电压测量装置课程设计

电压测量装置课程设计
电压测量装置课程设计

1、 电压测量装置原理及结构图

如图1-1是一个电压测量装置,也是一个反馈控制装置。1

e 是待测量电压,2e 是指示的电压测量值。如果2e 不同于1e ,就产生误差电压12e e e =-,经调制、放大后,驱动两相伺服电动机运转,并带动测量指针移动,直至21e e =。这时指针指示的电压值即是待测量的电压值。

系统由于比较电路、机械调制器、放大器、两相伺服电动机及指针结构组成。首先,考虑负载效应应分别列写各元部件的运动方程并在零初始条件下进行拉什变换,于是有

比较电路 12()()()E s E s E s =-

调制器 ()()U s E s =

放大器 ()()a A U s K E s =

两相伺服电动机 ()m m s M C s s M Ω=-Θ+

()s M a M C U s =

2()()m m m m m M J s f s s s =Θ+Θ

式中,m M 是电动机转矩;s M 是电动机堵转转矩;()a U s 是控制电压;()m s Θ是电动机角位移;m J 和m f 分别是折算到电动机上的总转动惯量及总粘性摩擦系数。

绳轮传动机构 ()()m L s r s =Θ

式中,r 是绳轮半径;L 是指针位移。

测量电位器 21()()E s K L s =

式中,1K 是电位器传递函数。

图1-1电压测量装置系统结构图

2、 电压测量装置的传递函数

根据系统结构图,可求得系统的开环传递函数和闭环传递函数分别

为:

开环传递函数

1(1)

A m m K K r K G s T s ???=+C(s)(s )=R(s) (2-1)闭环传递函数

1

2

1()A m A m K K r K s T s K K r K s φ???=++??? (2-2)

其中,取放大器的开环增益A K =2,两相伺服电动的开环增益m K =10,绳轮半径r 取0.4,测量电位器的开环增益1K =2.5,m T =1

则系统的开环传递函数可写为

10()(1)

G s s s =+ (2-3) 闭环传递函数可写为

210()10s s s φ=

++ (2-4)

3、 系统的性能指标分析

由二阶系统闭环传递函数的标准形式 222

2)()()(n n n s s s R s C s ωζωω++==Φ

(3-1)

根据公式n ω=,可得出

3.16n ω=≈ (/)rad s

3.12(/)d rad s ωω==;

并根据公式1ξ=,可得出

10.16ξ=≈,arccos βξ==1.74.

3.1 时域性能指标 由于0< ξ<1,由此可以看出该系统处于欠阻尼状态,于是该系统的时域性能指标分别为:

1、 延迟时间d t

: 指响应曲线第一次达到其终值一半所需要的时间 。 10.7d n t ξ

ω+==0.35 s

2、上升时间r t :指响应从零第一次上升到终值所需的时间。上升时间是系统响应速度的一种度量。上升时间越短,响应速度越快。

r d

t πβω-==0.45s 3、峰值时间p t :指响应超过其终值到达第一个峰值所需要的时间。

p d t πω==1.01 s

4、超调量%σ:指响应的最大偏离量与终值的差与终值比的百分数。

%100%e πζσ-=?=0.51%

5、调节时间s t :指响应达到并保持在终值±5%内所需要的最短时间。

3.5s n t ξω=

=6.92s

3.2 频域性能指标: 1、谐振峰值

r M :系统尼科尔斯曲线与尼科尔斯图线相切点对应M 的最

大值。

1r M =

=3.17 2、谐振频率r ω:谐振峰值处所对应的频率。

r ωω==3.07

3、带宽频率b ω:当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,

对应的频率。

b ωω=4、截至频率

c ω:穿越0分贝线时的频率。

c ωω==3.07

5、相角裕度γ:对于闭环稳定系统,如果系统的开环相频特性再滞后γ°,则系统将处于临界稳定状态。

2

arctan

ξ

γ=

=71°4、系统稳定性分析

因为系统的开环传递函数为

10

()

(1)

G s

s s

=

+

由此可见ν=1,此系统为I型系统。

表4-1输入信号作用下的稳态误差由表4-1可见,I型系统的静态误差系数分别为:

位置误差

位置误差p K =∞ 速度误差v K K = 加速度误差0a K = 在单位斜坡输入信号作用下

系统的稳态误差

1110ss v R e K K ===

系统的动态系数

1110v C K ==

5、 无源校正装置及其特性

当被控对象给定后,按照被控对象的工作条件,被控信号应具有的最大速度和加速度要求等,可以初步选定执行元件的型式、特性和参数。然后,根据测量精度、抗扰能力、被测信号的物理性质、测量过程中的惯性及非线性度等因素,选择合适的测量变送元件。在此基础上,设计增益可调的前置放大器与功率放大。这些初步选定的元件与被控对象适当组合起来,使之满足表征控制精度、阻尼程度和响应速度的性能指标。如果通过调整放大器增益后仍不能全面满足设计要求的性能指标,这就需要在系统中增加一些参数及特性可按需要改变的校正装置,使系统性能全面满足设计要求。这就是控制系统设计中的校正问题。

5.1 无源超前网络介绍

如图5-1是无源超前网络的电路图及其零、极点分布图。如果输入信号

源的内阻为零,且输出端的负载阻抗为无穷大,则超前网络的传递函数可写为

1()1c aTs aG s Ts

+=+ (5-1)

式中 122R R a R +=>1, 1212

R R T C R R =+ 通常,a 称为分度系数,T 叫做时间常数。由式(5-1)可见,采用无源超前网络进行串联校正时,整个系统的开环增益要下降a 倍,因此需要提高放大器增益加以补偿。超前网络的零、极点分布图见图5-1(b )。由于a >1,故超前

网络的负实零点总是位于其负实极点之右,两者之间的距离由常数a 决定。改变a 和T 的数值,超前网络的零、极点可在s 平面的负实轴上任意移动。

(a ) (b)

图5-1无源超前网络

根据式(5-1)可以画出无源超前网络()c aG s 的对数频率特性,如图5-2所示。显然,超前网络对频率在1aT 至1T 之间的输入信号有明显的微分作用,在该频率范围内,输出信号相角比输入信号相角超前,超前网络的名

称由此而得。在最大超前角频率

m ω处,具有最大超前相角m ?,且m ω正好在1aT 和1T 的几何中心。

图5-2无源超前网络特性

超前网络(4-1)的相角为

()arctan arctan c aT T ?ωωω

=-22(1)arctan 1a T a T ω

ω-=+ (5-2)

将上式对ω求导并令其为零,得最大超前角频率

1

m ω=

(5-3) 将上式代入 ,得最大超前角

11arctan arcsin 1m a a a ?--==+ (5-4)

上式表明:最大超前角m ?仅与分度系数a 有关。a 值选得越大,超前网络的

微分效应越强。为了保持较高的系数信噪比,实际选用的a 值一般不超过20。此外,由图5-2可以明显看出m ω处的对数幅频值

()20lg ()10lg c m c m L aG j a

ωω== (5-5)

设1ω为频率1aT 及1T 的几何中心,则应有

1111lg (lg lg )2aT T ω=+

,解得11T ω=,正好与式子 完全

相同,故最大超前角频率

m ω确是1aT 和1T 的几何中心。

6、 执行机构的传递函数的串联校正

6.1 串联超前校正的步骤

利用超前网络或PD 控制器进行串联校正的基本原理,是利用超前网

络或PD 控制器的相角超前特性。只要正确地将超前网络的交接频率1aT 和1T 选在待校正系统截止频率的两旁,并适当选择参数a 和T ,就可以使已校正系统的截止频率和相角裕度满足性能指标的要求,从而改善闭环系统的动态性能。闭环系统的稳态性能要求,可通过选择已校正系统的开环增益来保证。用频域法设计无源超前网络的步骤如下:

1)根据稳态误差要求,确定开环增益K 。

2)利用已确定的开环增益,计算待校正系统的相角裕度。

3)根据截止频率''c ω的要求,计算超前网络参数a 和T 。本步骤中,关

键是选择最大超前角频率要求的系统截止频率,即'

'c m ωω=,以保

证系统的响应速度,并充分利用网络的相角超前特性。显然,'

'c m ω

ω=成立的条件是

'''()()10lg c c

m L L a ωω-== (6-1) 根据上式不难求出a 值,然后由

1T =

(6-2)

确定T 值。 4)验算已校正系统的相角裕度''γ。由于超前网络的参数是根据满足系统

截止频率要求选择的,因此相角裕度是否满足要求,必须验算。验算时,

由11arctan arcsin 1m a a a ?--==+求得m

?值,再由已知的''c ω算出待校正系统在''c ω时的相角裕度)(''''c

ωγ。如果待校正系统为非最小相位系统,则)(''''c ωγ由作图法确定。最后,按下式算出

''('')m c γ?γω=+ (6-3)

当验算结果''γ不满足指标要求时,需重选m ω值,一般使m

ω(

''c m ωω=)值增大,然后重复以上计算步骤。

6.2 对电压测量装置的校正

按照要求系统在单位斜坡输入信号作用时,开环系统截止频率

''c ω 4.4/rad s ≥,相角裕度γ'≥45°,幅值裕度''10h dB dB ≥,先验证系统是否符合要求,如果不符合要求对系统进行校正.具体过程如下:

待校正系统的开环传递函数

10()(1)

G s s s =+ 此系统为最小相位系统,因此只需画出其对数幅频渐进特性,如图6-5中'()L ω所示。由图得待校正系统的' 3.1/c rad s ω=,算出待校正系

统相角裕度为γ=180°-90°arctan 'c ω-=17.9 °

而二阶系统的幅值裕度必为dB +∞。相角裕度小的原因,是因为待校正系统的对数幅频特性中频区的斜率为40/dB dec -。由于截止频率和相角裕度均低于指标要求,故采用串联超前校正是合适的。

图6-5系统对数幅频特性

下面计算超前网络

参数。试选'' 4.4/m c rad s

ωω==,由图4-5查得'('

'c L d B ω=-,于是算得4,0.114a T s ==。因此,超前网络

的传递函数为 10.4564()10.114c s G s s +=+

超前网络参数确定后,已校正系统的开环传递函数为

10(10.456)

()()(10.114)(1)c s G s G s s s s +=++

其对数幅频特性如图4-5中''()L ω所示。显然,已校正系统'' 4.4/c rad s ω=,算得待校正系统的('')c γω=12.8°。

而由式11arctan arcsin 1m a a a ?--==+算出的m ?=36.9°,故已校正系统

的相角裕度 ''('')m c γ?γω=+=49.7°>45°

已校正系统的幅值裕度仍为dB +∞,因为其对数相频特性不可能以有限值与-180°线相交。此时,全部性能指标均已满足。

7、 结论

1、进行系统的校正设计,除了应已知系统不可变部分的特性与参数外,还需要已知对系统提出全部的性能指标。性能指标通常是由被控对象的设计单位提出的。不同的控制系统对性能指标的要求有不能的侧重。在控制系统设计中,采用的方法一般依据性能指标的形式而定。如果性能指标以

单位阶跃响应的峰值时间、调节时间、超调量、阻尼比、稳态误差等时域特征量给出时,一般采用根轨迹校正;如果性能指标以系统的相角裕度、幅值裕度、谐振峰值、闭环带宽、静态误差系数等频域特征量给出时,一般采用频率法校正。

2、设计一个良好的实际运行系统,其相角裕度应具有45°左右的数值。如果过低于此值,系统的动态性能较差,且对参数变化的适应能力较弱;而过高于此值,意味着对整个系统及其组成部件要求较高,因此造成实现上的困难,或者因此不满足经济性要求,同时由于稳定程度过好,造成系统动态过程缓慢。

3、一般来说,串联校正设计比反馈校正设计要简单,也比较容易对信号进行各种必要形式的变换。在直流控制系统中,由于传递直流电压信号,适于采用串联校正。无源串联校正装置通常由RC无源网络构成,结构简单,成本低廉,但会使信号再变换过程中产生幅值衰减,且其输入阻抗较低,输出阻抗又较高,因此常常需要附加发大器,以补偿其幅值衰减,并进行阻抗匹配。

结束语

在本次自动控制原理课程设计中,从确定课题到最后的完成,在每一个阶段,我都充分的锻炼了自己动手的能力。起初,遇到了很多麻烦,但是经过向老师请教,和通过身边同学们的帮助,我的一些问题得到了很好的解决,这样,我的设计才渐渐有了好的起色。这样,在很大程度上提高了我考虑问题的全面性。

经过这一个星期的自动控制原理课程设计,我深刻体会到了自己在自

动控制课程设计方面的知识的不足之处。发现自己在理论课方面有很多的

不足之处。对知识的理解不过扎实。通过本次的自动控制原理课程设计,

我巩固了课上的知识内容。无论在理论上还是实践上,我都觉得自由有了

相当大的提高。十分感谢理论课郭瑞老师和两位课程设计指导教师的帮助。

通过设计,锻炼了我的动手能力,开发了我的思维,课程设计使我们每一个学生针对这一技术工作的实践上升到一个高度,认识到从事技术工作应持有的工作态度和应具备的知识素质,还有利于促进我们今后的自觉学习,为适应将来的工作打好坚实的基础。我希望以后能多有这样的机会做课程设计,使我在熟悉课本知识的同时提高工作效率,培养自己独立设计能力。培养自己成为一个全面发展的应用型人才,为建设有中国特色社会主义事业贡献力量!

参考文献

[1]胡寿松主编.2001.自动控制原理.第4版.北京:国防工业出版社

[2]李友善 .2000.自动控制原理哈尔滨工业大学出版社社

[3]王显正.2000. 控制理论基础科学出版社

[4]吴麒主编.1990.自动控制系统.北京:清华大学出版社

[5]孙虎章主编.1984.自动控制原理.北京:中央广播电视大学出版社

各种流量计的原理

一、按测量原理分类 (1)力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。 (2)电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。 (3)声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。 (4)热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。 (5)光学原理:激光式、光电式等是属于此类原理的仪表。 (6)原于物理原理:核磁共振式、核幅射式等是属于此类原理的仪表。 (7)其它原理:有标记原理(示踪原理、核磁共振原理)、相关原理等。 二、按流量计结构原理分类 按当前流量计产品的实际情况,根据流量计的结构原理,大致上可归纳为以下几种类型: 1. 容积式流量计 容积式流量计相当于一个标准容积的容器,它接连不断地对流动介质进行度量。流量越大,度量的次数越多,输出的频率越高。容积式流量计的原理比较简单,适于测量高粘度、低雷诺数的流体。根据回转体形状不同,目前生产的产品分:适于测量液体流量的椭圆齿轮流量计、腰轮流量计(罗茨流量计)、旋转活塞和刮板式流量计;适于测量气体流量的伺服式容积流量计、皮膜式和转简流量计等. 2.叶轮式流量计 叶轮式流量计的工作原理是将叶轮置于被测流体中,受流体流动的冲击而旋转,以叶轮旋转的快慢来反映流量的大小。典型的叶轮式流量计是水表和涡轮流量计,其结构可以是机械传动输出式或电脉冲输出式。一般机械式传动输出的水表准确度较低,误差约±2%,但结构简单,造价低,国内已批量生产,并标准化、通用化和系列化。电脉冲信号输出的涡轮流量计的准确度较高,一般误差为±0.2%一0.5%。 3.差压式流量计(变压降式流量计) 差压式流量计由一次装置和二次装置组成.一次装置称流量测量元件,它安装在被测流体的管道中,产生与流量(流速)成比例的压力差,供二次装置进行流量显示。二次装置称显示仪表。它接收测量元件产生的差压信号,并将其转换为相应的流量进行显示.差压流量计的一次装置常为节流装置或动压测定装置(皮托管、均速管等)。二次装置为各种机械式、电子式、组合式差压计配以流量显示仪表.差压计的差压敏感元件多为弹性元件。由于差压和流量呈平方根关系,故流量显示仪表都配有开平方装置,以使流量刻度线性化。多数仪表还设有流量积算装置,以显示累积流量,以便经济核算。这种利用差压测量流量的方法历史悠久,比较成熟,世界各国一般都用在比较重要的场合,约占各种流量测量方式的70%。发电厂主蒸汽、给水、凝结水等的流量测量

工程测量课程设计报告书

工程测量课程设计

桥梁平面控制网设计 1.概述 以矿大北门的桥为原型,假定北门河流宽1.4km,现准备修建一条跨河大桥,桥梁轴线位置自定,控制点自选。 桥梁平面控制网分两级布设。首级控制网主要控制桥的轴线;为了满足施工中放样每个桥墩的需要,在首级控制网下要加设一定的差点或插网,构成第二级控制。由于放样墩台的精度要求较髙,故第二级控制网的精度应不低于首级网。 2.桥轴线长度精度与桥梁墩台定位精度的确定 (1)桥轴线长度精度 设计该大桥钢梁长度为100m,而由5个20m长的节间所组成。《铁路钢桥制造规 则》规定:怯=土炉时如=±2.12加丿节间拼装孔距误差为土 0.5mm;每一下鬥对刖jig.的倂衣阮左川 (一般取2 mm)对n节间拼装的一跨或一联甫人厂=+、/”人#装误差L和支座安装容许误差(7mm)长).Ar/ = ±J+ 5, = 土/込厂+ 每跨(联)钢梁安装后的容许误差为:对于钢板梁及短跨(W64m)简支钢桁梁、钢筋混凝土梁与预应力混凝土梁等. 长度拼装误差按规取为:±L/5000 每跨(联)钢梁安装后的容许误差为:±8. 3mm 有14跨,则全长极限误差为:±31. lmm 取1/2极限误差为中误差,则全桥轴线长的相对中误差为:md/D=AD/2D=l/90032 由此,便可根据《测规》的“控制测边网的等级和精度”的规定来选择施测的测边网 桥梁墩台中心放样的精度要求 桥墩中心位置偏移,将为架设造成困难,而且会使墩上的支座位置偏移,改变桥墩的应力,影响墩台的使用寿命和行车安全。因此,建立控制网不但要保证桥轴线长度有必要的精度,而且要保证墩台中心定位的精度。 工程上对放样桥墩的位置要:钢梁墩台中心在桥轴线方向的位置中误差不应大于1. 5cm?2. 0cm。 根据"控制点误差对放样点位不发生显著影响”的原则,当要求控制网点误差影响仅占总误差的1/10时,对控制网的精度要求分析如下: 设M为放样后所得点位的总误差;

传感器测量系统的课程设计 太原理工大学现代科技

模拟电子技术课程实验报告 专业班级: 学号: 姓名: 指导教师:

基本摘要及要求: 设计一个放大器系统,当传感器电阻值变化±1%时,放大电 路能够产生±6的输出电压。要求偏差为0时输出为0,偏差为1%时输出为6V,偏差为-1%时输出为-6V,误差不超过±2%。 一、电路结构及原理说明: 该电路由四部分组成:基准电压源电路、测量电桥电路、放大电路。 电路框图如下所示: 基准电压源测量电桥放大电路 1.基准电压源:为测量电桥提供一定精度要求的7.0V基准电压,采用5.6V稳压管与同相比例运算电路结合实现。 2.测量电桥电路:当电桥的所有阻值都相同时,输出电压为零。当有一电阻发生变化时将会有电压输出。此电路可以等效为传感器测量电路,测取的温度变化量并将其转化成电压变化。 3.放大电路: 放大电路用于将测温桥输出的微小电压变化(ΔV)放大,使其满足性能要求。放大电路采用两个同相电压跟随器(作为输入缓冲器)与两级放大器组成,其中第一级放大器为差动放大器,第二级放大器为可以方便调节的反相比例运算电路。 二、测量电路和参数计算

1、基准电源电路 基准源输出电压为V+=7V ,稳压管电压为5.6V ,取稳压管的稳定电流为1~1.2mA 。 根据基准源电路有 Vz RJ RJ Vo )1 2 1(1+ = 25.16 .50 .7)121(1==+=RJ RJ Vz Vo 得到: 25.01 2 =RJ RJ 选RJ2=10k Ω,可得RJ1=40k Ω。 由于 JF JF F R R Vz Vo I 6 .50.7-=-= R11 R21 R22 R31 R32 R41 R42 vo vi1 vi2 . . . VS RJ1 RJ2 RJ3 RJ4 RJF DJ1 Vz V+ . . . . R1 R3 R4 R2(1+δ|) Vo . . . . . . . .

(推荐)管道流量测量方法

管道流量测量方法 [技术摘要]一种管道流量称及测量方法,属流量测量技术领域。用于解决测量管道内混合流体的质量流量及质量浓度的技术问题。其特别之处是:构成中包括换能器、超声波流量计、压力变送器、称量传感器、智能显示仪和称量管,称量管至少配置一个称量传感器,在称量管的两端各设有一段波纹管与其形成挠性连接,两波纹管的另一端分别连通前后固定管,前后固定管分别连通流体输送管道,前后固定管固定在基础支架上,所述压力变送器和换能器均设置在流体输送管道上,各测量元件连接智能显示仪。本发明所提供的管道流量称及测量方法,解决了管道中高温介质、粘稠液体、煤粉、水煤浆等混合流体质量流量与质量浓度的测量难题,其理论依据可靠、测量值准确、结构合理、易于实现。 气体质量流量上下游温度分布二次差动测量方法、传感器、及流量计 [技术摘要]本发明涉及一种气体质量流量上下游温度分布二次差动测量方法、传感器、及流量计。包括加温元件,对称设置在加温元件两侧的温度检测元件,即上游温度检测元件和下游温度检测元件,其特征在于所述的加温元件与恒功率源激励相连,上

游温度检测元件和下游温度检测元件分别与差动运算电路的两个信号输入端相连,所述的差动运算电路的输出端连接有中央处理单元。具有如下优点:通过对上下游温度变化差值进行二次差动运算,保证对低速段线性度影响较小;气体质量流量的流速和输出电压的关系曲线的饱和点往后推,量程扩大,提高了量程范围和线性度;测量精度高,灵敏度高;采用MEMS技术实现了低功耗、高频响,大幅降低芯片的热惯性。

[9-BG95212]联合式湿蒸汽流量、干度测量装置及其测量方法 [技术摘要]本发明公开了一种联合式湿蒸汽流量、干度测量装置及其测量方法,该装置由经过标定的标准孔板、经典文丘利管作为一次测量元件,高精度压力传感器、智能型差压变送器转换并传输标准信号,标准4~20mA信号经I/V转换成1~5V电压信号,进入高速数据采集卡,最后在中央处理器中根据压力信号调用汽、水性质的IAPWS-IF97计算公式模块计算出饱和水、饱和蒸汽的密度及比焓、汽化潜热,从而算出湿蒸汽的干度、质量流量、载热量,同时对质量流量、载热量进行累积运算,重要参数适时存储于数据库,作为历史数据以备后期调用,系统通过D/A通道输出干度、累积流量,供中央处理器使用,本发明与以往的IF-67计算公式相比计算精度提高10倍以上,且重复计算精度高,而运算速度提高4~12倍。

工程测量课程设计报告

课程编号:SJ000350 2016年6 月3 日至2016 年6 月10 日 课程性质:必修 工程测量学课程设计报告 --建筑场地施工控制网的建立及建筑物放样方案设计 学 院: _____________ 矿业工程学院 _______________ 专 业: _______________ 测绘工程 _________________ 地 点: 太原理工大学虎峪校区 _____________________ 班 级: ______________ 测绘1301班 _______________ 姓 名: __________________________________________ 学 号: __________________________________________ 指导教师: _______________________________________

、工程概况 (1) 1.1 工程任务 (1) 1.2 工程的地理位置 (1) 1.3 工程简介 (1) 1.4 已有的测绘成果 (1) 二、............................................................. 体育馆施工控制网的建立 2 2.1 概述 (2) 2.1.1 建筑施工控制网的特点 (2) 2.1.2 施工控制网的精度 (2) 2.2 平面控制方案 (4) 2.2.1 点位布置方案 (4) 2.2.2 控制网网形简介、网形选择,控制网布设方案及示意图 (4) 2.3高程控制方案 (5) 2.3.1 点位布置方案 (6) 2.3.2 控制网布设方案及示意图 (6) 三、体育馆施工放样方案 7 3.1施工放样方法 (7) 3.2体育馆施工放样方案设计 (7) 3.3实施步骤及应注意的事项 (9) 3.4方案评价 (10) 四、............................................................................... 总结 10

模拟电子课程设计课设传感器测量系统

模拟电子技术课程设计任务书 姓名:院(系):信息系 专业:班级: 课程设计题目:传感器测量系统的设计 课程设计要求:设计一个放大器系统,当电阻值变化±1%时,放大电路能够产生±6V的输出电压。要求偏差为0时输出为0,偏差为1%时输出为6V,偏差为-1%时输出为-1V,误差不超过±2%。 设计任务总述:对设计题目进行分析,根据设计的要求先确定基准电压源:为测量电桥提供一定精度要求的7.0V基准电压,然后修改电路,进行参数计算.,测量当电阻值变化±1%时,放大电路能够产生±6V的输出电压;要求偏差为0时输出为0,偏差为1%时输出为6V,偏差为-1%时输出为-6V,误差不超过±2%;最后电路仿真实验。 工作计划及安排: 熟悉课题要求,查找相关资料;甄选资料的相关内容,初步确定设计方案;寻找参考电路,修改电路,进行参数计算.调试(仿真),如不成功,返回第2步整理数据; 撰写课程设计报告。 成绩 指导教师签字___________________ 年月日

摘要: 设计一个放大器系统,当电阻值变化±2%时,放大电路能 够产生±8V 的输出电压。要求偏差为0时输出为0,偏差为2%时输出为8V ,偏差为-2%时输出为-8V ,误差不超过±5%。 一、电路结构及原理说明: 该电路由四部分组成:基准电压源电路、测量电桥电路、放大电路、电平转移电路。 电路框图如下所示: 1.基准电压源:为测量电桥提供一定精度要求的7.5V 基准电压,采用5.6V 稳压管与同相比例运算电路结合实现。 2.测量电桥电路:当电桥的所有阻值都相同时,输出电压为零。当有一电阻发生变化时将会有电压输出。此电路可以等效为传感器测量电路,测取的温度变化量并将其转化成电压变化。 3.放大电路: 放大电路用于将测温桥输出的微小电压变化(ΔV )放大,使其满足性能要求。放大电路采用两个同相电压跟随器(作为输入缓冲器)与两级放大器组成,其中第一级放大器为差动放大器,第二级放大器为可以方便调节的反相比例运算电路。 4.电平转移电路: 二、测量电路和参数计算 基准电压源 测量电桥 放大电路 电平转移电路

皮托管流量测量装置使用说明书

皮托管流量测量装置安装使用说明书 C M (06)渝制00000331 重庆渝润仪表有限公司

2 一、概述 本公司生产的S 形皮托管主要用于气体流量的测量,特别是如焦炉煤气、高炉煤气、水炉煤气、各种烟气等赃污介质流量的连续测量。 二、性能特点 本公司采用独特并且专业的技术,生产的S 形皮托管流量测量系统的测量精度经过有关部门实流检测,误差为±0.46%,达到0.5级精度;同时,独特设计的感压孔,长期使用不会堵塞。主要有以下特点: ▲长期运行精度高、稳定性好。 ▲无可可动部件与易损部件,使用寿命长。 三、主要技术参数 ▲测量精度: 0.5级 ▲管道覆盖面:100~5000mm 。 四、测量原理 1、 测量系统组成 流量测量系统由皮托管、差压变送器、压力变送器、温度传感器、流量积算控制仪等组成,如图一所示:

3 图一 图一是在线带温度压力补偿的流量测量,如果现场的温度压力参数比较稳定,变化不大,也可以定点设定温度压力补偿方式进行流量测量。 2、流量测量计算公式 流量测量计算公式根据国标GB 5468-91确定,具体如下: 2.1密度的计算 测试工况下湿气体密度γs 按式(1)计算; 式 中: N ——标准状态下湿气体密度,kg /Nm 3 , ts ——测量断面内气体平均温度,℃ Ps ——测量断面内气体静压,Pa ; Ba ——大气压力,Pa 。 2.2 管道内气体流速及流量的计算 气体流速按照式(2)计算: 式中:Vs i ——测定点流速,m /s ; Kp ——皮托管修正系数; γs ——管道内湿气密度,kg /m 3; Pdi ——测定点气体动压,Pa 。 2.3 在测定点工况下气体流量按式(3)计算: Q=3600×F×Vs (3)

工程测量课程设计报告

工程测量课程设计报告 在工程建设的设计、施工和管理各阶段中进行测量工作的理论、方法和技术,称为“工程测量”。以下是XX收集的工程测量课程设计报告,欢迎查看! 《建筑工程测量》课程是建筑工程技术专业课程中的一门突出能力的专业技术核心课程,本课程是理论与实践紧密融合的课程,其内容以工程测量项目实施,和职业工作需要为导向;以学生“测量技术”能力的培养为目标;以分部分项工程测量项目为载体,以实训为手段,贯彻理论与实践一体化。实现培养从事一线施工的高技能应用型人才的教学目标。 知识目标 学生需掌握建筑工程测量的基本概念和误差分析方法;掌握水准仪、经纬仪、全站仪、GPS等常规测量仪器的使用方法,了解仪器的检验及校正;掌握建筑工程测量项目的施测方法与注意事项。 能力目标 使学生掌握建筑工程测量的基本概念和基本理论,具备熟练操作测量仪器和仪器检验及校正的能力;具备测量成果计算与误差分析的能力;针对具体的工程测量项目,学生能独立提出合理的测量任务设计方案和组织实施具体测量工作。

素质目标 在学生测量实践能力培养的同时贯彻相关职业道德和行业规范,使学生形成严谨的工作作风、爱岗敬业的工作态度、自觉学习的良好习惯,并着力培养学生团队意识、创新意识、动手能力、分析解决问题能力、收集处理信息能力等,从而达到掌握和遵守建筑工程测量基本技能和相应的法规、规范,形成依法执业的职业素养。 本课程理论教学应以教师为主导,教师应做好设计者、组织者、引导者和咨询者,由于本课程实践性强,理论与实践结合问题尤为重要,教师应以实际项目为导向,采用任务驱动的教学方法实现教-学-做一体化。 实践课应紧扣测量岗位标准组织实施,在实施过程中采取任务分配

工程测量课程设计概论

工程测量学课程设计报告 学院:资源学院 专业:测绘工程 班级:测绘xxxx 姓名:xxxx 学号: 1105xxxx 2014年6月23日至 2014年6月30日

(一) 课程设计介绍 1、课程设计的目的 课程设计是课程学习后的一个学术性实践环节,将采取理论联系实际的方法,针对具体的工程项目进行设计,从而加深学生对工程测量学基本理论的理解,着重培养学生分析问题和解决问题的能力,是对课程理论的综合和补充,对加深课程理论的理解和应用具有重要意义。 2、课程设计的任务: (1)课程设计安排在本课程学习结束之后的进行。 (2)通过课程设计,培养学生运用本课程基本理论知识和技能,分析和解决课 程范围内的实际工程问题的能力,加深对课程理论的理解与应用。 (3)在指导老师的指导下,要求每个学生独立完成本课程设计的全部内容。 3、课程设计的基本要求 工程测量学课程设计要求每一个学生必须遵守课程设计的具体项目的要求,独立完成设计内容,并按时上交设计报告。在学习知识、培养能力的过程中,树立严谨、求实、勤奋、进取的良好学风。课程设计前学生应认真复习教材有关内容和《工程测量学》课程设计大纲与课程设计指导书,务必弄清基本概念和本次课程设计的目的、要求及应注意的事项,以保证按质、按量、按时完成设计任务。

(二) 支漳河区段工程测量设计方案设计 1、工程概况 1.1 地理概况 测区为邯市南湖公园附近的支漳河河段,支漳河位于邯郸县东部,其最近点,在县政府驻地南偏东一公里处。测区位于东经114°17′~114°21′、北纬36°41′~36°44′。支漳河于1957年开挖,因原系漳河支流故道,故称支漳河。河水自西南流向东北,上连南湖,贯穿东湖,下接广府湿地;河道自然弯曲,河岸两旁花草盈盈,意境优雅。支漳河市内段从南湖至规划中的东湖全长为14.9公里,占地面积6000亩。“支漳河治理工程主要对该段河道进行清淤疏浚、堤防加固、梯级拦蓄。”支漳河综合治理工程现已开工建设,届时将成为我市城市内最大最美的生态景观河流。测区位置如图1-1

电压测量装置课程设计

1、 电压测量装置原理及结构图 如图1-1是一个电压测量装置,也是一个反馈控制装置。1 e 是待测量电压,2e 是指示的电压测量值。如果2e 不同于1e ,就产生误差电压12e e e =-,经调制、放大后,驱动两相伺服电动机运转,并带动测量指针移动,直至21e e =。这时指针指示的电压值即是待测量的电压值。 系统由于比较电路、机械调制器、放大器、两相伺服电动机及指针结构组成。首先,考虑负载效应应分别列写各元部件的运动方程并在零初始条件下进行拉什变换,于是有 比较电路 12()()()E s E s E s =- 调制器 ()()U s E s = 放大器 ()()a A U s K E s = 两相伺服电动机 ()m m s M C s s M Ω=-Θ+ ()s M a M C U s = 2()()m m m m m M J s f s s s =Θ+Θ 式中,m M 是电动机转矩;s M 是电动机堵转转矩;()a U s 是控制电压;()m s Θ是电动机角位移;m J 和m f 分别是折算到电动机上的总转动惯量及总粘性摩擦系数。 绳轮传动机构 ()()m L s r s =Θ 式中,r 是绳轮半径;L 是指针位移。 测量电位器 21()()E s K L s = 式中,1K 是电位器传递函数。

图1-1电压测量装置系统结构图 2、 电压测量装置的传递函数 根据系统结构图,可求得系统的开环传递函数和闭环传递函数分别 为: 开环传递函数 1(1) A m m K K r K G s T s ???=+C(s)(s )=R(s) (2-1)闭环传递函数 1 2 1()A m A m K K r K s T s K K r K s φ???=++??? (2-2) 其中,取放大器的开环增益A K =2,两相伺服电动的开环增益m K =10,绳轮半径r 取0.4,测量电位器的开环增益1K =2.5,m T =1 则系统的开环传递函数可写为

流量检测-装置系统设计课程设计

专业综合课程设计 课题:流量计检测装置设计 学院:城南学院 班级:机电0701班 指导老师:陈书涵 学号:2007 学生:邹娟 一检测系统背景介绍 流量计广泛应用于工业生产和人民生活当中,但大都存在体积大、精度低、价格贵等缺点.本文设计的电子巴(靶式)智能流量计,于六十年代开始应用于工业流量测量,主要用于解决高粘度、低雷诺数流体的流量测量,先后经历了气动表和电动表两大发展阶段,SBL系列智能靶式流量计是在原有应变片式靶式流量计测量原理的基础上,采用了最新型电容力传感器作为测量和敏感传递元件,同时利用了现代数字智能处理技术而研制的一种新式流量计量仪 表。其主要由测量管、受力元件(靶片)、感应元件(电容式力传感器,压力传感器,温度传感器)、传递部件、微控制器及其显示和输出部分组成.由于采用了压力工作温度补偿,大大提高了测量精度。

二检测系统设计方案 本作品是一款基于C8051F系列单片机为核心的流量计,给出了硬件组成和软件设计.设计以C8051F单片机为控制模块,选用电子靶式流量传感器,信号调理电路、通信电路、LCD显示等电路.在软件上进行了压力和温度补偿.设计的流量计精度高,抗干扰能力强,使用方便. 三检测系统硬件结构 系统的硬件电路以C8051F206单片机为控制核心,主要有信号的输入通道、微控制器及外围电路、红外通信接口和RS一485通信接口和人机交互界面等部分组成,如图1所示. 图1 以C8051F206单片机为核心的硬件框图 ① C8051F206的A/D转换模块 C8051F206的A/D转换模块是利用C8051F206的片内12位分 辨率的ADC转换模块和可编程增益放大器.当工作在100ksps 的最大采样速率时,提供真正的12位精度和±2 L SB的模数

电能计量装置设计与现场检查课程设计报告书

电能计量装置设计与现场检查课程设计 目的 :通过对电能计量装置的合理设计与现场检查,可以减少计量差错和用户窃电的可能,对降低供电企业线损,提高经济效益有着重要的作用任务:自行查找有关电能计量装置原理的资料,并查阅其它相关信息,要求分析:电能计量装置的关键元件(流互的型号、接线方式,二次回路连接导线等)的选择与误差分析、对电能计量装置的巡视检查项目及解决措施。 一、计量装置设计 1、计量装置的设置 a) 发电站上网关口计量点一般设在产权分界处,如发电站与电网公司产权分界点在发电站侧的,应在发电站出线侧、发电机升压变高压侧(对三圈变增加中压侧)、启备变高压侧均按贸易结算的要求设置计量点。 b) 局考核所属各供电所供电量的关口点一般设在35kV变电站的主变高压侧;所属各供电所相互间供电量的计量关口点一般设置在产权分界处。 c) 其他贸易结算用计量点,设置在产权分界处。 d)考虑到旁路代供的情况,各关口计量点的旁路也作为关口计量点。 e) 10KV及以上电压供电的用户应配置防窃电高压计量装置,在用电客户配电线路高压计量装置前端T接口装设隔离刀闸,方便外校及处理计量装置的故障。 2、计量方式对于非中性点绝缘系统的关口电能计量装置采用三相四线的计量方式,对于中性点绝缘系统的关口电能计量装置应采用三相三线的计量方式。 3、电能表的配置 a) 同一关口计量点应装设两只相同型号、相同规格、相同等级的电子式多功能电能表,其中一只定义

为主表,一只定义为副表。 b) 安装于局所属变电站电能表应具有供停电时抄表和通信用的辅助电源。 c) 关口计量点应装设能计量正向和反向有功电量以及四象限无功电量的电能表。 d) 电能表的标定电流值应根据电流互感器二次额定电流值进行选择,电能表的标定电流值不得大于电流互感器二次额定电流值。电能表的最大电流值应选择4倍及以上标定电流值。 e) 10kV及以上贸易结算计量点,应配置具有失压报警计时功能的电能表或失压计时仪。 4、互感器的配置 a) 电压互感器选型应满足《电网公司系统主要电气设备选型原则》要求,110kV及以下计量用电压互感器应选用呈容性的电磁式电压互感器。 b) 电压互感器二次应有独立的计量专用绕组。根据需要,宜选用具有四个二次绕组的电压互感器,即:计量绕组、测量绕组、保护绕组和剩余绕组。 c) 电压互感器二次额定容量的选择参考下表选择: TV 二次负荷核算值(VA) 0~10 10~20 20~30 30~50 50~70 70VA以上 TV 额定二次负荷取值(VA) 20 30 50 75 100 按1.5倍取对TV二次负荷处于0~10VA较小值时,考虑到选用过小的额定二次容量,不利于保证电压互感器的产品质量,电压互感器计量绕组的额定负荷宜选择20VA。一般情况下,电压互感器的计量、测量和保护绕组的额定负荷均应不大于50VA,如有充分的证据说明所接的负荷超过此值时,可按实际值确定。 d) 互感器在实际负载下的误差不得大于其基本误差限。 e) 对于非中性点绝缘系统的电压互感器,应采用Y0/y0的连接方式。对于中性点绝缘系统的电压互感器,35kV及以上的应采用Y/y 的连接方式;35kV以下的宜采用V/V的连接方式。 f) 贸易结算用

《工程测量学》课程设计与实习指导书解析

《工程测量学》 课程设计与实习指导书 中国矿业大学环境与测绘学院 测绘与地理信息系

目录 一、设计与实习目的 (1) 二、设计与实习要求 (1) 三、设计与实习主要内容 (1) 1、桥梁施工控制网的建立及桥台、桥墩放样方案设计 (1) 2、线路工程测量 (6) 3、建筑物方格网建立 (9)

、设计与实习目的 巩固和深化课堂教学内容,培养学生实际动手操作能力和分析问题解决问题能力。通过工程测量实习,使学生进一步加强对工程测量内容的理解,掌握工程控制网设计及精度估算、线路工程测量及建筑物控制网建立的方法;根据具体的工程要求,能编写出测量技术方案。 二、设计与实习要求 要求每一个学生必须遵守课程设计与实习的具体项目的要求,独立完成设计内容,并按时上交设计报告。以分组的形式提交实习报告。在学习知识、培养能力的过程中,树立严谨、求实、勤奋、进取的良好学风。课程设计与实习前学生应认真复习教材有关内容和《工程测量学》课程设计与实习大纲及课程设计与实习指导书,务必弄清基本概念和本次课程设计及实习的目的、要求及应注意的事项,以保证按质、按量、按时完成设计与实习任务。 三、设计与实习主要内容 1、桥梁施工控制网的建立及桥台、桥墩放样方案设计 (一)工程概况 如图1所示,某地区大桥位于某条江上,桥梁全长约1000m,桥面总宽18m, 结构形式为(30+5 X 40+30)m普通钢筋混凝土双悬臂加挂梁结构。桥的横断面由8 根变截面T 型梁组成。 (二)已有测绘成果 (1)桥址及周边1:500 地形图; (2)桥两岸有国家二等水准点各两个; (3)桥两岸有国家三角测量控制点各两个(可满足桥梁控制及施工测量要求)。

流量检测装置说明书

流量检测装置设计说明书 一、装置需求: 1. 100点流量差压信号的采集。用键盘输入流量系数,输入时可显 示; 2.范围0-1000l/min,采集周期0.5s,信号4-20mA,分辨力0.1%; 3.要求运用数字滤波(方法自选); 4.计算瞬时流量(l/min)、累计流量(m3/h),并显示; 5.操作人员可随时修改流量系数和切换显示内容(瞬时/累计流量)。 二、设计说明书要求: 1.系统构成框图及构成说明,包括主要部件的选型及依据; 2.DSP与A/D转换芯片连接的电原理图; 3.程序框图,包括主要流程; 4.采集、数字滤波、流量计算程序清单。 三、差压式流量计基本理论 1.节流装置工作原理 差压式流量计是根据伯努力方程和流体连续性原理用差压法测量流量的,其节流装置工作原理如图1所示,在横截面H处:流体的平均流速是v 1 ,密度是 ρ 1,横截面积是A 1 ;在横截面L处:流体的平均流速是v 2 ,密度是ρ 2 ,横截面 积是A 2 。

图1 差压流量计工作原理图 根据流体流动连续性原理有如下关系式: v 1·A 1·ρ1=v 2·A 2·ρ2 (1) 如果流体是液体,可认为在收缩前、后其密度不变: ρ1=ρ2=ρ (2) 根据瞬时流量的定义,即单位时间内流体流经管道或明渠某横截面的数量,所以液体的体积瞬时流量: 2211A v A v q v ?=?= (3) 根据伯努利方程(能量守恒定律),在水平管道上Z1=Z2,则有如下关系式: 2 2 2 2 222 111v P v P ρρ+ =+ (4) 应用伯努利方程和流动连续性原理,在两个横截面上压力差则有如下关系式: )(2 212 221v v P P P -= -=?ρ (5) 将(3)代入(5)式,并整理,则得: 2 221 2])( 1[2 v A A P -= ?ρ (6) 由于4 2 1D A ?= π, 4 2 2d A ?= π, 定义直径比D d = β, 其中d 为工作状况下节流件的等效开孔直径,D 为管道直径,则得到: 222 4 )1(2A q P v βρ -=? (7)

《测量程序设计课程设计》指导书-2015

测量数据处理程序设计指导书 设计名称:测量数据处理程序设计 计划周数:2周 适用对象:测绘工程专业本科 先修课程:测量学,测量平差基础,大地控制测量,测量程序设计 一、设计目的 测量数据处理程序设计是学生在系统学习完大地控制测量学、测量平差基础、测量程序设计等相关课程之后,为了系统理解控制网平差的整体过程及综合运用科学工具而安排的。通过课程设计主要达到以下几个目的:掌握控制网平差课程设计具体内容、方法和步骤;通过理论联系实际,进一步巩固已学到的专业理论知识,并加深对理论的认识;培养学生对编写代码,上机调试和编写说明书等基本技能;锻炼学生阅读各类编程参考书籍及加以编程运用的能力。 二、设计内容及日程 在VB、 VC软件或matlab科学计算软件的平台上,选择的具体课程设计题目,进行程序设计与实现,共计10个工作日,工作程序如下: 三、设计的组织: 1.设计领导 (1)指导教师:由教研室指派教师、实验员兼任。

职责:全面组织设计大纲的实施,完成分管工作及相关技术指导。 (2)设计队长:学生班长兼任。 职责:协助教师做好本班学生的人员组织工作。 (3)设计组长:每组一人。 职责:组织执行下达的设计任务,安排组内各成员的工作分工。 2.设计分组 学生实习作业组由3~4人组成(含组长一人)。 四、设计内容 在VB、VC或MATLAB 软件平台上,按选择的设计题目进行相关程序开发 1、闭合导线简易平差、附合导线简易平差支导线计算 2、闭合水准网计算、附合水准网简易平差 3、地形图编号(新、旧两种方法) 4、误差椭圆的参数的计算与绘制误差椭圆 5、水准网严密平差 6、高斯正反算计算 7、高斯投影换带计算 8、七参数大地坐标转换(WGS84-bj54坐标转换、WGS84-CGCS2000坐标转换) 9、四参数坐标转换(西安80-bj54坐标转换、CGCS2000-bj54坐标转换、CGCS2000-西安80坐 标转换(平面) 10、大地高转换为正常高的计算 11、工程投影变形超限的处理 12、遥感图像数据处理 13、曲线(曲面)拟合 14、摄影测量空间后方交会 15、****管理信息系统设计与开发 五、上交成果 1) 小组利用vb、vc或matlab编写的软件包一个及测试数据一份 2)小组关于所开发程序设计说明书一份 3) 个人课程设计的心得一份 4)小组答辩PPT一份

工程测量学设计指导书

《工程测量学》设计指导书〈供测绘工程专业使用〉

《工程测量学》课程设计指导书 《工程测量学》是高等学校中测绘工程专业本科生的一门重要专业技术课。根据我院测绘工程专业本科教学计划及该课程教学大纲的要求,学生在完成《工程测量学》理论学习后,必须进行为期一周的课程设计。由于本学科是集理论和实践为一体的学科,理论教学必须与工程实践紧密相结合,因此《工程测量学》课程设计将采取理论联系实际的方法,针对具体的工程项目进行设计,从而加深学生对工程测量学基本理论的理解,着重培养学生分析问题和解决实际工程问题的能力。 《工程测量学》课程设计是一次具体的、生动的、全面的、综合性的技术实践活动,在传授知识、开发智力、培养能力方面,具有更加重要的意义。尤其在培养学生独立工作能力方面,是其它任何教学环节所不能代替的。 一、课程设计班级、时间、地点和指导教师 本次《工程测量学》课程设计班级、时间、地点和指导教师如下:班级:测绘工程2011班,共70人; 时间:本学期的20周(2015年1月12日--1月16日),总计1周; 地点:本次课程设计计划在春晖书院和图书馆进行;

指导教师:为保证课程设计的顺利进行,安排燕志明、张会战、郭义、孙同贺、王翔分别带队指导1、2班,另安排党晓晶辅助指导设计工作。 二、课程设计的目的 《工程测量学》课程设计是该课程理论学习后的一个学术性实践环节,是对课程理论的综合和补充,对加深课程理论的理解和应用具有重要意义。 通过具体的工程项目设计,熟悉工程测量方案编写的要求,独立进行工程测量技术方案和施工方案的设计; 根据《工程测量规范》和相关的施工设计规范设计要求,保证设计的施工控制网和施工测量方案满足精度要求,并力求做到经济合理。 三、课程设计的任务 (1)该课的课程设计安排在理论学习和综合性实习结束之后进行的;时间为一周。 (2)通过课程设计,培养学生运用本课程基本理论知识和技能,分析和解决本课程范围内的实际工程问题的能力,加深对课程理论的理解与应用。 (3)在指导老师的指导下,要求每个学生独立完成本课程设计的全部内容。 四、课程设计任务及要求

基于单片机的直流电压检测系统设计_课程设计说明书

山东建筑大学 课程设计说明书 题目:基于单片机的直流电压检测系统设计课程:单片机原理及应用B课程设计 院(部):信息与电气工程学院 专业:通信工程 班级:通信111 姓名:张安珍 学号:2011081342 指导教师:张君捧 完成日期:2015年1月

目录 摘要......................................................... I I 正文.. (1) 1 设计目的和要求 (1) 3 设计内容和步骤 (2) 3.1单片机电压测量系统的原理 (2) 3.2 单片机电压测量系统的总体设计 (3) 3.2.1 硬件选择 (4) 3.2.2 软件选择 (4) 3.3 硬件电路的设计 (4) 3.3.1 输入电路模块设计 (4) 3.3.2 LM7805稳压电源电路介绍 (5) 3.3.3 显示模块电路设计 (5) 3.3.4 A/D转换设计 (7) 3.3.5 单片机模块的简介 (9) 3.4系统软件的设计 (12) 3.4.1主程序的设计 (12) 3.4.2 各子程序的设计 (14) 总结与致谢 (16) 参考文献 (17) 附录一系统整体电路图 (18) 附录二 A/D转换电路的程序 (19) 附录三 1602LCD显示模块的程序 (21)

摘要 随着电子科学技术的发展,电子测量成为广大电子工作者必须掌握的手段。对测量的精度和功能的要求也越来越高,而电压的测量甚为突出,因为电压的测量最为普遍。本设计在查阅了大量前人设计的数字电压表的基础上,利用单片机技术结合A/D转换芯片ADC0832构建了一个直流数字电压表。本文首先简要介绍了单片机系统的优势,然后详细介绍了直流数字电压表的设计流程,以及硬件系统和软件系统的设计。 本文介绍了基于89S51单片机的电压测量系统设计,介绍1602LCD液晶的功能和ADC0832的转换原理。该电路设计简单,方便。该设计可以测量0~5V的电压值,并在1602LCD液晶上显示出来。 本系统主要包括三大模块:主程序模块、显示模块、A/D转换模块,绘制点哭原理图与工作流程图,并进行调试,最终设计完成了该系统的硬件电路,在软件编程上,采用了c语言进行编程,开发了显示模块程序,A/D转换程序。 关键词:89S51单片机;1602LCD液晶;ADC0832

#大电流测量仪的课程设计

目录 1、课程设计目的 (2) 2、课程设计内容和要求 (2) 2.1、设计内容 (2) 2.2、设计要求 (2) 3、设计方案 (2) 3.1、设计思路 (2) 3.2、工作原理及硬件框图 (3) 3.3、硬件电路原理图 (4) 3.4、PCB版图设计 (6) 3.5 EWB仿真图形 (8) 4、课程设计总结 (9) 5、参考文献 (10) 一、课程设计目的 1、掌握电子电路的一般设计方法和设计流程; 2、学习使用PROTEL软件绘制电路原理图及印刷板图; 3、掌握使用EWB对所设计的电路进行仿真,通过仿真结果验证设计的正确性。 二、课程设计内容和要求 2.1 设计要求 设计一个大电流测量仪,具体要求如下: 1. 测量范围为10A, 100A, 1000A 2.量程可自动切换 3. 课程设计说明书 4. 电路原理图和印刷板图

5. 仿真图形和仿真结果 2.2 设计内容 (1).通过图书馆互联网获取资料; (2).学习了单片机的基本知识,知道了单片机有四个并口,P0,P1,P2,P3,并且简单了解了霍尔元件及其使用,复习模拟电子技术一些知识,如,集成运算放大电路的工作原理,通过自己所学知识将资料有效利用,获得电路图; (3 ).学习EWB软件,及protel软件,将电路图进行仿真,得到波形图,及PCB板。 三.设计方案 3.1设计思路 (1)在元件的控制电流端通以电流I,并在片子平面的法线方向上,施以感应强度为B的磁场,那么在垂直于电流和磁场的方向上(即霍尔输出端之 间)将产生一个电势Vh(称霍尔电势,也有称霍尔电压),其大小正比于 电流强度I和磁感应强度B的乘积,这一现象就是常称的霍尔效应,霍尔 元件就是基于这一效应来工作的。 通电导线的周围存在磁场,其磁场的强弱正比于导线中的电流,若将通以恒定控制电流的霍尔元件放在通电导线周围的磁场中,则霍尔输出电压的大小就和导线中的、电流的大小成正比,通过控制磁场使大电流感应出小电流,便于我们测量。 (2)由A/D转换器将模拟信号转换为数字信号,可以通过单片机的高低电平来控制量程的自动切换。由于显示器只能显示模拟信号,所以需要D/A 转换器将数字信号转换为模拟信号!选取定量程后,进入下一个模块,开 始电流的测量。 (3)电流的测量电路功能说明参考图二的原理图说明! 3.2基本原理图及设计框图

多喉径流量测量装置简介

多喉径流量测量装置 一、概述 多喉径流量测量装置,是一种基于伯努力方程、运用现代航空技术 ----空气动力学理论和流体力学理论,实现单点、多点高精度测量的差 压式智能流量计。它广泛适用于火电厂、钢铁厂、化工厂的大、中、小 型管道常温或高温气体(空气、蒸汽、天然气、煤气、烟气)流量测量,特别适用于火电厂一次风、二次风流量测量。 二、测量原理: 根据流体力学原理,当流体经过喉径管时,通过收缩段喉部流向扩散角。经过两侧扩散角的扩散抽吸作用,喉部的流体被整流和放大,极大的提高了喉部流速,使喉部的静压明显下降。从而使全压孔与喉部测得的静压差放大。流量越大产生的差压越大,通过测量差压的方法,就可以测的管道流量。 = ? ? ? ? =) ) ( / ( ? p t p Qm? t p K Qm K f 1 1 Pl ——测量管人口绝对静压力 K。——大管流量函数 tl ——测量管人口流体绝对温度 K1 ——仪表修正系数 Δp ——测量管人口与喉径之间的差压 f(p·t) ——温压补偿函数 多喉径流量传感器流体模拟实验图

1020mm风洞试验曲线图3000m m×4000 m m风洞试验曲线图 三、特点: 1、多点多喉径流量测量装置根据现场工艺条件的不同分为单喉径和多喉径两种。 2、压损小,管径大于φ300mm的管径其压力损失可以忽略不计,节能效果显著。 3、直管段要求低。一般情况下,前直管段长度为0.7—1.5D。 4、差压值大。小流速情况下,仍然得到一个较大的差压值。 5、信号稳定可靠,无脉动差压信号。由于采用了“多喉径”结构,使得被测介质在各节流段有一 个被“整流”的过程,最大限度的消除了涡流的影响。 6、特殊的布点结构,可以得到整个管道截面的测量数据,从而保证测量的真实性和精确性。 7、产品寿命长。产品采用316或1Crl8Ni9Ti材料,并在流体测量面均进行了耐磨处理,使用经 久耐磨。 8、采用特殊取压结构,从根本上避免堵塞。可通过防堵吹扫装置,进行在线吹扫维护。 9、体积小,安装方便。只需在管道上开孔安装即可,安装法兰随机配给。 四、技术性能: 1.适用介质:空气、蒸汽、天然气、煤气、烟气、水等介质。 2.工作压力: PN= -30kPa~16MPa。 3.工作温度:-40℃~560℃。 4.流速测量范围:0.5~60m/s。 5.精度等级:±1.0%,±1.5%。 6.公称通径: 100 mm~6000mm,100×100 mm~6000×6000mm 7.参照标准:GB/T2624-2006、GB1236-2000及JJG835-93 8.连接方式:焊接,法兰连接。 五、结构形式 多喉径流量测量装置根据其插入点数的不同分为单点多喉径流量测量装置和多点多喉径流量测量装置两种结构。结构图如下:

常见流量测量装置的原理、优点及缺点总结

几种常见流量测量装置的原理、优点及缺点总结 产品名称原理优点缺点 均速管型(如威力巴,阿牛巴,德尔塔巴,威尔巴, 超力巴等) 基于皮托管测速原 理,以测管道中直线上几 点流速来推算流量。 结构简单,价格低 廉,装、拆方便,压损小 等特点。 可实现多点布置测 量大风道平均流速 采用取压孔取压,取压口易堵塞,要求流体洁净度较高,运行维护量大,不适宜含粉介质 风量测量;因为是多点测量,反吹也只能吹通个别点,很难把全部取压孔吹通。 并非如厂商所说在探头正前方形成了高压区,粉尘不易进入。如真是这样,汽车挡风玻璃 板上还有必要用雨刷吗 文丘里型(如单喉径,双喉径,多喉径文丘里流量 计) 其原理是利用外文 丘管喉部加速产生低压, 而将内文丘利管的尾部 置于的喉部低压区,促使 内文丘利管的喉部产生 更低的低压,因而在同样 的流量下可获得更大的 输出差压。 较适用于大管道的 低流速气体流量测量, 插入式,安装方便; 反应速度快, 由于它仅测一点流速,管道中流速分布对其影响很大,因而准确度较低。目前市场上还有 一种三文丘利管,它在双文丘利管内再安装一个文丘管,企图获得更大的差压,当尺寸较小时, 附面层的作用将呈现出来,制约了这种加速降压效果,且带来了结构复杂,系数不稳定负面影 响,不宜倡导。 对含尘气流的测量时,灰尘只进不出,造成感压管路堵塞,取压口易堵塞,运行维护量大, 不适宜含粉介质。 当风道横截面积较大,而直管段不够长时,输出差压不线性,重复性差。如果单点布置, 不适宜大风道的风量测量。 机翼型 其测量的理论基础 是:在充满流体的管道 中,固定放置一个流通面 积小于管道截面积的节 其优点反应速度快; 多点测量大风道平均流 速, 较笨重,体积大,安装不方便;风道阻力大,不节能;取压口易堵塞,运行维护量大,不 适宜含粉介质。 机翼型流量计不可避免地会在管道中产生永久压损,其流体压力损失的主要原因是机翼前 后涡流的形成以及流体的沿程摩擦,它使得流体具有的总机械能的一部分不可逆转地变成了热

相关文档
最新文档