2017年中考数学调研试卷(苏州市工业园区附答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考数学调研试卷(苏州市工业园区附答案)
2016~2017学年初三教学调研试卷数学 2017.04 本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分.考试时间120
分钟. 注意事项: 1. 答题前,考生务必将自己的姓名、考点名称、
考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2. 答选择
题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,
请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑
色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律
无效,不得用其他笔答题; 3. 考生答题必须答在答题卡上,保持卡
面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效. 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四
个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅
笔涂在答题卡相应位置上• 1. 的相反数是 A. B. C. D. 2. 人体血
液中,红细胞的直径约为0.000 007 7 m. 用科学记数法表示0.000 007 7 m是 A. B. C. D. 3. 下列运算结果等于的是 A. B. C. D. 4. 学校测量了全校1 200名女生的身高,并进行了分组.已知身高在
1.60~1.65(单位:m)这一组的频率为0.25,则该组共有女生 A. 150
名 B. 300名 C. 600名 D. 900名 5. 某市四月份连续五天的日最
高气温分别为23、20、20、21、26(单位:℃),这组数据的中位数和
众数分别是A. 21℃,20℃ B. 21℃,26℃ C. 22℃,20℃ D. 22℃,26℃ 6. 如图,直线 .若,,则等于A .30° B .35° C .45° D .55°
7. 在反比例函数的图像上有两点、 .若,则的取值范围是 A. B.
C. D. 8. 如图,在楼顶点处观察旗杆测得旗杆顶部的仰角为30°,旗杆底部的俯角为45°.已知楼高 m,则旗杆的高度为 A. m B. m C. m D. m 9. 如图,、、分别是各边的中点.添加下列条件后,不能得到四边形是矩形的是 A . B . C . 平分 D . 10. 如图,等
边三角形纸片中, . 是边的中点,是边上一点现将沿折叠,
得 .连接,则长度的最小值为 A. B. C. D. 二、填空题:本大题共
8小题,每小题3分,共24分. 11. 计算: . 12. 甲、乙、丙三位
选手各射击10次的成绩统计如下: 其中,发挥最稳定的选手是 . 13.
在一次数学考试中,某班级的一道单选题的答题情况如下: 根据以上信息,该班级选择“B”选项的有 . 14. 若,则 . 15. 无论为何值,二次函数的图像总经过定点 . 16. 如图,已知点,点在第一象限,且,,则直线的函数表达式为 . 17. 如图,己知扇形中,, . 是上的动点,以为边作正方形 .当点从点移动至点时,点经过的路径长是 . 18. 如图,四边形中, , , ,则 . 三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔. 19. (本题满分5分)计算: .
20. (本题满分5分)解不等式组:
21. (本题满分6分)先化简,再求值: ,其中 .
22. (本题满分6分)某校购买了甲、乙两种不同的足球,其中购买甲种足球共花费2 000元,购买乙种足球共花费1 400元.己知购买甲种足球的数量是购买乙种足球数量的2倍,且购买1个乙种足球比购买1个甲种足球多花20元.问购买1个甲种足球、1个乙种足球各需多少元?
23. (本题满分8分)甲、乙、丙三人准备玩传球游戏.规则是:第1次传球从甲开始,甲先将球随机传给乙、丙两人中的一个人,再由接到球的人随机传给其他两人中的一个人……如此反复. (1)若传球1次,球在乙手中的概率为 ; (2)若传球3次,求球在甲手中的概率(用树状图或列表法求解).
24. (本题满分8分)如图,已知四边形中,, . (1)用直尺和圆规作的平分线,与相交于点 (保留作图痕迹,不写作法); (2)求证:四边形是菱形; (3)若,,求菱形的面积.
25. (本题满分8分)如图,函数与函数的图像相交于点 .点在函数的图像上,过点作轴,与轴相交于点,且 . (1)求、的值;
(2)求直线的函数表达式.
26. (本题满分10分)如图,在△ABC中,,垂足为点 .以为直径的半⊙ 分别与、相交于点、,连接、 . (1)求证: ; (2)若,,,求的长.
27. (本题满分10分)如图,己知的直角边与的直角边在同一条
直线上,且 cm, cm, cm, cm.现将点与点重合,再以4 cm/s的速度沿方向移动 ;同时,点从点出发,以5 cm/s的速度沿方向移动,设移动时间为 (s).以点为圆心, (cm)长为半径的⊙ 与相交于点、 .当点与点重合时,与点同时停止移动.在移动的过程中,(1)连接,当时, s; (2)连接,当平分时,求的值; (3)是否存在⊙ 与的两条直角边所在的直线同时相切的时刻?若存在,求出的值;若不存在,说明理由.
28. (本题满分10分)如图,二次函数的图像与轴相交于点,,与轴相交于点 . (1)求该函数的表达式; (2)点为该函数在第一象限内的图像上一点,过点作,垂足为点,连接. ①求线段的最大值; ②若以点、、顶点的三角形与相似,求点的坐标.