初中数学重要公式定律
初中数学重要公式整理

初中数学重要公式整理初中数学中常用的重要公式有很多,下面整理了一些常见的重要公式供你参考。
一、代数运算公式:1. 二次方差公式:(a+b)²=a²+2ab+b²2.一次方差公式:(a+b)(a-b)=a²-b²3.二次平方差公式:a²-b²=(a+b)(a-b)4. 二次立方差公式:a³-b³=(a-b)(a²+ab+b²)5. 一次立方差公式:a³+b³=(a+b)(a²-ab+b²)二、平方根公式:1.平方根的定义:如果a²=b,那么a叫做b的平方根,记作a=√b2.平方根的性质:非负数的平方根为非负数。
3.平方根求和、求差公式:a²+b²±2ab=(a±b)²a²-b²=(a+b)(a-b)三、等差数列常用公式:1. 前n项和公式:Sn=(a₁+an)×n/22. 通项公式:an=a₁+(n-1)d四、等比数列常用公式:1.前n项和公式:Sn=a₁(1-qⁿ)/(1-q)2. 通项公式:an=a₁×qⁿ⁻¹五、三角函数常用公式:1. sin²A+cos²A=12. 1+tan²A=sec²A、1+cot²A=csc²A3. sin(-A)=-sinA,cos(-A)=cosA4. sin(A±B)=sinAcosB±cosAsinB5. cos(A±B)=cosAcosB∓sinAsinB6. tan(A±B)=(tanA±tanB)/ (1∓tanAtanB)7. sin2A=2sinAcosA,cos2A=cos²A-sin²A=2cos²A-1=1-2sin²A六、平面几何常用公式:1.直角三角形勾股定理:c²=a²+b²2. 正弦定理:a/sinA=b/sinB=c/sinC=2R,其中R为三角形外接圆的半径3. 余弦定理:a²=b²+c²-2bc cosA4.面积公式:等腰三角形面积=S=1/2×底边×高5.等边三角形面积=S=√3/4×边长²6.圆的面积公式:S=πr²,其中r为圆的半径7.圆的周长公式:C=2πr,其中r为圆的半径以上只是初中数学中的一部分重要公式,掌握了这些公式,能够在解题过程中更加灵活运用,提高解题效率。
初中数学必背重要公式

初中数学必背重要公式一、有理数 (1)二、整式的加减 (3)三、一元一次方程 (3)四、几何图形初步 (3)五、相交线与平行线 (4)六、实数 (4)七、平面直角坐标系 (4)八、二元一次方程组 (5)九、不等式与不等式组 (5)十、三角形 (6)十一、全等三角形 (6)十二、轴对称 (6)十三、整式的乘法与因式分解 (7)十四、分式 (7)十五、二次根式 (8)十六、勾股定理 (8)十七、平行四边形 (8)十八、一次函数 (9)十九、数据的分析 (9)二十、一元二次方程 (10)二十—、二次函数 (10)一、有理数1、相反数与绝对值(1)数a 的相反数是-a。
若a、b 互为相反数,则 a+b=0;反之,若 a+b=0,则 a、b 互为相反数.a(a>0),(2)绝对值计算∣a∣= 0(a=0),-a(a<0),a(a≧0),a(a>0),或∣a∣= 或∣a∣=-a(a<0), ------------------ a(a≦0)2、两个有理数大小的比较(1)在数轴上,右边的数总比左边的数大.(2)正数大于 0,负数小于 0,正数大于一切负数.(3)两个负数比较,绝对值大的负数反而小.3、有理数的运算4、有理数运算律(2)如果 a=b ,那么 ac=bc ;如果 a=b ,那么 = (c≠0)5、科学记数法把一个大于 10 的数记作a×10n的形式,其中a 大于或等于 1 且小于 10,即 1 ≤| a| <10,n 是正整数.二、整式的加减1、合并同类项的法则合并同类项时,将同类项的系数相加,所得的和作为系数,字母与字母的指数不变.2、去括号法则括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号. 3、整式的加减法则整式的加减实质就是去括号、合并同类项,若有括号,就要先去掉括号,然后再合并同类项,直到结果中没有同类项为止.三、一元一次方程1、等式的基本性质(1)如果a=b ,那么 a+c=b+c ,a-c=b-ca bc c2、解一元一次方程的步骤四、几何图形初步1、直线、线段公理(1) 直线公理:两点确定一条直线. (2) 线段公理:两点之间,线段最短.2、角五、相交线与平行线1.相交线与垂线2.平行线3.命题、定理、证明六、实数1、平方根和立方根2、实数的性质(1)数a 的相反数是-a,这里a 表示任意一个实数.(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0 的绝对值是 0.各象限内点的坐标特点P(a,b) ①点在第一象限,则a>0,b>0;②点在第二象限,则a<0,b>0; ○3点在第三象限,则a<0,b<0;④点在第四象限,则a>0,b<0角平分线上点的特点P(a,b)①在一、三象限的角平分线上,a=b;②在二、四象限的角平分线上,a=-b平面直角坐标系中对称点的坐标特点P(a,b)①关于x 轴对称,横坐标相同,纵坐标互为相反数,即(a,-b);○2关于y 轴对称,横坐标互为相反数, 纵坐标相同,即(-a,b);○3关于坐标原点对称,横纵坐标都互为相反数,即(-a,-b)与坐标轴平行的直线上的点的坐标特点○1 与x 轴平行的直线上的所有点的纵坐标相同;○2 与y 轴平行的直线上的所有点的横坐标相同八、二元一次方程组a1x+b1y=c1,对于二元一次方程组a2x+b2y=c2.a1 b1(1) 当≠ (a2,b2≠0)时,方程组有唯一解.a2 b2a1 b1 c1(2) 当 = = (a2,b2,c2≠0)时,方程组有无数组解.a2 b2 c2a1 b1 c1(3) 当= ≠ (a2,b2,c2≠0)时,方程组无解.a2 b2 c2九、不等式与不等式组1.不等式性质性质 1:不等式的两边同时加(或减)同一个数或同一个含有字母的式子,不等号的方向不变,即如果a>b,那么a±m>b±m.性质 2:不等式的两边同时乘(或除)同一个正数,不等号的方向不变,即如果a>b 且 m>0,那么a bam>bm 或 > .m m性质 3:不等式的两边同时乘(或除)同一个负数,不等号的方向改变,即如果a>b 且m<0,那么a bam<bm 或 < .m m2.一元一次不等式组的解集不等式组(a<b)数轴表示解集口诀x>a,x>b a bx>b 同大取大x<a,x<b a bx<a 同小取小锐角三角形按角分类三角形按边分类不等边三角形等腰三角形底边和腰不相等的等腰三角形等边三角形x>a,x<ba ba<x<b 大小小大中间找x<a,x>ba b无解小小大大找不到十、三角形1、三角形的分类2、三角形三边关系三角形中任意两边的和大于第三边,三角形中任意两边的差小于第三边. 3、三角形内角和定理三角形三个内角的和等于180°.4、直角三角形的性质与判定性质;直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形. 5、三角形的外角性质(1)三角形的外角和为360°.(2)三角形的一个外角等于和它不相邻的两个内角的和.(3)三角形的一个外角大于和它不相邻的任何一个内角. 6、多边形的内角和与外角和(1) n 边形的内角和是(n-2)×180°.(2) n 边形的外角和为360°.十一、全等三角形1.全等三角形角形的判定方法内容符号适用范围定理 1 三条边分别对应相等的两个三角形全等SSS 所有三角形定理 2 两边及其夹角分别对应相等的两个三角形全等SAS 所有三角形定理 3 两角及其夹边分别对应相等的两个三角形全等ASA 所有三角形定理 4 两角及其中一个角的对边对应相等的两个三角形全等AAS 所有三角形定理 5 斜边和一条直角边对应相等的两个直角三角形全等HL 直角三角形2.角平分线的性质及判定(1)性质:角的平分线上的点到角的两边的距离相等.(2)判定:角的内部到角的两边距离相等的点在角的平分线上.十二、轴对称1.轴对称和线段垂直平分线的性质及判定轴对称的性质○1 关于某条直线对称的两个图形是全等形;○2 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线;轴对称的判定若两个图形的对应点的连线被同一直线垂直平分,那么这两个图形关于这条直线对称线段的垂直平分线性质:线段垂直平分线上的点与这条线段两个端点的距离相等判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上2.三角形的性质及判定等腰三角形的性质○1 等腰三角形是轴对称图形;○2 等腰三角形的两个底角相等:○3 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等等边三角形的性质等边三角形的三个内角都相等,且都等于 60°等边三角形的判定○1 三条边都相等的三角形是等边三角形:○2 三个角都相等的三角形是等边三角形:○3 有一个角是 60°的等腰三角形是等边三角形直角三角形的性质○1 在直角三角形中,30°角所对的直角边等于斜边的一半:○2 直角三角形斜边上的中线等于斜边的一半十三、整式的乘法与因式分解1. 幂的有关法则2. 乘法公式3. 因式分解十四、分式1.分式的基本性质分式的分子与分母同乘(或除以)一个不等于 0 的整式,分式的值不变.即2.分式的运算法则十五、二次根式十六、勾股定理1.勾股定理如果直角三角形的两条直角边长分别是 a,b,斜边长为 c,那么a2 +b2=c2.2.勾股定理的逆定理如果三角形的三边长 a,b,c 满足a2 +b2=c2那么这个三角形就是直角三角形. 十七、平行四边形1.几种特殊四边形常用的判定方法平行四边形1 两组对边分别平行的四边形是平行四边形:2 两组对边分别相等的四边形是平行四边形:3 两组对角分别相等的四边形是平行四边形:4 对角线互相平分的四边形是平行四边形:5 一组对边平行且相等的四边形是平行四边形矩形1 有一个角是直角的平行四边形是矩形;○2 有三个角是直角的四边形是矩形○3 对角线相等的平行四边形是矩形菱形1 一组邻边相等的平行四边形是菱形:2 对角线互相垂直的平行四边形是菱形:3 四条边都相等的四边形是菱形正方形1 有一组邻边相等的矩形:2 对角线互相垂直的矩形:3 有一个角为直角的菱形:4 对角线相等的菱形2.中位线三角形的中位线平行于第三边,并且等于第三边的―半.十八、一次函数1.正比例函数的图象和性质2.—次函数的图象和性质十九、数据的分析二十、一元二次方程二十—、二次函数23. 二次函数y=ax2 +bx+c 的性质有关抛物线: y=ax2 +bx+c 的符号问题:(1) a 的符号:由抛物线的开口方向确定①开口向上 a>0:②开口向下 a<0。
初中数学重要公式及定理汇总

初中数学重要公式及定理汇总数学重要公式定理及推论01基础定理1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短02平行线性质及判定1 平行公理经过直线外一点,有且只有一条直线与这条直线平行2 如果两条直线都和第三条直线平行,这两条直线也互相平行3 同位角相等,两直线平行4 内错角相等,两直线平行5 同旁内角互补,两直线平行6 两直线平行,同位角相等7 两直线平行,内错角相等8 两直线平行,同旁内角互补03三角形的性质及判定1 定理三角形两边的和大于第三边2 推论三角形两边的差小于第三边3 三角形内角和定理三角形三个内角的和等于180°4 推论1 直角三角形的两个锐角互余5 推论2 三角形的一个外角等于和它不相邻的两个内角的和6 推论3 三角形的一个外角大于任何一个和它不相邻的内角04全等三角形性质及判定1 全等三角形的对应边、对应角相等2 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等3 角边角公理( ASA) 有两角和它们的夹边对应相等的两个三角形全等4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等5 边边边公理(SSS) 有三边对应相等的两个三角形全等6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等7 定理1 在角的平分线上的点到这个角的两边的距离相等8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上05等腰三角形的性质及判定1 角的平分线是到角的两边距离相等的所有点的集合2 等腰三角形的性质定理等腰三角形的两个底角相等( 即等边对等角)3 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边4 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合5 推论3 等边三角形的各角都相等,并且每一个角都等于60°6 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7 推论1 三个角都相等的三角形是等边三角形8 推论2 有一个角等于60°的等腰三角形是等边三角形06直角三角形、垂直平分线1 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半2 直角三角形斜边上的中线等于斜边上的一半3 定理线段垂直平分线上的点和这条线段两个端点的距离相等4 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上5 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合6 定理1 关于某条直线对称的两个图形是全等形7 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线8 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上9 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称07勾股定理1 勾股定理直角三角形两直角边a 、b 的平方和、等于斜边c 的平方,即a^2+b^2=c^22 勾股定理的逆定理如果三角形的三边长a 、b 、c 有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形08内角和及外角和1 定理四边形的内角和等于360°2 四边形的外角和等于360°3 多边形内角和定理n 边形的内角的和等于(n-2 )×180°4 推论任意多边的外角和等于360°09平行四边形1 平行四边形性质定理1 平行四边形的对角相等2 平行四边形性质定理2 平行四边形的对边相等3 推论夹在两条平行线间的平行线段相等4 平行四边形性质定理3 平行四边形的对角线互相平分5 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形6 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形7 平行四边形判定定理3 对角线互相平分的四边形是平行四边形8 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形010矩形矩形性质定理1 矩形的四个角都是直角矩形性质定理2 矩形的对角线相等矩形判定定理1 有三个角是直角的四边形是矩形矩形判定定理2 对角线相等的平行四边形是矩形011菱形菱形性质定理1 菱形的四条边都相等菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积= 对角线乘积的一半,即S= (a×b )÷2菱形判定定理1 四边都相等的四边形是菱形菱形判定定理2 对角线互相垂直的平行四边形是菱形012正方形正方形性质定理1 正方形的四个角都是直角,四条边都相等正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角定理1 关于中心对称的两个图形是全等的定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称013等腰梯形等腰梯形性质定理等腰梯形在同一底上的两个角相等等腰梯形的两条对角线相等等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形对角线相等的梯形是等腰梯形014等分线段平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边015中位线1 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半2 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b )÷2 S=L×h3 (1) 比例的基本性质如果a:b=c:d, 那么ad=bc, 如果ad=bc, 那么a:b=c:d4 (2) 合比性质如果a /b=c /d, 那么(a±b) /b=(c±d) /d85 (3) 等比性质如果a /b=c /d=…=m /n(b+d+…+n≠0), 那么(a+c+…+m) /(b+d+…+n)=a / b016平行线分线段成比例平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理1 两角对应相等,两三角形相似(ASA )直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS )判定定理3 三边对应成比例,两三角形相似(SSS )定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比性质定理2 相似三角形周长的比等于相似比性质定理3 相似三角形面积的比等于相似比的平方任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值017圆1 圆是定点的距离等于定长的点的集合2 圆的内部可以看作是圆心的距离小于半径的点的集合3 圆的外部可以看作是圆心的距离大于半径的点的集合4 同圆或等圆的半径相等5 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7 到已知角的两边距离相等的点的轨迹,是这个角的平分线8 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9 定理不在同一直线上的三点确定一个圆。
初中数学全套公式

初中数学全套公式初中数学是义务教育的基础学科,其公式和概念的学习是这门课程的核心部分。
以下是一套完整的初中数学公式,这些公式涵盖了初中数学的大部分内容,对于理解和应用数学概念具有重要意义。
一、代数公式1、乘法公式:(a+b)(a-b)=a²-b²2、完全平方公式:a²+2ab+b²=(a+b)²3、平方差公式:a²-b²=(a+b)(a-b)4、立方和公式:a³+b³=(a+b)(a²-ab+b²)5、立方差公式:a³-b³=(a-b)(a²+ab+b²)6、两数和乘两数差:2(a+b)(a-b)=2a²-2b²7、两数平方和:a²+b²=(a+b)²-2ab8、两数和的平方:(a+b)²=a²+2ab+b²9、两数差的平方:(a-b)²=a²-2ab+b²10、幂的乘方:anbn=(ab)n11、积的乘方:anbn=(ab)n12、分式的约分:同时分子分母除以公因式。
13、提公因式法:一般地,如果想要提取一个多项式的公因式,我们把这个多项式的各项都含有的相同字母因式提到括号外面,将多项式化成积的形式,这种分解因式的方法叫做提公因式法。
14、运用公式法:如果一个式子的值等于几个其他式子的值乘积,那么这个式子就叫公式的原式,这几个其他式子就叫这个公式的因式。
如果把一个公式的所有因式分解出来,那么它们就都叫这个公式的因式分解。
二、几何公式1、勾股定理:在一个直角三角形中,斜边的平方等于两条直角边的平方和。
2、平行线间的距离公式:如果两条直线平行,那么一条直线上任意一点到另一条直线的距离相等。
3、三角形的面积公式:一个三角形的面积等于底边乘以高再除以2。
初一初中数学常用公式与定理

初一初中数学常用公式与定理数学作为一门基础学科,在初一和初中阶段,对于学生的发展至关重要。
掌握数学常用公式与定理,不仅可以提高数学分析和解决问题的能力,还有助于培养逻辑思维和数学思维能力。
下面是一些初一和初中数学常用的公式与定理以及它们的应用。
1. 代数运算公式代数运算是数学的基础,掌握一些常用的代数运算公式对于解决复杂的代数问题非常有帮助。
下面是一些常用的代数运算公式:1.1 加法和减法公式加法公式:(a+b)^2 = a^2 + 2ab + b^2减法公式:(a-b)^2 = a^2 - 2ab + b^21.2 乘法公式(a+b)(a-b) = a^2 - b^21.3 平方差公式(a+b)^2 - (a-b)^2 = 4ab2. 几何定理几何是数学的重要分支之一,许多几何定理可以帮助我们理解图形的性质和解决几何问题。
下面是一些初一和初中常用的几何定理以及它们的应用:2.1 皮亚诺定理皮亚诺定理表明,在一个平面上的n个点中,任意两点之间的连线的条数等于C(n, 2),即C(n, 2) = n(n-1)/2。
这个定理可以应用于计算几何图形中的线段数量。
2.2 正弦定理正弦定理表明,在一个三角形ABC中,三个内角A、B、C的正弦值与对边a、b、c之间的关系为:sinA/a = sinB/b = sinC/c。
这个定理可以帮助我们计算三角形的边长或角度。
2.3 余弦定理余弦定理表明,在一个三角形ABC中,三个内角A、B、C的余弦值与对边a、b、c之间的关系为:cosA = (b^2 + c^2 - a^2)/(2bc)。
这个定理可以帮助我们计算三角形的边长或角度。
3. 概率与统计概率与统计是数学中的实用工具,在解决排列组合、概率等问题时起着重要作用。
下面是一些初一和初中常用的概率与统计公式:3.1 排列公式排列公式表示从n个不同元素中选取r个元素进行排列的总数,表示为P(n, r) = n!/(n-r)!。
初中数学必背公式及定理

初中数学必背公式及定理数学是一门重要的学科,也是一门需要掌握公式和定理的学科。
初中数学中的公式和定理是学习数学的基础,掌握了这些公式和定理,能够更好地解题和理解数学知识。
下面是初中数学必背的公式和定理。
一、代数中的公式1. 二次方程的求根公式:对于一元二次方程ax²+bx+c=0,其根可以通过以下公式求得:x = (-b ± √(b²-4ac))/(2a)2. 平方差公式:(a±b)² = a²±2ab+b²3. 二次完全平方公式:a²+2ab+b²=(a+b)²4. 立方差公式:(a±b)³=a³±3a²b+3ab²±b³5.平方根的乘法公式:√a*√b=√(a*b)二、几何中的公式1.矩形的周长和面积:对于矩形,其周长C=2(l+w),面积S=l*w,其中l表示矩形的长度,w表示矩形的宽度。
2.三角形的周长和面积:对于三角形,其周长C=a+b+c,面积S=1/2*b*h,其中a、b、c表示三角形的三边长,h表示三角形的高。
3.圆的周长和面积:对于圆,其周长C=2πr,面积S=πr²,其中π取近似值3.14,r表示圆的半径。
4.直角三角形的勾股定理:对于直角三角形,设c为斜边,a、b为两直角边,则满足a²+b²=c²。
5.同心圆弦的等分定理:如果两条弦(或弦和直径)在同一个圆的同一边相交,那么它们所夹的弧(或弧和弦所夹的角)相等。
三、概率与统计中的公式1.事件的概率:设S为一个随机试验的样本空间,E为S的子集(即事件),则事件E的概率P(E)定义为E中的样本点数除以S中的样本点数。
2.互斥事件的概率:设A、B为两个事件,如果A和B不可能同时发生,称A和B为互斥事件,概率计算公式为P(A∪B)=P(A)+P(B)。
初中数学必背公式大全初中数学重要公式定律汇总

初中数学必背公式大全初中数学重要公式定律汇总
一、几何公式
1、三角形面积公式
△ABC的面积S=1/2ab sin C
其中a、b为△ABC的两边,C为两边夹角
2、四边形面积公式
正方形面积公式:S=a2
长方形面积公式:S=ab
其中a、b分别为正方形或长方形的边长
3、圆的面积公式
S=πr2
其中r为圆的半径
4、梯形面积公式
S=(a+b)h/2
其中a、b分别为梯形的上下底,h为梯形的高
5、椭圆面积公式
S=πab
其中a、b分别为椭圆的长轴短轴
6、圆柱体体积公式
V=πr2h
其中r为圆柱体的底面半径,h为圆柱体的高
7、圆锥体体积公式
V=1/3πr2h
其中r为圆锥体的底面半径,h为圆锥体的高
8、球的表面积公式
S=4πr2
其中r为球的半径
9、球的体积公式
V=4/3πr3
其中r为球的半径
10、圆柱和圆锥的体积比公式
V1:V2=r2:2r
其中V1为圆柱体体积,V2为圆锥体体积,r为两个体积半径相同
二、三角函数
1、正弦定理
a/sinA=b/sinB=c/sinC=(2S)/R
其中a、b、c分别为△ABC的三边,A、B、C分别为两边夹角,S为△ABC的面积,R为三角形的外接圆半径
2、余弦定理
a2=b2+c2-2bc cosA
其中a、b、c分别为△ABC的三边,A为两边夹角3、正切关系
tanA= a/b
cotA= b/a
其中a、b分别为△ABC的两边,A为两边夹角4、正弦定理的应用
1)角的大小。
初中数学重要公式定律

初中数学重要公式定律初中数学中有许多重要的公式和定律,它们是数学学习的基础和核心。
下面我将介绍一些常见的重要公式和定律。
一、平方公式平方公式是初中数学中最基础的公式之一。
它表达了一个数的平方与这个数本身的关系。
平方公式可以用来求解平方根,也可以用来求解平方的值。
平方公式的数学表达式为a² = b,其中a表示数的平方根,b表示数的平方。
二、勾股定理勾股定理是三角形中最重要的定理之一。
它描述了直角三角形中三条边的关系。
勾股定理表达了直角三角形中两直角边的平方和等于斜边的平方。
勾股定理的数学表达式为a² + b² = c²,其中a、b表示直角边的长度,c表示斜边的长度。
三、正比例关系正比例关系是数学中常见的一种关系。
它表示两个变量之间的关系是成比例的。
正比例关系可以用一个比例系数来表示。
当一个变量的值增加时,另一个变量的值也会按比例增加。
正比例关系的数学表达式为y = kx,其中y表示第一个变量的值,x表示第二个变量的值,k表示比例系数。
四、反比例关系反比例关系与正比例关系相反,它表示两个变量之间的关系是反比例的。
当一个变量的值增加时,另一个变量的值会按比例减少。
反比例关系的数学表达式为y = k/x,其中y表示第一个变量的值,x 表示第二个变量的值,k表示比例系数。
五、线性函数线性函数是数学中最常见的一种函数。
它表示两个变量之间的关系是线性的。
线性函数的图像是一条直线。
线性函数的数学表达式为y = kx + b,其中y表示函数的值,x表示自变量的值,k表示斜率,b表示截距。
六、平行线性质平行线性质是平面几何中的重要定理之一。
它表明如果两条直线被一条平行线所截,那么这两条直线之间的对应角是相等的。
这个定理在解题过程中经常使用,可以帮助我们求解各种几何问题。
七、面积公式面积公式是计算各种图形面积的基础公式。
不同的图形有不同的面积公式,常见的有矩形、三角形、圆等。
矩形的面积公式为S = a * b,其中S表示矩形的面积,a和b分别表示矩形的两条边的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理三角形两边的和大于第三边
16 推论三角形两边的差小于第三边
17 三角形内角和定理三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角
所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直
平分线
44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,
那么交点在对称轴上
45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两
个图形关于这条直线对称
46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,
即a^2+b^2=c^2
47 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48 定理四边形的内角和等于360°
49 四边形的外角和等于360°
50 多边形内角和定理n边形的内角的和等于(n-2)×180°
51 推论任意多边的外角和等于360°
52 平行四边形性质定理1 平行四边形的对角相等
53 平行四边形性质定理2 平行四边形的对边相等
54 推论夹在两条平行线间的平行线段相等
55 平行四边形性质定理3 平行四边形的对角线互相平分
56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60 矩形性质定理1 矩形的四个角都是直角
61 矩形性质定理2 矩形的对角线相等
62 矩形判定定理1 有三个角是直角的四边形是矩形
63 矩形判定定理2 对角线相等的平行四边形是矩形
64 菱形性质定理1 菱形的四条边都相等
65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66 菱形面积=对角线乘积的一半,即S=(a×b)÷2
67 菱形判定定理1 四边都相等的四边形是菱形
68 菱形判定定理2 对角线互相垂直的平行四边形是菱形
69 正方形性质定理1 正方形的四个角都是直角,四条边都相等
70 正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每
条对角线平分一组对角
71 定理1 关于中心对称的两个图形是全等的
72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被
对称中心平分
73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,
那么这两个图形关于这一点对称
74 等腰梯形性质定理等腰梯形在同一底上的两个角相等
75 等腰梯形的两条对角线相等
76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77 对角线相等的梯形是等腰梯形
78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,
那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半
L=(a+b)÷2 S=L×h
83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)
/(b+d+…+n)=a/b
86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成
比例
87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得
的应线段成比例
88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线
段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的
三边与原三角形三边对应成比例
90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,
所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的
斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的
比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
以上所讲的内容都是一些比较重要的初中数学公式,记住这些初中数学公式是很重要的,相信你们已经了解,希望以上内容能帮助到你们。