作F;: .「:D , 垂足为上.将.*: F沿点Z到点三的方向平移,得到7 :. F .设P、〉分别是i'F、- F' 的中点,当点与点三重合时,四边形??CD的面积为A. 28、、3B. 24,3C.32,3D. 32,3-8第U卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)2211. 计算:a 二 ______________12. 如图,点D在•一二己的平分线匚C上,点;:在「2上,;:D〃cm , - 1 = 25」y,::D 9•如图,在Rt.UdC中,上是U G上一点,且A. 92 108 C.112 D. 124B.的度数为___________ .13•某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计16•如图,d 是L '--1的直径,--C 是弦,--C =3, -3() C 二2・・:1••丿C .若用扇形,••丿■■C (图 中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是17•如图,在一笔直的沿湖道路l 上有二、两个游船码头,观光岛屿C 在码头Z 北偏东60A的方向,在码头m 北偏西45"的方向,厶C =4 km .游客小张准备从观光岛屿 C 乘船沿CA 回到码头Z 或沿C2回到码头2 ,设开往码头 二、2的游船速度分别为 v 1、v 2,若回到二、三所用时间相等,贝U 也二 __________ (结果保留根号)v人数A图•由图可知,11名成员射击成绩的中位数是 环.214•因式分解:4a -4a -1二15.如图,在3 3”网格中,有3个涂成黑色的小方格.若再从余下的 6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是(第13题)(第16题)18•如图,在矩形厶BCD 中,将• JTC 绕点Z 按逆时针方向旋转一定角度后, BC 的对应— __ — _ —CC边三C ■交CD 边于点G •连接-注、CC ,若丄D =7 , CG =4,二 -3 G ,则上上=BB H__________ (结果保留根号)•三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演 算步骤.)19. (本题满分5分) 计算:-1 +V 4 兀 -3 ,. 20. (本题满分5分)X x 1 - 4解不等式组:2(x-1 )A 3X -621. (本题满分6分) 先化简,再求值: 1亠亡二9,其中x 二.3-2 .V x+2丿 x+322. (本题满分6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费 y (元)是行李质量 x ( kg )的一次函数•已知行李质量 为20 kg 时需付行李费2元,行李质量为50 kg 时需付行李费8元. (1)当行李的质量x 超过规定时,求 y 与x 之间的函数表达式; (2 )求旅客最多可免费携带行李的质量.j 1flI 用 ----- 东23. (本题满分8分)初一(1)班针对你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.(第23题)根据以上信息解决下列问题:(1) m = ___________ , n = _____________ ; (2) 扇形统计图中机器人项目所对应扇形的圆心角度数为(3 )从选航模项目的 4名学生中随机选取 2名学生参加学校航模兴趣小组训练,请用列举 法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24. (本题满分8分)如图,•丄-三上,点D 在ZC 边上,.仁• 2,汀 和 2D 相交于点 (1) 求证:—! C 也 D ;(2) 若• 1 =42:,求厶!D ;:的度数.25. (本题满分8分)如图,在 jme 中,丄一c-^c ,丄三_ x 轴,垂足为二•反比例函k5数y ( x 0)的图像经过点C ,交兀于点D .已知上三-4,二C =— •学生所选项目人数扇形统计图项tJ 男坐(人数)女生(人数)机器人 79 3D 打印 m 4 航模 22其他53D 打叩 30% 机器人乩他航模 10%男*女生所选项目人数统计袁x 2(1 )若门」-4,求k的值;(2)连接匚C,若三D ,求OC的长.26. (本题满分10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练•机器人从点丄出发,在矩形厶BCD边上沿着--C > D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s ,移动至拐角处调整方向需要1 s(即在三、C处拐弯时分别用时1s)•设机器人所用时间为t s时,其所在位置用点m表示,m到对角线3D 的距离(即垂线段?Q的长)为d个单位长度,其中d与t的函数图像如图②所示.(1 )求二三、三C的长;(2)如图②,点上|、、分别在线段上F、GI上,线段二平行于横轴,上I、、的横坐标分别为t1、t2 •设机器人用了t1 s到达点?1处,用了t2 s到达点?2处(见图①)•若C3 • CP2=7,求t1、t2的值.(图27.(本题满分10分)如图,已知厶二三C 内接于L ° ,是直径,点D 在L °上,o D//2 C ,D 作D _二三,垂足为上,连接CD 交门上边于点F •连接':":'C ,设的面积为S i ,四边形三C 「)D 的面积为S 2,若■S L-,求sin 二S 2 7过点 (1) 求证:S ."■:.-.BC ; (2) 求证:•「)DF = • BD ;(3)的值.228.(本题满分10分)如图,二次函数y = x bx c的图像与x轴交于二、三两点,与y轴交于点C,「用-OC •点D在函数图像上,CD//X轴,且CD = 2,直线I是抛物线的对称轴,上是抛物线的顶点.(1 )求b、c的值;(2)如图①,连接m;:,线段0C上的点F关于直线I的对称点F•恰好在线段三;:上,求点F的坐标;(3)如图②,动点P在线段「用上,过点?作x轴的垂线分别与2C交于点二1 ,与抛物线交于点X .试问:抛物线上是否存在点Q ,使得.口QX与的面积相等,且线段乂Q参考答案(的27题)(第28、选择题、填空题当 x =20时,y = 2,得 2 =20k b .当 x =50时,y = 8,得 8 = 50k b .1 l20k+b=2 l k =」1 解方程组 ,得 5,所求函数表达式为 y x-2.|50k+b=8 L 5L l b = -2当 y =0 时,丄乂-2=0,得 x =10.523.解:(1)m =8,n =3 ;⑵ 144 ;(3) 将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4 .用表格列出所有可能 出现的结果:1-5:BCDAC6-10:DBACA11.a 412.50 13.8 214.(2a —1)1 15.-31 16.217. .2.74 18.5三、解答题19.解:原式20.解:由 x • 4 _ 4,解得 x _3,由 2 x -1〕>3x -6,解得 x 4 ,所以不等式组的解集21.解:原式_ x -3 . x 3 x -3 _x -3_ x 2x 2 x 3 x-3 x 2原式=一丁3_2+2V 322.解:(1)根据题意,设y 与x 的函数表达式为 y = kx ■ b .答: 旅客最多可免费携带行李10kg .由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中名男生、1名8 2女生”有8种可能..P(1名男生、1名女生).(如用树状图,酌情相应给分)12 324.解:⑴证明:;AE和BD相交于点0, . A0D二/BOE .在厶AOD和BOE中,.A = • B,. . BEO — 2 •又:• 1 二2, . 1 = • BEO, . AEC 二.BED •在AEC 和BED 中,.A "BIAE =BE ,• : AEC 三BED ASA .AEC "BED(2) ;AEC 二BED, EC =ED, C =/BDE •在EDC 中,V EC 二ED, • 1 = 42【C =EDC =69”,BDE = • C = 6& •25.解:(1)作CE JB,垂足为E, , AC 二BC, AB = 4,AE 二BE = 2 .在Rt 二BCE 中,BC T BE也C「3,;O…C点的坐标为詐宀点C在的图象上,” k — 5 •,* 5 3⑵设A点的坐标为m,0 ,;BD=BC , AD .. D, C两点的坐标分别为2 2f m 3)L_3 2) m,2 ,口2,2 .9 CF _x轴,垂足为F,. OF ,CF =2•在Rt OFC 中,2OC2 =OF2 CF2,. OC =—97226. ( 1 )作AT_BD,垂足为T ,由题意得,AB =8, AT 二24.在Rt ABT 中, 5AB2=BT2AT2,. BT 二32. ;tan. ABD 二俎二AT5 ABv在图②中,线段MN平行于横轴,.d i二d2,即PQ"P2Q2.瞅叽誓嚅即CP^ =-CP2.又;CP +CF2 =7,二CP =3,CP2=4.6 8题意得,CP1=15 -t|,CP2 =t2-16, t| =12,t2=20.I I _27.解:.AB是O O的直径,ACB =90.U DE — AB, DEO =90. DEO "ACB .TOD//BC, DOE =/ABC, : DOE 〜ABC.(2DOE〜ABC ODE=/A.:・A和・BDC是BC所对的圆周角,k 3:点C,D都在y 的图象上,mx 2=2 m—2I 2,2 6, C点的坐标为|,2.作BT‘ AD-6,即BC"垂足为Q1,Q2.则RQ丄P2Q2.设M,N的横坐标分别为H ,由(2)在图①中,连接pp2.过P,P2分别作BD的垂线,2, 4 .A= BDC, ODE 二 BDC.. ODF 二 BDE .-b =1,b - -2.:OB =OC,C 0,c , B 点的坐标为 -c,0 ,2 .0 二 c 2c c,解得 c - -3 或 c = 0 (舍去),c - -3.(2)设点F 的坐标为 0,m .“”'对称轴为直线丨:x=1,.点F 关于直线l 的对称点F 的 坐标为2, m .v 直线BE 经过点B 3,0 ,E 1, -4 ,利用待定系数法可得直线BE 的表达式 为y = 2x -6 .因为点F 在BE 上,.m =2 2-6=—2,即点F 的坐标为 0,-2 . (3)存在点Q 满足题意.设点P 坐标为n,0 ,则 PA 二 n 1,PB 二 PM =3 - n,PN 二-n 22 n 3.1 1作 QR —PN,垂足为 R, TS/QN -S APM , ?n 1 3-n =- - n 2 2n 3i_QR,QR =1.①点Q 在直线PN 的左侧时,Q 点的坐标为n -1,n 2 -4n ,R 点的坐标为n,n 2-4n ,N2223点的坐标为(n,n —2n — 3).二 在 Rt^QRN 中,NQ =1+(2n — 3) J n = ?时,NQ取最小值1 .此时Q 点的坐标为-S D)BE =劳.BE OE222OE 2 OE : OB = —A = s ODE» .s33OD328.解: :(1) TCD_x 轴,CD =2 , 抛物线对称轴为直线 l : x = 1* S 2* S ,7,S2 =S 「BOC ' SCDOE ' SDB^ -2S I ' S l 'SDBE(3)「 :DOE_ . ABC,2S DOE (OD 〕1S ABC AB 4,即 S ABC = 4S ・poE = 4S , t OA = OB ,1S =2SABCSB -2S1②点Q在直线PN的右侧时,Q点的坐标为n 11,n? _ 4 .同理,〈315、n出寸,NQ取最小值1•此时Q点的坐标为,•12 4丿综上所述:满足题意得点Q的坐标为i和11.⑵4丿2 4丿数学试题参韦答案第1页(戏6項)2017年苏州市初中毕业暨升学考试数学试题参考答案一、选择题:(每小題3分”共汕分〉1. B 1. C3. D & D7. H8, A二、填空题;(毎小題3分.共】4分》 4. A 9. C5. C 10. A11. a 12. 50 13.14T (2—1)15. -16,丄17,IX. >/7425三、卿答题:(共力分)19. 解:原式=1+2—1=2*20, 斛:由"124,解得虫3・由 2(.r- l)>3.t-6 t 懈得盂<4・ 儿不等式纽的解卑£3签工<4 .2L 解:跖<=口」"3)(*-3)J + 2x + 3x — 3 x + 3 1 = ------- « ------------------ ■= ----- . Ji + 2 (x + 3)(jt — 3) x + 2 肖工二厲_2时*皿式=——二丄=巴. V3-2 + 2 V3 322.解:(1〉根据题总*设V J J-r 的鞘数丧込式为皿也 当 尸20时* 祈2三20才十芳尸刃时,严&得*一5以+八所求函數&込式为>=|x-2.(2)当jT 时.*上一2 = 0,得尸10・ 悴:族客时篦可免彷携带行卒10煌-解方程组20A+/> = 2t 501 + 6 = 8.⑵ 144;⑶ 将选航模项闾的2名刃生编上号码1、2>将2名女生编上号码氛4•用表格列由我格町知■共有12种可能出现的结杲'井且它们都足零可能的,其中r名班* I名女生”冇8种可能.Ap CI名男主、1斜女牛)=兰工2・(如川树状图.酌情柑咸給分)12 324 - (!)肚明:\AE和刃JfH 交F点0 :.ZAOD=ZBOE.在△昇OD和厶号心血中* ,\ZBEO=Z2.乂/< Z I = ZBEO. :, ZAEC=ZRED.[/心皿在△沖EC 和\ AE ~= BE,[ZAEC^ZBED^二HAEWbRED (ASA).<2) TAJEQ空△BED’ :.EC = ED. ZC- ZBDE.襄AEDC屮,V£C=£D, Z172°・AZC=Z£'/>C-69O .:.ZBDE=ZC^9J *25・解,(1)作CELABf®足为& VAC^fiC t Aff-4,:.AE=BE-2.数学试题参韦答案第1页(戏6項)(2)设白亞的坐标人E 0), :.AD=丄・2 2:.D.C两点的坐标分别为5” -).(折-』,2).2 2丁点C、。

2017年江苏省苏州市中考数学试题及答案(word版)(20200813171622)

2017年江苏省苏州市中考数学试题及答案(word版)(20200813171622)

2017年苏州市初中毕业暨升学考试试卷数学
第I卷(共30分)
一、选择题:本大题共10个小题,每小题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的.
1. -21 “7的结果是
c c 1 1
A. 3 B . -3 CD .-
3 3
2•有一组数据:2 , 5 , 5 , 6 , 7,这组数据的平均数为
A. 3 B . 4 C. 5 D . 6
3•小亮用天平称得一个罐头的质量为 2.026 kg ,用四舍五入法将2.026精确到0.01的近似
值为
A. 2
B. 2.0
C. 2.02 D . 2.03
2
4•关于x的一元二次方程x -2x ^0有两个相等的实数根,则k的值为
A . 1
B . -1 C.2 D . -2
5•为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”
三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和
“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为
A . 70
B . 720 C.1680 D . 2370
6•若点Z m,n在一次函数y =3x • b的图像上,且3m - n 2,则b的取值范围为
A . b 2
B . b -2 C. b :: 2 D . b ::—2
7•如图,在正五边形JTCD;:中,连接y • 丁叮:的度数为
A . 30
B . 36 C. 54 D . 72
2 . 2
8若二次函数y =ax 1的图像经过点-2,0 ,则关于x的方程a x - 2 7 = 0的实数根。

2017年江苏省苏州市中考数学试卷和解析答案

2017年江苏省苏州市中考数学试卷和解析答案

2017年江苏省苏州市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.2.(3分)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.63.(3分)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.034.(3分)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣25.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.23706.(3分)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣27.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36° C.54° D.72°8.(3分)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2=D.x1=﹣4,x2=09.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112°D.124°10.(3分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设 P、P'分别是 EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)计算:(a2)2= .12.(3分)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为°.13.(3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是环.14.(3分)分解因式:4a2﹣4a+1= .15.(3分)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.16.(3分)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.17.(3分)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头 A北偏东60°的方向,在码头 B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到 A、B所用时间相等,则= (结果保留根号).18.(3分)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则= (结果保留根号).三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)计算:|﹣1|+﹣(π﹣3)0.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣2.22.(6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23.(8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m= ,n= ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.25.(8分)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.26.(10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段 PQ的长)为d 个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.27.(10分)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.28.(10分)如图,二次函数y=x2+bx+c的图象与x轴交于 A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.2017年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•苏州)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.【分析】根据有理数的除法法则计算即可.【解答】解:原式=﹣3,故选B.【点评】本题考查有理数的除法法则,属于基础题.2.(3分)(2017•苏州)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.6【分析】把给出的这5个数据加起,再除以数据个数5,就是此组数据的平均数.【解答】解:(2+5+5+6+7)÷5=25÷5=5答:这组数据的平均数是5.故选C【点评】此题主要考查了平均数的意义与求解方法,关键是把给出的这5个数据加起,再除以数据个数5.3.(3分)(2017•苏州)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.03【分析】根据题目中的数据和四舍五入法可以解答本题.【解答】解:2.026≈2.03,故选D.【点评】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的表示方法.(2017•苏州)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()(3分)4.A.1 B.﹣1 C.2 D.﹣2【分析】根据方程的系数结合根的判别式,即可得出△=4﹣4k=0,解之即可得出k值.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,∴△=(﹣2)2﹣4k=4﹣4k=0,解得:k=1.故选A.【点评】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.5.(3分)(2017•苏州)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.2370【分析】先求出100名学生中持“赞成”意见的学生人数,进而可得出结论.【解答】解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数=100﹣30=70名,∴全校持“赞成”意见的学生人数约=2400×=1680(名).故选C.【点评】本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.6.(3分)(2017•苏州)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣2【分析】由点A的坐标结合一次函数图象上点的坐标特征,可得出3m+b=n,再由3m﹣n>2,即可得出b<﹣2,此题得解.【解答】解:∵点A(m,n)在一次函数y=3x+b的图象上,∴3m+b=n.∵3m﹣n>2,∴﹣b>2,即b<﹣2.故选D.【点评】本题考查了一次函数图象上点的坐标特征,根据一次函数图象上点的坐标特征结合3m ﹣n>2,找出﹣b>2是解题的关键.7.(3分)(2017•苏州)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36° C.54° D.72°【分析】在等腰三角形△ABE中,求出∠A的度数即可解决问题.【解答】解:在正五边形ABCDE中,∠A=×(5﹣2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=(180°﹣108°)=36°.故选B.【点评】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.8.(3分)(2017•苏州)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2=D.x1=﹣4,x2=0【分析】二次函数y=ax2+1的图象经过点(﹣2,0),得到4a+1=0,求得a=﹣,代入方程a(x ﹣2)2+1=0即可得到结论.【解答】解:∵二次函数y=ax2+1的图象经过点(﹣2,0),∴4a+1=0,∴a=﹣,∴方程a(x﹣2)2+1=0为:方程﹣(x﹣2)2+1=0,解得:x1=0,x2=4,故选A.【点评】本题考查了二次函数与x轴的交点问题,一元二次方程的解,正确的理解题意是解题的关键.9.(3分)(2017•苏州)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112°D.124°【分析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故选:C.【点评】此题主要考查了圆周角定理以及四边形内角和定理,正确得出∠OCE的度数是解题关键.10.(3分)(2017•苏州)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设 P、P'分别是 EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8【分析】如图,连接BD,DF,DF交PP′于H.首先证明四边形PP′CD是平行四边形,再证明DF⊥PP′,求出DH即可解决问题.【解答】解:如图,连接BD,DF,DF交PP′于H.由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,∴四边形PP′CD是平行四边形,∵四边形ABCD是菱形,∠A=60°,∴△ABD是等边三角形,∵AF=FB,∴DF⊥AB,DF⊥PP′,在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,∴AE=2,EF=2,∴PE=PF=,在Rt△PHF中,∵∠FPH=30°,PF=,∴HF=PF=,∵DF=4,∴DH=4﹣=,∴平行四边形PP′CD的面积=×8=28.故选A.【点评】本题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)(2017•苏州)计算:(a2)2= a4.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(a2)2=a4.故答案为:a4.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.12.(3分)(2017•苏州)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为50 °.【分析】根据平行线的性质得到∠3=∠1,根据角平分线的定义得到∠1=∠2,等量代换得到∠2=∠3,由三角形的外角的性质即可得到结论.【解答】解:∵ED∥OB,∴∠3=∠1,∵点D在∠AOB的平分线OC上,∴∠1=∠2,∴∠2=∠3,∴∠AED=∠2+∠3=50°,故答案为:50.【点评】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握平行线的性质是解题的关键.13.(3分)(2017•苏州)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是8 环.【分析】11名成员射击成绩处在第6位的是8,则中位数为8.【解答】解:∵按大小排列在中间的射击成绩为8环,则中位数为8.故答案为:8.【点评】本题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.(3分)(2017•苏州)分解因式:4a2﹣4a+1= (2a﹣1)2.【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【解答】解:4a2﹣4a+1=(2a﹣1)2.故答案为:(2a﹣1)2.【点评】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.15.(3分)(2017•苏州)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.【分析】根据轴对称的性质设计出图案即可.【解答】解:如图,∵可选2个方格∴完成的图案为轴对称图案的概率==.故答案为:.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.16.(3分)(2017•苏州)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.【分析】根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.【解答】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)(2017•苏州)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头 A北偏东60°的方向,在码头 B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C 乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到 A、B所用时间相等,则= (结果保留根号).【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD的长,然后在Rt△BCD中求得BC 的长,然后根据=求解.【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),∵Rt△BCD中,∠CBD=90°,∴BC=CD=2(km),∴===.故答案是:.【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键.18.(3分)(2017•苏州)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则= (结果保留根号).【分析】先连接AC,AG,AC',构造直角三角形以及相似三角形,根据△ABB'∽△ACC',可得到=,设AB=AB'=x,则AG=x,DG=x﹣4,Rt△ADG中,根据勾股定理可得方程72+(x﹣4)2=(x)2,求得AB的长以及AC的长,即可得到所求的比值.【解答】解:连接AC,AG,AC',由旋转可得,AB=AB',AC=AC',∠BAB'=∠CAC',∴=,∴△ABB'∽△ACC',∴=,∵AB'=B'G,∠AB'G=∠ABC=90°,∴△AB'G是等腰直角三角形,∴AG=AB',设AB=AB'=x,则AG=x,DG=x﹣4,∵Rt△ADG中,AD2+DG2=AG2,∴72+(x﹣4)2=(x)2,解得x1=5,x2=﹣13(舍去),∴AB=5,∴Rt△ABC中,AC===,∴==,故答案为:.【点评】本题主要考查了旋转的性质,相似三角形的判定与性质,等腰直角三角形的性质,解一元二次方程以及勾股定理的综合应用,解决问题的关键是作辅助线构造直角三角形以及相似三角形,依据相似三角形的对应边成比例,将转化为,并依据直角三角形的勾股定理列方程求解,从而得出矩形的宽AB,这也是本题的难点所在.三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)(2017•苏州)计算:|﹣1|+﹣(π﹣3)0.【分析】直接利用绝对值的性质以及二次根式的性质和零指数幂的性质分别化简求出答案.【解答】解:原式=1+2﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)(2017•苏州)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由x+1≥4,解得x≥3,由2(x﹣1)>3x﹣6,解得x<4,所以不等式组的解集是3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2017•苏州)先化简,再求值:(1﹣)÷,其中x=﹣2.【分析】把分式进行化简,再把x的值代入即可求出结果.【解答】解:原式=.当时,原式=.【点评】本题主要考查了分式的混合运算﹣化简求值问题,在解题时要乘法公式的应用进行化简.22.(6分)(2017•苏州)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.【分析】(1)根据(20,2)、(50,8)利用待定系数法,即可求出当行李的质量x超过规定时,y与x之间的函数表达式;(2)令y=0,求出x值,此题得解.【解答】解:(1)设y与x的函数表达式为y=kx+b.将(20,2)、(50,8)代入y=kx+b中,,解得:,∴当行李的质量x超过规定时,y与x之间的函数表达式为y=x﹣2.(2)当y=0时,x﹣2=0,解得:x=10.答:旅客最多可免费携带行李10kg.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用待定系数法求出y与x之间的函数表达式;(2)令y=0,求出x值.23.(8分)(2017•苏州)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m= 8 ,n= 3 ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为144 °;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.【分析】(1)由航模的人数和其所占的百分比可求出总人数,进而可求出3D打印的人数,则m 的值可求出,从而n的值也可求出;(2)由机器人项目的人数所占总人数的百分比即可求出所对应扇形的圆心角度数;(3)应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.【解答】解:(1)由两种统计表可知:总人数=4÷10%=40人,∵3D打印项目占30%,∴3D打印项目人数=40×30%=12人,∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数=×360°=144°,故答案为:144;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1名男生、1名女生”有8种可能.所以P( 1名男生、1名女生)=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.24.(8分)(2017•苏州)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;【解答】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.25.(8分)(2017•苏州)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x >0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.【分析】(1)利用等腰三角形的性质得出AE,BE的长,再利用勾股定理得出OA的长,得出C点坐标即可得出答案;(2)首先表示出D,C点坐标进而利用反比例函数图象上的性质求出C点坐标,再利用勾股定理得出CO的长.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在的图象上,∴k=5,(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m﹣,2).∵点C,D都在的图象上,∴m=2(m﹣),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC=.【点评】此题主要考查了等腰三角形的性质以及勾股定理和反比例函数图象上的性质,正确得出C点坐标是解题关键.26.(10分)(2017•苏州)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段 PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.【分析】(1)作AT⊥BD,垂足为T,由题意得到AB=8,AT=,在Rt△ABT中,根据勾股定理得到BT=,根据三角函数的定义即可得到结论;(2)如图,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.根据平行线的性质得到d1=d2,得到P1Q1=P2Q2.根据平行线分线段成比例定理得到.设M,N的横坐标分别为t1,t2,于是得到结论.【解答】解:(1)作AT⊥BD,垂足为T,由题意得,AB=8,AT=,在Rt△ABT中,AB2=BT2+AT2,∴BT=,∵tan∠ABD=,∴AD=6,即BC=6;(2)在图①中,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.∵在图②中,线段MN平行于横轴,∴d1=d2,即P1Q1=P2Q2.∴P1P2∥BD.∴.即.又∵CP1+CP2=7,∴CP1=3,CP2=4.设M,N的横坐标分别为t1,t2,由题意得,CP1=15﹣t1,CP2=t2﹣16,∴t1=12,t2=20.【点评】本题考查了动点问题的函数图象,勾股定理矩形的性质,平行线分线段成比例定理,正确的作出辅助线是解题的关键.27.(10分)(2017•苏州)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.【分析】(1)根据圆周角定理和垂直求出∠DEO=∠ACB,根据平行得出∠DOE=∠ABC,根据相似三角形的判定得出即可;(2)根据相似三角形的性质得出∠ODE=∠A,根据圆周角定理得出∠A=∠BDC,推出∠ODE=∠BDC 即可;(3)根据△DOE~△ABC求出S△ABC=4S△DOE=4S1,求出S△BOC=2S1,求出2BE=OE,解直角三角形求出即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB,∵OD∥BC,∴∠DOE=∠ABC,∴△DOE~△ABC;(2)证明:∵△DOE~△ABC,∴∠ODE=∠A,∵∠A和∠BDC是所对的圆周角,∴∠A=∠BDC,∴∠ODE=∠BDC,∴∠ODF=∠BDE;(3)解:∵△DOE~△ABC,∴,即S△ABC=4S△DOE=4S1,∵OA=OB,∴,即S△BOC=2S1,∵,∴,∴,即,∴.【点评】本题考查了相似三角形的性质和判定,圆周角定理,平行线的性质,三角形的面积等知识点,能综合运用知识点进行推理是解此题的关键.28.(10分)(2017•苏州)如图,二次函数y=x2+bx+c的图象与x轴交于 A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.【分析】(1)由条件可求得抛物线对称轴,则可求得b的值;由OB=OC,可用c表示出B点坐标,代入抛物线解析式可求得c的值;(2)可设F(0,m),则可表示出F′的坐标,由B、E的坐标可求得直线BE的解析式,把F′坐标代入直线BE解析式可得到关于m的方程,可求得F点的坐标;(3)设点P坐标为(n,0),可表示出PA、PB、PN的长,作QR⊥PN,垂足为R,则可求得QR的长,用n可表示出Q、R、N的坐标,在Rt△QRN中,由勾股定理可得到关于n的二次函数,利用二次函数的性质可知其取得最小值时n的值,则可求得Q点的坐标,【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=c2+2c+c,解得c=﹣3或c=0(舍去),∴c=﹣3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵直线BE经过点B(3,0),E(1,﹣4),∴利用待定系数法可得直线BE的表达式为y=2x﹣6.∵点F在BE上,∴m=2×2﹣6=﹣2,即点F的坐标为(0,﹣2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,∵S△PQN=S△APM,∴,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,n2﹣4n),R点的坐标为(n,n2﹣4n),N点的坐标为(n,n2﹣2n﹣3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴时,NQ取最小值1.此时Q点的坐标为;②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴时,NQ取最小值1.此时Q点的坐标为.综上可知存在满足题意的点Q,其坐标为或.【点评】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR的长,用勾股定理得到关于n的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.。

真题】苏州市2017年中考数学试题含答案

真题】苏州市2017年中考数学试题含答案

2017年苏州市初中毕业暨升学考试试卷数学第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()217-÷的结果是A .3B .3-C .13 D .13- 2.有一组数据:2,5,5,6,7,这组数据的平均数为 A .3 B .4 C .5 D .63.小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为 A .2 B .2.0 C .2.02 D .2.034.关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A . B .1- C.2 D .2-5.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为A .70B .720 C.1680 D .23706.若点(),m n A 在一次函数3y x b =+的图像上,且32m n ->,则b 的取值范围为 A .2b > B .2b >- C.2b < D .2b <-7.如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为 A .30 B .36 C.54 D .728.若二次函数21y ax =+的图像经过点()2,0-,则关于x 的方程()2210a x -+=的实数根为A .10x =,24x =B .12x =-,26x = C.132x =,252x = D .14x =-,20x = 9.如图,在Rt C ∆AB 中,C 90∠A B =,56∠A =.以C B 为直径的O 交AB 于点D ,E 是O 上一点,且C CD E =,连接OE ,过点E 作F E ⊥OE ,交C A 的延长线于点F ,则F ∠的度数为 A .92 B .108 C.112 D .12410.如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .B ..8第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.计算:()22a= .12.如图,点D 在∠AOB 的平分线C O 上,点E 在OA 上,D//E OB ,125∠=,则D ∠AE 的度数为 .13.某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环. 14.因式分解:2441a a -+= .15.如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取个涂成黑色,则完成的图案为轴对称图案的概率是 .16.如图,AB 是O 的直径,C A 是弦,C 3A =,C 2C ∠BO =∠AO .若用扇形C OA (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .17.如图,在一笔直的沿湖道路上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60的方向,在码头B 北偏西45的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).18.如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号). 三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分5分)()03π-. 20. (本题满分5分)解不等式组:()142136x x x +≥⎧⎪⎨->-⎪⎩.21. (本题满分6分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =-. 22. (本题满分6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元.(1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式; (2)求旅客最多可免费携带行李的质量.23. (本题满分8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 ;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有名男生、名女生的概率.24.(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O . (1)求证:C ∆AE ≌D ∆BE ; (2)若142∠=,求D ∠B E 的度数.25.(本题满分8分)如图,在C ∆AB 中,C C A =B ,x AB ⊥轴,垂足为A .反比例函数ky x=(0x >)的图像经过点C ,交AB 于点D .已知4AB =,5C 2B =. (1)若4OA =,求k 的值;(2)连接C O ,若D C B =B ,求C O 的长.26.(本题满分10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形CD AB 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为个单位长度/,移动至拐角处调整方向需要(即在B 、C 处拐弯时分别用时).设机器人所用时间为()s t 时,其所在位置用点P 表示,P 到对角线D B 的距离(即垂线段Q P 的长)为d 个单位长度,其中d 与的函数图像如图②所示.(1)求AB 、C B 的长;(2)如图②,点M 、N 分别在线段F E 、G H 上,线段MN 平行于横轴,M 、N 的横坐标分别为1t 、2t .设机器人用了()1s t 到达点1P 处,用了()2s t 到达点2P 处(见图①).若12C C 7P +P =,求1t 、2t 的值.27.(本题满分10分)如图,已知C ∆AB 内接于O ,AB 是直径,点D 在O 上,D//C O B ,过点D 作D E ⊥AB ,垂足为E ,连接CD 交OE 边于点F .(1)求证:D ∆OE ∽C ∆AB ; (2)求证:DF D ∠O =∠B E ;(3)连接C O ,设D ∆OE 的面积为1S ,四边形C D B O 的面积为2S ,若1227S S =,求sin A 的值.28.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线的对称点F '恰好在线段BE 上,求点F 的坐标; (3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.一、选择题1-5:BCDAC 6-10:DBACA二、填空题11.4a 12.50 13.8 14.()221a -15.13 16.12三、解答题19. 解:原式1212=+-=.20. 解:由44x +≥,解得3x ≥,由()2136x x ->-,解得4x <,所以不等式组的解集是34x ≤<.21. 解:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=⋅=++++-+.当2x =-时,原式===. 22. 解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解方程组202508k b k b +=⎧⎨+=⎩,得152k b ⎧=⎪⎨⎪=-⎩,所求函数表达式为125y x =-.(2) 当0y =时,1205x -=,得10x =. 答:旅客最多可免费携带行李10kg . 23. 解:(1)8,3m n ==; (2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有8种可能.P ∴( 名男生、名女生)82123==.(如用树状图,酌情相应给分) 24. 解:(1)证明:AE 和BD 相交于点,O AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠.在AEC ∆和BED ∆中,(),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠.在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=,69BDE C ∴∠=∠=.25.解:(1)作CE AB ⊥,垂足为,,4E AC BC AB ==,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴点的坐标为5,22⎛⎫⎪⎝⎭,点C 在k y x=的图象上,5k ∴=.(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴=.,D C ∴两点的坐标分别为33,,,222m m ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭.点,C D 都在k y x=的图象上,332,6,22m m m C ⎛⎫∴=-∴=∴ ⎪⎝⎭点的坐标为9,22⎛⎫⎪⎝⎭.作CF x ⊥轴,垂足为9,,22F OF CF ∴==.在Rt OFC ∆中,222,OC OF CF OC =+∴=. 26. (1)作,AT BD ⊥ 垂足为T ,由题意得,248,.5AB AT ==在Rt ABT ∆中,22232,.5AB BT AT BT =+∴=tan ,6,AD AT ABD AD AB BT∠==∴= 即 6.BC =(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQ P Q . 在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ P Q =.1212..CP CP PP BD CB CD∴∴= 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴== 设,M N 的横坐标分别为12,t t ,由题意得, 11221215,16,12,20.CP t CP t t t =-=-∴==27.解:AB 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠.//,,OD BC DOE ABC DOE ∴∠=∠∴∆~ ABC ∆.(2)DOE ∆~ ABC ∆.ODE A A ∴∠=∠∠和BDC ∠是BC 所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOEABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭ ,即144ABC DOE S S S ∆∆== ,OA OB =,12BOC ABC S S ∆∆∴=,即12BOC S S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++ ,112DBE S S ∆∴=,12BE OE ∴= ,即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠== . 28.解:(1)CD x 轴,2CD = ,∴ 抛物线对称轴为直线 1.l x =:()1, 2.,0,,2bb OB OC Cc ∴-==-=∴B 点的坐标为(),0,c - 202,c c c ∴=++ 解得3c =- 或0c = (舍去), 3.c ∴=- (2)设点F 的坐标为()0,.m对称轴为直线1,l x =∴:点F 关于直线的对称点F 的坐标为()2,m .直线BE 经过点()()3,0,1,4,B E -∴ 利用待定系数法可得直线BE 的表达式为26y x =- . 因为点F 在BE 上,∴ 2262,m =⨯-=- 即点F 的坐标为()0,2.-(3)存在点Q 满足题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==-=-++作,QR PN ⊥ 垂足为,R()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+-=-++ 1.QR ∴= ①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R --点的坐标为()2,4,n n n N -点的坐标为()2,23.n nn -- ∴ 在Rt QRN ∆中,()223123,2NQ n n =+-∴=时,NQ 取最小值.此时Q 点的坐标为115,.24⎛⎫-⎪⎝⎭②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n +-同理,()221121,2NQ n n =+-∴= 时,NQ 取最小值.此时Q 点的坐标为315,.24⎛⎫-⎪⎝⎭综上所述:满足题意得点Q 的坐标为115,24⎛⎫-⎪⎝⎭和315,.24⎛⎫- ⎪⎝⎭。

江苏省苏州市2017年中考数学试题真题卷(Word版,含解析)

江苏省苏州市2017年中考数学试题真题卷(Word版,含解析)

江苏省苏州市2017年中考数学试卷(解析版)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、(2017·苏州)的结果是()A、B、C、D、2、(2017•苏州)有一组数据:,,,,,这组数据的平均数为()A、B、C、D、3、(2017•苏州)小亮用天平称得一个罐头的质量为,用四舍五入法将精确到的近似值为()A、B、C、D、4、(2017•苏州)关于的一元二次方程有两个相等的实数根,则的值为()A、B、C、D、5、(2017•苏州)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有名学生中随机征求了名学生的意见,其中持“反对”和“无所谓”意见的共有名学生,估计全校持“赞成”意见的学生人数约为()A、B、C、D、6、(2017•苏州)若点在一次函数的图像上,且,则的取值范围为()A、B、C、D、7、(2017•苏州)如图,在正五边形中,连接,则的度数为()A、B、C、D、8、(2017•苏州)若二次函数的图像经过点,则关于的方程的实数根为()A、,B、,C、,D、,9、(2017•苏州)如图,在中,,.以为直径的交于点,是上一点,且,连接,过点作,交的延长线于点,则的度数为()A、B、C、D、10、(2017•苏州)如图,在菱形中,,,是的中点.过点作,垂足为.将沿点到点的方向平移,得到.设、分别是、的中点,当点与点重合时,四边形的面积为()A、B、C、D、二、填空题(每题3分,满分24分,将答案填在答题纸上)11、(2017•苏州)计算:________.12、(2017•苏州)如图,点在的平分线上,点在上,,,则的度数为________ .13、(2017•苏州)某射击俱乐部将名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,名成员射击成绩的中位数是________环.14、(2017•苏州)因式分解:________.15、(2017•苏州)如图,在“ ”网格中,有个涂成黑色的小方格.若再从余下的个小方格中随机选取个涂成黑色,则完成的图案为轴对称图案的概率是________.16、(2017•苏州)如图,是的直径,是弦,,.若用扇形(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是________.17、(2017•苏州)如图,在一笔直的沿湖道路上有、两个游船码头,观光岛屿在码头北偏东的方向,在码头北偏西的方向,.游客小张准备从观光岛屿乘船沿回到码头或沿回到码头,设开往码头、的游船速度分别为、,若回到、所用时间相等,则________(结果保留根号).18、(2017•苏州)如图,在矩形中,将绕点按逆时针方向旋转一定角度后,的对应边交边于点.连接、,若,,,则________(结果保留根号).三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19、(2017•苏州)计算:.20、(2017•苏州)解不等式组:.21、(2017•苏州)先化简,再求值:,其中.22、(2017•苏州)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费(元)是行李质量()的一次函数.已知行李质量为时需付行李费元,行李质量为时需付行李费元.(1)当行李的质量超过规定时,求与之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23、(2017•苏州)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)________,________;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为________ ;(3)从选航模项目的名学生中随机选取名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的名学生中恰好有名男生、名女生的概率.24、(2017•苏州)如图,,,点在边上,,和相交于点.(1)求证:≌;(2)若,求的度数.25、(2017•苏州)如图,在中,,轴,垂足为.反比例函数()的图像经过点,交于点.已知,.(1)若,求的值;(2)连接,若,求的长.26、(2017•苏州)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点出发,在矩形边上沿着的方向匀速移动,到达点时停止移动.已知机器人的速度为个单位长度/ ,移动至拐角处调整方向需要(即在、处拐弯时分别用时).设机器人所用时间为时,其所在位置用点表示,到对角线的距离(即垂线段的长)为个单位长度,其中与的函数图像如图②所示.(1)求、的长;(2)如图②,点、分别在线段、上,线段平行于横轴,、的横坐标分别为、.设机器人用了到达点处,用了到达点处(见图①).若,求、的值.27、(2017•苏州)如图,已知内接于,是直径,点在上,,过点作,垂足为,连接交边于点.(1)求证:∽;(2)求证:;(3)连接,设的面积为,四边形的面积为,若,求的值.28、(2017•苏州)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.图①图②(1)求、的值;(2)如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;(3)如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.答案解析部分一、<b>选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.</b>1、【答案】B【考点】有理数的除法【解析】【解答】解:原式=(-21)÷7=-(21÷7)=-3。

2017年江苏省苏州市中考数学试卷及答案

2017年江苏省苏州市中考数学试卷及答案

2017年江苏省苏州市中考数学试卷满分:130分 第Ⅰ卷(共30分)一、选择题(每小题3分,共10小题,合计30分) 1.(2017江苏苏州,1,3分)(—21)÷7的结果是 A .3B .—3C .13D .13-答案:B ,解析:根据有理数除法法则,同号得正,异号得负;除以一个不为0的数等于乘以其倒数.2.(2017江苏苏州,2,3分)有一组数据:2,5,5,6,7,这组数据的平均数为 A .3B .4C .5D .6答案:C ,解析:根据平均数的计算方法,2+5+5+6+7=55,故答案选C .3.(2017江苏苏州,3,3分)小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为 A .2B .2.0C .2.02D .2.03答案:D ,解析:根据“近似数的计算方法”,用四舍五入法将2.026精确到0.01的近似值,精确到百分位,则2.026≈2.03.4.(2017江苏苏州,4,3分)关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A .1B .—1C .2D .—2答案:A ,解析:根据一元二次方程有两个相等的实数根,即根的判别式.5.(2017江苏苏州,5,3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为 A .70B .720C .1680D .2370答案:C ,解析:根据用样本估计总体的统计思想,所以,故答案选C . 6.(2017江苏苏州,6,3分)若点A (m ,n )在一次函数y =3x +b 的图象上,且3m —n >2,则b 的取值范围为 A .b >2B .b >—2C .b <2D .b <—2答案:D ,解析:根据一次函数图象上点的特征,点A (m ,n )在一次函数y =3x +b 的图象上,则n =3m+b ,—b =3m —n ,所以—b >2,故答案为b <—2.7.(2017江苏苏州,7,3分)如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为=4401k k ∆-=⇒=702400=1680100⨯A .30°B .36°C .54°D .72°答案:B ,解析:根据“正多边形的定义:各边都相等,各角都相等”可计算出正五边形一个内角的度数∠A=108°,再根据等腰△ABE 两底角相等,可计算底角∠ABE=36°.8.(2017江苏苏州,8,3分)若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程 a (x -2)2+1=0的实数根为A .x 1=0,x 2=4B .x 1=—2,x 2=6C . x 1=32,x 2=52D .x 1=—4,x 2=0答案:A ,解析:根据“二次函数图象上点的坐标特征”可得4a +1=0,a =-14,则21(2)104x --+=,解一元二次方程得x 1=0,x 2=4.9.(2017江苏苏州,9,3分)如图,在Rt △ABC 中,∠ACB=90°,∠A=56°.以BC 为直径的e O 交AB 于点D ,E 是e O 上一点,且»»CCD E =,连接OE ,过点E 作EF ⊥OE ,交AC 的延长线于点F ,则∠F 的度数为A .92°B .108°C . 112°D .124°答案:C ,解析:根据“圆中圆心角圆周角性质”.∵∠ACB=90°,∠A=56°∴∠B=34°.在e O 中,∵»»CCD E =,∴∠B=12∠CBD=∠COE =68°,∴∠F=112°,故答案选C . 10.(2017江苏苏州,10,3分)如图,在菱形ABCD 中,∠A=60°,AD =8,F 是AB 的中点.过点F 作FE ⊥AD ,垂足为E .将△AEF 沿点A 到点B 的方向平移,得到△AE 'F '.设P 、P '分别是EF 、E 'F '的中点,当点A '与点B '重合时,四边形PP 'CD 的面积为A .B .C .D .8答案:A ,解析:根据平移性质,四边形PP 'CD 为平行四边形,再通过做辅助线,构造直角三角形,利用三角函数求出平行四边形PP 'CD 的高的长度,进而求出□PP 'CD 的面积. 作DH ⊥AB ,PK ⊥AB ,FL ⊥AB ,在菱形ABCD 中,∠A=60°,AD =8,F 是AB 的中点,∴AF =4,EF =4,∴EL .∵P 是EF 的中点,∴PK ∵DH =∴□PP 'CD 的高为∴=82S =故答案选A .第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(2017江苏苏州,11,3分)计算:()22a = .答案:4a ,解析:根据“幂的乘方运算法则”,幂的乘方,底数不变,指数相乘,()224a a =.12.(2017江苏苏州,12,3分)如图,点D 在∠AOB 的平分线OC 上,点E 在OA 上,ED ∥OB , ∠1=25°,则∠AED 的度数为 .答案:50,解析:根据“平行线性质、三角形外角性质”,∵DE ∥OB ,∴∠EDO =∠1=25°.∵OD 平分∠AOB ,∴∠AOD =25°.∴∠AED =25°+25°=50°.13.(2017江苏苏州,13,3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环.答案:8,解析:根据“中位数的定义”,计算中位数先按照从小到大的顺序排列,11个数据的中位数由第6个数据决定,故中位数是8.14.(2017江苏苏州,14,3分)因式分解:2441a a -+= .答案:()221a -,解析:根据“公式法分解因式:2222()a ab b a b ++=+”,()2244121a a a -+=-.15.(2017江苏苏州,15,3分)如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取个涂成黑色,则完成的图案为轴对称图案的概率是 .答案:13,解析:根据“轴对称图形定义”,有6种等可能的结果,符合条件的只有2种,则完成的图案为轴对称图案的概率是13.16.(2017江苏苏州,16,3分)如图,AB 是O e 的直径,AC 是弦,AC =3,∠BOC =2∠AOC .若用扇形OAC (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .答案:12,解析:根据“圆锥的侧面展开图的弧长等于地面圆的周长”,∵∠BOC =2∠AOC ,∠BOC +∠AOC =180°,∴∠AOC =60°.∴R =3.∴6032180l r ππ⨯==.∴r =12.2117.(2017江苏苏州,17,3分)如图,在一笔直的沿湖道路上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60°的方向,在码头B 北偏西45°的方向,AC =4km .游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A 、B 的游船速度分别为v 1、v 2,若回到A 、B 所用时间相等,则12v v = (结果保留根号).解析:根据“特殊角三角函数的应用”,作CD ⊥AB ,垂足为D ,∵AC =6,∠CAB=30°,∴CD =2.在Rt △BCD 中,∠CBD=45°,∴BC=.∵开往码头A 、B 的游船回到A 、B 所用时间相等,12v v ==.18.(2017江苏苏州,18,3分)如图,在矩形ABCD 中,将∠ABC 绕点A 按逆时针方向旋转一定角度后,BC 的对应边B C ''交CD 边于点G .连接BB '、CC ',若AD =7,CG =4,AB B G ''=,则CC BB '='(结果保留根号).D解析:根据“旋转的性质、勾股定理”,连接AG ,设DG =x ,则4AB B G x ''==+.在Rt AB G ∆'中,x 2+49=2(x +4)2,∴x =1.则AB =5,BC =7,∴CC BB'=='. 三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(2017江苏苏州,19,5分)计算:()013π-+-.思路分析:根据“实数的运算法则”,计算绝对值、算数平方根、0次幂,即可得出答案. 解:.原式=1+2-1=2.20.(2017江苏苏州,20,5分)解不等式组:()142136x x x +≥⎧⎪⎨->-⎪⎩.思路分析:根据“不等式组解集的求解方法”,先求出各不等式的解集,再利用数轴判断公共解集,即可求出不等式组的解集.解:解不等式○1得,44x +≥,解得3x ≥;解不等式○2得,由()2136x x ->-,解得4x <,所以不等式组的解集是34x ≤<.21.(2017江苏苏州,21,6分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =-.思路分析:分式的化简求值,先将括号内的进行通分,各分子、分母因式分解,再约分.解:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=⋅=++++-+.当2x =时,原式===.22.(2017江苏苏州,22,6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元. (1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式; (2)求旅客最多可免费携带行李的质量.思路分析:(1)用待定系数法求一次函数的表达式;(2)旅客最多可免费携带行李的质量就是y =0时x 的值.解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解方程组202508k b k b +=⎧⎨+=⎩,得152k b ⎧=⎪⎨⎪=-⎩,所求函数表达式为125y x =-.(2) 当0y =时,1205x -=,得10x =. 答:旅客最多可免费携带行李10kg .23.(2017江苏苏州,23,8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 ;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有名男生、名女生的概率.思路分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.解:(1)m =8,n =3; (2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:该组频数数据总数360⨯︒也可使用树状图.由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有8种可能.P ∴( 名男生、名女生)82123==. 24.(2017江苏苏州,24,8分)如图,∠A=∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .(1)求证:△AEC ≌△BED ; (2)若∠1=42°,求∠BDE 的度数.思路分析:(1)用ASA 证明两三角形全等;(2)利用全等三角形的性质得出EC =ED ,∠C=∠BDE ,再利用等腰三角形性质:等边对等角,即可求出底角∠BDE =69°.解:(1)证明:∵AE 和BD 相交于点O ,AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠Q .在AEC ∆和BED ∆中,(),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠Q . 在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=ooQ ,69BDE C ∴∠=∠=o .25.(2017江苏苏州,25,8分)如图,在△ABC 中,AC =BC ,AB ⊥x 轴,垂足为A .反比例函数ky x=(0x >)的图像经过点C ,交AB 于点D .已知AB =4,BC =52. (1)若OA =4,求k 的值;(2)连接OC ,若BD =BC ,求OC 的长.思路分析:(1)利用勾股定理,先求出C 的坐标,再代入反比例函数即可;(2)利用勾股定理,求OC 的长度.解:(1)作CE AB ⊥,垂足为,,4E AC BC AB ==Q ,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴Q 点的坐标为5,22⎛⎫⎪⎝⎭,Q 点C 在k y x=的图象上,5k ∴=.(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴=Q .,D C ∴两点的坐标分别为33,,,222m m ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭. Q 点,C D 都在k y x=的图象上,332,6,22m m m C ⎛⎫∴=-∴=∴ ⎪⎝⎭点的坐标为9,22⎛⎫⎪⎝⎭.作CF x ⊥轴,垂足为9,,22F OF CF ∴==.在Rt OFC ∆中,222,OC OF CF OC =+∴=. 26.(2017江苏苏州,26,10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形ABCD 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为个单位长度/,移动至拐角处调整方向需要(即在B 、C 处拐弯时分别用时).设机器人所用时间为t (s )时,其所在位置用点P 表示,P 到对角线BD 的距离(即垂线段PQ 的长)为d 个单位长度,其中d 与的函数图像如图②所示. (1)求AB 、BC 的长;(2)如图②,点M 、N 分别在线段EF 、GH 上,线段MN 平行于横轴,M 、N 的横坐标分别为t 1、t 2.设机器人用了t 1(s )到达点P 1处,用了t 2(s )到达点P 2处(见图①).若CP 1+CP 2=7,求t 1、t 2的值.思路分析:根据“特殊角三角函数值,平行线分线段成比例定理”,(1)利用勾股定理求出BT ,再利用正切值求出BC ;(2)平行线分线段成比例定理列出方程,即可求解.解:(1)作,AT BD ⊥ 垂足为T ,由题意得,248,5AB AT ==. 在Rt ABT ∆中,22232,.5AB BT AT BT =+∴= tan ,6,AD AT ABD AD AB BT∠==∴=Q 即6BC =.(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQ P Q P .Q 在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ P Q =.1212..CP CP PP BD CB CD∴∴=P 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴==Q 设,M N 的横坐标分别为12,t t ,由题意得, 11221215,16,12,20CP t CP t t t =-=-∴==.27.(2017江苏苏州,27,10分)如图,已知△ABC 内接于e O ,AB 是直径,点D 在e O 上,OD ∥BC ,过点D 作DE ⊥AB ,垂足为E ,连接CD 交OE 边于点F .(1)求证:△DOE ∽△ABC ;(2)求证:∠ODF =∠BDE ;(3)连接OC ,设△DOE 的面积为S 1,四边形BCOD 的面积为S 2,若1227S S =,求sinA 的值.思路分析:(1)利用两角对应相等,证明两三角形相似;(2)相似三角形对应角相等,同弧所对的圆周角相等;(3)转化角度,放在直角三角形ODE 中,即可求∠A 的正弦值.解:(1)AB Q 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠o o Q .//,OD BC DOE ABC ∴∠=∠Q ,DOE ∴∆∽ABC ∆.(2)DOE ∆Q ∽ABC ∆.ODE A A ∴∠=∠∠Q 和BDC ∠是»BC所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOE ABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭Q ∽ ,即144ABC DOE S S S ∆∆== , OA OB =Q ,12BOC ABC S S ∆∆∴= , 即12BOC S S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++Q , 112DBE S S ∆∴= ,12BE OE ∴= , 即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠==. 28.(2017江苏苏州,28,10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,OB =OC .点D 在函数图像上,CD ∥x 轴,且CD =2,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段OC 上的点F 关于直线的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得△PQN 与△APM 的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.思路分析:(1)根据二次函数的对称轴公式,抛物线上的点代入,即可求出c 的值;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值.解:(1)CD x Q P 轴,2CD = ,∴抛物线对称轴为直线 1.l x =: ∴()1, 2.,0,2b b OB OC Cc -==-=Q ∴点B 的坐标为(),0,c - 202,c c c ∴=++ 解得3c =- 或0c =(舍去), 3.c ∴=-(2)设点F 的坐标为()0,.m Q 对称轴为直线1l x =:,∴点F 关于直线的对称点F 的坐标为()2,m .Q 直线BE 经过点()()3,0,1,4,B E -∴利用待定系数法可得直线BE 的表达式为26y x =-. 因为点F 在BE 上,∴2262m =⨯-=-,即点F 的坐标为()0,2.-(3)存在点Q 满足题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==-=-++作,QR PN ⊥ 垂足为,R ()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+-=-++Q g ∴1QR =.①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R --点的坐标为()2,4,n n n N -点的坐标为()2,23.n n n -- ∴ 在Rt QRN ∆中,()223123,2NQ n n =+-∴= 时,NQ 取最小值.此时Q 点的坐标为115,.24⎛⎫- ⎪⎝⎭ ②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n +-同理,()221121,2NQ n n =+-∴= 时,NQ 取最小值.此时Q 点的坐标为315,.24⎛⎫- ⎪⎝⎭综上所述:满足题意得点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,.24⎛⎫- ⎪⎝⎭。

2017年江苏省苏州市中考数学试题及答案

2017年江苏省苏州市中考数学试题及答案

2017年苏州市初中毕业暨升学考试试卷数 学第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()217-÷的结果是A .3B .3-C .13 D .13- 2.有一组数据:2,5,5,6,7,这组数据的平均数为 A .3 B .4 C .5 D .63.小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为A .2B .2.0C .2.02D .2.034.关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A .1 B .1- C.2 D .2-5.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为 A .70 B .720 C.1680 D .23706.若点(),m n A 在一次函数3y x b =+的图像上,且32m n ->,则b 的取值范围为 A .2b > B .2b >- C.2b < D .2b <-7.如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为 A .30 B .36 C.54 D .728.若二次函数21y ax =+的图像经过点()2,0-,则关于x 的方程()2210a x -+=的实数根为A .10x =,24x =B .12x =-,26x = C.132x =,252x = D .14x =-,20x = 9.如图,在Rt C ∆AB 中,C 90∠A B =,56∠A =.以C B 为直径的O 交AB 于点D ,E 是O 上一点,且C CD E =,连接OE ,过点E 作F E ⊥OE ,交C A 的延长线于点F ,则F ∠的度数为A .92B .108 C.112 D .12410.如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆A E 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .B . C. D .8第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.计算:()22a = .12.如图,点D 在∠AOB 的平分线C O 上,点E 在OA 上,D//E OB ,125∠=,则D ∠A E 的度数为 .13.某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是 环. 14.因式分解:2441a a -+= .15.如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是 .16.如图,AB 是O 的直径,C A 是弦,C 3A =,C 2C ∠BO =∠AO .若用扇形C OA (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .17.如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60的方向,在码头B 北偏西45的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).18.如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分5分)计算:()013π--.20. (本题满分5分)解不等式组:()142136x x x +≥⎧⎪⎨->-⎪⎩.21. (本题满分6分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =.22. (本题满分6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23. (本题满分8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m=,n=;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O .(1)求证:C ∆AE ≌D ∆BE ; (2)若142∠=,求D ∠B E 的度数.25.(本题满分8分)如图,在C ∆AB 中,C C A =B ,x AB ⊥轴,垂足为A .反比例函数k y x =(0x >)的图像经过点C ,交AB 于点D .已知4AB =,5C 2B =. (1)若4OA =,求k 的值;(2)连接C O ,若D C B =B ,求C O 的长.26.(本题满分10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形CD AB 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为1个单位长度/s ,移动至拐角处调整方向需要1s (即在B 、C 处拐弯时分别用时1s ).设机器人所用时间为()s t 时,其所在位置用点P 表示,P 到对角线D B 的距离(即垂线段Q P 的长)为d 个单位长度,其中d 与t 的函数图像如图②所示. (1)求AB 、C B 的长;(2)如图②,点M 、N 分别在线段F E 、G H 上,线段MN 平行于横轴,M 、N 的横坐标分别为1t 、2t .设机器人用了()1s t 到达点1P 处,用了()2s t 到达点2P 处(见图①).若12C C 7P +P =,求1t 、2t 的值.27.(本题满分10分)如图,已知C ∆AB 内接于O ,AB 是直径,点D 在O 上,D//C O B ,过点D 作D E ⊥AB ,垂足为E ,连接CD 交OE 边于点F . (1)求证:D ∆OE ∽C ∆AB ; (2)求证:DF D ∠O =∠B E ;(3)连接C O ,设D ∆O E 的面积为1S ,四边形C D B O 的面积为2S ,若1227S S =,求sin A 的值.28.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点. (1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.参考答案一、选择题1-5:BCDAC 6-10:DBACA二、填空题11.4a 12.50 13.8 14.()221a -15.13 16.12三、解答题19. 解:原式1212=+-=.20. 解:由44x +≥,解得3x ≥,由()2136x x ->-,解得4x <,所以不等式组的解集是34x ≤<. 21. 解:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=⋅=++++-+.当2x =时,原式3===. 22. 解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解方程组202508k b k b +=⎧⎨+=⎩,得152k b ⎧=⎪⎨⎪=-⎩,所求函数表达式为125y x =-.(2) 当0y =时,1205x -=,得10x =. 答:旅客最多可免费携带行李10kg . 23. 解:(1)8,3m n ==; (2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1 名男生、1 名女生”有8种可能.P ∴( 1 名男生、1 名女生)82123==.(如用树状图,酌情相应给分) 24. 解:(1)证明:AE 和BD 相交于点,O AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠.在AEC ∆和BED ∆中,(),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠.在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=,69BDE C ∴∠=∠=.25.解:(1)作C E A B⊥,垂足为,,4E AC BC AB ==,2AE BE ∴==.在Rt ∆BCE 中,53,2,22BC BE CE ==∴=,4,OA C =∴点的坐标为5,22⎛⎫⎪⎝⎭,点C 在k y x=的图象上,5k ∴=.(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴=.,D C ∴两点的坐标分别为33,,,222m m ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭. 点,C D 都在k y x=的图象上,332,6,22m m m C ⎛⎫∴=-∴=∴ ⎪⎝⎭点的坐标为9,22⎛⎫⎪⎝⎭.作CF x ⊥轴,垂足为9,,22F OF CF ∴==.在Rt OFC ∆中,222,2OC OF CF OC =+∴=. 26. (1)作,AT BD ⊥ 垂足为T ,由题意得,248,.5AB AT ==在Rt ABT ∆中,22232,.5AB BT AT BT =+∴=tan ,6,AD ATABD AD AB BT∠==∴= 即 6.BC =(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQP Q . 在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ P Q =.1212..CP CP PP BD CB CD∴∴= 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴== 设,M N 的横坐标分别为12,t t ,由题意得,11221215,16,12,20.CP t CP t t t =-=-∴==27.解:AB 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠.//,,OD BC DOE ABC DOE ∴∠=∠∴∆~ ABC ∆.(2)DOE ∆~ ABC ∆.ODE A A ∴∠=∠∠和BDC ∠是BC 所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOEABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭ ,即144ABC DOE S S S ∆∆== ,OA OB =,12BOC ABC S S ∆∆∴=,即12BO C S S ∆= .121122,27BOC DOE DBE DBES S S S S S S S S ∆∆∆∆==++=++,112DBE S S ∆∴=,12BE OE∴=,即222,s i n si n333OE OE OB OD A ODE OD==∴=∠== .28.解:(1)CD x 轴,2CD = ,∴ 抛物线对称轴为直线 1.l x =:()1, 2.,0,,2bb OB OC Cc ∴-==-=∴B 点的坐标为(),0,c - 202,c c c ∴=++ 解得3c =- 或0c = (舍去), 3.c ∴=-(2)设点F 的坐标为()0,.m 对称轴为直线1,l x =∴:点F 关于直线l 的对称点F 的坐标为()2,m .直线BE 经过点()()3,0,1,4,B E -∴ 利用待定系数法可得直线BE 的表达式为26y x =- .因为点F 在BE 上,∴ 2262,m =⨯-=- 即点F 的坐标为()0,2.- (3)存在点Q 满足题意.设点P 坐标为(),0n , 则21,3,2 3.PA n PB PM n PN n n =+==-=-++ 作,QR PN ⊥ 垂足为,R()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+-=-++ 1.QR ∴=①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R --点的坐标为()2,4,n n n N -点的坐标为()2,23.n n n -- ∴ 在Rt QRN ∆中,()223123,2NQ n n =+-∴=时,NQ 取最小值1 .此时Q 点的坐标为115,.24⎛⎫-⎪⎝⎭②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n+-同理,()221121,2N Q n n =+-∴= 时,NQ 取最小值1 .此时Q 点的坐标为315,.24⎛⎫- ⎪⎝⎭综上所述:满足题意得点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,.24⎛⎫- ⎪⎝⎭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017江苏省苏州市中考数学真题及答案第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.()217-÷的结果是A .3B .3-C .13 D .13- 2.有一组数据:2,5,5,6,7,这组数据的平均数为 A .3 B .4 C .5 D .63.小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为A .2B .2.0C .2.02D .2.034.关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A .1 B .1- C.2 D .2-5.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为 A .70 B .720 C.1680 D .23706.若点(),m n A 在一次函数3y x b =+的图像上,且32m n ->,则b 的取值范围为 A .2b > B .2b >- C.2b < D .2b <-7.如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为 A .30oB .36oC.54oD .72o8.若二次函数21y ax =+的图像经过点()2,0-,则关于x 的方程()2210a x -+=的实数根为A .10x =,24x =B .12x =-,26x = C.132x =,252x = D .14x =-,20x = 9.如图,在Rt C ∆AB 中,C 90∠A B =o,56∠A =o.以C B 为直径的O e 交AB 于点D ,E 是O e 上一点,且»»CCD E =,连接OE ,过点E 作F E ⊥OE ,交C A 的延长线于点F ,则F ∠的度数为A .92oB .108oC.112o D .124o10.如图,在菱形CD AB 中,60∠A =o,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283.3323 D .38第Ⅱ卷(共100分)二、填空题(每题3分,满分24分,将答案填在答题纸上) 11.计算:()22a= .12.如图,点D 在∠AOB 的平分线C O 上,点E 在OA 上,D//E OB ,125∠=o,则D ∠AE 的度数为 o.13.某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是环. 14.因式分解:2441a a -+= .15.如图,在“33⨯”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是 .16.如图,AB 是O e 的直径,C A 是弦,C 3A =,C 2C ∠BO =∠AO .若用扇形C OA (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .17.如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60o的方向,在码头B 北偏西45o的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).18.如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB(结果保留根号).三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.) 19. (本题满分5分) 计算:()0143π--.20. (本题满分5分)解不等式组:()142136x x x +≥⎧⎪⎨->-⎪⎩.21. (本题满分6分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中32x =.22. (本题满分6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为20kg 时需付行李费2元,行李质量为50kg 时需付行李费8元. (1)当行李的质量x 超过规定时,求y 与x 之间的函数表达式; (2)求旅客最多可免费携带行李的质量.23. (本题满分8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 o ;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率. 24.(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O .(1)求证:C ∆AE ≌D ∆BE ; (2)若142∠=o,求D ∠B E 的度数.25.(本题满分8分)如图,在C ∆AB 中,C C A =B ,x AB ⊥轴,垂足为A .反比例函数k y x =(0x >)的图像经过点C ,交AB 于点D .已知4AB =,5C 2B =. (1)若4OA =,求k 的值;(2)连接C O ,若D C B =B ,求C O 的长.26.(本题满分10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A 出发,在矩形CD AB 边上沿着C D A →B →→的方向匀速移动,到达点D 时停止移动.已知机器人的速度为1个单位长度/s ,移动至拐角处调整方向需要1s (即在B 、C 处拐弯时分别用时1s ).设机器人所用时间为()s t 时,其所在位置用点P 表示,P 到对角线D B 的距离(即垂线段Q P 的长)为d 个单位长度,其中d 与t 的函数图像如图②所示.(1)求AB 、C B 的长;(2)如图②,点M 、N 分别在线段F E 、G H 上,线段MN 平行于横轴,M 、N 的横坐标分别为1t 、2t .设机器人用了()1s t 到达点1P 处,用了()2s t 到达点2P 处(见图①).若12C C 7P +P =,求1t 、2t 的值.27.(本题满分10分)如图,已知C ∆AB 内接于O e ,AB 是直径,点D 在O e 上,D//C O B ,过点D 作D E ⊥AB ,垂足为E ,连接CD 交OE 边于点F . (1)求证:D ∆OE ∽C ∆AB ; (2)求证:DF D ∠O =∠B E ;(3)连接C O ,设D ∆OE 的面积为1S ,四边形C D B O 的面积为2S ,若1227S S =,求sin A的值.28.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点. (1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.参考答案一、选择题1-5:BCDAC 6-10:DBACA 二、填空题11.4a 12.50 13.8 14.()221a -15.13 16.1218.5三、解答题19. 解:原式1212=+-=.20. 解:由44x +≥,解得3x ≥,由()2136x x ->-,解得4x <,所以不等式组的解集是34x ≤<. 21. 解:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=⋅=++++-+.当2x =时,原式===. 22. 解:(1)根据题意,设y 与x 的函数表达式为y kx b =+.当20x =时,2y =,得220k b =+.当50x =时,8y =,得850k b =+.解方程组202508k b k b +=⎧⎨+=⎩,得152k b ⎧=⎪⎨⎪=-⎩,所求函数表达式为125y x =-. (2) 当0y =时,1205x -=,得10x =. 答:旅客最多可免费携带行李10kg . 23. 解:(1)8,3m n ==; (2)144;(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1 名男生、1 名女生”有8种可能.P ∴( 1 名男生、1 名女生)82123==.(如用树状图,酌情相应给分) 24. 解:(1)证明:AE Q 和BD 相交于点,O AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠Q .在AEC ∆和BED ∆中,(),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠Q .在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=o o Q ,69BDE C ∴∠=∠=o .25.解:(1)作CE AB ⊥,垂足为,,4E AC BC AB ==Q ,2AE BE ∴==.在Rt ∆BCE中,53,2,22BC BE CE ==∴=,4,OA C =∴Q 点的坐标为5,22⎛⎫⎪⎝⎭,Q 点C 在k y x=的图象上,5k ∴=.(2)设A 点的坐标为()53,0,,22m BD BC AD ==∴=Q .,D C ∴两点的坐标分别为33,,,222m m ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭. Q 点,C D 都在k y x=的图象上,332,6,22m m m C ⎛⎫∴=-∴=∴ ⎪⎝⎭点的坐标为9,22⎛⎫⎪⎝⎭.作CF x ⊥轴,垂足为9,,22F OF CF ∴==.在Rt OFC ∆中,22297,2OC OF CF OC =+∴=. 26. (1)作,AT BD ⊥ 垂足为T ,由题意得,248,.5AB AT ==在Rt ABT ∆中,22232,.5AB BT AT BT =+∴=tan ,6,AD AT ABD AD AB BT∠==∴=Q 即 6.BC =(2)在图①中,连接12.PP 过12,P P 分别作BD 的垂线,垂足为12,.Q Q 则1122PQP Q P . Q 在图②中,线段MN 平行于横轴,12,d d ∴= 即1122PQ P Q =.1212..CP CP PP BD CB CD∴∴=P 即12.68CP CP = 又12127,3, 4.CP CP CP CP +=∴==Q 设,M N 的横坐标分别为12,t t ,由题意得,11221215,16,12,20.CP t CP t t t =-=-∴==27.解:AB Q 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠o o Q .//,,OD BC DOE ABC DOE ∴∠=∠∴∆Q ~ ABC ∆.(2)DOE ∆Q ~ ABC ∆.ODE A A ∴∠=∠∠Q 和BDC ∠是»BC所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOE ABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭Q : ,即144ABC DOE S S S ∆∆== ,OA OB =Q ,12BOC ABC S S ∆∆∴= ,即12BOC S S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++Q,112DBE S S ∆∴= ,12BE OE ∴= ,即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠== . 28.解:(1)CD x Q P 轴,2CD = ,∴ 抛物线对称轴为直线 1.l x =:()1, 2.,0,,2b b OB OC Cc ∴-==-=∴Q B 点的坐标为(),0,c - 202,c c c ∴=++ 解得3c =- 或0c = (舍去), 3.c ∴=-(2)设点F 的坐标为()0,.m Q 对称轴为直线1,l x =∴:点F 关于直线l 的对称点F 的坐标为()2,m .Q 直线BE 经过点()()3,0,1,4,B E -∴ 利用待定系数法可得直线BE 的表达式为26y x =- .因为点F 在BE 上,∴ 2262,m =⨯-=- 即点F 的坐标为()0,2.-(3)存在点Q 满足题意.设点P 坐标为(),0n ,则21,3,2 3.PA n PB PM n PN n n =+==-=-++作,QR PN ⊥ 垂足为,R ()()()211,1323,22PQN APM S S n n n n QR ∆∆=∴+-=-++Q g 1.QR ∴=①点Q 在直线PN 的左侧时,Q 点的坐标为()21,4,n n n R --点的坐标为()2,4,n n n N -点的坐标为()2,23.n n n -- ∴ 在Rt QRN ∆中,()223123,2NQ n n =+-∴= 时,NQ 取最小值1 .此时Q 点的坐标为115,.24⎛⎫- ⎪⎝⎭②点Q 在直线PN 的右侧时,Q 点的坐标为()211,4.n n +-同理,()221121,2NQ n n =+-∴= 时,NQ 取最小值1 .此时Q 点的坐标为315,.24⎛⎫- ⎪⎝⎭ 综上所述:满足题意得点Q 的坐标为115,24⎛⎫-⎪⎝⎭和315,.24⎛⎫- ⎪⎝⎭。

相关文档
最新文档