北师大版七年级上数学第三章测试题含答案
北师大版七年级上册数学第三章测试卷及答案
北师大版七年级上册数学第三章测试卷及答案考生作答时要沉着冷静,规范书写,确保字迹清楚、卷面整洁。
按照要求在指定位置正确填写信息、在与题号相对应的答题区域内答题一、选择题1.“x与y两数的平方差”可以用代数式表示为( )A. x²-y²B. x-y²C. (x-y)²D. x²-y2. 不一定相等的一组是( )A. a+b与b+aB. 3a与a+a+aC. a³与a·a·aD. 3(a+b)与3a+b3.下列代数式中多项式的个数有( )2a m−n63π+a5a−b2(x2−4).A. 2B. 3C. 4D. 54. 如果3aᵐ⁺³b⁴与a²b":是同类项,则mn的值为( )A. 4B. -4C. 8D. 125. 如图,长为4a的长方形,沿图中虚线裁剪成四个形状大小完全相同的小长方形,那么每个小长方形的周长为( )(用含a的式子表示)A. 4aB. 5aC. 6aD. 8a6. 已知a-2b=-1, 则代数式1-2a+4b的值是( )A. -3B. -1C. 2D. 37.某种商品进价为a元,在销售旺季,提价30%销售,旺季过后,商品以7折价格开展促销活动,这时一件商品的售价为( )A. aB. 0.7aC. 1.03aD.0.91a8. 下列说法正确的是( )A.1x +1是多项式B.3x+y3是单项式C. -mn⁵是五次单项式D. -x²y-2x³y是四次多项式9. 下列运算正确的是( )A. 2⁴=8B. 2x²-x²=2C. 2a+3b=5abD. 2x²y-x²y=x²y第1页共 10页10.如图,各网格中四个数之间都有相同的规律,则第7个网格中右下角的数为( )第1个第2个第3个A. 62B. 79C. 88D. 98二、填空题11. 有一个两位数,个位数字是n,十位数字是m,则这个两位数可表示为 .12. 如果a²+a=1,那么代数式3a²+3a+2的值为 .13. 多项式4x²y-3xy+1 的次数是 .14. 如果单项式−xyᵇ⁺¹与单项式12x a−2y3是同类项,那么代数式((a−b)²⁰²³=.三、计算题15. 计算:(1) -2⁴+(4-9)²-5×(-1)⁶;(2)(2a²b-ab²)-2(ab²+3a²b).四、解答题16.判断一个正整数能被3 整除的方法是:把这个正整数各个数位上的数字相加,如果所得的和能够被3整除,则这个正整数就能被3整除.请证明对于任意两位正整数,这个判断方法都是正确的.17. 已知a、b互为相反数,c、d互为倒数,x的绝对值是3,求(a+b+cd)x²-cd.18. 先化简, 再求值: (3a²+6a-1)-2(a²+2a-3). 其中a=-2.19. 观察下列三行数并按规律填空:-1, 2, -3, 4, -5, ▲ ,▲ , …;1,4,9, 16,25, ▲ , ▲ , …;0,3,8, 15, 24, ▲ ,▲ , …(1)第一行数按什么规律排列?(2)第二行数、第三行数分别与第一行数有什么关系?(3) 取每行数的第10个数,计算这三个数的和.五、综合题20. 某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、 10元/本.(1)现购进a本甲种书和b本乙种书.请用含a, b的代数式表示,共付款元;第2页共 10页(2)若花费5×10⁴元购进甲种书、花费3×10³元购进乙种书,用科学记数法表示共花费元.21. 某商场计划投入一笔资金(即本金)采购一批商品,经过市场调查发现,有两种销售方式:方式A:若月末出售,可获利30%,但要支付仓储费用600元;方式B:若月初出售,可获利20%,并可用本金和利润再投资其他商品,到月末又可获利5%. 若商场投资本金x元.(1)分别用含x的最简代数式表示出按方式A,B出售所获得的利润;(2)若商场投资本金30000元,选择哪种销售方式获利较多?并求出此时获利金额.22. 已知x, y, z, m, n满足①5(x-y+3)²+2|m-2|=0;n³a²⁻ʸb⁵⁺ᶻ是一个关于a、b三次单项式且系数为-1:(1)求m, n的值;(2)求代数式(x−y)ᵐ⁺¹+(y−z)¹⁻ⁿ+(z−x)⁵的值.23.如图,用同样长的火柴棒按规律搭建图形,图①需要6根火柴棒,图②需要11根火柴棒,图③需要 16根火柴棒, ……(1)图⑥需要根火柴棒;(2)按照这个规律,图n需要火柴棒的根数为 .(用含a的式子表示)第3页共10页参考答案与解析1. 【答案】A【解析】【解答】解:“x与y两数的平方差”可以用代数式表示为:x²-y²,故A符合题意.故答案为: A.【分析】根据题意直接列出代数式即可。
北师大版七年级上册数学第三章测试题附答案
北师大版七年级上册数学第三章测试题附答案(时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.下列说法中正确的是( B ) A .7+1a是多项式B .3x 2-5x 2y 2-6y 4-2是四次四项式C .x 6-1的项数和次数都是6 D.a +b 3不是多项式2.下列计算中正确的是( D ) A .3a -2a =1 B .3x 2y -2xy 2=xy 2 C .3a 2+5a 2=8a 4 D .3ax -2xa =ax 3.下列各式的运算:(1)-(-a -b)=a -b ;(2)5x -(2x -1)-x 2=5x -2x -1+x 2;(3)3xy -12(xy -y 2)=3xy -12xy+y 2;(4)(a 3+b 3)-3(2a 3-3b 3)=a 3+b 3-6a 3+9b 3.其中去括号不正确的有( B )A .(1)(2)B .(1)(2)(3)C .(2)(3)(4)D .(1)(2)(3)(4)4.有一条长为l 的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t ,则所围成园子的面积为( A )A .(l -2t)tB .(l -t)t C.⎝⎛⎭⎫l 2-t t D.⎝⎛⎭⎫l -t 2t 5.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x 的值,当滚珠发生撞击,就输出相撞滚珠上的代数式所表示数的和y.已知当三个滚珠同时相撞时,不论输入x 的值多大,输出y 的值总不变,则a 的值为( B )A .2B .-2C .3D .-36.如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是( D )A .71B .78C .85D .89二、填空题(本大题共6小题,每小题3分,共18分)7.一个单项式只含a,b两个字母,并且它的系数为-1,次数为4.试写出这个单项式:答案不唯一,如-a3b,-a2b2,-ab3 .8.对于有理数a,b,定义a⊙b=3a+2b,则(x+y)⊙(x-y)化简后得5x+y .9.已知a+b=4,ab=-2,则代数式(4a-3b-2ab)-(a-6b-ab)的值为14 .10.若5x2y|m|-14(m+1)y2-3是三次三项式,则m等于 1 .11.规定=ad-bc,若=4,则-11x2+6= 5 .12.如果一个多项式中各个单项式的次数都相等,则称该多项式为齐次多项式.若-x|m|y +3x2y3+5x2y n+y5是齐次多项式,则m n的值为64或-64 .选择、填空题答题卡一、选择题(每小题3分,共18分)题号 1 2 3 4 5 6 得分答案 B D B A B D二、填空题(每小题3分,共18分) 得分:______7.答案不唯一,如-a3b,-a2b2,-ab38.5x+y 9. 14 10. 111. 5 12.64或-6413.化简下列各式:(1)2(2x-3y)-(3x+2y+1);解:原式=4x-6y-3x-2y-1=x-8y-1.(2)-(3a2-4ab)+[a2-2(2a+2ab)].解:原式=-3a2+4ab+a2-4a-4ab=-2a2-4a.14.先化简,再求值:3(x2-2xy)-[(-2xy+y2)+(x2-2y2)],其中x,y的值如图所示.解:原式=3x2-6xy-(-2xy+y2+x2-2y2)=3x2-6xy+2xy-y2-x2+2y2=2x2-4xy+y2.当x=2,y=-1时,原式=2×22-4×2×(-1)+(-1)2=8+8+1=17.15.若单项式3x2y5与-2x1-a y3b-1是同类项,求下面代数式的值:5ab2-[6a2b-3(ab2+2a2b)].解:因为3x2y5与-2x1-a y3b-1是同类项,所以1-a=2且3b-1=5,解得a=-1,b=2,原式=5ab2-(6a2b-3ab2-6a2b)=5ab2-6a2b+3ab2+6a2b=8ab2.当a=-1,b=2时,原式=8×(-1)×22=-8×4=-32.16.某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件.(1)用代数式表示这两个月公司应付给商店的钱数;(2)假设代销费为每月200 元,每件产品的提成为2 元,该商店一月份销售了200 件,二月份销售了250 件,求该商店这两个月销售此种产品的收益.解:(1)这两个月公司应付给商店的钱数为[2a+(m+n)b]元.(2)当a=200,b=2,m=200,n=250时,2a+(m+n)b=2×200+(200+250)×2=1 300(元).答:该商店这两个月销售此种产品的收益为1 300 元.17.已知一个多项式A减去多项式2x2+5x-3,某同学将减号写成了加号,运算结果得-x2+3x-7.求多项式A及它们的差.解:因为A+2x2+5x-3=-x2+3x-7,所以A=-(2x2+5x-3)+(-x2+3x-7)=-3x2-2x-4.它们的差为-3x2-2x-4-(2x2+5x-3)=-5x2-7x-1.四、(本大题共3小题,每小题8分,共24分)18.当式子(2x+4)2+5取得最小值时,求式子5x-[-2x2-(-5x+2)]的值.解:当2x+4=0即x=-2时,式子(2x+4)2+5取得最小值.5x-[-2x2-(-5x+2)]=5x-(-2x2+5x-2)=5x+2x2-5x+2=2x2+2.当x=-2时,原式=2×(-2)2+2=10.19.先化简,再求值:5(3a2b-ab2)-4(-ab2+3a2b),且|a+2|+(b-3)2=0.解:5(3a2b-ab2)-4(-ab2+3a2b)=15a2b-5ab2+4ab2-12a2b=3a2b-ab2.因为|a+2|+(b-3)2=0,所以a=-2,b=3,所以原式=3×(-2)2×3-(-2)×32=36+18=54.20.如果单项式2mx a y与-5nx2a-3y是关于x,y的单项式,且它们是同类项.(1)求(7a-22)2 020的值;(2)若2mx a y+5nx2a-3y=0,求(2m+5n)2 020的值.解:(1)因为单项式是同类项,所以2a-3=a,所以a=3,所以(7a -22)2 020=1.(2)因为2mx a y +5nx 2a -3y =0,2mx a y 与5nx 2a -3y 是关于x ,y 的单项式, 且它们是同类项, 所以2m +5n =0,所以(2m +5n )2 020=0.五、(本大题共2小题,每小题9分,共18分)21.代数式2x 2+ax -y +6与2bx 2-3x +5y -1的差与字母x 的取值无关,求下列代数式的值:13a 3-3b 2-⎝⎛⎭⎫14a 3-2b 2. 解:由题意,得2x 2+ax -y +6-2bx 2+3x -5y +1 =(2-2b )x 2+(a +3)x -6y +7.因为与字母x 的取值无关, 所以a +3=0,2-2b =0, 所以a =-3,b =1, 所以13a 3-3b 2-⎝⎛⎭⎫14a 3-2b 2 =13×(-3)3-3×12-⎣⎡⎦⎤14×(-3)3-2×12 =-9-3+354=-134.22. 如图所示是小明家的住房结构平面图(单位:米),装修房子时,他打算将卧室以外的部分都铺上地砖.(1)若铺地砖的价格为80 元/平方米,那么购买地砖需要花多少钱?(用代数式表示) (2)已知房屋的高度为3 米,现在想要在客厅和卧室的墙壁上贴上壁纸,那么需要多少平方米的壁纸(门窗所占面积忽略不计)?(用代数式表示)(3)若x =4,y =5,且每平方米地砖的价格是90 元,每平方米壁纸的价格是15元,那么,在这两项装修中,小明共要花费多少钱?(各种小的损耗不计)解:(1)客厅的面积是2x ·4y ,厨房的面积是x (4y -2y ),卫生间的面积是y·(4x -3x ),所以共需要地砖的面积为2x ·4y +x (4y -2y )+y·(4x -3x )=11xy ,因为每平方米的价格为80 元,故共需要80×11xy =880xy (元). 答:购买地砖需要花880xy 元钱.(2)根据题意得3×[2×(2x +4y )+2×(2y +2x )], 化简得24x +36y.答:需要(24x +36y )平方米的壁纸. (3)共需地砖11xy 平方米,共需壁纸(24x+36y)平方米.将x=4,y=5代入,得共需地砖11×4×5=220(平方米),共需壁纸24×4+36×5=276(平方米).因为每平方米地砖的价格是90 元,每平方米壁纸的价格是15 元,所以共需钱数为220×90+276×15=23 940(元).答:在这两项装修中,小明共要花费23 940元.六、(本大题共12分)23.点A,B,C在数轴上表示数a,b,c,满足(b+2)2+(c-24)2=0,多项式x|a+3|y2-ax3y+xy2-1是关于字母x,y的五次多项式.(1)a的值为0或-6 ,b的值为-2 ,c的值为24 ;(2)已知蚂蚁从A点出发,途经B,C两点,以3 m/s的速度爬行,需要多长时间到达终点C?(3)求a2b-bc的值.解:(2)当点A为-6时,如图①,AC=24-(-6)=30,30÷3=10 s,当点A为0时,如图②,不符合题意.所以需要10 s到达终点C.(3)①当a=0,b=-2,c=24时,a2b-bc=02×(-2)-(-2)×24=48;②当a=-6,b=-2,c=24时,a2b-bc=(-6)2×(-2)-(-2)×24=-72+48=-24.。
北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)
北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)一、选择题1.小明比小强大2岁,比小华小4岁.如果小强y 岁.则小华( ) A .(y −2)岁B .(y +2)岁C .(y +4)岁D .(y +6)岁2.下列代数式中,是次数为3的单项式的是( ) A .−m 3nB .3C .4t 3−3D .x 2y 23.对于多项式−3x −2xy 2−1,下列说法中,正确的是( ) A .一次项系数是3 B .最高次项是2xy 2 C .常数项是−1D .是四次三项式4.下列各组单项式中,不是同类项的是( ) A .−2y 2a 3与12ay 2B .12x 3y 与−12xy 3 C .6a 2bn 与−a 2nbD .23与325.按如图所示的程序运算,如果输入x 的值为12,那么输出的值为( )A .3B .0C .−1D .−36.下列运算中,正确的是( ) A .3a +2b =5abB .2a 3+3a 2=5a 5C .5a 2−4a 2=1D .3a 2b −3ba 2=07.若关于x 的代数式2x 2+ax +b −(2bx 2−3x −1)的值与x 无关,则a −b 的值为( ) A .2B .4C .−2D .−48.观察下列关于m ,n 的单项式的特点:12m 2n ,23m 2n 2,34m 2n 3,45m 2n 4,56m 2n 5,……,按此规律,第n 个单项式是( ) A .nn+1m 2n n B .nn+1m n n nC .n−1nm 2n nD .n−1nm n n n二、填空题9.一支钢管需要a 元,一本管记本需要b 元,现买5支钢笔和8本笔记本共需要 元. 10.若x P +4x 3+qx 2+2x +5是关于x 的五次四项式,则qp = . 11.已知2x 6y 2和−x 3m y n 是同类项,则2m +n 的值是 .12.一种商品成本为a 元/件,商场在成本的基础上增加20%作为售价出售,现搞活动促销,按原售价的九折出售.设售出m件该商品时,总利润为元.13.已知a是−5的相反数,b比最小的正整数大4,c是相反数等于它本身的数,则a+b+c的值是.三、计算题14.计算:(1)4b−3a−3b+2a(2)(3x2−y2)−3(x2−2y2)+m2−3cd+5m的值.15.若a、b互为相反数,c、d互为倒数,|m|=3,求a+b4m四、解答题16.已知代数式A=x2+ax−2a(1)求2A−B;(2)若2A−B的值与x的取值无关,求a的值.17.如图,在一个直角三角形休闲广场的直角处设计一块四分之一圆形花坛,若圆形的半径为r米,广场一直角边长为2a米,另一直角边长为b米.(1)列式表示广场空地的面积(用含π的式子表示);(2)若a=150米,b=50米,r=20米,求广场空地的面积(π取3.14).18.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为15公里,行车时间为20分钟,则需付车费多少元?(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简)?(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,但下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?参考答案1.D2.D3.C4.B5.C6.D7.D8.A9.(5a+8b)10.011.612.0.08am13.1014.(1)解:4b−3a−3b+2a=(4−3)b+(2−3)a=b−a(2)解:(3x2−y2)−3(x2−2y2)=3x2−y2−3x2+6y2=5y215.解:依题意得a+b=0,cd=1,m=±3.当m=3时,原式=0+32−3×1+5×3=9−3+15=21.当m=−3时,原式=0+(−3)2−3×1+5×(−3)=9−3−15=−9. 因此值为21或-9.16.(1)解:原式=4ax-x-4a+1(2)解:a=1417.(1)解:四分之一圆的面积为:14πr2;直角三角形的面积为:12×2a×b=ab;所以,广场空地的面积为:ab−14πr2;(2)解:当a=150米,b=50米,r=20米,π=3.14时ab−14πr2=150×50−14×3.14×202=7186(平方米)18.(1)解:1.8×15+0.45×20+0.4×(15−10)=38(元)答:需付车费38元.(2)解:当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a−10)=(2.2a+0.45b−4)元;(3)解:小王与小张乘坐滴滴快车分别为x分钟、y分钟1.8×9.5+0.45x=1.8×14.5+0.45y+0.4×(14.5−10)整理,得:0.45x−0.45y=10.8∴x−y=24因此,这两辆滴滴快车的行车时间相差24分钟.。
北师大版七年级数学上册第三章达标测试卷附答案 (3)
北师大版七年级数学上册第三章达标测试卷一、选择题(每题3分,共30分) 1.下列各式中,与2a 是同类项的是( )A .3aB .2abC .-3a 2D .a 2b 2.下列代数式中,符合书写要求的是( )A .a 2b 4B .213cba C .a ×b ÷c D .ayz 33.代数式:6x 2y +1x ,5xy +x 2,-15y 2+xy ,2π,-3中,不是..整式的有( ) A .4个 B .3个 C .2个 D .1个 4.已知a +b =4,c -d =3,则(b +c )-(d -a )的值等于( ) A .1 B .-1 C .7 D .-75.小刚从一列火车的第a 节车厢数起,一直数到第b 节车厢(b >a ),则他数过的车厢节数是( )A .a +bB .b -aC .b -a -1D .b -a +1 6.下列叙述中,错误..的是( ) A .代数式x 2+y 2的意义是x ,y 的平方和 B .代数式5(a +b )的意义是5与a +b 的积C .x 的5倍与y 的和的一半,用代数式表示是5x +y 2D .x 的12与y 的13的差,用代数式表示是12x -13y 7.下列运算正确的是( ) A .-()2x +5=-2x +5 B .-12()4x -2=-2x +2 C .13()2m -3n =23m +nD .-⎝ ⎛⎭⎪⎫23m -2x =-23m +2x8.若m +n =-1,则(m +n )2-2m -2n 的值是( ) A .3 B .0 C .1 D .29.有理数a ,b 在数轴上对应的点的位置如图所示,则|a +b |-2|a -b |化简后的结果为( )A .2a +bB .-a -bC .-3a +bD .-2a -b10.用棋子摆出下列一组图形(如图):按照这种规律摆下去,第n个图形用的棋子个数为() A.3n B.6n C.3n+6 D.3n+3二、填空题(每题3分,共30分)11.单项式-x3y3的系数是________,次数是________.12.-xy22+3xy-23是________次________项式,最高次项的系数为________.13.计算:a2b-2a2b=__________.14.多项式12x|n|-(n+2)x+7是关于x的二次三项式,则n的值是________.15.若7a x b2与-a3b y的和为单项式,则y x=________.16.张老师带了100元钱去给学生买笔记本和笔.已知一本笔记本3元,一支笔2元,张老师买了a本笔记本,b支笔,她还剩__________________元钱(用含a,b的代数式表示).17.多项式____________与m2+m-2的和是m2-2m.18.按照如图所示的计算程序,若x=2,则输出的结果是________.19.当x=1时,代数式ax3-3bx+4的值是7,则当x=-1时,这个代数式的值是________.20.某数学老师在课外活动中做了一个有趣的游戏:首先发给A,B,C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出两张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A 同学.请你确定,最终B同学手中剩余的扑克牌的张数为________.三、解答题(21,26题每题12分,22题6分,其余每题10分,共60分) 21.计算:(1)2xy-y-(-y+yx);3-8a+2a2;(2)5a2+2a-1-2()(3)3a2b-2[ab2-2(a2b-2ab2)].22.已知A=-a2+2a-1,B=3a2-2a+4,求当a=-1时,2A-3B的值.23.便民超市原有(5x2-10x)桶食用油,上午卖出(7x-5)桶,中午休息时又运进同样的食用油(x2-x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)该便民超市从中午到下午清仓时一共卖出多少桶食用油?(2)当x=5时,该便民超市从中午到下午清仓时一共卖出多少桶食用油?24.“囧”像一个人郁闷的神情.如图,边长为a的正方形纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的两个小直角三角形的两直角边长分别为x,y,剪去的长方形长和宽分别为x,y.(1)用含a,x,y的式子表示“囧”(阴影部分)的面积S;(2)当a=20,x=5,y=4时,求S的值.25.仔细观察下列等式:第1个:22-1=1×3;第2个:32-1=2×4;第3个:42-1=3×5;第4个:52-1=4×6;第5个:62-1=5×7;…这些等式反映出自然数间的某种运算规律.按要求解答下列问题:(1)请你写出第6个等式:______________________;(2)设n(n≥1)表示自然数,则第n个等式可表示为______________________;(3)运用上述结论,计算:122-1+142-1+162-1+…+12 0222-1.[提示:11×3=12×⎝⎛⎭⎪⎫1-13,13×5=12×⎝⎛⎭⎪⎫13-15,…]26.如图是由边长为1的正方形按照某种规律排列而组成的.(1)观察图形,填写下表:图形序号①②③正方形的个数8图形的周长18(2)推测第n个图形中,正方形的个数为__________,周长为__________;(用含n的代数式表示)(3)写出任意一个图形的周长y与它所含正方形个数x之间的关系式.答案一、1.A 2.A 3.D 4.C 5.D 6.C 7.D8.A9.C10.D二、11.-13;412.三;三;-1213.-a2b14.215.816.(100-3a-2b)17.-3m+218.-2619.120.7三、21.解:(1)原式=2xy-y+y-xy=xy;(2)原式=5a2+2a-1-6+16a-4a2=a2+18a-7;(3)原式=3a2b-2(ab2-2a2b+4ab2)=3a2b-2ab2+4a2b-8ab2=7a2b-10ab2. 22.解:2A-3B=2(-a2+2a-1)-3(3a2-2a+4)=-2a2+4a-2-9a2+6a-12=-11a2+10a-14.当a=-1时,2A-3B=-11a2+10a-14=-11×(-1)2+10×(-1)-14=-11-10-14=-35.23.解:(1)(5x2-10x)-(7x-5)+(x2-x)-5=(6x2-18x)(桶).故该便民超市从中午到下午清仓时一共卖出(6x2-18x)桶食用油.(2)当x=5时,6x2-18x=6×52-18×5=60.故当x=5时,该便民超市从中午到下午清仓时一共卖出60桶食用油.24.解:(1)S=a2-12xy×2-xy=a2-2xy.(2)当a=20,x=5,y=4时,S=a2-2xy=202-2×5×4=400-40=360. 25.解:(1)72-1=6×8(2)(n+1)2-1=n(n+2)(3)原式=11×3+13×5+15×7+…+12 021×2 023=12×(1-13+13-15+15-17+…+12 021-12 023)=12×⎝⎛⎭⎪⎫1-12 023=12×2 0222 023=1 0112 023.26.解:(1)从左到右、从上到下依次填:13,18,28,38. (2)5n +3;10n +8 (3)所求关系式为y =2x +2.点拨:(1)n =1时,正方形有8个,即8=5×1+3,周长是18,即18=10×1+8;n =2时,正方形有13个,即13=5×2+3,周长是28,即28=10×2+8; n =3时,正方形有18个,即18=5×3+3,周长是38,即38=10×3+8. (2)由(1)可知,第n 个图形中正方形有(5n +3)个,周长是10n +8. (3)因为y =10n +8,x =5n +3,所以y =2x +2.七年级数学上册期中测试卷一、选择题(每题3分,共30分)1.现实生活中,如果收入1 000元记作+1 000元,那么-800元表示( )A .支出800元B .收入800元C .支出200元D .收入200元 2.据国家统计局公布数据显示:2020年我国粮食总产量为13 390亿斤,比上年增加113亿斤,增长0.9%,我国粮食生产喜获“十七连丰”.将13 390亿用科学记数法表示为( ) A .1.339×1012B .1.339×1011C .0.133 9×1013D .1.339×10143.⎪⎪⎪⎪⎪⎪-16的相反数是( ) A.16 B .-16C .6D .-64.在-6,0,-2,4这四个数中,最小的数是( )A .-2B .0C .-6D .45.a ,b 两数在数轴上对应点的位置如图所示,下列结论中正确的是( )(第5题)A .a <0B .a >1C .b >-1D .b <-16.数轴上与表示-1的点距离10个单位的点表示的数是( )A .10B .±10C .9D .9或-117.已知|a |=-a ,则a -1的绝对值减去a 的绝对值所得的结果是( )A .-1B .1C .2a -3D .3-2a8.计算:(-3)3×⎝ ⎛⎭⎪⎫13-59+427的结果为( ) A.23 B .2 C.103D .109.若代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为( )A .0B .-1C .-2D .210.如果a +b +c =0,且|a |>|b |>|c |.则下列说法中可能成立的是( )A .b 为正数,c 为负数B .c 为正数,b 为负数C .c 为正数,a 为负数D .c 为负数,a 为负数二、填空题(每题3分,共15分)11.将代数式4a 2b +3ab 2-2b 3+a 3按a 的升幂排列是________________________.12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7 140m 2,则用科学记数法表示FAST 的反射面总面积约为____________m 2.(精确到万位)13.若|x +2|+(y -3)4=0,则x y =________. 14.如果规定符号“*”的意义是a *b =aba +b,则[2*(-3)]*(-1)的值为________. 15.如图①是三阶幻方(从1到9,一共九个数,每行、每列以及两条对角线上的3个数之和均相等).如图②是三阶幻方,已知此幻方中的一些数,则图②中9个格子中的数之和为________.(用含a 的式子表示)(第15题)三、解答题(17题16分,22题9分,23题10分,其余每题8分,共75分) 16.将下列各数在如图所示的数轴上表示出来,并把它们用“<”号连接起来.-|-2.5|,414,-(+1),-2,-⎝ ⎛⎭⎪⎫-12,3.(第16题)17.计算:(1)25.7+(-7.3)+(-13.7)+7.3; (2)⎝ ⎛⎭⎪⎫-12-59+712÷⎝ ⎛⎭⎪⎫-136;(3)(-1)3+⎪⎪⎪⎪⎪⎪-12-⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-23; (4)-14-(1-0.5)×13×[1-(-2)2].18.先化简,再求值:2(x 2y +3xy )-3(x 2y -1)-2xy -2,其中x =-2,y =2.19.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.20.小敏对算式:(-24)×⎝ ⎛⎭⎪⎫18-13+4÷⎝ ⎛⎭⎪⎫12-13进行计算时的过程如下: 解:原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫12-13……第一步 =-3+8+4×(2-3)……第二步 =5-4……第三步 =1.……第四步根据小敏的计算过程,回答下列问题:(1)小敏在进行第一步时,运用了乘法的________律;(2)她在计算时出现了错误,你认为她从第________步开始出错了; (3)请你给出正确的计算过程.21.某服装店以每套82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表:售出套数7 6 7 8 2售价(元) +5 +1 0 -2 -5则该服装店在售完这30套保暖内衣后,共赚了多少钱?22.下面的图形是由边长为1的正方形按照某种规律组成的.(第22题)(1)观察图形,填写下表:图形序号①②③正方形的个数9图形的周长16(2)推测第n个图形中,正方形的个数为____________,周长为____________;(都用含n的代数式表示)(3)写出第2 020个图形的周长.23.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置.(2)把点C到点A的距离记为CA,则CA=________cm.(3)若点B沿数轴以3cm/s的速度匀速向右运动,经过________s后点B到点C的距离为3cm.(4)若点B沿数轴以2cm/s的速度匀速向左运动,同时点A,C沿数轴分别以1cm/s和4cm/s的速度匀速向右运动.设运动时间为t s,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由.(第23题)答案一、1.A 2.A 3.B 4.C 5.D 6.D 7.B 8.B9.D 【点拨】x 2+ax +9y -(bx 2-x +9y +3)=x 2+ax +9y -bx 2+x -9y -3=(1-b )x 2+(a +1)x -3,因为代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,所以1-b =0,a +1=0,解得a =-1,b =1,则-a +b =1+1=2. 10.C 【点拨】由题意可知a ,b ,c 三数中只有两正一负或两负一正两种情况,假设a ,b ,c 两负一正,要使a +b +c =0成立,则必有b <0,c <0,a >0,但题中并无此选项,故假设不成立.假设a ,b ,c 两正一负,要使a +b +c =0成立,则必有a <0,b >0,c >0,故只有选项C 符合题意.二、11.-2b 3+3ab 2+4a 2b +a 3 12.2.5×105 13.-814.-65 【点拨】[2*(-3)]*(-1)=2×(-3)2+(-3)*(-1)=6*(-1)=6×(-1)6+(-1)=-65. 15.9a -27三、16.解:在数轴上表示如图所示.(第16题)-|-2.5|<-2<-(+1)<-⎝ ⎛⎭⎪⎫-12<3<414.17.解:(1)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(2)原式=⎝ ⎛⎭⎪⎫-12-59+712×(-36)=18+20+(-21)=17.(3)原式=-1+12-1=-32.(4)原式=-1-12×13×(-3)=-1+12=-12. 18.解:原式=2x 2y +6xy -3x 2y +3-2xy -2=-x 2y +4xy +1.当x =-2,y =2时,原式=-(-2)2×2+4×(-2)×2+1=-8-16+1=-23.19.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6 =15xy -6x -9.(2)由(1)知3A +6B =15xy -6x -9=(15y -6)x -9, 由题意可知15y -6=0,解得y =25. 20.解:(1)分配 (2)二(3)原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫36-26 =-3+8+4÷16 =-3+8+4×6 =-3+8+24 =29.21.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3 015(元),30×82=2 460(元),3 015-2 460=555(元). 答:共赚了555元.22.解:(1)从上到下、从左往右依次填:14;22;19;28(2)5n +4; 6n +10(3)当n =2 020时,周长为6×2 020+10=12 130. 23.解:(1)如图所示.(第23题) (2)6 (3)2或4(4)CA -AB 的值不会随着t 的变化而改变.理由如下: 根据题意得CA =(4+4t )-(-2+t )=6+3t (cm), AB =(-2+t )-(-5-2t )=3+3t (cm), 所以CA -AB =(6+3t )-(3+3t )=3(cm), 所以CA -AB 的值不会随着t 的变化而改变.。
北师大版七年级数学上册第三章测试题(含答案)
北师大版七年级数学上册第三章测试题(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.下列各式:①2x -1;②0;③S =πR 2;④x<y ;⑤st ;⑥x 2.其中代数式有( B )A .3个B .4个C .5个D .6个2.下列说法中,正确的是( C ) A.m 2n 4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式 3.下列计算正确的是( D ) A .3a -2a =1 B .x 2y -2xy 2=-xy 2 C .3a 2+5a 2=8a 4 D .3ax -2xa =ax 4.下列叙述中,错误的是( C )A .代数式x 2+y 2的意义是x ,y 的平方和B .代数式5(a +b)的意义是5与(a +b)的积C .x 的5倍与y 的和的一半,用代数式表示是5x +y2D .x 的12与y 的13的差,用代数式表示是12x -13y5.如图①,把一个长为m ,宽为n 的长方形(m>n)沿虚线剪开,拼成图②,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( A )A.m -n 2B .m -nC.m 2D.n 26.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( B )A .110B .158C .168D .178第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分) 7.多项式 -3m +2 与m 2+m -2的和为m 2-2m.8.某仓库有存粮85吨,第一天运走a 吨,第二天又运来3车,每车b 吨,此时仓库有存粮 (85-a +3b) 吨.9.化简:m -[n -2m -(m -n)]的结果为 4m -2n . 10.若4x m y n 与-3x 6y 2的和是单项式,则mn = 12 .11.若a -b =1,则(a -b)2-2a +2b 的值是 -1 .12.如图是一组有规律的图案:第1个图案由四个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n 为正整数)个图案由 (3n +1) 个▲组成.三、(本大题共5小题,每小题6分,共30分)13.计算:(1)3x 2+4x -2x 2-x +x 2-3x -1; 解:原式=2x 2-1.(2)2x 2-(-4x +5)+[4x 2-(3x 2-2x)-6x -5]. 解:原式=2x 2+4x -5+(4x 2-3x 2+2x -6x -5) =3x 2-10.14.先化简,再求值:-(9x 3-4x 2+5)-(-3-8x 3+3x 2),其中x =-3. 解:原式=-9x 3+4x 2-5+3+8x 3-3x 2 =-x 3+x 2-2.当x =-3时,原式=-(-3)3+(-3)2-2=27+9-2 =34.15.按照下图所示的程序计算当x 分别为-3,0时的输出值.解:程序对应的代数式为2(5x -2).当x =-3时,2(5x -2)=2×[5×(-3)-2] =2×(-17)=-34;当x =0时,2(5x -2)=2×(5×0-2)=-4.16.求12m 2n +2mn -3nm 2-3nm +4m 2n 的值,其中m 是最小的正整数,n 是绝对值等于1的数.解:12m 2n +2mn -3nm 2-3nm +4m 2n=32m 2n -mn. 由题意知:m =1,n =±1, 当m =1,n =1时,原式=12;当m =1,n =-1时,原式=-12.综上,该代数式的值为12或-12.17.已知:a 3b n +2+ab 3+6是一个六次多项式,单项式x 3n y 7-m 的次数与该多项式相同,求m ,n 的值.解:因为a 3b n +2+ab 3+6是一个六次多项式, 所以3+n +2=6, 解得n =1,所以3n +7-m =6, 即3+7-m =6, 所以m =4,即m ,n 的值分别为4,1.四、(本大题共3小题,每小题8分,共24分)18.已知代数式x 4+ax 3+3x 2+5x 3-7x 2-bx 2+6x -2合并同类项后不含x 3,x 2项,求2a +3b 的值.解:原式=x 4+(ax 3+5x 3)+(3x 2-7x 2-bx 2)+6x -2 =x 4+(a +5)x 3+(-4-b)x 2+6x -2. 由题意,得a +5=0,-4-b =0, 解得a =-5,b =-4,所以2a +3b =2×(-5)+3×(-4)=-22.19.一个花坛的形状如图所示,它的两端是半径相等的半圆. (1)求花坛的周长l ; (2)求花坛的面积S ;(3)若a =8 m ,r =5 m ,求此时花坛的周长及面积(π取3.14).解:(1)l =2πr +2a. (2)S =πr 2+2ar.(3)当a =8 m ,r =5 m 时,l =2π×5+2×8=10π+16≈47.4 m ,S =π×52+2×8×5=25π+80≈158.5 m 2.20.已知A =5a +3b ,B =3a 2-2a 2b ,C =a 2+7a 2b -2,当a =1,b =2时,求A -2B +3C 的值.解:∵A =5a +3b ,B =3a 2-2a 2b ,C =a 2+7a 2b -2,∴A -2B +3C =(5a +3b)-2(3a 2-2a 2b)+3(a 2+7a 2b -2) =5a +3b -6a 2+4a 2b +3a 2+21a 2b -6 =-3a 2+25a 2b +5a +3b -6. 当a =1,b =2时,原式=-3×12+25×12×2+5×1+3×2-6=52.五、(本大题共2小题,每小题9分,共18分)21.某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件.(1)用式子表示这两个月该公司应付给商店的钱数;(2)假设代销费为每月200元,每件产品的提成为2元,该商店一月份销售了200件,二月份销售了250件,求该商店这两个月销售此种产品的收益.解:(1)这两个月该公司应付给商店的钱数为[2a +(m +n)b]元. (2)当a =200,b =2,m =200,n =250时,2a +(m +n)b =1 300元.答:该商店这两个月销售此种产品的收益为1 300元.22.如果在关于x ,y 的多项式(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2中,无论x ,y 取何有理数,多项式的值都不变,求4(a 2-ab +b 2)-3(2a 2+b 2+5)的值.解:(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2 =ax 2-3x +by -1-6+2y +3x -2x 2=(a -2)x 2+(b +2)y -7. 根据题意得a =2,b =-2, 原式=4a 2-4ab +4b 2-6a 2-3b 2-15 =-2a 2-4ab +b 2-15. 当a =2,b =-2时,-2a 2-4ab +b 2-15=-2×22-4×2×(-2)+(-2)2-15 =-8+16+4-15 =-3.六、(本题共12分) 23.观察下面数表:12 3 43 4 5 6 74 5 6 7 8 9 10 ……(1)依此规律:第六行最后一个数字是________,第n 行最后一个数字是________. (2)其中某一行最后一个数字可能是2 017吗?若不可能,请说明理由;若可能,请求出是第几行?解:(1)因为第一行最后的数字为1, 第二行最后的数字为4, 第三行最后的数字为7, 第四行最后的数字为10,所以根据数据排列的规律,可得到每一行的最后一个数字与它前一行最后一个数字的差为3.所以按照这个规律可得到第n 行的最后的数字为1+3(n -1)=3n -2. 所以第六行最后一个数字是3×6-2=16. (2)可能是2 017,因为由3n -2=2 017, 解得n =2 0193=673,∴最后一个数字可能是2 017,是第673行.。
2022学年北师大版七年级数学上册第三章《整式及其加减》测试卷附答案解析
2022-2023学年七年级数学上册第三章《整式及其加减》测试卷一、单选题1.填在下面各正方形中的四个数之间都有一定的规律,按此规律可得到+++a b c d 的值为()A .355B .356C .435D .4362.若单项式25m x y +-与单项式2136n y x -的和仍为单项式,则2m n -的值为()A .6B .1C .3D .1-3.已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是()A .51x --B .51x +C .131x --D .131x +4.下列结论正确的个数是()①2-不是单项式②多项式3527x y xy --是三次三项式③232π3a b c的系数是23,次数是6④233m n -的次数为4A .0个B .1个C .2个D .3个5.多项式23211332x y xy -+的次数为()A .5B .3C .7D .86.已知53x y -=-,则55x y -+的值为()A .0B .2C .5D .87.一本笔记本的原价为a 元,降价后每本比原来便宜了b 元,小明买了4本这样的笔记本,则他一共花费了()A .()44a b -元B .()4a b -元C .()4a b -元D .4b 元8.按如图所示的运算程序,当输入3x =,6y =时,输出的结果为()A .1B .6C .45D .819.若()22m -与3n +互为相反数,则m n 的值是()A .8-B .8C .9-D .910.当=1x -时,3238ax bx -+的值为18,则1282b a -+的值为()A .40B .42C .46D .56二、填空题11.在式子1x,1x y ++,2022,a -,23x y -,13x +中,整式的个数是______个.12.已知520a b ++-=,则27a b -+的值为___________13.a ,b 两数平方的和除以3的商可以表示为______.14.已知有理数a 、b 、c 满足1,2,3a b c ===,且a b c a b c +-=+-,则a b c ++=__________.15.如关于x ,y 的多项式2347514x y mxy y xy +-+化简后不含二次项,则m =______.16.已知关于x 的多项式||2(4)31m m x x ---+是二次三项式,则m =________,当=1x -时,该多项式的值为________.17.对于任何有理数,我们规定符号a b cd的意义是a b ad bc c d =-,如121423234=⨯-⨯=-,当23(1)0x y -++=时,2221x y x --值为______.18.规定:()3f x x =-,()2g y y =+,例如()2235f -=--=,()2220g -=-+=.则式子()()11f x g x -++的最小值是__________.三、解答题19.已知()2230a b -++=,求代数式2222332232a b ab ab a b ab ab ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦的值.20.已知代数式2=2+3+21A x xy y -,22B x xy x -=++.(1)当=1x -,2y =时,求2A B -的值;(2)若2A B -的值与x 的取值无关,求y 的值.21.某超市销售茶壶、茶杯,每只茶壶定价20元,每只茶杯定价4元.今年“双十一”期间开展促销活动,向顾客提供两种优惠方案:方案一:每买一只茶壶就赠一只茶杯;方案二:茶壶和茶杯都按定价的90%付款.某顾客计划到这家超市购买6只茶壶和x 只茶杯茶(杯数多于6只).(1)用含x 的代数式分别表示方案一与方案二各需付款多少元?(2)当25x =时,若规定每位顾客只能在以上两种方案中任选一种,请通过计算说明该顾客选择上面两种购买方案中哪一种更省钱?22.某超市新进了一批百香果,进价为每斤8元,为了合理定价,在前五天试行机动价格,售出时每斤以10元为标准,超出10元的部分记为正,不足10元的部分记为负,超市记录的前五天百香果的销售单价和销售数量如下表所示,第1天第2天第3天第4天第5天销售单价(元)1+2-3+1-2+销售数量(斤)2035103015(1)前5天售卖中,单价最高的是第___________天;单价最高的一天比单价最低的一天多___________元;(2)求前5天售出百香果的总利润;(3)该超市为了促销这种百香果,决定推出一种优惠方案:购买不超过6斤百香果,每斤12元,超出6斤的部分,每斤9.6元.若嘉嘉在该超市买(6)x x >斤百香果,用含x 的式子表示嘉嘉的付款金额.23.为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过10吨,则每吨水收费2.6元;若每户每月用水超过10吨,则超过的部分按每吨3元收费.8月份李老师家里用水a 吨(10a >).(1)请用含a 的代数式表示李老师8月份应交的水费.(2)当13a =时,求李老师8月份应交水费多少元?24.已知若a b 、互为相反数,、c d 互为倒数,m 的绝对值为2022.(1)直接写出a b +,cd ,m 的值;(2)求a bm cd m+++的值.25.已知多项式2134331m x y x y x +-+--是五次四项式,单项式333n m x y z -与该多项式的次数相同.(1)求m 、n 的值.(2)若2|1|(2)0x y -+-=,求这个多项式的值.26.阅读下面的材料,完成相关的问题.在学习绝对值时,我们已经知道绝对值的几何含义,如|5-1|表示5,1在数轴上对应的两点之间的距离;|5+1|=|5-(-1)|,所以|5+1|表示5,-1在数轴上对应的两点之间的距离;|5|=|5-0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A 、B 在数轴上分别表示数m ,n ,那么点m ,n 之间的距离等于|m -n |.(1)利用数轴探究:①若点P 表示数2,则在同一数轴上到点P 的距离为5个单位长度的点表示的数是;②|x +3|+|x -2|有最值(填“大”或“小”),此时整数x 的值为;(2)若点M 、N 、P 是数轴上的三点,点M 表示的数为4,点N 表示的数为-2,动点P 表示的数为x .若12PM PN +=,则x 的值为;(3)已知多项式32235x y xy --的常数项是a ,次数是b ,a 、b 两数在数轴上所对应的点分别为A 、B ,若点A ,点B 同时沿数轴正方向运动,点A 的速度是点B 的3倍,且2秒后,使点B 到原点的距离是点A 到原点的距离的2倍,求点B 的速度.27.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如表(注:水费按一个月结算一次):请根据价目表的内容解答下列问题:每月用水量(m 3)单价(元/m 3)不超出26m 3的部分3超出26m 3不超出34m 3的部分4超出34m 3的部分7(1)填空:若该户居民1月份用水20立方米,则应收水费元;若该户2月份用水30立方米,则应收水费元;(2)若该户居民3月份用水x 立方米(其中2634x £<),则应收水费多少元?(结果用含x 的代数式表示)(3)若该户居民3月份用水a 立方米(其中34a >),则应收水费多少元?(结果用含a 的代数式表示)28.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的【探究】.【提出问题】两个不为0的有理数a ,b 满足a ,b 同号,求a a b b+的值.【解决问题】解:由a 、b 同号且都不为0可知a 、b 有两种可能:①a 、b 都是正数:②a 、b 都是负数.①若a 、b 都是正数,即0a >,0b >,有a a =及b b =,则112aa bba b++==+=;②若a 、b 都是负数,即0a <,0b <,有a a =-及b b =-,()()()()112a b a b a b a b--+=+=-+-=-;所以a a bb+的值为2或2-.【探究】请根据上面的解题思路解答下面的问题:(1)已知3a =且7b =,且a b <,求a b +的值.(2)两个不为0的有理数a ,b 满足a ,b 异号,求a a b b+的值.(3)若0abc >,则||||||a b c a b c++的值可能是多少?参考答案:1.D2.D3.A4.B5.A6.D7.A8.A9.D10.B11.512.-513.223a b +14.4-或0或615.2-16.4-4-17.28-18.719.解:2222332232a b ab ab a b ab ab⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦()222232233a b ab ab a b ab ab =--+++222232233a b ab ab a b ab ab =-+--+2ab ab =+,∵()2230a b -++=,()22030a b -≥+≥,,∴()22030a b -=+=,,∴2030a b -=+=,,∴23a b ==-,,∴原式()()2232318612=⨯-+⨯-=-=.20.(1)解:由题意可得,22223212(2)A B x xy y x xy x -=++---++2223212224x xy y x xy x =++--+--5225xy x y =-+-,当=1x -,2y =时,252255(1)22(1)225102459A B xy x y -=-+-=⨯-⨯-⨯-+⨯-=-++-=-;(2)解:由题意可得,2(52)25A B x y y -=-+-,∵2A B -的值与x 的取值无关,∴520y -=,解得:25y =;21.(1)解:某顾客计划到这家超市购买6只茶壶和x 只茶杯(茶杯数多于6只),根据题意可得:方案一:()()62046496x x ⨯+-=+元;方案二:()()620490% 3.6108x x ⨯+⨯=+元;(2)当25x =时,方案一需付款42596196⨯+=(元),方案二需付款3.625108198⨯+=(元),∵196198<,∴选择方案一更省钱.22.、(1)解:∵+3+2+1>1>2>>--,∴前5天售卖中,单价最高的是第3天;∵+3(2)=5--∴价最高的一天比单价最低的一天多5元,故答案为:3,5;(2)解:以10元为标准每斤百香果所获的利润为108=2-(元),前5天售出百香果的总利润为:20(12)35(22)10(32)30(12)15(22)⨯++⨯-++⨯++⨯-++⨯+=203350105301154⨯+⨯+⨯+⨯+⨯=200(元),答:前5天售出百香果的总利润为200元;(3)解:根据题意得,()()1269.669.614.4x x ⨯+-=+元,即嘉嘉在该超市买(6)x x >斤百香果,付款金额为()9.614.4x +元.23.、(1)()26310a +-(2)当13a =时())26310(35a +-=元24.(1)解: a b 、互为相反数,、c d 互为倒数,m 的绝对值为2022,012022a b cd m ∴+===±,,;(2)解:当2022m =时,02022120232022a b m cd m +++=++=,当2022m =-时,02022120212022a b m cd m +++=-++=--,∴a bm cd m+++的值为2023或2021-.25.、解:(1)∵多项式2134331m x y x y x +-+--是五次四项式,∴13m +=,解得2m =,∵单项式333n m x y z -与该多项式的次数相同,∴3315n m +-+=,即33215n +-+=,解得1n =,∴2m =,1n =;(2)∵2|1|(2)0x y -+-=,∴10x -=,20y -=,∴1x =,2y =,由(1)得这个多项式为:2334331x y x y x -+--,∴2334331x y x y x -+--=233431212311-⨯⨯+⨯-⨯-=24231-+--=26-,所以这个多项式的值为26-.26.、解:(1)①设在同一数轴上到点P 的距离为5个单位长度的点表示的数是x ,由题意得:25x -=,∴25x -=±,∴3x =-或7x =,故答案为:-3或7;②当2x >时,3232215x x x x x ++-=++-=+>;当3x <-时,()()3232215x x x x x ++-=-+--=-->;当32x -≤≤时,()32325x x x x ++-=+--=;∴32x x ++-有最小值,此时32x -≤≤;故答案为:小,32x -≤≤;(2)∵点M 、N 、P 是数轴上的三点,点M 表示的数为4,点N 表示的数为-2,动点P 表示的数为x ,∴4PM x =-,2PN x =+,∵12PM PN +=,∴4212x x -++=,当>4x 时,42422212x x x x x -++=-++=-=,解得7x =;当<2x -时,()()42422212x x x x x -++=---+=-+=,解得5x =-;当24x -≤≤时,()()4242612x x x x -++=--++=≠;∴综上所述,5x =-或7x =,故答案为:-5或7;(3)∵多项式32235x y xy --的常数项是a ,次数是b ,∴53a b =-⎧⎨=⎩,设B 的运动速度为v ,则A 的运动速度为3v ,则2s 后A 表示的数为56v -+,B 表示的数为32v +,∴B 到原点的距离32v =+,A 到原点的距离为56v -+,∵2秒后,使点B 到原点的距离是点A 到原点的距离的2倍,∴32=256v v +-+,解得12v =或1310v =.27.(1)∵2026<∴用水20立方米,则应收水费为20360⨯=元;∵263034<<∴用水30立方米,则应收水费为()2633026494⨯+-⨯=元;故答案为:60;94.(2)依题意得:应收水费为326426x ´+´-()426x -=()元.故应收水费426x -()元;(3)依题意得:应收水费为32643426734a ´+´-+-()()7128a -=()元.故应收水费7128a -()元.28.(1)解:∵3a =,7b =,∴3a =或3-,7b =或7-,∵a b <,∴3a =,7b =或3a =-,7b =,当3a =,7b =时3710a b +=+=,当3a =-,7b =时374a b +=-+=,综上,a b +的值10或4;(2)解:由a 、b 异号,可知:①0a >,0b <;②a<0,0b >,当0a >,0b <时,110a ba b +=-=;当a<0,0b >时,110a ba b+=-+=,综上,a ab b+的值为0;(3)解:由题意得:a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即0a >,0b >,0c >时,则:||||||1113a b c a b ca b c a b c++=+=++=;②当a ,b ,c 有一个为正数,另两个为负数时,设0a >,0b <,0c <,则:||||||1111a b c a b c a b c a b c --++=++=--=-所以:||||||a b c a b c++的值为3或1-.。
北师大版七年级数学上册第三章测试卷及答案
北师大版七年级数学上册第三章测试题评卷人得分一、单选题1.在算式(22)3221a a a a -+=-+中,括号里应填.A .241a +B .2441a a -+C .2441a a ++D .2241a a -++2.在整式5abc ,-6x 2+1,-2x 5,213,4x y 2-中,单项式共有()A .1个B .2个C .3个D .4个3.已知12x =,12y -的绝对值为32,则()()22557457x y xy x x y xy x +--+-的值为()A .14-或12-B .14或12-C .14-或12D .14或124.已知整式22x x -的值为3,则2246x x -+的值为()A .7B .9C .12D .185.正方体的棱长为,当棱长增加时,体积增加了()A .a 3-x 3B .x 3C .(a+x)3-a 3D .(a+x)3-x 36.一件商品的进价是b 元,提价20%后出售,则这件商品的售价是()A .0.8b 元B .1.2b 元C .b 元D .2b 元7.在代数式21215,5,,,,,233x y z x y a x y xyz y π+---+-中有()A .5个整式B .6个整式,单项式与多项式个数相同C .5个整式,4个单项式D .4个单项式,3个多项式8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm 宽为bcm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是()A .4acmB .4()a b cm -C .2()a b cm +D .4bcm9.国庆促销,某品牌服装专卖店一款服装按原销售价降价a 元后,再次降价40%,现售价为b 元,则原售价为()A .53a b ⎛⎫+ ⎪⎝⎭元B .53a b ⎛⎫+⎪⎝⎭元C .()53a b +元D .53a b ⎛⎫+⎪⎝⎭元10.某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是()A .200﹣60xB .140﹣15xC .200﹣15xD .140﹣60x 评卷人得分二、填空题11.若20a a +=,则2222015a a ++的值为.12.一个长方形的面积是()223x y -,若它的一边长为()x y +,则它的周长是________.13.在①xy ,②5x -,③75ab -,④2a b -+⑤0,⑥2415x -+,⑦2x y +-,⑧4x -,⑨2b π中,单项式有:________,多项式有:________,整式有:________(填序号)14.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.15.()()22222363xy x y x y xy+--=________.16.按规律填数:13,115,135,163,________,________,…17.23214253a a ab c +--是________次________项式,最高次项的系数是________,常数项是________.18.若a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,则()258x a b cd ++-=________.19.体育委员带了500元钱去买体育用品,若2个足球a 元,1个篮球b 元,则代数式50032a b --表示________.20.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.222221131342222x xy y x xy y x ⎛⎫⎛⎫-+---+-=- ⎪ ⎪⎝⎭⎝⎭2y +,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是________.评卷人得分三、解答题21.计算:①()8549x y x y ---;②()()22225343a b ab ab ab ---+.22.(本题8分,第1题3分,第2题5分)(1)化简:()22122343x x x x ⎛⎫--- ⎪⎝⎭(2)先化简再求值:()()2222222132,a b ab a b ab ⎡⎤+--++⎣⎦其中4a =-,12b =-23.某商店出售茶壶、茶杯,茶壶每只定价20元,茶杯每只定价4元,该商店的优惠办法是买一只茶壶赠一只茶杯,某顾客欲购买茶壶5只,茶杯x 只(茶杯数超过5只).()1用含x 的式子表示这位顾客应付款多少元;()2当20x =时,应付款多少元?24.小明同学做一道题“已知两个多项式A 、B ,计算2A B -”,小黄误将2A B -看作2A B -,求得结果是C .若213322B x x =+-,2325C x x =--+,请你帮助小明求出2A B -的正确答案.25.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.26.观察下面的变形规律:111122=-⨯;1112323=-⨯;1113434=-⨯;…解答下面的问题:()1若n 为正整数,请你猜想()11n n =+________;()2求和:111122334++⨯⨯⨯.(注:只能用上述结论做才能给分);()3用上述相似的方法求和:1111 (13355720132015)++++⨯⨯⨯⨯.参考答案1.B【解析】【分析】根据题意列出关系式,合并同类项即可得到结果.【详解】根据题意得:a2﹣2a+1+3a2﹣2a=4a2﹣4a+1.故选B.【点睛】本题考查了整式的加减,熟练掌握运算法则是解答本题的关键.2.C【解析】【分析】根据单项式的定义对各式进行判断即可.【详解】解:5abc,﹣25x,213等式子均是数与字母的积,故是单项式;﹣6x2+1,42x y是几个单项式的和或差,故是多项式.故选C.【点睛】本题考查的是单项式,熟知单项式的定义是解答此题的关键.3.C【解析】【分析】根据题意确定出y的值,原式去括号合并后,将x与y的值代入计算即可求出值.【详解】解:原式=5x2y+5xy﹣7x﹣4x2y﹣5xy+7x=x2y.∵|y﹣12|=32,∴y=2或﹣1.当x=12,y=2时,原式=12;当x=12,y=﹣1时,原式=﹣14.故选C.【点睛】本题考查了整式的加减﹣化简求值,熟练掌握运算法则是解答本题的关键.4.C【解析】【分析】先把代数式进行适当的变形,然后直接把已知整式代入代数式即可求出代数式的值.【详解】原式=222462(2)623+612x x x x -+-+⨯===【点睛】本题主要考查整体带入的数学思想,用整体代入方法是本题的解题的关键.5.C【解析】本题考查正方体的体积公式根据正方体的体积公式,用变化后的正方体体积减去原来的正方体体积即得答案.根据题意,正方体的体积增加了(a+x )3-a 3.故选C .列代数式的关键是掌握好正方体的体积公式.6.B【解析】【分析】提价20%后售价为b +20%b ,再合并同类项即可.【详解】解:依题意得:商品的售价=b +20%b =1.2b .故选B .【点睛】本题考查了列代数式.关键是根据题意列代数式并对代数式化简.7.B【解析】【分析】根据整式,单项式,多项式的概念分析各个式子.【详解】解:单项式有:5a ,1π,xyz ,共3个.多项式有12x ﹣y ,x 2﹣y +233x y z +-,共3个,所以整式有6个.故选B .【点睛】主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.8.D【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=a,则图②中两块阴影部分周长和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b.故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.D【解析】【分析】可设原售价为x元,则(x﹣a)×(1﹣40%)=b,然后解出x即可.【详解】解:设原售价为x 元,根据题意得:(x ﹣a )×(1﹣40%)=b解得:x =(53b +a )元.故选D .【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.10.C【解析】∵学校租用45座的客车x 辆,则余下20人无座位,∴师生的总人数为45x+20,又∵租用60座的客车则可少租用2辆,∴乘坐最后一辆60座客车的人数为:45x+20﹣60(x ﹣3)=45x+20﹣60x+180=200﹣15x .故选C .11.2015.【解析】试题分析:将已知等式代入所求式子计算即可得到结果.试题解析:2222015a a ++=2(a 2+a )+2015=0+2015=2015.考点:代数式求值.12.84x y-【解析】【分析】利用长方形的面积先求另一边的长,再根据周长公式求解.【详解】3(x 2﹣y 2)÷(x +y )=3(x +y )(x ﹣y )÷(x +y )=3(x ﹣y ),周长=2[3(x ﹣y )+(x +y )]=2(3x ﹣3y +x +y )=2(4x ﹣2y )=8x ﹣4y .所以它的周长是:8x ﹣4y .故答案为8x ﹣4y .【点睛】本题考查了整式的除法运算和加减运算,要注意平方差公式的运用.13.①②⑤⑨③⑥⑦①②③⑤⑥⑦⑨【解析】【分析】根据单项式和多项式的定义、整式的定义求解.【详解】解:由定义可知:在①xy ,②5x -,③7ab ﹣5,④2a b -+⑤0,⑥45-x 2+1,⑦2x y +-,⑧,4x -,⑨2b π中,单项式有:①②⑤⑨,多项式有:③⑥⑦,整式有:①②③⑤⑥⑦⑨(填序号).故答案为①②⑤⑨;③⑥⑦;①②③⑤⑥⑦⑨.【点睛】本题重点考查了整式、单项式、单项式定义.14.2【解析】试题分析:由题意可得:2x 2+3x+7=10,所以移项得:2x 2+3x=10-7=3,所求多项式转化为:6x 2+9x ﹣7=3(6x 2+9x )-7=3×3-7=9-7=2,故答案为2.考点:求多项式的值.15.2253xy x y-【解析】【分析】原式去括号合并即可得到结果.【详解】解:原式=2xy 2+3x 2y ﹣6x 2y +3xy 2=5xy 2﹣3x 2y .故答案为5xy 2﹣3x 2y .【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解答本题的关键.16.1991143【解析】【分析】观察不难发现,分子都是1,分母是两个连续奇数的乘积,由此可以得解.【详解】11313=⨯,111535=⨯,113557=⨯,116379=⨯第n 个数为:211(21)(21)41n n n =-+-故第五个数为:21145199=⨯-第六个数为:211461143=⨯-.故答案为1199143,.【点睛】本题是对数字变化规律的考查,比较简单,要从分子分母两个方面考虑数值的变化.17.四四13-5-【解析】已知多项式是由四个单项式相加构成,故为四项式,且第三项次数最高,为四次,即可得到此多项式为四次四项式,找出最高项系数及常数项即可.【详解】解:4a2+2a3﹣13ab2c﹣5是四次四项式,最高次项的系数是﹣13,常数项是﹣5.故答案为四;四;﹣13;﹣5.【点睛】本题考查了多项式的项,多项式的次数,以及常数项,熟练掌握有关定义是解答本题的关键.18.4【解析】【分析】根据互为相反数的两个数的和等于0可得a+b=0,互为倒数的两个数的乘积是1可得cd=1,绝对值的性质求出x,然后代入代数式进行计算即可得解.【详解】解:∵a,b互为相反数,∴a+b=0.∵c,d互为倒数,∴cd=1.∵x的绝对值等于2,∴x=±2,∴x2+5(a+b)﹣8cd=4+5×0﹣8×1=4﹣8=﹣4.故答案为﹣4.【点睛】本题考查了代数式求值,主要利用了相反数的定义,倒数的定义和绝对值的性质,熟记相关概念是解题的关键.19.体育委员买了6个足球,2个篮球后剩余的经费【分析】本题需先根据买两个足球a 元,一个篮球b 元的条件,表示出3a 和2b 的意义,最后得出正确答案即可.【详解】解:∵买两个足球a 元,一个篮球b 元,∴3a 表示买了6个足球,2b 表示买了2个篮球,∴代数式500﹣3a ﹣2b :表示体育委员买了6个足球、2个篮球后剩余的经费.故答案为体育委员买了6个足球、2个篮球后剩余的经费.【点睛】本题主要考查了列代数式,在解题时要根据题意表示出各项的意义是本题的关键.20.xy-【解析】【分析】根据题意得出整式相加减的式子,再去括号,合并同类项即可.【详解】解:由题意得:被墨汁遮住的一项=(﹣x 2+3xy ﹣12y 2)﹣(﹣12x 2+4xy ﹣32y 2)﹣(﹣12x 2+y 2)=﹣x 2+3xy ﹣12y 2+12x 2﹣4xy +32y 2+12x 2﹣y 2=﹣xy .故答案为﹣xy .【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.21.①44x y +;②221513a b ab -.【解析】【分析】①先去括号,再合并同类项即可;②先去括号,再合并同类项即可.【详解】解:①原式=8x ﹣5y ﹣4x +9y=4x +4y ;②原式=15a 2b ﹣5ab 2+4ab 2﹣12ab 2=15a 2b ﹣13ab 2.【点睛】本题考查了整式的加减,掌握去括号、合并同类项法则是解题的关键.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.22.(1)28x x +;(2)2ab -,1.【解析】试题分析:(1)去括号合并同类项即可;(2)先去括号合并同类项,再把a 、b 的值代入即可.试题解析:(1)原式=22224128x x x x x x --+=+;(2)原式=2222222222223222[23]a b ab a b ab a b ab a b ab ⎡⎤+--++=+-+⎣⎦=222222223a b ab a b ab ab +--=-,当4a =-,12b =-时,原式=21(4)(12--⨯-=.考点:1.整式的加减;2.整式的加减—化简求值.23.(1)480x +;(2)160.【解析】【分析】由优惠办法可知:茶杯需要买(x ﹣5)只,然后分别求出茶壶与茶杯的费用即可.【详解】解:(1)由题意可知:茶杯需要购买(x﹣5)只,∴茶壶的费用为:5×20=100元,茶杯的费用为:4(x﹣5)=(4x﹣20)元,∴这位顾客应付:4x﹣20+100=(4x+80)元;(2)当x=20时,∴4x+80=80+80=160元.【点睛】本题考查了列代数式,涉及代数式化简与求值,属于基础题型.24.-92x2+12x+1.【解析】试题分析:将B代入A-2B中计算,根据结果为C,求出A,列出正确的算式,去括号合并即可得到正确结果.试题解析:根据题意得:A-2B=C,即A-2(12x2+32x-3)=-3x2-2x+5,所以A=-3x2-2x+5+2(12x2+32x-3)=-3x2-2x+5+x2+3x-6 =-2x2+x-1,则2A-B=2(-2x2+x-1)-(12x2+32x-3)=-4x2+2x-2-12x2-32x+3=-92x2+12x+1.考点:整式的加减.25.(1)2324a a++;(2)2 9a a++.【解析】【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a2+3a﹣1+2a2﹣a+5=3a2+2a+4,即这个多项式是3a2+2a+4;(2)由(1)可得:3a2+2a+4﹣(2a2+a﹣5)=3a2+2a+4﹣2a2﹣a+5=a2+a+9即此题的正确的结果是a2+a+9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.26.()1111n n-+;()324;(3)10072015【解析】【分析】(1)根据已知等式做出猜想,写出即可;(2)原式利用得出的规律变形,计算即可得到结果;(3)仿照(2)将:转换成12×(1﹣13+13﹣15+15﹣17+…+12013﹣12015)就可轻易算出结果.【详解】(1)猜想得到11n n+()=1n﹣11n+;(2)原式=1﹣12+12﹣13+13﹣14=1﹣14=34;(3)原式=12×(1﹣13+13﹣15+15﹣17+…+12013﹣12015)=12×(1﹣12015)=1 2×20142015=10072015.【点睛】本题考查了有理数的混合运算,弄清题中的拆项规律是解答本题的关键.。
北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)
北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)一、选择题(每题3分,共30分)1.下列式子符合书写规范的是( )A .-1xB .115xyC .0.3÷xD .-52a 2.下列各式中,是单项式的是( )A .x 2-1B .a 2b C.πa +b D.x -y 3 3.单项式-π3a 2b 的系数和次数分别是( ) A .π3,3 B .-π3,3 C .-13,4 D.13,4 4.下列单项式中,与a 2b 是同类项的是( )A .2a 2bB .a 2b 2C .ab 2D .3ab5.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( ) A .a =0,b =3 B .a =1,b =3 C .a =2,b =3 D .a =2,b =16.下列去括号正确的是( )A .(a -b )-(c -d )=a -b -c -dB .-a -2(b -c )=-a -2b +2cC .-(a -b )+c =-a -b +cD .-2(a -b )-c =-2a +b -c7.【2021·台州】将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A.20% B.x+y2×100% C.x+3y20×100% D.x+3y10x+10y×100%8.如图①是一个长为2m、宽为2n的长方形,其中m>n,先用剪刀沿图中虚线(对称轴)剪开,将它分成四个形状和大小都一样的小长方形,再将这四个小长方形拼成一个如图②的正方形,则中间空白部分的面积是( )A.2mn B.(m+n)2 C.(m-n)2 D.m2-n29.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( ) A.20 B.18 C.16 D.1510.【教材P104复习题T16变式】【2020·德州】如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )A.148 B.152 C.174 D.202二、填空题(每题3分,共24分)11.用代数式表示“比a的平方的一半小1的数”是____________.12.若单项式-2x3yn与4x m+2y5合并后的结果还是单项式,则m+n=________.13.【教材P101复习题T2变式】按照如图所示的步骤操作,若输入x的值为-4,则输出的值为________.14.在山东部分地区,大年初一常常包上几个装有硬币的饺子,吃到“钱馅”饺子的人,寓意新的一年财源滚滚、大吉大利.因为怕弄坏牙齿,朵朵的奶奶就把花生放在饺子里代替硬币,朵朵家有6口人,奶奶按照每人n 粒花生的规则包饺子(每个饺子包1粒),那么有花生的饺子有________个.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含x 2项,则m =________.16.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确的结果是__________.17.已知有理数a ,b ,c 在数轴上对应点的位置如图所示,化简|a +c |-|c -b |-|a +b |的结果为________.18.【2021·怀化】观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2……已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m ,用含m 的代数式表示这组数的和是__________.三、解答题(19,21,22题每题10分,其余每题12分,共66分)19.先去括号,再合并同类项:(1)2a -(5a -3b )+(4a -b ); (2)3x 2y -⎣⎢⎡⎦⎥⎤2xy 2-2⎝ ⎛⎭⎪⎫xy -32x 2y +xy +3xy 2.20.先化简,再求值:(1)7a 2b +(-4a 2b )-(2a 2b -2ab ),其中a =-2,b =1;(2)2x 2-⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫-13x 2+23xy -2y 2-2(x 2-xy +2y 2),其中x =12,y =-1.21.【教材P 102复习题T 9变式】已知代数式A =2x 2+3xy -2x -1,B =-x 2+xy -1.(1)当x =y =-1时,求2A +4B 的值;(2)若2A +4B 的值与x 的取值无关,求y 的值.22.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m).(1)求阴影部分的面积(用含x的代数式表示);(2)当x=9,π取3时,求阴影部分的面积.23.比较两个数的大小时,我们可以用“作差法”.它的基本思路是求a与b两数的差,当a-b>0时,a>b;当a-b<0时,a<b;当a-b=0时,a=b.试运用“作差法”解决下列问题:(1)比较2a+1与2(a+1)的大小;(2)比较a+b与a-b的大小.24.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.参考答案一、1.D 2.B 3.B 4.A 5.C 6.B 7.D8.C 9.A10.C点思路:根据图案知,第1个图案有12个棋子,第2个图案有22个棋子,第3个图案有34个棋子,…第n 个图案有2[1+2+…+(n +1)+(n +2)]+2(n -1)=(n +2)(n +3)+2(n -1)(个)棋子.故第10个这样的图案需要黑色棋子的个数为(10+2)(10+3)+2×(10-1)=174.二、11.12a 2-1 12.6 13.-6 14.6n 15.4 16.3xy -8yz -xz 点拨:由题意可知原多项式为(xy -2yz +3xz )+(xy -3yz-2xz )=2xy -5yz +xz ,则正确的结果为(2xy -5yz +xz )+(xy -3yz -2xz)=3xy -8yz -xz .17.2b -2c 点拨:由题图可知a +c <0,c -b >0,a +b <0,所以原式=-(a+c)-(c -b)-[-(a +b)]=-a -c -c +b +a +b =2b -2c.18.m 2-m点技巧:由题中规律,得2100+2101+2102+…+2199=(2+22+23+...+2199)-(2+22+23+ (299)=(2200-2)-(2100-2)=(2100)2-2100.因为2100=m ,所以原式=m 2-m .三、19.解:(1)原式=2a -5a +3b +4a -b =a +2b ;(2)原式=3x 2y -(2xy 2-2xy +3x 2y +xy )+3xy 2=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.20.解:(1)7a 2b +(-4a 2b )-(2a 2b -2ab )=7a 2b -4a 2b -2a 2b +2ab =a 2b +2ab .把a =-2,b =1代入,得原式=(-2)2×1+2×(-2)×1=0.(2)2x 2-[3(-13x 2+23xy )-2y 2]-2(x 2-xy +2y 2)=2x 2-(-x 2+2xy -2y 2)-(2x 2-2xy +4y 2)=2x 2+x 2-2xy +2y 2-2x 2+2xy -4y 2=x 2-2y 2.把x =12,y =-1代入,得原式=⎝ ⎛⎭⎪⎫122-2×(-1)2=-74. 21.解:(1)2A +4B =2(2x 2+3xy -2x -1)+4(-x 2+xy -1)=4x 2+6xy -4x -2-4x 2+4xy -4=10xy -4x -6.当x =y =-1时,原式=10×(-1)×(-1)-4×(-1)-6=10+4-6=8.(2)2A +4B =10xy -4x -6=(10y -4)x -6.因为2A +4B 的值与x 的取值无关,所以10y -4=0,解得y =0.4.22.解:(1)由题图中各个部分面积之间的关系可得,阴影部分的面积=2(x -2)+4(x -2-2)-12π·⎝ ⎛⎭⎪⎫2+422=2x -4+4x -16-92π=⎝ ⎛⎭⎪⎫6x -20-92πm 2. (2)当x =9,π取3时,阴影部分的面积为54-20-272=412(m 2). 23.解:(1)因为2a +1-2(a +1)=2a +1-2a -2=-1<0,所以2a +1<2(a +1).(2)(a+b)-(a-b)=a+b-a+b=2b.①当b>0时,a+b>a-b;②当b<0时,a+b<a-b;③当b=0时,a+b=a-b.24.解:(1)当x=100时,方案一:100×200=20 000(元);方案二:100×(200+80)×80%=22 400(元).因为20 000<22 400,所以方案一划算.(2)当x>100时,方案一:100×200+80(x-100)=80x+12 000(元);方案二:(100×200+80x)×80%=64x+16 000(元).(3)当x=300时,①按方案一购买:80×300+12 000=36 000(元);②按方案二购买:64×300+16 000=35 200(元);③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子:100×200+80×200×80%=32 800(元),36 000>35 200>32 800,即先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子最省钱。
北师版七年级数学上册第三章综合测试卷含答案
北师版七年级数学上册第三章综合测试卷时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.下列各式中,是单项式的是( )A . x 2-1B . a 2bC .πa +b D . x -y 32.下列各式书写规范的是( )A .112aB . x -y 2C . x ÷(x -y )D . a -b m3.对于多项式2x 2-3x -5,下列说法错误的是( )A .它是二次三项式B .最高次项的系数是2C .2x 2和-3x 是同类项D .各项分别是2x 2,-3x ,-54.[教材P89习题T1变式 2024 泰州姜堰区月考]下列计算正确的是( )A .3ab +2ab =5abB .5y 2-2y 2=3C .7a +a =7a 2D . m 2n -2mn 2=-mn 25.下列各式中,去括号不正确的是( )A . x +2(y -1)=x +2y -2B . x +2(y +1)=x +2y +2C . x -2(y +1)=x -2y -2D . x -2(y -1)=x -2y -26.已知a -b =1,则式子-3a +3b -11的值是( )A .-14B .1C .-8D .57. x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( )A .-1B .1C .-2D .28.[教材P 106复习题T 12变式]某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的结果为xy -2yz +3xz ,则正确的结果是( )A .2xy -5yz +xzB .3xy -8yz -xzC . yz +5xzD .3xy -8yz +xz9.[2024石家庄裕华区期末]将四张边长各不相同的正方形纸片①,②,③,④按如图方式放入长方形ABCD 内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示,若要求出两个阴影部分周长的差,只要知道下列哪个图形的边长( )(第9题)A .①B .②C .③D .④10.[新视角 规律探究题 2023 重庆]用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……按此规律排列下去,则第⑧个图案用的木棍根数是()(第10题)A.39 B.44 C.49 D.54二、填空题(每题3分,共24分)11.单项式-π3a3b2的系数是,次数是.12.[新视角结论开放题]对代数式“5x+2y”,请你结合生活实际,给出“5x+2y”一个合理解释:.13.[教材P78随堂练习T2变式]一个三位数,百位数字是3,十位数字和个位数字组成的两位数是b,用式子表示这个三位数是.14.如果单项式3x m y与-5x3y n是同类项,那么m-n=.15.若多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m等于.16.[2024太原五中月考]运动展风采,筑梦向未来.为迎接体育节的到来,学校计划将原来的长方形跳远沙坑扩大,使其长、宽分别增加0.5米.若原跳远沙坑的宽为a米,长是宽的3倍,则扩大后沙坑的周长为米.17.已知a-2b=3,2b-c=-5,c-d=10,则(a-c)+(2b-d)-(2b-c)的值为.18.[新视角规律探究题2024济宁兖州区期末]找出以下图形变化的规律,则第2 024个图形中黑色正方形的个数是.三、解答题(19,21,23题每题10分,其余每题12分,共66分)19.(1)化简:9m2-4(2m2-3mn+n2)+4n2;(2)先化简多项式,再求值:5ab-2[3ab-(4ab2+12ab)]-5ab2,其中a=-1,b=12.20.某木工师傅制作如图所示的一个工件(阴影部分).(1)用含a,b的式子表示工件的面积;(2)当a=8厘米,b=12厘米时,工件的面积是多少?(结果用含π的式子表示)21.[教材P106复习题T12变式]某同学做一道题:已知两个多项式A,B,求A-2B的值.他误将“A-2B”看成“A+2B”,经过正确计算得到的结果是x2+14x-6.已知A=-2x2+5x-1.(1)请你帮助这位同学求出正确的结果;(2)若x是最大的负整数,求A-2B的值.22.[2024深圳坪山区月考]已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)求值:a+b=;(2)分别判断以下式子的符号(填“>”“<”或“=”):b+c0;a-c0;ac0;(3)化简:-|2c|+|-b|+|c-a|+|b-c|.23.[情境题方案策略型]近期,某生态园喜获丰收,猕猴桃总产量为32 000千克.为了更好地销售,生态园决定将这批猕猴桃分为三部分,分别采取三种不同的销售方案出售完这批猕猴桃.方案一:将其中的16 000千克猕猴桃直接运往市区销售.若运往市区销售,每千克售价为x元,平均每天售出800千克,需要请6名工人,每人每天付工资600元.农用车运费及其他各项税费平均每天400元.方案二:将其中10 000千克猕猴桃交给某直播团队直播带货,猕猴桃每千克的售价比方案一中每千克售价x元的1.2倍再降8元,并用销售额的10%作为整个直播团队的费用和其他各项支出费用.方案三:将剩下的猕猴桃由市民亲自到生态园采摘,采摘购买的猕猴桃每千克售价比方案一中的售价少2元.(1)若采用方案一,将16 000千克猕猴桃全部运往市区销售,需要天;(2)请用含x的式子表示生态园出售完这批猕猴桃的总收入;(3)当x=20时,请计算出售完这批猕猴桃的总收入.24.[新考法材料阅读题2024广州越秀区期中]【阅读理解】请你阅读下列内容回答问题:商品条形码在生活中随处可见,它是商品的身份证.条形码是由13位数字组成的,前12位数字表示“国家代码、厂商代码和产品代码”相关信息,第13位数字为“校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性,它的编制是按照特定算法得来的,具体算法如下(以图①为例):步骤1:计算前12位数字中偶数位数字的和p,即p=9+5+4+2+4+2=26;步骤2:计算前12位数字中奇数位数字的和q,即q=6+0+3+9+1+6=25;步骤3:计算3p与q的和m,即m=3×26+25=103;步骤4:取大于或等于m且为10的整数倍的最小数n,即n=110;步骤5:计算n与m的差就是校验码X,即X=110-103=7.【知识运用】请回答下列问题:(1)若某数学辅导资料的条形码为582917455013Y,则校验码Y的值是;(2)如图②,某条形码中的一位数字被墨水污染了,请求出这个数字是多少;(3)如图③,某条形码中被污染的两个数字的和为13,请直接写出该商品完整的条形码.参考答案一、1. B 2. B 3. C 4. A 5. D 6. A 7. A 8. B 9. C10. B二、11.-π3;5 12.每张成人票x 元,每张儿童票y 元,5个成人和2个儿童买票共需花费(5x +2y )元(答案不唯一)13. 300+b 14.2 15.416.(8a +2) 17.818.3 036 点拨:观察前几个图形可知,第1个图形中黑色正方形的个数是2,第2个图形中黑色正方形的个数是3,第3个图形中黑色正方形的个数是5,第4个图形中黑色正方形的个数是6,第5个图形中黑色正方形的个数是8……进而得出规律:当n 为偶数时,第n 个图形中黑色正方形的个数是(n 2+n);当n 为奇数时,第n 个图形中黑色正方形的个数是(n+12+n). 所以第 2 024 个图形中黑色正方形的个数是2 0242+2 024=3 036.三、19.解:(1)原式=9m 2-8m 2+12mn -4n 2+4n 2=m 2+12mn .(2)原式=5ab -2(3ab -4ab 2-12ab)-5ab 2=5ab -6ab +8ab 2+ab -5ab 2=3ab 2. 当a =-1,b =12时,原式=3×(-1)×(12)2 =-34. 20.解:(1)ab -πa 24.(2)当a =8厘米,b =12厘米时,ab -πa 24=8×12-π×824=(96-16π)(平方厘米).所以工件的面积是(96-16π)平方厘米.21.解:(1)由题意,得2B =x 2+14x -6-(-2x 2+5x -1)=3x 2+9x -5,所以A -2B =-2x 2+5x -1-(3x 2+9x -5)=-5x 2-4x +4.(2)因为x 是最大的负整数,所以x =-1.所以A -2B =-5×(-1)2-4×(-1)+4 =3.22.解:(1)0(2)<;>;<(3)-|2c|+|-b|+|c-a|+|b-c|=-(-2c)-b+a-c+b-c=2c-b +a-c+b-c=a.23.解:(1)20(2)方案一的收入为16 000x-20×6×600-20×400=(16 000x-80 000)(元),方案二的收入为10 000×(1.2x-8)×(1-10%)=(10 800x-72 000)(元),方案三的收入为(32 000-16 000-10 000)×(x-2)=(6 000x-12 000)(元),则总收入为16 000x-80 000+10 800x-72 000+6 000x-12 000=(32 800x-164 000)(元).所以生态园出售完这批猕猴桃的总收入为(32 800x-164 000)元.(3)32 800×20-164 000=492 000(元).所以出售完这批猕猴桃的总收入为492 000元.24.解:(1)6(2)设这个数字是a,步骤1:p=7+0+2+a+1+6=16+a;步骤2:q=9+1+4+7+3+2=26;步骤3:m=3p+q=3(16+a)+26=3a+74;步骤4:n≥3a+74且为10的整数倍的最小数;步骤5:n-m=n-3a-74=2.所以n=3a+76.因为a(0≤a≤9)为自然数,所以只有当a=8时,n=100为10的整数倍.所以这个数字是8.(3)该商品完整的条形码为3624183293157或3629183243157.点拨:设被污染的两个数字中的前一个数字为b,则被污染的两个数字中的后一个数字为13-b;步骤1:p=6+b+8+2+3+5=b+24;步骤2:q=3+2+1+3+(13-b)+1=23-b;步骤3:m=3p+q=3(b+24)+23-b=2b+95;步骤4:n≥2b+95且为10的整数倍的最小数;步骤5:n-m=n-2b-95=7.所以n=2b+102.因为b(0≤b≤9)为自然数,所以当b=4时,n=110为10的整数倍,此时13-b=9;当b=9时,n=120为10的整数倍,此时13-b=4.综上,该商品完整的条形码为3624183293157或3629183243157.。
北师大版数学七年级上册第三章《整式及其加减》综合检测卷(含答案)
北师大版数学七年级上册第三章《整式及其加减》综合检测卷 班级 座号 姓名 成绩一、选择题(本大题8小题,每小题3分,共24分.)在每小题列出的四个选项中,只有一个是正确的.1.下列代数式 a ,-2ab ,x +y ,x 2+y 2,-1,2312ab c 中,单项式共有( ) A .6个 B .5 个 C .4 个 D .3个2.下列各式,符合代数式书写格式的是( )A .(a +b )÷cB .a -b cmC .113x D .43x 3.现有四种说法:①-a 表示负数;②若|x |=-x ,则x <0;③绝对值最小的有理数是0;④3×102x 2y 是5次单项式.其中正确的是( )A .①B .②C .③D .④4.计算-a 2+3a 2的结果为( )A .2a 2B .-2a 2C .4a 2D .-4a 25.下列各式中,去括号正确的是( )A .x 2-(2y -x +z )=x 2-2y -x +zB .2a +(-6x +4y -2)=2a -6x +4y -2C .3a -[6a -(4a -1)]=3a -6a -4a +1D .-(2x 2-y )+(z -1)=-2x 2-y -z -16.若-x 3y m 与x n y 是同类项,则m +n 的值为( )A .1B .2C .3D .47.如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如4如如如如如如4如如如如如如如如如如如如如如如如如如如如如如如如如如 如A .17段B .32段C .33段D .34段8.已知有理数a ,b ,c 在数轴上所对应点的位置如图所示,化简代数式a a b c a b c +++---的结果是( )A .-3aB .2c -aC .2a -2bD .b 二、填空题(本大题7小题,每小题4分,共28分.)请将下列各题的正确答案填在该题的横线上. 第8题图 第7题图9.单项式225xy -的系数是 ,次数是 . 10.买单价a 元/支的体温计n 支,付费b 元,则应找回的钱数是 .11.若x +y =4,a ,b 互为倒数,则12(x +y )+5ab 的值是 . 12.若A +(a +b 2-c )=a +c ,则A 为 .13.若合并多项式3x 2-2x +m -x -mx +1中的同类项后,得到的多项式中不含x 的一次项,则m 的值为________.14.对于有理数a ,b ,定义a *b =3a +2b ,化简:(x+y )*(x -y )= .15.一列单项式:-x 2,3x 3,-5x 4,7x 5,…,按此规律排列,则第7个单项式为________.三、解答题(本大题4小题,16、17题每小题10分,18、19题每小题14分,共48分.)解答过程应写出文字说明、推理过程及演算步骤.16.先化简,再求值:(6a 2-6ab -12b 2)-3(2a 2-4b 2),其中a =-12,b =-8.17.已知A =x -2y ,B =-x -4y +1.(1)求2(A +B )-(2A -B )的值(结果用含x ,y 的代数式表示);(2)当12x +与y 2互为相反数时,求(1)中代数式的值.18.如图,一个点从数轴上的原点开始,先向左移动 2 cm 到达A 点,再向左移动3 cm 到达B 点,然后向右移动9 cm 到达C 点.(1)用1个单位长度表示1 cm ,请你在数轴上表示出A ,B ,C 三点的位置;(2)把点C 到点A 的距离记作CA ,则CA = cm ;(3)若点B以每秒2 cm的速度向左移动,同时A,C点分别以每秒1 cm,4 cm的速度向右移动,设移动时间为t秒,试探索CA-AB的值是否会随着t的变化而改变.请说明理由.19.下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.参考答案一、选择题:1.C 2.D 3.C 4.A 5.B 6.D 7.A 8.A二、填空题:9.25-,3 10.(b -na )元 11.7 12.2c -b 2 13.-3 14.5x +y 15.-13x 8三、解答题:16.原式=6a 2-6ab -12b 2-6a 2+12b 2=-6ab ,当a =-12,b =-8时,原式=-6×1()2-×(-8)=-24 17.(1)原式=2A +2B -2A +B =3B =3(-x -4y +1)=-3x -12y +3;(2)∵12x +与y 2互为相反数, ∴12x ++y 2=0, ∴x +12=0,y 2=0, ∴x =-12,y =0, ∴2(A +B )-(2A -B )=-3×1()2--12×0+3=92 18.(1)图略;(2)CA =4-(-2)=4+2=6(cm);(3)不变.理由: 当移动t 秒时,点A ,B ,C 分别表示的数为-2+t ,-5-2t ,4+4t , 则CA =(4+4t )-(-2+t )=6+3t ,AB =(-2+t )-(-5-2t )=3+3t ,∵CA -AB =(6+3t )-(3+3t )=3, ∴CA -AB 的值不会随着t 的变化而改变 19.(1)平行四边形框内的九个数之和是中间的数的9倍;(2)规律仍然成立.设框中间的数为n ,这九个数按大小顺序依次为:(n -18),(n -16),(n -14),(n -2),n ,(n +2),(n+14),(n +16),(n +18),和为9n ;(3)这九个数之和不能为1998.若和为1998,则9n =1998,n =222,是偶数,则不在数阵中.这九个数之和也不能为2005,因为2005不能被9整除;若和为1017,则中间数可能为113,最小的数为113-16-2=95.。
北师大版七年级数学上册第三章测试题(含答案)精选全文完整版
可编辑修改精选全文完整版北师大版七年级数学上册第三章测试题(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.下列各式:①2x -1;②0;③S =πR 2;④x<y ;⑤st ;⑥x 2.其中代数式有( B )A .3个B .4个C .5个D .6个2.下列说法中,正确的是( C ) A.m 2n 4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式 3.下列计算正确的是( D ) A .3a -2a =1 B .x 2y -2xy 2=-xy 2 C .3a 2+5a 2=8a 4 D .3ax -2xa =ax 4.下列叙述中,错误的是( C )A .代数式x 2+y 2的意义是x ,y 的平方和B .代数式5(a +b)的意义是5与(a +b)的积C .x 的5倍与y 的和的一半,用代数式表示是5x +y2D .x 的12与y 的13的差,用代数式表示是12x -13y5.如图①,把一个长为m ,宽为n 的长方形(m>n)沿虚线剪开,拼成图②,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( A )A.m -n 2B .m -nC.m 2D.n 26.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( B )A .110B .158C .168D .178第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分) 7.多项式 -3m +2 与m 2+m -2的和为m 2-2m.8.某仓库有存粮85吨,第一天运走a 吨,第二天又运来3车,每车b 吨,此时仓库有存粮 (85-a +3b) 吨.9.化简:m -[n -2m -(m -n)]的结果为 4m -2n . 10.若4x m y n 与-3x 6y 2的和是单项式,则mn = 12 . 11.若a -b =1,则(a -b)2-2a +2b 的值是 -1 .12.如图是一组有规律的图案:第1个图案由四个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n 为正整数)个图案由 (3n +1) 个▲组成.三、(本大题共5小题,每小题6分,共30分)13.计算:(1)3x 2+4x -2x 2-x +x 2-3x -1; 解:原式=2x 2-1.(2)2x 2-(-4x +5)+[4x 2-(3x 2-2x)-6x -5]. 解:原式=2x 2+4x -5+(4x 2-3x 2+2x -6x -5) =3x 2-10.14.先化简,再求值:-(9x 3-4x 2+5)-(-3-8x 3+3x 2),其中x =-3. 解:原式=-9x 3+4x 2-5+3+8x 3-3x 2 =-x 3+x 2-2.当x =-3时,原式=-(-3)3+(-3)2-2=27+9-2 =34.15.按照下图所示的程序计算当x 分别为-3,0时的输出值.解:程序对应的代数式为2(5x -2).当x =-3时,2(5x -2)=2×[5×(-3)-2] =2×(-17)=-34;当x =0时,2(5x -2)=2×(5×0-2)=-4.16.求12m 2n +2mn -3nm 2-3nm +4m 2n 的值,其中m 是最小的正整数,n 是绝对值等于1的数.解:12m 2n +2mn -3nm 2-3nm +4m 2n=32m 2n -mn. 由题意知:m =1,n =±1,当m =1,n =1时,原式=12;当m =1,n =-1时,原式=-12.综上,该代数式的值为12或-12.17.已知:a 3b n +2+ab 3+6是一个六次多项式,单项式x 3n y 7-m 的次数与该多项式相同,求m ,n 的值.解:因为a 3b n +2+ab 3+6是一个六次多项式, 所以3+n +2=6, 解得n =1,所以3n +7-m =6, 即3+7-m =6, 所以m =4,即m ,n 的值分别为4,1.四、(本大题共3小题,每小题8分,共24分)18.已知代数式x 4+ax 3+3x 2+5x 3-7x 2-bx 2+6x -2合并同类项后不含x 3,x 2项,求2a +3b 的值.解:原式=x 4+(ax 3+5x 3)+(3x 2-7x 2-bx 2)+6x -2 =x 4+(a +5)x 3+(-4-b)x 2+6x -2. 由题意,得a +5=0,-4-b =0, 解得a =-5,b =-4,所以2a +3b =2×(-5)+3×(-4)=-22.19.一个花坛的形状如图所示,它的两端是半径相等的半圆. (1)求花坛的周长l ; (2)求花坛的面积S ;(3)若a =8 m ,r =5 m ,求此时花坛的周长及面积(π取3.14).解:(1)l =2πr +2a. (2)S =πr 2+2ar.(3)当a =8 m ,r =5 m 时,l =2π×5+2×8=10π+16≈47.4 m ,S =π×52+2×8×5=25π+80≈158.5 m 2.20.已知A =5a +3b ,B =3a 2-2a 2b ,C =a 2+7a 2b -2,当a =1,b =2时,求A -2B +3C 的值.解:∵A =5a +3b ,B =3a 2-2a 2b ,C =a 2+7a 2b -2,∴A -2B +3C =(5a +3b)-2(3a 2-2a 2b)+3(a 2+7a 2b -2)=5a+3b-6a2+4a2b+3a2+21a2b-6=-3a2+25a2b+5a+3b-6.当a=1,b=2时,原式=-3×12+25×12×2+5×1+3×2-6=52.五、(本大题共2小题,每小题9分,共18分)21.某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件.(1)用式子表示这两个月该公司应付给商店的钱数;(2)假设代销费为每月200元,每件产品的提成为2元,该商店一月份销售了200件,二月份销售了250件,求该商店这两个月销售此种产品的收益.解:(1)这两个月该公司应付给商店的钱数为[2a +(m +n)b]元. (2)当a =200,b =2,m =200,n =250时,2a +(m +n)b =1 300元.答:该商店这两个月销售此种产品的收益为1 300元.22.如果在关于x ,y 的多项式(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2中,无论x ,y 取何有理数,多项式的值都不变,求4(a 2-ab +b 2)-3(2a 2+b 2+5)的值.解:(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2 =ax 2-3x +by -1-6+2y +3x -2x 2=(a -2)x 2+(b +2)y -7. 根据题意得a =2,b =-2, 原式=4a 2-4ab +4b 2-6a 2-3b 2-15 =-2a 2-4ab +b 2-15. 当a =2,b =-2时,-2a 2-4ab +b 2-15=-2×22-4×2×(-2)+(-2)2-15 =-8+16+4-15 =-3.六、(本题共12分) 23.观察下面数表:12 3 43 4 5 6 74 5 6 7 8 9 10 ……(1)依此规律:第六行最后一个数字是________,第n 行最后一个数字是________. (2)其中某一行最后一个数字可能是2 017吗?若不可能,请说明理由;若可能,请求出是第几行?解:(1)因为第一行最后的数字为1, 第二行最后的数字为4, 第三行最后的数字为7, 第四行最后的数字为10,所以根据数据排列的规律,可得到每一行的最后一个数字与它前一行最后一个数字的差为3.所以按照这个规律可得到第n 行的最后的数字为1+3(n -1)=3n -2. 所以第六行最后一个数字是3×6-2=16. (2)可能是2 017,因为由3n -2=2 017, 解得n =2 0193=673,∴最后一个数字可能是2 017,是第673行.。
北师大版七年级数学上册《第三章整式及其加减》单元测试卷(附带参考答案)
北师大版七年级数学上册《第三章整式及其加减》单元测试卷(附带参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是()米.A.a B.60 C.60a D.a+602.十位数字是a,个位数字是b的两位数是()A.ab B.a+10b C.ba D.10a+b3.多项式23+7x+4y的次数为多少()A.5次B.3次C.2次D.1次4.在代数式﹣2x,x+1,π,2m−3m ,0,12mn中是单项式的有()个.A.1 B.2 C.3 D.45.若a2+3a=1,则代数式2a2+6a−2的值为()A.0B.1C.2D.36.下列计算正确的是()A.a2+a2=a4 B.4a﹣3a=1C.3a2b﹣4ba2=﹣a2b D.3a2+2a3=5a57.已知关于x的多项式(m+3)x3−x n+x−mn为二次三项式,则当x=−1时,这个二次三项式的值是()A.7 B.6 C.4 D.38.若4x3m-1y3与-3x5y2n+1的和是单项式,则2m+3n的值是()A.6 B.7 C.8 D.9二、填空题9.已知单项式﹣3x3y n与5x m+4y3是同类项,则m﹣n的值为.10.若多项式2x2- 3x+b与多项式x2-bx+1的和不含一次项(b为常数),则两个多项式的和为11.若关于x、y的多项式x5-m+5y2-2x2+3的次数是3,则式子m2-3m的值为.12.已知a+22ab=−8,b2+2ab=14则a2−b2=.13.如图是一组有规律的图案,它们是由大小相同的“×”图案组成的,依此规律,第10个图案中有“×”图案个.三、解答题14.计算:(1)x2+5+x2−1(2)2a2+3ab+b2−a2−ab−2b215.先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.x m+1y2+2xy2−4x3+1是六次四项式,单项式26x2n y5−m的次数与该多项式的次数相16.已知多项式15同,求(−m)3+2n的值.17.已知关于x,y的式子(2x2+mx−y+3)−(3x−2y+1−nx2)的值与字母x的取值无关,求式子(m+ 2n)−(2m−n)的值.18.某次课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3−6a3b+3a2b)−(−3a3−6a3b+3a2b+10a3−3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案.当王红说完:“a= 65,b=−2022”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误,”亲爱的同学,你相信吗?请说出其中的道理.参考答案1.D2.D3.D4.D5.A6.C7.C8.B9.-410.3x2-211.-212.-2213.5114.(1)解:x2+5+x2−1=x2+x2+5−1=2x2+4(2)解:2a2+3ab+b2−a2−ab−2b2=2a2−a2+3ab−ab+b2−2b2=a2+2ab−b215.解:原式=x2﹣y2﹣2xy+3x2﹣4xy+x2+5xy=5x2﹣xy﹣y2当x=﹣1,y=2时原式=5×(﹣1)2﹣(﹣1)×2﹣22=5+2﹣4=3.16.解:由于多项式是六次四项式,所以m+1+2=6解得:m=3单项式26x2n y5−m应为26x2n y2,由题意可知:2n+2=6解得:n=2所以(−m)3+2n =(−3)3+2×2=−23.17.解:原式=2x 2+mx −y +3−3x +2y −1+nx 2=(2+n)x 2+(m −3)x +y +2由题可得,多项式的值与字母x 无关∴{2+n =0m −3=0解得{n =−2m =3∴(m +2n)−(2m −n)=m +2n −2m +n=3n −m代入n =−2,m =3可得:3×(−2)−3=−6−3=−9 故代数式(m +2n)−(2m −n)的值为:−9.18.解:(7a 3−6a 3b +3a 2b)−(−3a 3−6a 3b +3a 2b +10a 3−3) =7a 3−6a 3b +3a 2b +3a 3+6a 3b −3a 2b −10a 3+3=(7a 3+3a 3−10a 3)+(−6a 3b +6a 3b)+(3a 2b −3a 2b)+3 =3.∵结果为常数3∴原式的结果与字母a ,b 的取值无关∴李老师能够准确地说出代数式的值为3.。
北师大版七年级数学上册《第三章 整式及其加减》单元测试卷及答案
北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案学校:___________姓名:___________班级:___________考号:___________一、选择题1.如图是同一时刻北京时间和莫斯科时间.若现在北京时间是x,则同一时刻莫斯科的时间可以表示为()A.x+6B.x−6C.x+5D.x−52.单项式﹣5x2y的系数是()A.3 B.5 C.﹣3 D.﹣53.用a,b分别表示两个一位正整数,在这两个数之间添上两个零就构成一个四位数,且a在b的左边,则该四位数可表示为()A.a+100+b B.1000a+b C.100a+b D.10a+b4.下列说法正确的有()(1)√3a不是整式;(2)2+b2是单项式;(3)34是整式;(4)x+1x是多项式;(5)abπ是单项式;(6)x2+2x+1=0是多项式A.1个B.2个C.3个D.4个5.下列各组中的两个单项式,是同类项的是()A.a2与2a B.−0.5ab与12baC.a2b与ab2D.a与b6.已知x-3y=6,那么代数式x-3y-3(y-x)-2(x-3)的值为()A.16 B.17 C.18 D.197.下列计算中正确的是()A.2a+3b=5ab B.3y2−2y2=1C.32ab−1.5ba=0D.3x3+2y2=5x58.将一列有理数 -1、2、-3、4、-5、6、…按如图所示的方式进行排列,则-2023应排在()A.A位置B.B位置C.D位置D.E位置二、填空题9.“a的立方与b的平方的差”用代数式表示为:.10.多项式4x2−πxy22−13x+1的三次项系数是.11.加上5x2−3x−5等于3x2−5的多项式是.12.当x=2时,代数式px3+qx+1的值为2 023,则当x=-2时,代数式px3+qx+1的值为13.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第1个图形一共有5个实心圆点,第2个图形一共有8个实心圆点,第3个图形一共有11个实心圆点,….按此规律排列下去,第n个图形中实心圆点的个数为(用含n的代数式表示).三、解答题14.化简(1)3(2xy−y)−2xy(2)−14(2k3−4k2−28)+12(k3−2k2+4k)15.已知3x m y3与−2y n x2是同类项,求代数式m−2n−mn的值.16.先化简,再求值:(2y+3x2)−(x2−y)−x2,其中x=−2,y=13.17.已知a、b互为相反数c、d互为倒数,x等于-2的2次方,求式子a+b5+12cd+x2的值.18.放置在水平地面上两个无盖(朝上的面)的长方体纸盒,大小、形状如图.小长方体的长、宽、高分别为:a(cm)、b(cm)、c(cm);大长方体的长、宽、高分别为:1.5a(cm)、2b(cm)、2c(cm).(1)做这两个纸盒共需要材料多少平分厘米?(2)做一个大的纸盒比做一个小的纸盒多多少平分厘米材料参考答案1.D2.D3.B4.(1)B5.B6.C7.C8.A9.a3−b210.−π211.−2x2+3x12.-202113.3n+214.(1)4xy−3y(2)7+2k15.−10.16.x2+3y5..17.161218.(1)解:小长方体纸盒所需材料:ab+2ac+2bc大长方体纸盒所需材料:3ab+6ac+8bc所以一共所需材料:ab+2ac+2bc+3ab+6ac+8bc=4ab+8ac+10bc (2)解:(3ab+6ac+8bc)−(ab+2ac+2bc)=2ab+4ac+6bc。
北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案
北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.形如121121n n n a a a a a a a ⋯--的自然数(其中 n 为正整数121n n a a a a ≤≤⋯≤≤- 1120a a a >⋯,,,n a 为019⋯,,,中的数字)称为“单峰回文数”,不超过5位的“单峰回文数”的个数是( )A .273B .219C .429D .1292.下列说法正确的是( )A .多项式221x x y ++是二次三项式;B .多项式3242x x -+-的常数项是2;C .0是单项式;D .单项式23x y π-的系数是3-. 3.下列说法中,正确的是( )A .0是单项式B .32abc - 的系数是3-,次数是3C .2mn 不是整式 D .多项式22x y xy -是五次二项式4.下列计算正确的是( )A .5533a a -=B .25a a a +=C .5552a a a +=D .22332x y xy x y += 5.已知数a b c ,,在数轴上的对应点如图所示,则下列说法:0a b +<① 0abc >② a b >③ a b b c a b c b -++-++=-④ 其中说法正确的序号是( )A .①①B .①①C .①①①D .①①①①6.如图,张老师要在足够大的磁性黑板上展示数张形状、大小均相同的长方形作业,将这些作业排成一个长方形(作业不完全重合).现需要在每张作业的四个角落都放上磁性贴,如果作业有角落相邻,那么相邻的角落共享一枚磁性贴(例如,4张作业可用9枚磁性贴固定在磁性黑板上).若有25枚磁性贴可供选用,则最多可以展示( )张作业.A .12B .14C .15D .167.化简5(23)4(32)x x +--的结果为( )A .23x +B .23x -C .183x +D .183x -8.按一定规律排列的式子:23456,,,,246810x x x x x ---…,则第n 个式子为( ) A .2nn x - B .2n x n - C .()112n n x n +- D .()112n n nx +- 9.按一定规律排列的单项式:x - 23x 35x - 47x 59x -…第2024个单项式是( )A .20244047xB .20254049x -C .20242023x -D .20252025x10.代数式20.3y x - 012x + 213x 213ab 12- 232a b c -中单项式有( ) A .7个 B .4个 C .5个 D .6个二、填空题11.在某月的月历内有一正方形方框. 已知方框里有4个数字,分别为a ,b ,c ,n ,这四个数字在方框内的位置如图所示,若用数字n 分别表示a ,b ,c 则a b c ++= (用含有n 的式子表示结果).12.若()2320a b ++-=,则()2024a b += .13.如图,将一根细长的绳子沿中间对折,再沿对折后的绳子的中间对折1次,这样连续对折n 次,最后用剪刀沿对折n 次后的绳子的中间将绳子剪断,此时绳子将被剪成 段.14.观察下列各式:21342+== 313593++== 21357164+++==按此规律:()135721n ++++⋯⋯++的和为15.x 平方的3倍与5的差,用代数式表示为 ,当1x =-时,代数式的值为 .16.观察一列数:1234562510172637,,,,,根据规律,请你写出第12个数是 . 17.观察下列关于x 的单项式,探究其规律:35791113468101214x x x x x x ---⋯⋯,,,,,,按照上述规律,第2023个单项式是 .18.下图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第n 个图案中有m 个涂有阴影的小正方形,那么m 与n 的函数关系式为 .三、解答题19.先化简,再求值:(1)3m 2-(5m -3+3m 2),其中m =4.(2)﹣2x 2﹣[3y 2﹣(x 2﹣y 2)+6],其中|x +1|+(y ﹣1)2=0.20.如图,数轴上有a ,b ,c 三点.(1)用“<”将a ,b ,c 连接起来;(2)c b -_____0,c a -_____0(填“>”“<”或“=”);(3)化简1c b c a a ---+-.21.化简(1)2235231m m m m --+- (2)2222132832a b ab a b ab +--22.按照“双减”政策,丰富课后托管服务内容,学校准备订购一批篮球和跳绳,经过市场调查后发现篮球每个定价120元,跳绳每条定价20元.某体育用品商店提供A 、B 两种优惠方案:A 方案:买一个篮球送一条跳绳;B 方案:篮球和跳绳都按定价的90%付款.已知要购买篮球50个,跳绳x 条(50x >).(1)若按A 方案购买,一共需付款 元;(用含x 的代数式表示),若按B 方案购买,一共需付款 元;(用含x 的代数式表示)(2)当150x =时,请通过计算说明此时用哪种方案购买较为合算?(3)当150x =时,你能给出一种更为省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元?23.如图,长方形ABCD 的长AB m =,宽AD n =,E 为DC 的中点.(1)请用字母m ,n 表示图中阴影部分面积;(2)若10m =,8n =图中阴影部分面积是多少?参考答案1.A2.C3.A4.C5.C6.D7.C8.C9.A10.D11.316n -/-16+3n12.113.()21n +14.()21n +/221n n ++15. 235x - 2-16.1214517.4048x 404718.m =4n +119.(1)-5m +3,-17;(2)-x 2-4y 2-6,-1120.(1)c a b <<;(2)<,<;(3)1b -21.(1)221m m --;(2)22766a b ab -- 22.(1)()()500020,540018x x ++(2)购买150根跳绳时,A 种方案所需要的钱数为8000元,B 种方案所需要的钱数为8100元(3)按A 方案买50个篮球,剩下的100条跳绳按B 方案购买,付款7800元23.(1)12mn ;(2)40。
北师大版七年级上册数学第三章测试题(附答案)
北师大版七年级上册数学第三章测试题(附答案)一、单选题(共 12题;共 24 分)1. 有三个连续偶数,最大一个是 2n+2,则最小一个可以表示为( )A. 2n-2B. 2C. 2n+1-D. 12n2.单项式﹣的系数和次数分别是( )3. 下列各组代数式中,属于同类项的是( )6. 若 x=2 时,代数式 ax 4+bx 2+5 的值是 3,则当 x=﹣2 时,代数式 ax 4+bx 2+7 的值为( ) A. ﹣37. 用棋子摆出下列一组 “口”字,按照这种方法摆,则摆第 n 个“口”字需用棋子( )11.观察下列图形:它们是按一定规律排列的,依照此规律,第 n 个图形中共有五角星的个数为 (n 为正整数 )( )A. B. 4n C . 4n+1D . 3n+412.一个多项式与 x 2-2x+1 的和是 3x-2,则这个多项A. ﹣ 和 3 2和﹣C3和A. 2x 2y 与 2xy 2B. x y 与- x yC . 2x 与 2xy4.若﹣ 2a m b 4与 5a n+2b 2m+n 可以合并成一项,则 m n 的值是( A. 0B. -1C. 15. 设实数 x 、 y 、 z 满足 , ,则 xyz 的值为( A. 1C . -1D . 2x 2 与2y 2D. 2)D . -2A. 4n 枚 B (. 4n ﹣ 4)枚 8. 单项式﹣ 3πxy 2z 3 的系数和次数分别是( A. ﹣ π, 5B . ﹣ 1, 69. 下列各组中,不是同类项的是( ) A. x 3y 4与 x 3z 4B. 3x 与﹣x10. 下列关于单项式 -5xy 3 的说法中,正确的是A. 系数是- 5,次数是 4C. 系数是- 3,次数是 4C (. 4n+4 )枚)C . ﹣ 3 π, 6D. n 2 枚D . ﹣ 3,7 C. 5ab 与﹣ 2baD. ﹣3x 2y 与( )B . 系数是- 5 ,次数是 3 D . 系数是- 2π,次数是 3式为()2 2 2 2A. x2-5x+3 B . -x2+x-1 C . -x2+5x-3 D . x2-5x-13二、填空题(共8题;共9 分)13. 多项式 ___ 是_______ 次项式.14. 用代数式表示:小明沿一条直路跑3千米后,再以4km/h 的速度继续往前走了t 小时,小明离起点_______ 千米.15. 一列方程如下排列:的解是,的解是,的解是,根据观察得到的规律,写出其中解是的方程 _________________ 。
北师大版七年级数学上册第三章测试卷及答案
北师大版七年级数学上册第三章测试卷及答案北师大版七年级数学上册第三章测试题评卷人得分一、单选题1.在算式4a2-3a2+2a=a2-2a+1中,括号里应填(B)4a2-4a+1.2.在整式5abc,-6x2+1,-22,y-的绝对值为1/3,则5xy+5xy-7x-4xy+5xy-7x的值为(D)或。
3.已知x=2/3,中,单项式共有(B)2个。
4.已知整式x2-2x的值为3,则2x2-4x+6的值为(C)12.5.正方体的棱长为a,当棱长增加x时,体积增加了(C)(a+x)3-a3.6.一件商品的进价是b元,提价20%后出售,则这件商品的售价是(B)1.2b元。
7.在代数式中有(C)5个整式,4个单项式。
8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为a,宽为b)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示。
则图②中两块阴影部分周长和是(C)2(a+b)cm。
9.国庆促销,某品牌服装专卖店一款服装按原销售价降价a元后,再次降价40%,现售价为b元,则原售价为(A)(5/3)(a+b)元。
10.某校组织若干师生到恩施大峡谷进行社会实践活动。
若学校租用45座的客车x辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是(B)140-15x。
二、填空题11.若a+a=11/4,则2a+2a+20的值为(15/2)。
12.一个长方形的面积是3x-y,长为3x,宽为(y-1)/3.13.在①xy+22,②-2/3中,填入“=”使等式成立的分别是①y=-11/2,②x=1.评卷人:XXX。
得分:XX2.14.若多项式 $2x^2+3x+7$ 的值为 10,则多项式$6x^2+9x-7$ 的值为 $\textbf{23}$.15.$2xy+3xy-6xy-3xy=\textbf{-4xy}$16.按规律填数:$-3.-1.1.3.5.7.9.11$17.$4a+2a-2(3)=\textbf{6a-6}$frac{22}{22}\times\frac{22}{22}=\textbf{1}$,单项式有:$\textbf{1}$,多项式有:$\textbf{1.2.3}$(填序号)18.若 $a$,$b$ 互为相反数,$c$,$d$ 互为倒数,$x$ 的绝对值等于 2,则 $x+5(a+b)-8cd=\textbf{-\frac{16}{5}}$.19.体育委员带了 500 元钱去买体育用品,若 2 个足球$a$ 元,1 个篮球 $b$ 元,则代数式 $500-3a-2b$ 表示\textbf{剩余的钱数}.20.被墨汁遮住的一项应是 $\textbf{-3xy}$.21.① $8x-5y-(4x-9y)=\textbf{4x+4y}$;② $53ab-ab^2-4(-ab+3ab^2)=\textbf{7ab+12ab^2}$.22.1)$2x-2x-3\cdot\frac{1}{2}(x-4x)=\textbf{-\frac{5}{2}x}$;2)$2ab+2ab-2(ab-1)+3ab^2=\textbf{5ab+3ab^2+2}$.23.1)总共买了 5 只茶壶,送了 5 只茶杯,再买 $x-5$ 只茶杯,总共花费 $20\times 5+4(x-5)=\textbf{20x-20}$ 元;2)当 $x=20$ 时,总共花费 $20\times 5+4(20-5)=\textbf{120}$ 元.24.XXX同学做一道题“已知两个多项式 $A$、$B$,计算 $2A-B$”,小黄误将 $2A-B$ 看作 $A-2B$,求得结果是$C$.若 $B=1$,$A=x^2+2x+3$,则XXX正确的答案是 $2A-B=\textbf{2x^2+4x+5}$.1.求2A-B的值,可以先将A和B的值代入公式中,得到2A-B=2(x+x-3)-(-3x^2-2x+5)=6x^2+6x-5.2.小马虎所求的多项式应该是(x+3a-1)(x-2),将其展开后得到x^2+(a-2)x-a+2.3.观察变形规律可得,n(n+1)/(n+1)(n+2)=1/(n+2),因此1/n(n+1)=1/n-1/(n+1)。
北师大版七年级上册数学第三章测试卷及答案
北师大版七年级上册数学第三章测试题一、单选题1.下列各式中:x ,112b +,0,x y y x +=+,2s r π=,153⨯,a b c +,221x +,属于代数式的共有( ) A .3个B .4个C .5个D .6个 2.某地区夏季高山上的温度,从山脚开始每升高100m 降低0.6℃,如果山脚温度为b ℃,那么山上 m x 处的温度可表示为( )A .(60)b x +℃B .0.6100b x ⎛⎫- ⎪⎝⎭℃ C .(0.6)b x -℃ D .不能确定3.在下列代数式中,次数为3的单项式是( )A .xy 2B .x 3+y 3C .x 3yD .3xy 4.下列各组代数式中是同类项的是( ) A .234a b -34ab - B .232x y -与323x y C .3512m n -与537n m - D .a 与c 5.下列合并同类项正确的是( )A .437a a +=B .222358m n mn mn +=C .3343m m -=D .22265x x x -+=6.下列运算正确的是( )A .2(31)62x x --=--B .2(31)61x x --=--C .2(31)61x x --=-+D .2(31)62x x --=-+ 7.下列各代数式中与代数式(3)a b c --的值相等的是( )A .(3)a b c +-+B .(3)a b c +-C .(3)a b c ++D .(3)a b c +-- 8.若2242M a b =+,56N ab =-,则M N -等于( )A .224256a b ab +--B .224256a b ab -++C .224256a b ab +-+D .224256a b ab --+9.若0A B +=,且A a b c =--,则B 等于( )A .a b c ++B .a b c -+C .a b c -++D .a b c --- 10.日历中同一列相邻的三个数的和一定是( )A .2的倍数B .3的倍数C .4的倍数D .5的倍数 11.为庆祝六一儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .(62)n +根B .(68)n +根C .(44)n +根D .8n 根12.有一段12米长的木料(宽度不计),要做成一个如图所示的窗框,如果窗框横档的长度为x 米,那么窗框的面积是( )A .2(6)x x -米B .2(12)x x -米C .2(63)x x -米D .2362x x ⎛⎫- ⎪⎝⎭米二、填空题13.a 平方的2倍与5的差,用代数式表示为_________;当1a =-时,此代数式的值为__________.14.单项式22a b -的系数是__________;多项式342321x x x -+-是________次________项式.15.如果两个单项式7m x y -与33n x y -的和是一个单项式,那么m =_________,n =________.16.一个三位数,个位数字是a ,十位数字是b ,百位数字是c ,这个三位数是_________________.17.一个正方形边长为a ,则边长增加2后面积变为___________.18.如图3-3,用灰白两色正方形瓷砖铺设地面,第6个图案中灰色瓷砖有_________块.三、解答题19.下列代数式中,哪些是单项式?哪些是多项式?哪些是整式? 2-,1x ,2a b ,0,4x y -,27xy -,21x x --,23x y +,23x π,a -.20.化简:(1)(53)(2)a a b a b +---; (2)52()x y x y ---.21.代数式2m x y -与3725x y 是同类项,求2017(928)m -的值.22.化简求值:(1)22224()(4)y x y x y -++-,其中28x =-,18y =;(2)222[(321)]a a a a +-+-,其中1a =-.23.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含3x ,2x 项,求23a b +的值.24.王老师让同学们计算“当0.25a =,0.37b =-时,代数式22()2a a a b a ab ++--的值”,小颖说,不用条件就可以求出结果,你认为她的说法有道理吗?25.为了绿化校园,学校决定修建一块长方形草坪,长30米,宽20米,并在草坪上修建如图所示的十字路,小路宽为x 米,用代数式表示:(1)修建小路面积为多少平方米?(2)草坪的面积是多少平方米?26.观察下列算式:①2132341⨯-=-=-②2243891⨯-=-=-③2⨯-=-=-35415161④______________________…(1)请你按以上规律写出第4个算式.(2)把这个规律用含字母的式子表示出来.27.将连续的奇数1,3,5,7,…排列成如图所示的数表:(1)十字形框框出的5个数的和与框内正中间的数17有什么关系?(2)设中间数为a,如何用代数式表示十字形框中五个数之和?(3)将十字形框上下左右移动,可框住另外五个数,这五个数还符合上述的规律吗?(4)十字形框中的五个数之和能等于2018吗?28.电影院中座位数如下表:(1)写出表示第n排座位数n a的代数式.(2)写出表示前n 排座位数n S 的代数式.(3)如果电影院共有20排座位,那么该电影院一共有多少个座位?12()n n S a a a =+++参考答案1.D【解析】【分析】代数式是由数和字母组成,表示加、减、乘、除、乘方、开方等运算的式子,或含有字母的数学表达式,注意不能含有=、<、>、≤、≥、≈、≠等符号,由此判定即可.【详解】解:根据代数式的意义,可知x ,112b +,0,153⨯,a b c +,221x +,是代数式,共6个,故选D .【点睛】本题考查了代数式的概念,掌握代数式不含有等号或不等号,单独一个数或字母也是代数式是解题的关键.2.B【解析】【分析】先计算出山上x m处降低的温度,然后用b减去这个降低的温度即可得到山上x m处的温度.【详解】解:山上x m处的温度可表示为(b-0.6100x)℃.故答案为: (b-0.6100x)℃.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.3.A【解析】根据单项式的次数定义可知:A、xy2的次数为3,符合题意;B、x3+y3不是单项式,不符合题意;C、x3y的次数为4,不符合题意;D、3xy的次数为2,不符合题意。
北师大版七年级数学上册《第三章代数式》单元测试卷-附带答案
北师大版七年级数学上册《第三章代数式》单元测试卷-附带答案一、单选题1.下列各式中,不是代数式的是( )A .557-B .321x y --C . 3.14π≈D .s v2.代数式()55y -的正确含义是( )A .5乘y 减5B .y 的5倍减去5C .y 与5的差的5倍D .5与y 的积减去53.设n 为整数,用n 表示被7除余3的整数是( )A .73n +B .37n +C .73n +D .以上都不对4.如果用a 表示自然数,那么偶数可以表示为( )A .2a +B .2aC .1a -D .21a -5.若a 表示最小的正整数,b 表示最大的负整数,则b a -+的值为( )A .0B .1C .2D .无法确定6.若a ,b 是互为倒数,m ,n 是互为相反数,则()25ab m n -++的值是( )A .2B .2-C .0D .37.当1x =时,1ax b +-的值为4-,则代数式()()11a b a b +---的值为( )A .16-B .8-C .8D .168.如图,a ,b ,c ,d ,e ,f 均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a b c d e f -+-+-的值为( ) 4 1- ab 3c d ef A .1 B .3- C .7 D .89.如图是某运算程序,该程序是循环迭代的一种.根据该程序的指令,如果输入 x 的值是 10,那么第 1 次输出的值是 5;把第 1 次输出的值再次输入,那么第 2 次输出的值是 6;把第 2 次输出的值再次输入,那么第 3 次输出的值是 3;……;则第 2021 次输出的值是( )A .4B .3C .2D .1二、填空题10.按照列代数式的规范要求重新书写:23a a b ⨯⨯-÷,应写成 .11.一个长为5cm 的长方形的周长为2(5+b )cm ,则字母b 表示的是 .12.若有理数a ,b 满足3a =,1=b 且a b a b +=+,则()22225a ab b --+= . 13.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是3,e 是最大的负整数,则()x a b cd e -+++的值为 .14.现有a 根长度相同的火柴棒,分别按照图①①摆放时,火柴棒都全部用完.若这a 根火柴棒还能摆成如图①所示的形状,则a 的最小值为 .三、解答题15.某种T 型零件尺寸如图所示(左右宽度相同),求:(1)用含x ,y 的代数式表示阴影部分的周长.(2)用含x ,y 的代数式表示阴影部分的面积.(3)2 2.5x y ==,时,计算阴影部分的面积.16.已知有理数a ,b ,c 满足1340a b c -+-+-=,计算234a b c ++的值. 17.小明和父母一起开车从A 地出发到距家路程为350千米的B 地旅游,出发前,汽车油箱内已经加满油,已知油箱内剩余油量Q (L )与行驶路程x (千米)之间的关系式为550.1Q x =-.(1)该车加满油后油箱内有油______升;(2)当汽车到达B 地时,求剩余油量Q 的值.18.如图是按规律排列的一组图形的前三个,观察图形解答下列问题:(1)第5个图形中点的个数是________;(2)请用含n 的代数式表示出第n 个图形中点的个数,并求出第100个图形中点的个数.参考答案1.【答案】C2.【答案】C3.【答案】C4.【答案】B5.【答案】C6.【答案】A7.【答案】A8.【答案】C9.【答案】C10.【答案】2a 2-3b 11.【答案】宽12.【答案】16-或40-13.【答案】3或3-14.【答案】2215.【答案】(1)58x y +(2)4xy (3)2016.【答案】2717.【答案】(1)55升(2)20升18.【答案】(1)31;(2)第n 个图形中点的个数61n +,第100个图形中点的个数为601。
北师大版七年级上册数学第三章测试卷含答案
北师大版七年级上册数学第三章测试题评卷人得分一、单选题1.在代数式x 2+5,-1,x 2-3x+2,π,5x,211x x ++中,整式有()A .3个B .4个C .5个D .6个2.下列运算正确的是()A .()2121a a -=-B .2222a a a +=C .33323a a a -=D .220a b ab -=3.多项式2112x x ---的各项分别是()A .21,,12x x -B .21,,12x x ---C .21,,12x x D .21,,12x x --4.买一个足球需要m 元,买一个篮球需要n 元,则买4个足球和7个篮球共需要多少元()A .4m+7nB .28mnC .7m+4nD .11mn5.下列各组中的两个单项式能合并的是()A .4和4xB .323和−23C .2B 2和100B 2D .m 和26.单项式-3πxy 2z 3的系数和次数分别是()A .-π,5B .-1,6C .-3π,6D .-3,77.一个多项式与221a a -+的和是32a -,则这个多项式为()A .253a a -+B .253a a -+-C .2513a a --D .21a a -+-8.已知2x 3y 2和﹣x 3m y 2是同类项,则式子4m ﹣24的值是()A .20B .﹣20C .28D .﹣289.当1<a<2时,代数式|a -2|+|1-a|的值是()A .-1B .1C .3D .-310.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a 亿元和b 亿元,则a 、b 之间满足的关系式为()A .=o1+8.9%+9.5%)B .=o1+8.9%×9.5%)C .=o1+8.9%)(1+9.5%)D .=o1+8.9%)2(1+9.5%)评卷人得分二、填空题11.单项式225xy -的系数是________,次数是________.12.多项式3233525xy x y x y -+-+的次数是________,最高次项的系数是________,常数项是________.13.去括号:26(31)x x --+=________14.列式表示:x 的3倍与x 的二分之一的差为________.15.一个两位数,个位数字是十位数字的2倍,若个位数字为a ,则这个两位数可表示为__________16.m 是一个两位数,n 是一个一位数,把n 放在m 的左边,所构成的三位数为________.17.三个连续偶数,最小的一个是22n +,则这三个偶数的和是________.18.若2|2|(1)0m n n -++=,则2m n -+=________.19.若代数式2345x x --的值为7,则2453x x --的值为________.20.若23n x y 与332m x y -的差是单项式,则n m =________.21.计算:()()121x y x x y --++-+=________.评卷人得分三、解答题22.计算:(1)25−35−45−1232+223−345;(2)42−5B 2−32−4B 223.先化简,再求值.(1)−2+5+4+5−4+22,其中=−2;(2)22−22−322+2+322+2,其中=−1,=2.24.已知|+2|+(−1)2=0,求133+22+3B 2−6−33+2+B 2的值.25.已知某轮船顺水航行3小时,逆水航行2小时,(1)设轮船在静水中前进的速度是m 千米/时,水流的速度是a 千米/时,则轮船共航行多少千米?(2)当轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?26.(1)已知多项式238x my +-与多项式227nx y -++的差中,不含有x ,y ,求m n mn +的值;(2)已知2|3|(4)0a b ++-=,求多项式222a ab b ++的值.27.张华在一次测验中计算一个多项式加上532xy yz xz -+时,误认为减去此式,计算出错误结果为26xy yz xz -+,试求出正确答案.参考答案1.B 【解析】【详解】凡是在分母中没有字母的都是整式,所以2+5,-1,x 2-3x+2,π,是整式,所以选B .2.B 【解析】【分析】分别根据去括号、合并同类项进行计算进行判别即可.故选:B .【详解】A.()2122a a -=-,故A 选项错误;B.2222a a a +=,故B 选项正确;C.33323a a a -=-,故C 选项错误;D.22a b ab -,不是同类项,不能合并,故D 选项错误.故选:B .【点睛】本题考查的是去括号、合并同类项,熟知同类项的概念是解答此题的关键.3.B 【解析】【分析】根据多项式的概念求解即可.【详解】多项式2112x x ---的各项分别是21,,12x x ---.故选B.【点睛】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.4.A【解析】【分析】根据题意可知4个足球需4m元,7个篮球需7n元,故共需(4m+7n)元.【详解】∵一个足球需要m元,买一个篮球需要n元.∴买4个足球、7个篮球共需要(4m+7n)元.故选A.【点睛】注意代数式的正确书写:数字写在字母的前面,数字与字母之间的乘号要省略不写.5.D【解析】【分析】根据同类项的概念结合选项求解.【详解】A、4和4x不是同类项,不能合并;B、323和−23不是同类项,不能合并;C、2B2和100B2不是同类项,不能合并;D、m和2是同类项,可以合并.故选D.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中相同字母的指数相同的概念.6.C【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:根据单项式系数、次数的定义,单项式-3πxy 2z 3的系数和次数分别是-3π,6.故选:C .【点睛】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π是数字,应作为系数.7.B 【解析】【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案.【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3,故选B.【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键.8.B 【解析】【详解】∵2x 3y 2与﹣x 3m y 2的和是单项式,∴2x 3y 2与﹣x 3m y 2是同类项,∴3m=3,解得m=1,所以,4m-24=4×1-24=4-24=-20.故选B.9.B 【解析】【分析】知识点是代数式求值及绝对值,根据a的取值范围,先去绝对值符号,再计算求值.【详解】解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选B.【点睛】考核知识点:绝对值化简.10.C【解析】【分析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【详解】∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.【点睛】此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.11.25-3【解析】【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数进行分析即可.【详解】单项式225xy-的系数是25-,次数是3,故答案为:25-;3.【点睛】此题主要考查了单项式,关键是掌握单项式的相关定义.12.5-2+5【解析】【分析】根据多项式的概念及单项式的次数、系数的定义解答.【详解】多项式3233525xy x y x y -+-+的次数是5.最高次项系数是-2,常数项是+5.故答案为:5,-2,+5.【点睛】本题考查了多项式:几个单项式的和叫多项式.多项式中每个单项式都是多项式的项,这些单项式的最高次数,就是这个多项式的次数.13.2631x x +-【解析】【分析】利用去括号法则求解即可.【详解】26(31)x x --+=2631x x +-.故答案为:2631x x +-.【点睛】此题考查了去括号法则的运用,熟练掌握去括号法则是解题的关键.14.132x x -【解析】【分析】根据题意可以用代数式表示题目中的语句,本题得以解决.【详解】由题意可得,x的3倍比x的二分之一大多少可表示为:132x x -,故答案为:132x x -.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.15.6a【解析】【分析】根据题意,先求出十位上的数字,再用十位数字×10+个位数字×1求出这个两位数.【详解】个位数字是十位数字的2倍,若个位数字为a,则十位数是12 a,则这个数是1106.2a a a ⨯+=故答案为:6a.【点睛】考查列代数式,掌握两位数的表示方法是解题的关键.16.100n m+【解析】【分析】根据m是一个两位数,n是一个一位数,将n写到m的左边成为一个三位数,即n扩大了100倍,m不变,即可得出答案.【详解】由题意,可得这个三位数为:100n m+.故答案为100n m+.【点睛】主要考查了列代数式,掌握三位数的表示方法,能够用字母表示数是本题的关键.17.612n+【解析】【分析】三个连续偶数之间的关系,22n +为最小的整数,则其余两个连续偶数分别为24n +、26n +,即可求出三个偶数的和.【详解】22n +为最小的整数,则其余两个连续偶数分别为24n +、26n +,所以三个连续偶数之和为:22n ++24n ++26n +=612n +.故答案为:612n +.【点睛】把握好连续偶数之间的关系,每相邻两个偶数之间差2,同时要注意题中已经给出最小的偶数为22n +,所以其余两个数都要用含有n 的式子表示出来.18.0【解析】【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】根据题意得,m-2n=0,n+1=0,解得m=-2,n=-1,所以,-m+2n=-(-2)+2×(-1)=2-2=0.故答案为:0.【点睛】本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.19.-1【解析】【分析】根据题意列出等式,变形后求出x 2-43x 的值,代入原式计算即可得到结果.【详解】∵3x 2-4x-5的值为7,3x 2-4x=12,代入x 2-43x-5,得13(3x 2-4x )-5=4-5=-1.故答案为:-1.【点睛】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.20.8【解析】【分析】根据单项式的差是单项式,可得同类项,根据同类项的定义,可得答案.【详解】由题意,得m =2,n =3.∴n m =23=8.,故答案为:8.【点睛】本题考查了合并同类项,利用同类项的定义得出n ,m 的值是解题关键.21.42x y-【解析】【分析】先去括号,再合并同类项.【详解】()()121x y x x y --++-+=121x y x x y -+-+-+=42x y -.故答案为:42x y -.【点睛】解题要注意正确合并同类项;整式的加减中去括号时要看括号外的因数是正数还是负数(正数时,去括号后原括号内各项的符合与原来的符合相同;负数时,去括号后原括号内各项的符合与原来的符合相反).22.(1)232−823;(2)2−B 2.【解析】【分析】(1)由于原式中含有括号,则先去括号,然后进行加减运算合并同类项;(2)先去括号,再合并同类项.【详解】(1)原式=25−35−25+232−823+35=232−823.(2)原式=42−5B2−32+4B2=2−B2.【点睛】整式的加减中去括号时要看括号外的因数是正数还是负数:正数时,去括号后原括号内各项的符合与原来的符合相同;负数时,去括号后原括号内各项的符合与原来的符合相反.23.(1)2+10,-16;(2)−2+2,3.【解析】【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把x、y的值代入计算即可求出值.【详解】(1)(−2+5+4)+(5−4+22).=−2+5+4+5−4+22=2+10;当=−2时,原式=(−2)2+10×(−2)=4−20=−16.(2)(22−22)−3(22+2)+3(22+2)=22−22−322−32+322+32=−2+2当=−1,=2时,原式=−(−1)2+22=−1+4=3.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.24.−133−2−6,−223【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【详解】因为|+2|+(−1)2=0,所以+2=0,−1=0,所以=−2,=1.133+(22+3B2−6)−3(293+2+B2)=133+22+3B2−6−233−32−3B2.=−133−2−6,当=−2,=1时,原式=−13×(−2)3−(−2)2×1−6=−13×(−8)−4−6=−223.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.5m a+千米;403千米25.()【解析】【分析】(1)共航行路程=顺水路程+逆水路程=(静水速度+水流速度)×顺水时间+(静水速度-水流速度)×逆流时间,把相关数值代入,化简即可;(2)把80,3代入(1)得到的式子,求值即可.【详解】(1)轮船共航行路程为:(m+a)×3+(m-a)×2=(5m+a)千米,(2)把m=80,a=3代入(1)得到的式子得:5×80+3=403千米.答:轮船共航行403千米.【点睛】本题考查列代数式及代数式求值问题,得到共航行路程的等量关系是解决本题的关键,用到的知识点为:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度.26.(1)3;(2)1【解析】【分析】(1)先根据题意得出m、n的值,代入代数式进行计算即可;(2)根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】(1)()2223827(3)(2)15x my nx y n x m y +---++=++--.因为不含有x ,y ,所以30n +=,20m -=,即3n =-,2m =.所以()()3223963m n mn +=-+⨯-=-=.(2)因为2|3|(4)0a b ++-=,所以30a +=,40b -=,即3a =-4b =,.所以22222(3)2(3)441a ab b ++=-+⨯-⨯+=.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.27.12125xy yz xz-+【解析】【分析】运用两次整式的加减运算,设原来的多项式为A ,按照减法列算式求出A ,再按照加法求出正确结果.【详解】设原来的整式为A ,则A-(5xy-3yz+2xz )=2xy-6yz+xz ,得A=7xy-9yz+3xz ;∴A+(5xy-3yz+2xz )=7xy-9yz+3xz+(5xy-3yz+2xz )=12xy-12yz+5xz ;∴原题的正确答案为:12xy-12yz+5xz .【点睛】整式的加减运算实际上就是去括号、合并同类项.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 xy
2y,
则
2
8x
13xy
2
15 y 等 于
()
A.2M-N B.2M-3N C.3M-2N D.4M-N
二、填空题: (每小题 4 分,共 16 分)
7. 用代数式表示比 a 的 5 倍小 3 的数是
。
8. 如果 3 个连续偶数中间一个为 n,那么另外两个数是
和
。
这三个数的和应表示为
。
9. 若- 2 a2bm与 4anb 是同类项,则 m=
1 个书包,赠送 1 支水性笔;
②购书包 和水性笔一律按 9 折优惠.书包每个定价 20 元,水性笔每支定价 5 元.
( 1)小丽和同学需买 4 个书包,水性笔 x 支(不少于 4 支).用代数式表示两种
优惠方案各需多少元?
( 2)当 x 20 时,采用哪种方案优惠?
( 3)当 x 32时,采用哪种方案优惠?
(
)。
A、 a(1 + 20% )
B、 a(1 + 20% )8 %
C、 a(1 + 20% ) ( 1-8%)
D、 8%a
2
5、在下列各数 -(+2) ,— 3 2 ,( 1)4, 2 ,( 1)2008,
3
5
是( )
A.2
B.3
C.4
D.5
3 中,负数的个数
6、如 果 M
3 x2
2 xy 4 y2 , N 4 x2
当 a 220 时, 15a 15 =15 220 15
=3285 21.
15a 15
6
七年级数学第二章阶段测试题
一、
单项选择题: (每小题 3 分,共 18 分)(请从以下各题中的四个选项中选
取其中最符合题意的一项..,并将它所对应的字母代号填入题后的括号内)
1、下列各式符合代数式书写规范的是(
)。
A、 b a
B、 a× 3
C、 3x- 1 个
2、下列合并同类项正确的有(
)。
D、 2 1 n 2
9. m=1,n=2
10.8
5 、D
6、 D
三、 11、原式 = 8a 2 3ab 5b2 2a 2 2ab 3b 2 = 6 a 2 ab 8b 2
12、原式 = 4xy xy 6x = 3xy 6x
13、原式 = a 3b a 3b 2c 2a3b 2c = 0 14、原式 = 20a 4b a 4b 3= 21a 8b 3 15、原式 = 3a 7a2 2a 3a2 3a 1 = a2 a 1
16、原式 = 8 x2 y 7xy 2 6xy 8xy x2 y y2 x = 8xy2 14xy 8 四、 17. 解:原式 4m 13 ,当 m 3时,原式 25 .
18.
19.解:( 1)按优惠方案①购买需要费用: ( x-4)× 5+20× 4=5x+60, 按优惠方案②购买需要费用: (5x+20 ×4) × 0.9=4.5x+72.
( 2)当 x=20 时, 5x+60=5 × 20+60=160 4.5× 20+72=162 ∴当 x=20 时,采用方案①优惠,
( 3)当 x=32 时, 5x+60=5 × 32+60=220 4.5× 32+72=216 ∴当 x=32 时,采用方案②优惠
20. 1 、解:( 1)根据题意 得:
(a 1) [2( a 1) 1] 4{( a 1) [2( a 1) 1]} 5
5
= a 1 2( a 1) 1 4( a 1) 4[2( a 1) 1] 5
= 7( a 1) 4[2( a 1) 1] 4
= 7( a 1) 8( a 1) 4 4
=15(a 1)
=15a 15
( 2)由( 1)可知第二季度销售的空调总数为
, n=
。
3
1
1
2
3
4
5
6
7
8
10. 观察下列算式: 2 = 2、 2 = 4、 2 = 8、 2 = 16、 5 = 32、 2 = 64、 2 = 128、 2
= 256……。观察后,用你所发现的规律写出
2 23 的末位数字是
。
三.化解:(每题 5 分,共 30 分)
2
2
2
2
11. (8a 3ab 5b ) (2 a 2ab 3b )
20. 某空调器销售商,今年四月份销出空调 a 1台,五月份销售空调比四月份的
2 倍少 1 台,六月份销售空调比前两个月的总和的
4 倍还多 5 台.
( 1)用代数式表示该销售商今年第二季度共销售空调多少台?
3
( 2)若 a=220,求第二季度销售的空调总数.
21. 在边长为 16cm的正方形纸片的四个角各剪去一个同样大小的正方形,
1 12. 4xy 3( xy 2x)
3
13. a3b (a3b 2c) 2(a3b c)
14 14. 4 5a b 3 a b 1
33
15. 3a2 [7 a2 2a 3(a2 a) 1]
16. (8 x2 y 7xy2 6xy) [8 xy (x2 y y2 x)]
四.简答题:
35
Hale Waihona Puke 17. 先化简,再求值: m ( m 1) 3( 4 m) ,其中 m 3 .
折成一
个无盖的长方体 .
( 1)如果剪去的小正方形的边长为 x cm,请用 x 来表 示这个无盖长方体的容积;
( 2)当剪去的小正方体的边长 x 的值分别为 3cm和 3. 5cm时,比较折成的无盖
长方体的容积的大小 .
4
答案:
一、 1、 A 2、 D 3、 B 4、 C
二、 7. 5a-3
8. n-2,n+2,3n
2
2
2
18. 有这样一道题 : “计算 (2x3 3x 2 y 2xy2 ) (x 3 2xy2 y 3) ( x 3 3x2 y y 3) 的值,
其中 x 1 , y 2
1 ”。甲同学把“ x
1 ”错抄成“ x
2
也是正确的,试说明理由,并求出这个结果?
1
”,但他计算的结果
2
19. 某办公用品销售商店推出两种优惠方案:①购
A、 2x+4x=8x 2
B、 3x+2y=5xy
C、 7x2- 3x2=4
D、9a2b- 9ba2=0
3、对代数式 a2+b2 的意义表达不确切的是(
)。
A、 a、 b 的平方和 C、 a2 与 b2 的和
B、 a 与 b 的平方的和 D、 a 的平方与 b 的平方的和
4 、一批电脑进价为 a 元,加上 20 %的利润后优惠 8 %出售,则售出价为