考研高数总复习专题六第3讲(讲义)

合集下载

考研陈文灯考研数学讲义【绝密版】

考研陈文灯考研数学讲义【绝密版】

e2
三、补充习题(作业)
1. f (x) ln 1 x ,求y''(0) 3
1 x2
2
2.曲线
x y
et et
sin 2t 在(0,1)处切线为y cos 2t
2x
1
0
考研资料——免费提供
微信公众:机械考研汇
- 8 -1
3. y x ln(e 1 )(x 0)的渐进线方程为y x 1
证: Lagrange : f (b) f (a) f '( ) ba
械考研汇
令 f (x) ln 2 x, ln 2 b ln 2 a 2 ln
ba
:机

众 令(t) ln t ,'(t) 1 ln t 0( ) (e2 ) ln 2
公 t
t2
e2

微 ln 2 b ln 2 a 4 (b a) (关键:构造函数)
证: f (x) f (0) f '(0)x 1 f ''(0)x2 1 f '''()x3
2!
3!
其中 (0, x), x [1,1]
考研资料——免费提供
微信公众:机械考研汇
- 7 -1
0
将 x=1,x=-1 代入有
f (1)
f (0)
1 2
f ''(0) 1 6
f '''(1 )
lim b
b1 ( 1x
x 1 x2
)dx
4
1 ln 2 2
考 5. f (x) 连续,(x) 1 f (xt)dt ,且 lim f (x) A ,求(x) 并讨论'(x) 在 x 0 的连

高数辅导之专题六:导数的定义

高数辅导之专题六:导数的定义

专题六基础知识1. 函数)(x f 在点0x 处的导数)(0x f '有两种等价的定义:(1)000)()(lim )(0x x x f x f x f x x --='→ (2)x x f x x f x f x ∆-∆+='→∆)()(lim )(0000 )0(f '出现较多,)0(f '的两种定义分别为:(3)xf x f f x )0()(lim)0(0-='→ (4)x f x f f x ∆-∆='→∆)0()(lim )0(0 应用导数的定义是最直接有效的方法,但在两种定义方法中应注意选择。

2. 函数)(x f 在点0x 处可导的充分必要条件是函数)(x f 在点0x 处的左导数)(0x f -'和右导数)(0x f +'都存在且相等。

左右导数同样有两种定义,以左导数)(0x f -'为例:(1)000)()(lim )(0x x x f x f x f x x --='-→- (2)x x f x x f x f x ∆-∆+='-→∆-)()(lim )(0000 3. 函数)(x f 在点0x 处连续有两种等价的定义:(1))()(lim 00x f x f x x =→ (2))()(lim 000x f x x f x =∆+→∆ 4. 函数)(x f 在点0x 处连续的充分必要条件是函数)(x f 在点0x 处左右连续,亦即函数)(x f 在点0x 处的左极限)(lim )(00x f x f x x -→=-和右极限)(lim )(00x f x f x x +→=+都存在且等于)(0x f 。

5. 可导与连续的关系:可导必连续,但连续并一定可导(可导是连续的充分非必要条件)。

例题1. 设对任意),(+∞-∞∈x ,均有)()1(x af x f =+,且b f =')0(,求)1(f '。

《Lesson 3 》 讲义

《Lesson 3 》 讲义

《Lesson 3 》讲义在我们的学习旅程中,每一课都像是一个新的台阶,引领我们走向知识的更高峰。

今天,让我们一起走进 Lesson 3 。

这一课,我们首先要探讨的是数学中的一个重要概念——函数。

函数就像是一个神秘的魔法盒子,你把一个数放进去,经过特定的规则运算,就会得到一个相应的结果。

比如说,简单的一次函数 y = 2x +1 ,当 x 等于 1 时,y 就等于 3 ;当 x 等于 2 时,y 就等于 5 。

函数在我们的日常生活中也有很多应用,比如计算购物时的总价,根据商品的单价和购买的数量,就可以通过函数关系得出总价。

接下来,我们来看看英语中的语法部分。

时态一直是英语学习中的重点和难点。

在这一课中,我们会深入学习现在完成时。

现在完成时用来表示过去发生的动作对现在造成的影响或结果。

比如,“I have finished my homework”(我已经完成了我的作业。

)这就表明作业在过去完成了,并且对现在的情况产生了影响,可能意味着现在有时间做其他事情了。

然后,是物理学科中的牛顿定律。

牛顿第一定律告诉我们,物体在不受外力作用时,会保持静止或匀速直线运动状态。

想象一下,在没有摩擦力的理想情况下,一个运动的物体将会一直保持运动,这是不是很神奇?而牛顿第二定律 F = ma ,则揭示了力、质量和加速度之间的关系。

再来说说化学。

我们要了解元素周期表中的一些常见元素的性质。

比如氧元素,它是维持生命所必需的,在化学反应中常常表现出氧化性。

在历史方面,我们将了解某个特定时期的重大事件及其对社会发展的影响。

通过对这些历史事件的学习,我们能够更好地理解当今社会的形成和发展。

地理学科中,我们要学习不同的气候类型以及它们的分布规律。

比如热带雨林气候,终年高温多雨,主要分布在赤道附近地区。

当然,学习不仅仅是理论知识的积累,更重要的是能够将这些知识运用到实际中。

比如,通过数学函数解决实际的工程问题;用英语和外国人进行交流;运用物理知识解释生活中的现象;利用化学知识进行简单的实验;从历史中汲取经验教训;根据地理知识规划旅行路线等等。

清华大学微积分高等数学课件第3讲无穷小量续

清华大学微积分高等数学课件第3讲无穷小量续

05.12.2020
教学ppt
6
符“ 号 ”“ 与 O” (1 )若 lim f(x)0 ,则 记 f(x)(g(x))
x x0g(x)
(2)若M0, 使当 xN*(x0)时,有
f(x) M 则记成f(x)O(g(x)) g(x)
(xx0).
若 lim f(x)A ,则有 f(x)O (g(x))
05.12.2020
教学ppt
Hale Waihona Puke 511[例2]
1cosx
lim
x0
x2
?
[解] lx i0m 1x c2oxslx i0m 2sxi22n2 x
lx i0m 2((2 xs)2i2 x4 n )2 1 2lx i0m ((s2 xi)2 x2n )2
1lim sin 2 xlim sin 2 x 1
05.12.2020
教学ppt
2
一、三个重要关系
1.(无穷小与无穷大)
若 在 自 变 量 的 某 一化个过变程 ,中 f (x) 是 无 穷 大 , 则 在 这 个 变 化 过,程
1 是 无 穷 小 . f (x)
2.(极限与无穷小)
limf(x)Af(x)A(x),
x
其中 (x)是当 x 时的无. 穷
05.12.2020
教记 学ppt f作 (x)~g(x)
(x ) 5
(2)若lim f (x) 0, 则称当x 时, x g(x)
f (x)与g(x)相比是高阶无穷 . 小 记作 f (x) (g(x)) (x ).
(3)若 lx iam [gf((xx))k]A0,则 称 x 当 时 , f(x)与 g(x)相 比 k阶 是无.穷 小

历年考研数学高等数学基础讲义

历年考研数学高等数学基础讲义

考研数学高等数学基础讲义目录第一讲极限 (1)第二讲高等数学的基本概念串讲 (9)第三讲高等数学的基本计算串讲 (13)第四讲高等数学的基本定理串讲 (24)第五讲微分方程 (27)第六讲多元函数微积分初步 (29)1 第一讲 极限核心考点概述1.极限的定义2.极限的性质3.极限的计算4.连续与间断内容展开 一、极限的定义1. lim 是什么? lim 是什么?x →∙n →∞(1)lim 的情况:x →∙①“ x → ∙ ”代表六种情形: x → x , x → x +, x → x -, x → ∞, x → +∞, x → -∞②函数极限运算的过程性——必须保证在作极限运算的过程中函数处处有定义,否则极限过程便无从谈起,于是极限就不会存在了。

比如下面这个例子:sinx sin 1 x【例】计算lim x →0. x sin 1x事实上,在 x = 0 点的任一小的去心邻域内,总有点 x = → 0(| k | 为充分大的正整数),k πsin x s in 1 sin x s in 1 x x 使 在该点没有定义,故lim不存在. x sin 1 x x →0x sin 1x(2)lim 是什么?n →∞2.极限的定义(1)函数极限的定义:lim f (x ) = A ⇔ ∀ε > 0, ∃δ > 0, 当0 < x →x 0x - x 0< δ 时,恒有f (x ) - A < ε1n n12注:趋向方式六种(2)数列极限定义:lim x = a ⇔ ∀ε > 0, ∃N > 0, 当n > N 时,恒有 x - a < ε n →∞注:趋向方式只有一种【例】以下三个说法,(1)“ ∀ε > 0 ,∃X > 0 ,当 x > X 时,恒有件;εf (x ) - A < e 10”是“ lim x →+∞f (x ) = A ”的充要条( 2 )“ ∀ 正整数 N , ∃ 正整数 K ,当 0 <“ lim f (x ) = A ”的充要条件;x →x 0x - x 0 ≤ K时,恒有 f (x ) - A ≤ 1 ” 是 2N(3)“ ∀ε ∈ (0,1) , ∃ 正整数 N ,当n ≥ N 时,恒有| x n - a |≤ 2ε ”是“数列{x n } 收敛于a ” 的充要条件;正确的个数为()(A )0 (B )1(C )2(D )3二、极限的性质1.唯一性(1) lim e x= ∞, lim e x= 0 ,(2)limsin x 不存在(3)lim arctan x 不存在(4)lim [x ]x →+∞x →-∞x →0xx →∞x →0不存在1- π e x 1【例】设k 为常数,且 I = lim x →0+k ⋅ arctan 存在,求 k 的值,并计算极限 I 。

考研高数数学讲义

考研高数数学讲义

第一篇 高等数学第一章 函数、极限与连续一、大纲内容与要求【大纲内容】函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →=,1lim 1e xx x →∞⎛⎫+= ⎪⎝⎭.函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质. 【大纲要求】1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、知识网络Nε-”定义X-”定义δ-”定义数列整体有界函数局部有界两个重要的极限(数一、三)∞∞型、型∞-∞型、0∞⋅1∞、0∞、00型初等函数的连续性分段函数连续性的判定闭区间上连续函数的性质——左右极限都存在第二类——左右极限中至少有一个不存在跳跃间断点可去间断点关系极限连续性函数零点定理最值定理有界性、单调性、奇偶性、周期性1lim1nnen→∞⎛⎫+=⎪⎝⎭sinlim1xxx→=单调有界数列有极限夹逼定理三、基本内容(一)函数1.定义 设x 与y 是两个变量,D 是实数集的某个子集,若对于D 中的每个值x ,变量y 按照一定的法则有一个确定的值y 与之对应,称变量y 为变量x 的函数,记作()y f x =.数集D 称为函数的定义域,由函数对应法则或实际问题的要求来确定,相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素. 2.几种特性(1)有界性 设函数()y f x =在数集X 上有定义,若存在正数M ,使得对于每一个x X ∈,都有()f x M ≤成立,称()y f x =在X 上有界,否则,即这样的M 不存在,称()f x 在X 上无界.所以函数在X 上无界,是对任何0M >,总存在0x X ∈,使0()f x M >.(2)单调性 设函数()y f x =在区间I 上有定义,若对于I 上任意两点1x 与2x ,当12x x <时,均有12()()f x f x < [或12()()f x f x >],称函数()f x 在区间I 上单调增加(或单调减少).如果其中的“<”(或“>”)改为“≤”(或“≥”),称函数()f x 在I 上单调不减(或单调不增). (3)奇偶性 设函数()y f x =的定义域为(,)(0)a a a ->,若对于任一x ∈(,)a a -,都有()()f x f x -=,称()f x 为偶函数,如常数2,,cos C x x 等,其图像关于y 轴对称;若对于任一(,),x a a ∈-都有()()f x f x -=-,称()f x 为奇函数,如3,,sin x x x 等,其图像关于坐标原点对称.(4)周期性 对函数()y f x =,若存在常数0T >,使得对于定义域内的每一个,x x T +仍在定义域内,且有()()f x T f x +=,称函数()y f x =为周期函数,T 称为()f x 的周期. 3.复合函数、反函数、隐函数与分段函数(1)基本初等函数与初等函数基本初等函数 常数函数;幂函数;指数函数;对数函数;三角函数;反三角函数.初等函数 由基本初等函数经过有限次的加、减、乘、除和复合所得到且能用一个解析式表示的函数.(2)复合函数 设函数()y f u =的定义域为f D ,函数()u x ϕ=的值域为z ϕ,若集合f D 与z ϕ的交集非空,称函数[()]y f x ϕ=为函数()y f u =与()u x ϕ=复合而成的复合函数,u 为中间变量.对复合函数,重要的是会把它分解,即知道它是由哪些“简单”函数复合而成的.(3)反函数 设函数()y f x =的值域为f z ,定义域为f D ,则对于每一个f y z ∈必存在f x D ∈使()y f x =.若把y 作为自变量,x 作为因变量,便得一个函数()x y ϕ=,且[]()f y ϕ y =,称()x y ϕ=为()y f x =的反函数,但习惯上把()y f x =的反函数记作1()y f x -=.y()f x =与其反函数1()y f x -=的图像是关于直线y x =对称的.(4)隐函数 设有方程(,)0F x y =,若当x 在某区间内取任一值,便总有满足该方程唯一的值y 存在时,称由方程(,)0F x y =在上述区间内确定了一个隐函数()y y x =.(5)分段函数 若一个函数在其定义域的不同部分要用不同的式子表示其对应规律,如(),()(),x a x bf x x c x dϕψ<<⎧=⎨<<⎩称为分段函数. (二)极限 1.概念(1)定义1 设()y f x =在0x 的一个去心邻域010001(,)(,)x x x x δδ-+内有定义,若对于任意给定的0ε>,总存在0δ>,使得当上述去心邻域内任意x 满足00x x δ<-<时,不等式()f x a ε-<恒成立,则称常数a 为函数()f x 在0x x →的极限,记作0lim ().x x f x a →=或()f x a → (当0x x →).直观地说,即当x 无限趋近0x 时,函数()f x 无限趋近常数a .定义2 设()f x 在区域0x E >>内有定义,若对于任意给定的0ε>,存在0M >,使得当x M E >≥时,不等式()f x a ε-<恒成立,则称a 为当x →∞时函数()f x 的极限,记作lim ().x f x a →∞=直观地说,即当x 无限增大时,函数无限趋近常数a .(2)左极限与右极限 在定义1中,若把“00x x δ<-<”改为“00x x x δ-<<”,即自变量x 从0x 的左侧趋近于0x ,则称a 为函数()f x 当0x x →时的左极限,记作0lim ()(0);x x f x a f x a -→=-=或 相应把定义1中的“00x x δ<-<”改为00x x x δ<<+, a 便是函数()f x 当0x x →时的右极限,记作00lim ()(0).x x f x a f x a +→=+=或 极限存在的充分必要条件:当0x x →时,函数()f x 的极限存在的充分必要条件为其左、右极限存在并相等,即00(0)(0)f x f x -=+.在定义2中,把x M >改为x M >,便得到x →+∞时函数()f x 的极限的定义,即lim (),x f x a →+∞=以及把“x M >”改为x M <-,便得到lim ()x f x a →-∞=的定义.注 把数列{}n x 看作整数函数即()n x f n =(1,2,)n =,则数列极限的概念lim n n x a →∞=便是()f x 在x →+∞时极限的特殊情况:自变量x 取正整数.即对于任意给定的0ε>,总存在正整数N ,使当n N >时,不等式n x a ε-<恒成立,则称常数a 为数列{}n x 的极限,也称此数列收敛于a .2.性质(1)唯一性 在自变量的一个变化过程中(0x x →或x →∞),函数的极限存在,则此极限唯一. (2)有界性 若0lim ()[lim ()]x x x f x a f x a →→∞==或,则存在0x 的某去心邻域(或0x M >>),()f x 在此邻域(或0x M >>)内有界.(3)保号性 设0)lim ()x x f x a →→∞=(x ,0()lim ()x x x g x b →→∞=,若在0x 的某去心邻域(或0x M >>)内恒有()()f x g x <(或()()f x g x ≤),则a b ≤.3.极限存在准则夹逼准则:若在x 的某去心邻域(或0x M >>)内恒有()()()g x f x h x ≤≤, 且000()()()lim ()lim ()lim ().x x x x x x x x x g x h x a f x a →→→→∞→∞→∞===,则单调有界准则:单调有界数列必收敛. 4.两个重要极限(1)0sin lim 1.x x x→= (2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭或10lim xx x e →=(1+). 5.极限的运算设在自变量的同一变化过程中(0x x →或x →∞),lim (),lim ()f x a g x b ==,则有(1)和差:[]lim ()()lim ()lim ()f x g x f x g x a b ±=±=±.(2)积:[]lim ()()lim ()lim ()f x g x f x g x a b ⋅=⋅=⋅.特别地,lim ()lim ()cf x c f x =ca = (其中c 为常数),[][]lim ()lim ()k kk f x f x a ==(其中k 为正整数).(3)商:若lim ()0g x b =≠,则()lim ()lim()lim ()f x f x ag x g x b==. (4)复合函数的运算法则:已知00lim (),lim ()u u x x f u A x u ϕ→→==⇒在有意义的情况下,lim [()]x x f x ϕ→.A =6.无穷小量与无穷大量(1)无穷小量的概念 若0()lim ()0x x x x α→→∞=,称()x α为0x x →(x →∞)时的无穷小,即极限为0的变量为无穷小量,以下简称无穷小.常数0也是无穷小.(2)无穷小量的性质 0lim ()x x f x a →→∞=(x )的充分必要条件为()()f x a x α=+,其中()x α为0x x →(x →∞)的无穷小.(3)无穷小量的运算1°加法:有限多个无穷小的和仍为无穷小; 2°乘法:有限多个无穷小的积仍为无穷小; 3°有界变量与无穷小的乘积亦为无穷小. (4)无穷小量的比较设()x α与()x β都是在同一个自变量变化过程中的无穷小,且()lim ()x x αβ也是在此变化过程中的极限:若()lim0()x x αβ=,称()x α是比()x β高阶的无穷小,记作()(())x o x αβ=; 若()lim()x x αβ=∞,称()x α是比()x β低阶的无穷小; 若()lim0()x c x αβ=≠(其中c 为常数),称()x α与()x β是同阶的无穷小;特别()lim1()x x αβ=,称()x α与()x β是等价无穷小,记作()~()x x αβ. 在求极限过程中,有时利用等价无穷小代换可以化简计算,所以应掌握几个常见的等价无穷小:当0x →时,sin ~~tan x x x ,ln(1)~x x +,1~x e x -11~x n ,211cos ~2x x -等等. (5)无穷大量的概念 设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义),如果对于任意给定的正数M (不论它多么大),总存在正数δ (或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式()f x M >,则称函数()f x 为当0x x →(或x →∞)时的无穷大量,以下简称无穷大.(6)无穷小量与无穷大量之间的关系在自变量的同一变化过程中,若()f x 为无穷大,则其倒数1()f x 必为无穷小;反之,若()f x 为无穷小,且()0f x ≠,则其倒数1()f x 必为无穷大. 7.洛必达(L’Hospital)法则(1)00⎛⎫⎪⎝⎭型 (),()f x g x 在点0x 的某去心邻域内可导,()0g x '≠,若lim ()x x f x →=0lim ()x x g x →0=,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (2)∞⎛⎫⎪∞⎝⎭型 (),()f x g x在点0x 的某去心邻域内可导,()0g x '≠,若 0lim ()x x f x →=0lim ()x x g x →=∞,且0()lim ()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (三)连续1.函数的连续性(1)连续性的概念 设函数()y f x =在点0x 某邻域内有定义,若当自变量增量x ∆=0x x -0→时,对应的函数值增量00()()0y f x x f x ∆=+∆-→,即0lim 0x y ∆→∆=,或0lim ()()x x f x f x →=,则称函数()f x 在0x 处连续.若00lim ()()x x f x f x -→=,称函数()f x 在0x 处左连续,00lim ()()x x f x f x +→=,称函数()f x 在0x 处右连续. 显然,函数()f x 在0x 处连续的充分必要条件是()f x 在0x 处既左连续又右连续.若函数()f x 在区间(,)a b 内每一处都连续,称()f x 在开区间(,)a b 内连续,也称()f x 是(,)a b 内的连续函数;若()f x 在(,)a b 内连续,又在a 点处右连续,b 点处左连续,则称()f x 在闭区间[,]a b 上连续.(2)运算1°加法 有限多个在同一点连续的函数之和,仍在该点处连续; 2°乘法 有限多个在同一点连续的函数之积,仍在该点处连续; 3°除法 若()f x 与()g x 均在点0x 处连续,且0()0g x ≠,则()()f xg x 在点0x 处连续. (3)复合函数与初等函数的连续性设函数()u x ϕ=在点0x x =处连续,且00()x u ϕ=,若函数()y f u =在点0u u =处连续,则复合函数[()]y f x ϕ=在点0x x =处连续.一切初等函数在其定义区间上都是连续的. 2.函数的间断点(1)函数间断点的概念 设函数()f x 在点0x 的某去心邻域内有定义.在此前提下,如果函数()f x 有下列三种情形之一:1°在0x x =没有定义;2°虽在0x x =有定义,但()0lim x x f x →不存在;3°虽在0x x =有定义,且()0lim x x f x →存在,但()00lim (),x x f x f x →≠则函数()f x 在点0x 不连续,而点0x 称为()f x 的不连续点或间断点.(2)函数间断点的类型 设0x x =为函数()y f x =的间断点,若0lim ()x x f x -→与0lim ()x x f x +→都存在,称0x 为函数()f x 的第一类间断点,其他均称为第二类间断点.在第一类间断点中,左、右极限相等的称为可去间断点,不相等的称为跳跃间断点;无穷间断点与振荡间断点都是第二类间断点.3.闭区间上连续函数的性质(1)最大值和最小值定理 闭区间上的连续函数一定有最大值与最小值. (2)有界性定理 闭区间上的连续函数在该闭区间上一定有界.(3)介值定理 设函数()f x 在闭区[,]a b 上连续,且()()f a f b ≠,则对于()f a 与()f b 之间的任一常数C ,必在开区间(,)a b 内至少存在一点ξ,使得()f C ξ=.推论 在闭区间上连续的函数必取得介于最大值M 与最小值m 之间的任何值.(4)零点定理 设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号,则在开区间(,)a b 内至少存在函数()f x 的一个零点,即至少有一点(,)a b ξ∈使()0f ξ=.四、典型例题[例1.1]设函数11()01x f x x ⎧≤⎪=⎨>⎪⎩,,,,则[()]f f x =.[例1.2]已知2()sin ,[()]1,f x x f x x ϕ==-则()________x ϕ=,其定义域为 .[例1.3]设函数2sin ()(ln )(tan )x f x x x e =,则()f x 是( ).(A)偶函数.(B)无界函数.(C)周期函数.(D)单调函数.[例1.4]设对任意(,)∈-∞+∞x 有(1)()+=-f x f x ,则()f x 一定是( ).(A)奇函数.(B)偶函数.(C)周期函数.(D)单调函数.[例1.5]设函数21tan(3)()(1)(2)(3)x x f x x x x --=---,则()f x 在下列哪个区间内有界().(A)(0,1).(B)(1,2). (C)(2,3). (D)(3,4).[例1.6]设数列n x 与n y ,满足lim 0n n n x y →∞=,则下列叙述正确的是().(A)若n x 发散,则n y 必发散. (B)若n x 无界,则n y 必有界. (C)若n x 有界,则n y 必为无穷小量. (D)若1nx 为无穷小量,则n y 必为无穷小量. [例1.7]下列极限正确的是().(A)sin lim1x xxπ→=.(B)1lim sin1x x x→∞⋅=. (C)11limsin 1x x x→∞=. (D)sin lim1x xx→∞=.[例1.8]设n n x a y ≤≤,且lim()0n n n y x →∞-=,a 为常数,则数列{}n x 和{}n y ( ).(A)都收敛于a .(B)都收敛,但不一定收敛于a . (C)可能收敛,也可能发散.(D)都发散.[例1.9]设n n n x a y ≤≤,且lim()0n n n y x →∞-=,{}n x ,{}n y 和{}n a 均为数列,则lim n n a →∞( ).(A)存在且等于0.(B)存在但不一定等于0. (C)一定不存在. (D)不一定存在.[例1.10]22212lim 12n n n n n n n n n →∞⎛⎫+++=⎪++++++⎝⎭.[例1.11]30arctan sin limx x xx →-=.[例1.12]求极限limx [例1.13]求下列极限:2011lim()tan x x x x→-. [例1.14]设2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则a =.[例1.15]21ln(1)0lim(cos )+→x x x =.[例1.16]当0x →时,211()sin f x x x=是( ). (A)无穷小量.(B)无穷大量.(C)有界量非无穷小量.(D)无界但非无穷大量.[例1.17]设220ln(1)()lim 2x x ax bx x →+-+=,则().(A)1a =,52b =-. (B)0a =,2b =-. (C)0a =,52b =-. (D)1a =,2b =-. [例1.18]设当0x →时,()()21cos ln 1x x-+是比sin n x x 高阶的无穷小,而sin n x x 是比2(1)x e -高阶的无穷小,则正整数n 等于().(A)1. (B)2. (C)3. (D)4.[例1.19]当0x →时,求常数,c k 使得(I)3sin sin3~;kx x cx -~kcx .[例1.20]设110x =,1n x +=(1,2,n =),试证数列{}n x 极限存在,并求此极限.[例1.21]下列各式中正确的是( ).(A)01lim (1)1xx x+→+=. (B)01lim(1)e xx x+→+=. (C)1lim(1)e xx x→∞-=. (D)1lim(1)e xx x-→∞+=-.[例1.22]求极限21lim ln(1)→∞⎡⎤-+⎢⎥⎣⎦x x x x.[例1.23]()f x 在0x 点连续是()f x 在0x 点连续的( ). (A)充分条件,但不是必要条件. (B)必要条件,但不是充分条件.(C)充分必要条件.(D)既不是充分条件,也不是必要条件.[例1.24]函数1()tan ()x x e e xf x x e e +=⎛⎫- ⎪⎝⎭在[],ππ-上的第一类间断点是x =().(A)0.(B)1.(C)2π-. (D)2π. [例1.25]设函数21()lim 1nn xf x x →∞+=+,讨论函数()f x 的间断点,其结论为().(A)不存在间断点. (B)存在间断点1x =. (C)存在间断点0x =. (D)存在间断点1x =-.[例1.26]设2(1)()lim1n n xf x nx →∞-=+,则()f x 的间断点为x =.[例1.27]设函数()tan 21e ,0arcsin 2e ,0xx x x f x a x ⎧->⎪⎪=⎨⎪⎪≤⎩在0x =处连续,则________a =.[例1.28]设)(x f 在(+∞∞-,)内有定义,且lim ()x f x a →∞=,1,0()0,0f x g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩,则( ).(A)0=x 必是)(x g 的第一类间断点. (B)0=x 必是)(x g 的第二类间断点.(C)0=x 必是)(x g 的连续点.(D))(x g 在点0=x 处的连续性与a 的取值有关.[例1.29]设函数()f x 在[,]a b 上连续,且12n a x x x b <<<<<,证明:存在(,)a b ξ∈,使得12()()()()n f x f x f x f nξ+++=.[例1.30]设()f x 是[0,1]上非负连续函数,且(0)(1)0.f f ==证明:对任意实数r (01r <<),必存在0[0,1]x ∈,使得0[0,1]x r +∈,且00()()f x f x r =+.[例1.31]设()f x 在[0,1]上连续,(0)(1)f f =且 . (1)证明:存在[0,1],ξ∈使1()()2f f ξξ=+.(2)证明:存在[0,1],η∈使1()()f f nηη=+(2n >且n 为正整数).五、经典习题1.求⎪⎪⎭⎫⎝⎛-+→x x x sin 1)1ln(1lim 0. 【答案】212.求xx e e xx x sin lim tan 0--→.【答案】23.已知()01lim2=--++-∞→b ax x xx ,则___________,==b a .【答案】21,1--. 4.极限()()2lim xx xx a x b →∞⎡⎤=⎢⎥-+⎣⎦( )(A) 1.(B) e . (C) a be-.(D) b ae-.【答案】(C).5.求22201cos lim sin x x x x →⎛⎫- ⎪⎝⎭. 【答案】43. 6.求1402sin lim 1x x x e x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭. 【答案】1. 7.若()3sin 6lim0x x xf x x →+=,则()26limx f x x →+为( ).(A)0.(B)6.(C)36.(D)∞.【答案】(C).8.1lim1cosn n→∞++=________. 【答案】π.9.设103x <<,1n x +=(n =1,2,…),证明数列{}n x 的极限存在,并求此极限.【答案】证明{}n x 单调增加且有上界,3lim 2n n x →∞=. 10.设函数()f x 在0x =的某邻域内具有一阶连续导数,且()00f ≠,()00f '≠,若()()()20af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.【答案】2,1a b ==-.11.设函数()f x 在(,)-∞+∞内连续,且[()]f f x x =,证明在(,)-∞+∞内至少有一个0x 满足00()f x x =.【答案】利用反证法.第二章 一元函数微分学导数与微分是一元函数微分学中的两个重要概念,在高等数学中占有重要地位,其内涵丰富,应用广泛,是研究生入学考试的主要内容之一,应深入加以理解,同时应熟练掌握导数的各种计算方法.中值定理与导数的应用在高等数学中占有极为重要的位置,内容多,影响深远,是复习的重点也是难点,而且具有承上启下的作用,应熟练掌握.一、大纲内容与要求【大纲内容】导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 (弧微分;曲率的概念;曲率圆与曲率半径,数学三不要求). 【大纲要求】1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,(了解导数的物理意义,会用导数描述一些物理量,数学一、二要求),理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当''()0f x >时,()f x 的图形是凹的;当''()0f x <时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径(数学一、二要求).二、知识网络三、基本内容(一)导数概念1.导数定义 设函数()y f x =在点0x 的某邻域内有定义,若自变量从0x 变到0x x +∆时,导数的定义左、右导数基本初等函数的导数导数的四则运算 复合函数的导数 反函数的导数隐函数的导数参数方程求导(数一、二)2阶导数n 阶导数 高阶导数导数的概念导数的计算罗尔定理拉格朗日中值定理 柯西中值定理 中值定理应用洛必达法则求极限 研究函数性质及几何应用单调性定理、函数的单调区间 函数的极值、最值曲线的凹凸性及拐点 渐近线、函数作图 边际、弹性经济中的最大值和最小值应用经济应用(数学三要求) 微分概念微分的计算 一阶微分形式不变性微分导数泰勒定理 曲率(数学一、二要求) 费马引理 切线、法线方程函数的增量00()()y f x x f x ∆=+∆-与自变量增量x ∆之比的极限0000()()limlim x x f x x f x yx x→∆→+∆-∆=∆∆存在,则称()y f x =在0x 处可导,此极限值称为()f x 在0x 处的导数,记作0()f x ',或00,x x x x dyy dx=='等.令0x x x =+∆,可得导数的等价定义0000()()()limx x f x f x f x x x →-'=-2.左导数 若000()()lim x f x x f x x -∆→+∆-∆存在,则称此极限值为()f x 在x =0x 处的左导数,记作0()f x -'.3.右导数 若000()()lim x f x x f x x+∆→+∆-∆存在,则称此极限值为()f x 在x =0x 处的右导数,记作0()f x +'.4.若函数()f x 在区间(,)a b 内任意点x 处的导数()f x '都存在,则称()f x 在(,)a b 内可导.5.若函数()f x 在(,)a b 内可导,且()f a +'及()f b -'都存在,称()f x 在闭区间[,]a b 上可导. (二)函数可导的条件1.()f x 在x =0x 处可导的必要(非充分)条件是()f x 在x =0x 处连续.2.()f x 在x =0x 处可导的充分与必要条件是0()f x -'与0()f x +'存在且相等. (三)导数的几何意义与物理意义1.设函数()f x 可导,则0()f x '等于曲线y =()f x 在点00(,())x f x 处切线的斜率.曲线y =()f x 在点00(,())x f x 处的切线与法线方程分别是:000()()()y f x f x x x '--=和0001()(),()y f x x x f x -=--'其中0()0f x '≠. 2.设一质点作变速直线运动,若其位移s 随时间t 的变化规律为函数()s s t =,则导数0()s t '表示该质点在时刻0t 的瞬时速度.注 导数的物理意义有多种,如细棒状物质的线密度,电路中的电流强度,转动物体的角速度等.(四)导数的计算1.基本初等函数的导数公式 (1)()0()c c '=为常数(2)1()()x x μμμμ-'=为实数(3)()ln (01)xxa a a a a '=>≠, (4)();x x e e '=(5) 1(log ||)(0,1);ln a x a a x a '=>≠ (6) 1(ln ||);x x'= (7)(sin )cos ;x x '= (8)(cos )sin ;x x '=- (9)2(tan )sec ;x x '= (10)2(cos )csc x x '=-(11)(sec )sec tan ;x x x '= (12)(csc )csc cot ;x x x '=-(13)(arcsin )x '=(14)(arccos )x '=(15)21(arctan );1x x'=+ (16)21(arccot ).1x x-'=+ 2.导数的四则运算法则 设函数(),()u x v x 都可导,则 (1)();u v u v '''±=±(2)()uv u v uv '''=+,特别()cu cu ''=(c 为常数).(3)2(0).u u v uv v v v '''-⎛⎫=≠ ⎪⎝⎭3.复合函数求导法设()u x ϕ=在x 处可导,()y f u =在对应的()u x ϕ=处可导,则复合函数[()]y f x ϕ=在x 处可导,且{[]}()(),f x f u x ϕϕ'''=()即d .y dy dudx du dx=⋅ 4.反函数的导数若()x y ϕ=在某区间内单调、可导,且()0y ϕ'≠,则其反函数()y f x =在对应的区间内也可导,且1()()f x y ϕ'='. 5.隐函数的导数设()y f x =是由方程(,)0F x y =所确定的可导函数,注意到x 是自变量,y 是x 的函数,y 的函数是x 的复合函数,在方程的两边同时对x 求导,可得到一个含有y '的方程,从中解出y '即可.注 y '也可由多元函数微分法中的隐函数求导公式x y F dydx F '=-'得到,这里()y x 是由方程(,)0F x y =确定的函数.6.高阶导数(1) 函数()y f x =导数的导数,称为函数()f x 的二阶导数,即(),y y ''''=记作()y f x ''''=,或2(2)2,d y y dx.一般地,函数()y f x =的n 阶导数为()(1)(),n n y y-'=也可写作()()n n n d y fx dx或.(2)设(),()u x v x 具有n 阶导数,则有()()()[()()]()()n n n au x bv x au x bv x +=+(,a b 为常数);()()1(1)()()()[()()]()()()()()()()().n n n k n k k n n n u x v x u x v x C u x v x C u x v x u x v x --'=+++++7.由参数方程所确定的函数的导数(数学一、二要求)设()y y x =是由参数方程()()()x t t y t ϕαβψ=⎧<<⎨=⎩确定的函数,(1)若()t ϕ和()t ψ都可导,且()0t ϕ'≠,则()()dy t dx t ψϕ'='. (2)若()()t t ϕψ,二阶可导,且()0t ϕ'≠,则223()1()()()()()()()td y t t t t t dx t t t ψψϕψϕϕϕϕ''''''''⎡⎤-=⋅=⎢⎥'''⎣⎦. (五)微分1.微分定义 设函数()y f x =在点x 的某邻域内有定义,若对应于自变量的增量x ∆,函数的增量y ∆可以表示为()y A x o x ∆=∆+∆,其中A 与x ∆无关, ()o x ∆是x ∆的高阶无穷小,则称函数()y f x =在点x 处可微,并把A x ∆称为()f x 在点x 处的微分,记作dy 或()df x ,即dy =A x ∆.2.函数()y f x =在点x 处可微的充分必要条件是()f x 在x 处可导,此时()A f x '=,即有()dy f x dx '=.3.一阶微分形式的不变性 设()y f u =可微,则微分()dy f u du '=,其中u 不论是自变量还是中间变量,以上微分形式保持不变. (六)微分中值定理1.费马(fermat)引理 若()f x 在0x 的某邻域0()U x 内有定义,且在0x 处可导,如果对任意0()x U x ∈,有0()()f x f x ≤(或0()()f x f x ≥),则0()0f x '=.2.罗尔(Rolle)定理 若函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,并且f (a )=f (b ),则在开区间(,)a b 内至少存在一点ξ,使得()0f ξ'=.3.拉格朗日(Lagrange)中值定理 若函数()f x 在闭区间上连续,在开区间(,)a b 内可导,则在开区间(,)a b 内至少存在一点ξ,使得()()()().f b f a f b a ξ'-=-4.柯西(Cauchy)中值定理 若函数()f x 和()g x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()0g x '≠,则在开区间(,)a b 内至少存在一点ξ,使得()()().()()()f b f a fg b g a g ξξ'-='-5.泰勒(Taylor)定理(1)假设函数()f x 在含有0x 的开区间(,)a b 内具有直到1n +阶的导数,则()20000000()()()()()()()()(),2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+其中(1)10()()(),(1)!n n n f R x x x n ξξ++=-+是0x 与x 之间的某个值,此公式称为带有拉格朗日型余项的泰勒公式.(2)假设函数()f x 在含有0x 的开区间(,)a b 内具有直到n 阶的导数,则()200000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x o x x n '''⎡⎤=+-+-++-+-⎣⎦, 此公式称为带有佩亚诺型余项的泰勒公式.注 当00x =时,以下两公式称为麦克劳林(Maclaurin)公式,即()21(0)(0)(1)()()(0)(0)(01)2!!(1)!n n n f f f n x f x f f x x x x n n θθ+''+'=+++++<<+和 ()2(0)(0)()(0)(0)()2!!n n n f f f x f f x x x o x n '''=+++++.(七)洛必达(L ’Hospital)法则 1.00⎛⎫⎪⎝⎭型 0()()()0,f x g x x g x '≠设,在点的某去心邻域内可导,若0lim ()lim ()x x x x f x g x →→=0=,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. 2.∞⎛⎫⎪∞⎝⎭型 设()()f x g x ,在点0x 的某去心邻域内可导,()0g x '≠,若0lim ()x x f x →=0lim ()x x g x →=∞,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (八)利用导数研究函数及平面曲线的性态1.单调性定理 设函数()f x 在[,]a b 上连续,在(,)a b 内可导,若对任一x ∈(,)a b ,有()0(0)f x '><,则()f x 在[,]a b 上单调增加(减少).注 若将上面的不等式()0(0)f x '><,改为()0(0)f x '≥≤,且使()0f x '=的点(驻点)只有有限个,则结论仍成立.2.极值(1)极值的定义 若()f x 在0x 的某邻域0()U x 内有定义,且对该邻域内任意异于0x 的点x 都有0()()f x f x <(或0()()f x f x >),则称0x 的极大(或小)值点,0()f x 称为()f x 的极大(或小)值.(2)判断极值的第一充分条件 设函数()f x 在点0x 的某邻域00(,)x x δδ-+内连续,0x 是()f x 的驻点或不可导点,在00(,)x x δ-及00(,)x x δ+内()f x 均可导.1°若在00(,)x x δ-内()0(0)f x '<>而在00(,)x x δ+内()0(0)f x '><则()f x 在0x 处取21极小值(极大值);2°若在00(,)x x δ-和00(,)x x δ+内()f x '符号相同,则()f x 在0x 处不取得极值. (3)判断极值的第二充分条件 设函数()f x 在x =0x 处 ,一阶导数0()0f x '=,二阶导数0()f x ''存在且不等于零,则当0()0f x ''>时,()f x 在0x 处取得极小值;当0()0f x ''<时,()f x 在0x 处取得极大值.3.取到极值的唯一性定理 若()f x 在区间I 上可导,驻点唯一,且该驻点是极值点,则该驻点一定是最值点.4.曲线凹凸性及拐点(1)凹凸性的定义 设()x f 在区间I 上连续,若对任意不同的两点21,x x ,恒有()()()()12121212112222x x x x f f x f x f f x f x +⎛+⎫⎛⎫⎛⎫>+<+⎡⎤⎡⎤ ⎪ ⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭⎝⎭或则称()x f 在I 上是凸(凹)的.(2)凹凸性的判断 若函数()f x 在区间I 上()0(0)f x ''><则曲线()y f x =在I 上凹 (凸)的.(3)拐点的定义 在连续曲线上,凹凸部分的分界点00(,())x f x 称为曲线的拐点.(4)拐点的第一充分条件 设函数()f x 在点0x 的某邻域内连续且在该去心邻域内二阶可导,若()f x 在0x 的左右两边()f x ''的符号相反,则点00(,())x f x 是曲线)(x f y =的拐点.(5)拐点的第二充分条件:设函数()f x 在点0x 的某邻域内连续,0()0f x ''=,而0()0f x '''≠,则点00(,())x f x 是曲线)(x f y =的拐点.5.曲线的渐近线(1)若lim ()x f x C →∞=(或x →+∞或x →-∞)(C 为常数),则y C =是曲线()y f x =的一条水平渐近线;(2)若0lim ()x x f x →∞=(或0x x +→,或0x x -→),则0x x =是曲线()y f x =的一条铅直渐近线; (3)若()lim,0,x f x a a x→∞=≠且lim[()],x f x ax b →∞-=则y ax b +=是曲线()y f x =的斜渐近线.22(九)平面曲线的曲率(数学一、二要求) 1.弧微分设()y f x =是平面内的光滑曲线,则弧微分.ds = 若曲线方程为(),(),x x t y y t =⎧⎨=⎩则弧微分为.ds =2.曲率(1)设M 和N 是曲线上不同的两点,弧MN 的长为s ∆,当M 点沿曲线到达N点时,M点处的切线所转过角为α∆,则称极限0lims K sα∆→∆=∆为该曲线在点M 处的曲率. (2)曲率计算公式若曲线方程为()y f x =,则曲率23/2(1)y K y ''='+. 若曲线由参数方程()()x x t y y t =⎧⎨=⎩给出,则曲率223/2()t t t t t t x y y x K x y ''''''-=''+. (3)曲率半径1(0)R K K=≠. 三、典型题型[例2.1]已知(3)2f '=,则0lim 2h h→=______________.[例2.2]设函数()f x 在0x =处连续,且201lim (1cos )1h f h h→-=,则().(A)(0)1-'=f .(B)(0)2-'=f .(C)(0)1+'=f . (D)(0)2+'=f .[例2.3]设函数()f x 可导,()(sin 2)()xF x e x f x =+,则(0)0f =是()F x 在0x =处可导的( )条件.(A)充要. (B)充分非必要. (C)必要非充分.(D)非充分非必要.[例2.4]设周期函数()f x 在),(+∞-∞内可导,周期为4,0(1)(1)lim2x f f x x→--=1-,则曲线()y f x =在点))5(,5(f 处的法线斜率为(). (A)21. (B)0.(C)1 .(D)2-.[例2.5]设函数()f x 在区间(,)δδ-内有定义,若当x ∈(,)δδ-时,恒有2()f x x ≤,则23x 0=必是()f x 的( ).(A)间断点.(B)连续而不可导的点. (C)可导的点,且(0)0'=f . (D)可导的点,且(0)0'≠f .[例2.6]设()(1)(2)()f x x x x x n =+++,则(0)________.f '=[例2.7]设函数0()y f x x x ==在处可导,0()1f x '=-,则0limx y dydy∆→∆-=_______.[例2.8] 设函数()f x 处处可微,且有()01f '=,且对任何,x y 恒有()()x f x y e f y +=()x e f y +, 求().f x[例2.9]设函数()f x 在(,)-∞+∞上有定义,对任意,x y ,()f x 满足关系式()()[()1]()f x y f x f x y y α+-=-+,其中0()lim0y y yα→=.又已知(0)2,f =则(1)f =.[例2.10]设()()(),()F x g x x x ϕϕ=在x a =连续,但不可导,又()g a '存在,则()0g a =是()F x 在x a =可导的()条件.(A) 充要. (B) 充分非必要.(C) 必要非充分.(D) 非充分非必要. [例2.11]函数32()2arctan f x x x x x =+-的不可导点的个数是( ). (A)3.(B)2.(C)1.(D)0.[例2.12]设函数11,0()1,0x x f x x e k x ⎧-≠⎪=-⎨⎪=⎩连续,求常数k 的值,并求()f x '.[例2.13] 求下列函数的导数(1)arctanx y e=-(2)2()ln |2a f x x =.24[例2.14]设2sin[()]y f x =,其中f 具有二阶导数,求22,dy d ydx dx . [例2.15]设函数1,()21,x f x x ⎧≥=⎨<⎩,()()y f f x =,则x edy dx ==_____________.[例2.16]设函数()f u 可导,2()y f x =当自变量x 在1=-x 处取得增量0.1x ∆=-时,相应的函数增量y ∆的线性主部为0.1,则(1)'=f _________________.[例2.17] (数一、二)设()2arctan ,25t x t y y x y ty e =⎧⎪=⎨-+=⎪⎩由所确定,求.dy dx[例2.18]设22411x y x -=-,求(100)y .[例2.19]设函数()y f x =由方程23ln()sin +=+x y x y x 确定,则==x dy dx_________.[例2.20]设()()()nf x x a x ϕ=-,其中()x ϕ在x a =处具有1n -阶连续导数,试求()()n f a (2)n ≥.题型三 利用导数研究函数的性态[例2.21]设当a x b <<时函数()f x ,()g x 是大于零的可导函数,且()()f x g x '-()f x ()0g x '<,则当a x b <<时,有().(A)()()()()f x g b f b g x >.(B)()()()()f x g a f a g x >.(C)()()()()f x g x f b g b >.(D)()()()()f x g x f a g a >.。

考研数学之高等数学讲义第六章(考点知识点+概念定理总结)

考研数学之高等数学讲义第六章(考点知识点+概念定理总结)

第六章 多元函数微分学§6.1 多元函数的概念、极限与连续性(甲)内容要点一、多元函数的概念1.二元函数的定义及其几何意义设D 是平面上的一个点集,如果对每个点P (x,y )∈D ,按照某一对应规则f ,变量z 都有一个值与之对应,则称z 是变量x ,y 的二元函数,记以z=f (x ,y ),D 称为定义域。

二元函数z=f (x ,y )的图形为空间一块曲面,它在xy 平面上的投影域就是定义域D 。

例如 1:,12222≤+--=y x D y x z 二元函数的图形为以原点为球心,半径为1的上半球面,其定义域D 就是xy 平面上以原点为圆心,半径为1的闭圆。

2.三元函数与n 元函数Ω∈=),,(),,,(z y x z y x f u 空间一个点集,称为三元函数。

n x x x f u n 元函数称为),,,(21 =它们的几何意义不再讨论,在偏导数和全微分中会用到三元函数。

条件极值中,可能会遇到超过三个自变量的多元函数。

二、二元函数的极限设),(),(00y x y x f 在点的邻域内有定义,如果对任意,00>>δε存在,只要εδ<-<-+-A y x f y y x x ),(,)()(2020就有则记以A y x f A y x f y x y x y y xx ==→→→),(lim ),(lim )(),(000或称当),(),(),(00y x ,f y x y x 时趋于的极限存在,极限值为A 。

否则,称为极限不存在。

值得注意:),(),(00y x y x 趋于这里是在平面范围内,可以按任何方式沿任意曲线趋于),(00y x ,所以二元函数的极限比一元函数的极限复杂,但考试大纲只要求知道基本概念和简单的讨论极限存在性和计算极限值不象一元函数求极限要求掌握各种方法和技巧。

三、二元函数的连续性1.二元函数连续的概念若处连续在点则称),(),(),(),(lim 00000y x y x f y x f y x f xx y y =→→ 若D y x f 在区域),(内每一点皆连续,则称),(y x f 在D 内连续。

2019考研网校高数强化讲义6-7章精品文档51页

2019考研网校高数强化讲义6-7章精品文档51页

第六章多元函数微积分(上)本章将复习多元函数微积分学中数学一、二、三、四共同要求的内容,有利于大家的复习和把握。

同时分散了数学一的难点,复习条理更加清晰。

第一节多元函数微分学多元函数微分学是一元函数微分学的推广与发展。

复习这部分内容时,要对二者加以比较,既要注意一元函数与多元函数在基本概念、理论和方法上的共同点,更要注意它们之间的区别。

【大纲内容】多元函数的概念;二元函数的几何意义;二元函数的极限和连续的概念;有界闭区域上多元连续函数的性质;多元函数偏导数和全微分;全微分存在的必要条件和充分条件;多元复合函数、隐函数的求导法;二阶偏导数;多元函数极值和条件的概念;多元函数极值的必要条件;二元函数极值的充分条件;极值的求法;拉格朗日乘数法;多元函数的最大值、最小值及其简单应用。

数学一要求了解二元函数的二阶泰勒公式,而数学二、三、四不要求。

【大纲要求】要理解多元函数的概念,理解二元函数的几何意义;了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质;理解偏导数和全微分的概念。

在方法上,要掌握复合函数偏导数的求法;会求全微分;会求隐函数(包括由方程组确定的隐函数)的偏导数;了解二元函数的二阶泰勒公式(数学二、三、四不要求)。

在应用方面,理解多元函数极值和条件极值的概念,会求二元函数的极值,会用拉格朗日乘数法求条件极值,解决一些简单的最大最小值应用问题。

【考点分析】应用链锁规则求多元复合函数的偏导数问题,是考试的一个重点。

另一个考试重点是求多元函数的条件极值和无条件极值。

一、多元函数微分学的基本概念及其关系定义1 设二元函数的某心邻域内有定义,如果动点f(x,y)以任何方式无限趋于点总是无限趋于一个常数A,则称当时,。

定义2 如果连续。

如果f(x,y)在区域D上每一点都连续,则称f(x,y)在区域D上连续。

定理1 最大值和最小值定理在有界闭区域D上的多元连续函数,在D上一定有最大值和最小值。

高等数学考研讲义

高等数学考研讲义

高等数学考研讲义高等数学是考研数学中的重要组成部分,对于很多考生来说,是需要重点攻克的难关。

在这份讲义中,我们将系统地梳理高等数学的重要知识点,并通过典型例题帮助大家加深理解。

一、函数与极限函数是高等数学的基础概念之一。

函数的定义、性质(奇偶性、单调性、周期性、有界性等)需要熟练掌握。

极限是高等数学中的核心概念。

极限的定义、性质以及计算方法是重点。

1、极限的定义极限的ε δ 定义是理解极限概念的关键,但在实际计算中用得较少。

而对于一些简单函数的极限,可以通过直观的分析来理解。

2、极限的性质极限具有唯一性、局部有界性、局部保号性等性质。

3、极限的计算极限的计算方法有多种,包括四则运算、等价无穷小替换、洛必达法则、泰勒公式等。

例如,计算极限:lim(x→0) (sin x / x)我们可以利用等价无穷小替换,当x → 0 时,sin x ~ x ,所以该极限的值为 1 。

再如,计算极限:lim(x→∞)((x + 1) /(x 1) )^x这是一个1^∞ 型的极限,可以使用重要极限公式或者化为指数形式后用洛必达法则求解。

二、导数与微分导数反映了函数的变化率。

1、导数的定义函数在某一点的导数定义为该点处的切线斜率。

2、导数的计算基本初等函数的导数公式要牢记,同时掌握求导法则(四则运算、复合函数求导法则等)。

例如,求函数 y = sin(2x + 1) 的导数令 u = 2x + 1 ,则 y = sin u ,根据复合函数求导法则,y' = cos u u' = 2cos(2x + 1) 。

微分是函数增量的线性主部。

三、中值定理与导数的应用中值定理是高等数学中的重要定理,包括罗尔定理、拉格朗日中值定理和柯西中值定理。

1、罗尔定理如果函数 f(x) 满足:在闭区间 a, b 上连续;在开区间(a, b) 内可导;f(a) = f(b) ,那么在(a, b) 内至少存在一点ξ ,使得 f'(ξ) = 0 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=30,抽取的号码依次为9,39,69,…,
939.

讲 落入区间[451,750]的有459,489,…,729,这些数构成首项为

目 459,公差为30的等差数列,

关 设有n项,显然有729=459+(n-1)×30,解得n=10.
所以做问卷B的有10人.
答案 C
热点分类突破
在系统抽样的过程中,要注意分段间隔,需要抽取
几个个体,样本就需要分成几个组,则分段间隔即为
N n
(N为
本 讲
样本容量),首先确定在第一组中抽取的个体的号码数,再从
栏 后面的每组中按规则抽取每个个体.解决此类题目的关键是

开 深刻理解各种抽样方法的特点和适用范围.但无论哪种抽样

方法,每一个个体被抽到的概率都是相等的,都等于样本容
量和总体容量的比值.

3204 9234 4935 8200 3623 4869 6938 7481
A.08
B.07
C.02
D.01
热点分类突破
(2)某单位 200 名职工的年龄分布情况如图所示,现要从中抽
取 40 名职工作样本.用系统抽样法,将全体职工随机按 1~
200 编号,并按编号顺序平均分为 40 组(1~5 号,6~10 号,…,
主干知识梳理
2.常用的统计图表
(1)频率分布直方图
频率

①小长方形的面积=组距×组距=频率;
讲 栏
②各小长方形的面积之和等于1;
目 开 关
③小长方形的高=频组率距,所有小长方形的高的和为组1距.
(2)茎叶图
在样本数据较少时,用茎叶图表示数据的效果较好.
主干知识梳理
3.用样本的数字特征估计总体的数字特征
每个小矩形的面积乘 以小矩形底边中点的 横坐标之和
主干知识梳理
(2)方差:s2=n1[(x1- x )2+(x2- x )2+…+(xn- x )2].
标准差:

s= n1[x1- x 2+x2- x 2+…+xn- x 2].
讲 4.变量的相关性与最小二乘法


(1)相关关系的概念、正相关和负相关、相关系数.


(2)最小二乘法:对于给定的一组样本数据(x1,y1),(x2,
n
y2),…,(xn,yn),通过求Q= (yi-a-bxi)2最小时,得
i=1
到线性回归方程y^=b^x+a^的方法叫做最小二乘法.
主干知识梳理
5.独立性检验
对于取值分别是{x1,x2}和{y1,y2}的分类变量X和Y,其样 本频数列联表是:
(2)由分组可知,抽号的间隔为5,又因为第5组抽出的号码为
本 讲
22,即第n组抽取的号码为5n-3,
栏 目
所以第8组抽出的号码为37;40岁以下年龄段的职工数为
开 关
200×0.5=100,
则应抽取的人数为24000×100=20人.
答案 (1)D
(2)37 20
热点分类突破
考点二 用样本估计总体
栏 目
第一组采用简单随机抽样的方法抽到的号码为9.抽到的32
开 关
人中,编号落入区间[1,450]的人做问卷A,编号落入区间
[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,
做问卷B的人数为
()
A.7
B.9
C.10
D.15
热点分类突破
解析 由系统抽样的特点知:
抽取号码的间隔为
960 32
(1)众数、中位数、平均数
数字特征
样本数据
频率分布直方图
取最高的小长方形底
众数 出现次数最多的数据

边中点的横坐标
讲 栏
将数据按大小依次排 把频率分布直方图划
目 开 关
列,处在最中间位置 分左右两个面积相等 中位数Байду номын сангаас
的一个数据(或最中间 的分界线与x轴交点的
两个数据的平均数) 横坐标
平均数
样本数据的算术平均 数
196~200 号).若第 5 组抽出的号码为 22,则第 8 组抽出的号
本 讲
码应是________.若用分层抽样方法,则 40 岁以下年龄段应
栏 目
抽取________人.


热点分类突破
解析 (1)从第1行第5列、第6列组成的数65开始由左到右依
次选出的数为:08,02,14,07,01,所以第5个个体编号为01.
(2) x 甲=15(87+91+90+89+93)=90,
热点分类突破
x 乙=15(89+90+91+88+92)=90,
s2甲=15[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]
例2 (1)(2013·四川)某学校随机抽取20个班,调查各班中有网
上购物经历的人数,所得数据的茎叶图如图所示,以组距
为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所
本 作的频率分布直方图是
讲 栏 目 开 关
()
热点分类突破
本 讲 栏 目 开 关
热点分类突破
(2)(2013·江苏)抽样统计甲、乙两位射击运动员的5次训练成绩
主干知识梳理
1.随机抽样
(1)简单随机抽样特点为从总体中逐个抽取,适用范围:
本 讲
总体中的个体较少.
栏 目
(2)系统抽样特点是将总体均分成几部分,按事先确定的
开 关
规则在各部分中抽取,适用范围:总体中的个体数较多.
(3)分层抽样特点是将总体分成几层,分层进行抽取,适
用范围:总体由差异明显的几部分组成.
热点分类突破
(1)(2013·江西)总体由编号为01,02,…,19,20的
20个个体组成,利用下面的随机数表选取5个个体,选取方法
本 是从随机数表第1行的第5列和第6列数字开始由左到右依次选
讲 栏
取两个数字,则选出来的第5个个体的编号为
()
目 开
7816 6572 0802 6314 0702 4369 9728 0198

y1
y2 总计
讲 栏
x1
a
b a+b
目 开
x2
c
d c+d

总计 a+c b+d n
则K2=
nad-bc2 a+bc+da+cb+d
(其中n=a+b+c+d为样
本容量).
热点分类突破
考点一 抽样方法
例1 (2012·山东)采用系统抽样方法从960人中抽取32人做问
本 讲
卷调查,为此将他们随机编号为1,2,…,960,分组后在
(单位:环),结果如下:
运动员 第1次 第2次 第3次 第4次 第5次


87 91 90 89 93
讲 栏

89 90 91 88 92
目 开
则成绩较为稳定(方差较小)的那位运动员成绩的方差为
关 ________.
解析 (1)由于频率分布直方图的组距为5,去掉C、D,又 [0,5),[5,10)两组各一人,去掉B,应选A.
相关文档
最新文档