数字图像处理要点
数字图像处理要点简述详述
第一.二章.采样,量化,数字图像的表示 基本的数字图像处理系统系统的层次结构I 应用程序 I 开发工具 操作系统 设备驱动程序I硬件I图像处理的主要任务: 图像获取与数字化 图像增强 图像恢复 图像重建 图像变换 图像编码与压缩 图像分割 特点:(1) 处理精度高。
(2) 重现性能好。
(3) 灵活性髙1•图像的数字化包括两个主要步骤:离散和量化2. 在数字图像领域,将图像看成是许多大小相同、形状一致的像素组成3. 为便于数字存储和计算机处理可以通过数模转换(A/D)将连续图像变为数字图像。
4•数字化包括取样和量化两个过程:取样:对空间连续坐标(x,y)的离散化量化:幅值f(x,y)的离散化(使连续信号的幅度用有限级的数码表示的过程。
)5.数字化图像所需的主要硬件:♦采样孔、图像扫描机构、光传感器、量化器、输岀存储体6•取样和量化的结果是一个矩阵 7.其中矩阵中的每个元素代表一个邃塞8•存储一幅图像的数据量又空间分辨率和幅度分辨率决定 9•灵敏度、分辨率、信噪比是三大指标第三章,傅里叶变换,DCT变换,WHT•余弦型变换:•傅里叶变换(DFT)和余弦变换(DCT)O•方波型变换:•沃尔什•哈达玛变换(DWT)1•二维连续傅里叶正反变换:F(u,v)= I f f(x.y)eJ_oc J_ocf g y)= \f F(u, v)ej27r(nA+vv)dwdvJ —oo J —oo二维离散傅里叶变换:M — 1 N — I=乏疋 Fgg 宀SS)if=o v=O。
F(u, v)即为f (x, y)的频谱。
频谱的直流成分说明在频谱原点的傅里叶变换尸(0,0)等于图像的平均灰度级 卷积定理:/(x,y)*^(x, y)= ss /O, n)g(x 一 m, y~n)/?/=() n=02•二维离散余弦变换(DCT)一维离散余弦变换:EO)=%)岳gfg 芈严 其中 c®=怜 ""DCT 逆变换为F(u.v)=1~MN A =0 y=02 A r -1/(«)=咅 C(0) + \1三工 F (gsn(2n +1)« ~~2N3•—维沃尔什变换核g (W ):1 X_JL£(乂申)=丄口(一 1)®(”)為一】一心)<N i=o• 厂、Cn 7V--1 ^T-l码3》=卡吝 /G 〉耳(—1)635—一 3«JC> =牙中 O )n (—O务i二维:•正变换: 1 N —l. N —!■H —1护(“*) = —X X /X%」)口( — 1)4(5—373$一_W] N 宜 U • JO■逆变换二1 AT-l JV-l 片_]/(X.y )=丄 £ 乞 疗(心巧 口弟-i -心)JN 為 v=o ~。
数字图像处理知识点总结
数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真.2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。
3.图像处理:对图像进行一系列操作,以到达预期目的的技术。
4.图像处理三个层次:狭义图像处理、图像分析和图像理解。
5.图像处理五个模块:采集、显示、存储、通信、处理和分析。
第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)< ∞ ,反射分量0 <r(x,y)〈1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
8.将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
采样方式:有缝、无缝和重叠。
9.将像素灰度转换成离散的整数值的过程叫量化。
10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。
例如对细节比较丰富的图像数字化.14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。
2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。
数字图像处理基本知识
数字图像处理基本知识数字图像处理基木知识图像处理最早出现于20世纪50年代,当时的电子计算机己经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
数字图像处理常用方法:1)图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2)图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3)图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
4)图像分割:图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
虽然目前己研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
数字图像处理知识点
数字图像处理知识点课程重点:图像数字化,图像变换,图像增强,图像的恢复与重建,图像的编码,图像的分割与特征提取,图像识别。
数字图像处理的基本内容:1、图像获取。
举例:摄像机+图像采集卡、数码相机等。
2、图像增强。
显示图像中被模糊的细节,或是突出图像中感兴趣的特征。
3、图像复原。
以图像退化的数学模型为基础,来改善图像质量。
4、图像压缩。
减小图像的存储量,或者在图像传输时降低带宽。
5、图像分割。
将一幅图像划分为几个组成部分或分割出目标物体。
6、图像的表达与描述。
图像分割后,输出分割标记或目标特征参数。
7、目标识别。
把目标进行分类的过程。
8、彩色图像处理。
9、形态学处理。
10、图像的重建。
第一章导论图像按照描述模型可以分为:模拟图像和数字图像。
1)模拟图像,模拟图像可用连续函数来描述。
其特点:光照位置和光照强度均为连续变化的。
2)数字图像,数字图像是图像的数字表示,像素是其最小的单位,用矩阵或数组来描述图像处理:对图像进行一系列的操作,以达到预期的目的的技术。
内容:研究图像信息的获取、传输、存储,变换、显示、理解与综合利用”的一门崭新学科。
三个层次:狭义图像处理,图像分析,图像理解。
狭义图像处理主要指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。
图像分析主要是对图像中感兴趣的目标进行检测和测量,从而建立对图像的描述。
图像分析是一个从图像到数值或符号的过程。
图像理解则是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解译,从而指导和规划行动;图像分析主要是以观察者为中心研究客观世界,图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界。
图像处理的三个层次:低级图像处理内容:主要对图像进行各种加工以改善图像的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。
数字图像处理知识点总结
数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。
包括:采样和量化。
2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。
(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。
一幅数字图像中不同灰度值的个数称为灰度级。
二值图像是灰度级只有两级的。
(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。
采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。
2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。
2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。
2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。
(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。
2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。
(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。
(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。
《数字图像处理》期末考试重点总结(5篇材料)
《数字图像处理》期末考试重点总结(5篇材料)第一篇:《数字图像处理》期末考试重点总结*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。
(1)处理精度高,再现性好。
(2)易于控制处理效果。
(3)处理的多样性。
(4)图像数据量庞大。
(5)图像处理技术综合性强。
*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。
图像增强不存在通用理论。
图像增强的方法:空间域方法和变换域方法。
*图像反转:S=L-1-r 1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。
*对数变换 S=C*log(1+r)c为常数,r>=0 作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。
对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。
*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。
*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。
直方图均衡化变换函数必须为严格单调递增函数。
直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。
获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。
*平滑滤波器用于模糊处理和减小噪声。
平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。
优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。
负面效应:模糊了图像的边缘,因为边缘也是由图像灰度的尖锐变化造成的。
数字图像处理重点汇总
第一章:数字图像处理研究的内容主要有:(1)图像获取,表示和表现(2)图像增强(3)图像复原(4)图像分割(5)图像分析(6)图像重建(7)图像压缩编码数字图像处理:利用计算机对图像进行去除噪声、增强、复原、分割、特征提取、识别等处理的理论、方法和技术。
一般情况下,图像处理是用计算机和实时硬件实现的,因此,也称之为计算机图像的实现。
数字图像处理的特点:(1)处理精度高,再现性好(2)易于控制处理效果(3)处理的多样性(4)图像数据量庞大(5)处理费时(6)图像处理技术综合性强图像:就是三维场景在二维平面上的影像数字图像:是用配置在二维平面(画面)上的灰度值或彩色值来表示信息的,信息扩展在二维平面上。
数字图像以数字格式存储图像数据,数字图像常用矩阵来描述。
图像处理的研究目的:(1)提高图像的视感质量,以达到赏心悦目的目的(2)提取图像中所包含的某些特征或特殊信息,只要用于计算机分析,经常用作模式识别,计算机视觉的预处理(3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输图像工程三层示意图:图像工程的内容可分为图像处理、图像分析和图像理解三个层次,这三个层次既有联系又有区别,如下图所示。
图像处理、图像分析、图像理解各有什么特点?它们之间有何联系和区别?图像处理:的重点是图像之间进行的变换。
尽管人们常用图像处理泛指各种图像技术,但比较狭义的图像处理主要是对图像进行各种加工,以改善图像的视觉效果并为自动识别奠定基础,或对图像进行压缩编码以减少所需存储空间图像分析:主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。
如果说图像处理是一个从图像到图像的过程,则图像分析是一个从图像到数据的过程。
这里的数据可以是目标特征的测量结果,或是基于测量的符号表示,它们描述了目标的特点和性质。
图像理解:的重点是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。
《数字图像处理》期末考试重点总结
《数字图像处理》期末考试重点总结work Information Technology Company.2020YEAR*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。
(1)处理精度高,再现性好。
(2)易于控制处理效果。
(3)处理的多样性。
(4)图像数据量庞大。
(5)图像处理技术综合性强。
*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。
图像增强不存在通用理论。
图像增强的方法:空间域方法和变换域方法。
*图像反转:S=L-1-r1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。
*对数变换 S=C*log(1+r)c为常数,r>=0作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。
对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。
*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。
*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。
直方图均衡化变换函数必须为严格单调递增函数。
直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。
获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。
*平滑滤波器用于模糊处理和减小噪声。
平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。
优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。
数字图像处理知识点汇总
数字图像处理知识点汇总1. 什么是数字图像处理?就是利⽤数字计算机或其他⾼速、⼤规模集成数字硬件,对从图像信息转换来的数字电信号进⾏某些数字运算或处理,以期提⾼图像的质量或达到⼈们所要求的某些预期的结果。
2.图像的表⽰⽅法:.不等长码3. 图像数字化的过程包括两个⽅⾯:采样和量化。
i. 图像在空间上的离散化称为采样,即使空间上连续变化的图像离散化。
也就是⽤空间上部分点的灰度值来表⽰图像,这些点称其为样点。
ii. 对样点灰度值的离散化过程称为量化。
也就是对每个样点值数量化,使其只和有限个可能电平数中的⼀个对应,即使图像的灰度值离散化。
量化也可以分为两种:⼀种是将样点灰度值等间隔分档取数,称为均匀量化;另⼀种是不等间隔分档取整,称为⾮均匀量化。
4. 样点的约束条件:由这些样点,采⽤某种⽅法能够正确重建原图像,采样的⽅法有两类:⼀类是直接对表⽰图像的⼆维函数值进⾏采样,即读取各离散点上的信号值,所得结果就是⼀个样点值阵列,所以也成为点阵采样;另⼀类是先将图像函数进⾏某种正交变换,⽤其变换系数作为采样值,故称为正交系数采样。
5. 最佳量化:6. 图像噪声的分类:按噪声的来源外部噪声:从处理系统外来的影响。
内部噪声:(1)由光和电的基本0(0o)1(45o) 2(90o)3(135o)4(180o) 5(225o)6(270o)7(315o)性质引起的噪声。
(2)电器的机械运动产⽣噪声。
(3)元器件材料本⾝引起的噪声。
(4)系统内部电路噪声。
从统计观点:平稳噪声、⾮平稳噪声从噪声幅度分布:⾼斯噪声、瑞利噪声、椒盐噪声……按噪声和信号之间关系:加法性噪声乘法性噪声7. 图像质量评价:(1)客观保真度准则(2)主观保真度准则相对评价::对⼀批图象从好到坏进⾏排队,按排队关系评分8.三基⾊原理:颜⾊的基本属性:⾊调(hue):由物体反射光线的波长决定,是颜⾊本质的基本特性。
饱和度(saturation):由物体反射光中混⼊⽩光的多少决定,指颜⾊的鲜明程度。
遥感数字图像处理基础 知识点
第一章数字图像处理根底1数字图像处理:将图像转换成一个数字矩阵存放在图像存储器中,然后利用计算机对图像信息进行数字运算和处理,以提高图像质量或者提取所需要的信息2数字图像获取:把客观场景发射或者发射的电磁波信息首先利用光学成像系统生成一副模拟图像,然后通过模数转换将模拟图像转换为计算机可以存储的离散化数字图像。
3采样:即图像空间坐标或位置的离散化,也就是把模拟图像划分为假设干图像元素,兵赋予它们唯一的地址。
;离散化的小区域就是数字图像的根本单元,称为像元也称像素。
量化:即电磁辐射能量的离散化,也就是把像元内的连续辐射亮度中离散的数字值来表示,这些离散的数字值也称灰度值,,因为它们代表了图像上不同的亮暗水平。
4遥感数字图像获取特征参数质量特征:⑴空间分辨率:数字图像上能被详细区分的最小单元的尺寸或大小⑵辐射分辨率传感器探测原件在接受光谱信号时,所能分辨的最小辐射度差信息量特征:⑴光谱分辨率:传感器探测元件在接收目标地物辐射能量时所用的波段数目⑵时间分辨率:对同一区域进行重复观测的最小时间间隔。
5模拟图像:在图像处理中通过某种物理量的强弱变化来记录图像亮度信息的图像6数字图像:把连续的模拟图像离散化成规那么网格并用计算机以数字的模式记录图像上各网格点亮度信息的图像7数字图像特性:①空间分布特性:1空间位置:数字图像以二维矩阵的结构的数据来描述物体,矩阵按照行列的顺序定位数据,所以物体的位置也是用行列号表示。
2形状:点状线状和面状3大小:线状物体的长度或面状物体的面积,表现为像元的集聚数量4空间关系:包含,相邻,相离三种拓扑关系②数值统计特性:对图像的灰度分布进行统计分析。
图像的灰度直方图:用来描述一幅数字图像的灰度分布,横坐标为灰度级,纵坐标为灰度级在图中出现8直方图的用途:1图像获取质量评价2边界阙值的选择3噪声类型的判断9遥感数字图像的输出特征参数:1输出分辨率:屏幕分辨率和打印的分辨率2灰度分辨率:指输出设备能区分的最小灰度差3颜色空间模型:RGB 模型CMYK模型HSI颜色模型10数字图像种类:1.黑白图像:二值数字图像,0表示黑色1表示白色;2.灰度图像:单波段图像每个像元的灰度值的取值范围由灰度量决定;3.伪彩色图像:把单波段图像的各灰度值按照一定规那么映射到颜色空间中某一对应颜色;4.彩色图像:由红绿蓝3个颜色通道的数字层组成的图像第二章数字图像存储1比特序:一个字节中8个比特的存储顺序称为比特序。
《数字图像处理》知识点汇总
《数字图像处理》知识点汇总1.什么是图像?“图”是物体投射或反射光的分布,“像”是⼈的视觉系统对图的接受在⼤脑中形成的印象或反映。
图像是客观和主观的结合。
2.数字图像是指由被称作象素的⼩块区域组成的⼆维矩阵。
将物理图象⾏列划分后,每个⼩块区域称为像素(pixel)。
对于单⾊即灰度图像⽽⾔,每个像素包括两个属性:位置和灰度。
灰度⼜称为亮度,灰度⽤⼀个数值来表⽰,通常数值范围在0到255之间,即可⽤⼀个字节来表⽰。
0表⽰⿊、255表⽰⽩。
3.彩⾊图象可以⽤红、绿、蓝三元组的⼆维矩阵来表⽰。
通常,三元组的每个数值也是在0到255之间,0表⽰相应的基⾊在该象素中没有,⽽255则代表相应的基⾊在该象素中取得最⼤值,这种情况下每个象素可⽤三个字节来表⽰。
4.数字图像处理就是利⽤计算机系统对数字图像进⾏各种⽬的的处理。
5.对连续图像f(x,y)进⾏数字化需要在空间域和值域进⾏离散化。
空间上通过图像抽样进⾏空间离散,得到像素。
像素亮度需要通过灰度级量化实现灰度值离散。
数字图像常⽤矩阵来表⽰。
6.从计算机处理的⾓度可以由⾼到低将数字图像分为三个层次,分别为图像处理、图像分析和图像理解。
这三个层次覆盖了图像处理的所有应⽤领域。
(1). 图像处理指对图像进⾏各种加⼯,以改善图像的视觉效果;强调图像之间进⾏的变换。
图像处理是⼀个从图像到图像的过程。
(2). 图像分析指对图像中感兴趣的⽬标进⾏提取和分割,获得⽬标的客观信息(特点或性质),建⽴对图像的描述;图像分析以观察者为中⼼研究客观世界,它是⼀个从图像到数据的过程。
(3). 图像理解指研究图像中各⽬标的性质和它们之间的相互联系,得出对图像内容含义的理解及原来客观场景的解释;图像理解以客观世界为中⼼,借助知识、经验来推理、认识客观世界,属于⾼层操作(符号运算)。
7.图像处理、图像分析和图像理解是处在三个抽象程度和数据量各有特点的不同层次上。
图像处理是⽐较低层的操作,它主要在图像像素级上进⾏处理,处理的数据量⾮常⼤。
数字图像处理知识点与考点(经典)
第 1 章 导论(知识引导)
1. 图像、数字图像和数字图像处理: 答: “图”是物体投射或反射光的分布,是客观存在的。“像”是人的视觉系统对图在大脑中形成的 印象或认识。图像(image)是图和像的有机结合,即反映物体的客观存在,又体现人的心理因素;是 客观对象的一种可视表示,它包含了被描述对象的有关信息。 数字图像是指由被称作像素(pixel)的小块区域组成的二维矩阵。将物理图像行列划分后,每个小 块区域称为像素。 数字图像处理是指用数字计算机及其它有关数字技术,对图像施加某种运算和处理,从而达到某种 预想目的的技术. 2. 数字图像处理一般包括图像处理、图像分析、图像理解三个层次。 图像处理是对图像本身进行加工,以改善其视觉效果或表现形式,为图像分析打下基础,图像处理 的输出仍是图像。 图像分析是目标图像进行检测和各种物理量的计算,以获取对图像的客观描述。 图像理解是在图像分析的基础上。理解图像所表现的内容,分析图像间的相互联系,得出对客观场 景的解释。 3. 数字图像处理主要包括哪些研究内容? 答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、 重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。 4. 一个数字图像处理系统由哪几个模块组成?试说明各模块的作用。 答: 一个基本的数字图像处理系统由图像输入、图像处理和分析、图像存储、图像通信、图像输出5 个模块组成,如下图所示。
说明:通过细心调整折线拐点的位置及控制分段直线的斜率,可对任一灰度区间进行拉伸或压缩。 4.曝光不足或过度的情况下,图像灰度可能会局限在一个很小的范围内,故采用线性变换拉伸图像。 5.直方图的均衡化(考)(习题第四章 6 题,如下示例)与规定化
数字图像处理知识点与考点(经典)
Laplacian 增强算子通过扩大边缘两边像素的灰度差(或对比度)来增强图像的边缘,改善视觉效果。它对应的模板为 -1 -1 5 -1 -1
例题:(1) 存储一幅1024×768,256 (8 bit 量化)个灰度级的图像需要多少位? (2) 一幅512×512 的32 bit 真彩图像的容量为多少位? 解: (1)一幅1024×768,256 =28 (8 bit 量化)个灰度级的图像的容量为:b=1024×768×8 = 6291456 bit (2)一幅512×512 的32 位真彩图像的容量为:b=512×512×32 =8388608 bit
5.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。 6.灰度直方图:灰度直方图是灰度级的函数。灰度级为横坐标,纵坐标为灰度级的频率,是频率同灰度级 的关系图。可以反映了图像的对比度、灰度范围(分布)、灰度值对应概率等情况。 7.灰度直方图的性质:(1)只能反映图像的灰度分布情况,而不能反映图像像素的位置,即丢失了像 素的位置信息。(2)一幅图像对应唯一的灰度直方图,反之不成立。不同的图像可对应相同的直方图。 (3)一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图。 L −1 8.图像信息量H(熵)的计算公式:反映图像信息的丰富程度。 H = − Pi log2 Pi
傅立叶变换
f ( x, y) F ( u , v)
滤波器
H (u , v) G ( u , v)
傅立叶反变换
g ( x , y)
(1) 将图像 f(x,y)从图像空间转换到频域空间,得到 F(u,v); (2) 在频域空间中通过不同的滤波函数 H(u,v)对图像进行不同的增强,得到 G(u,v) (3) 将增强后的图像再从频域空间转换到图像空间,得到图像g(x,y)。 说明: (也可演变为简述频域图像锐化(或平滑)的步骤,需要指明滤波器的类型:高通或低通滤波器) 9.频率域平滑: 由于噪声主要集中在高频部分, 为去除噪声改善图像质量, 滤波器采用低通滤波器H(u,v) 来抑制高频成分,通过低频成分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的。 10.常用的频率域低滤波器H(u,v)有四种: (1)理想低通滤波器: 由于高频成分包含有大量的边缘信息,因此采用该滤波器在去噪声的同时将会 导致边缘信息损失而使图像边模糊。 (2)Butterworth低通滤波器:它的特性是连续性衰减,而不象理想滤波器那样陡峭变化,即明显的不连 续性。因此采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度大大减小,没有振铃效应产生。 (说明:振铃效应越不明显效果越好) (3)指数低通滤波器: 采用该滤波器滤波在抑制噪声的同时, 图像边缘的模糊程度较用Butterworth滤波 产生的大些,无明显的振铃效应。 (4)梯形低通滤波器:它的性能介于理想低通滤波器和指数滤波器之间, 滤波的图像有一定的模糊和振铃 效应。 13.频率域锐化:图像的边缘、细节主要位于高频部分,而图像的模糊是由于高频成分比较弱产生的 。 频率域锐化就是为了消除模糊,突出边缘。因此采用高通滤波器让高频成分通过,使低频成分削弱, 再经逆傅立叶变换得到边缘锐化的图像。 14.常用的高通滤波器有四种: (1)理想高通滤波器 (2)巴特沃斯高通滤波器 (3)指数高通滤波器 (4)梯形高通滤波器 说明:(1)四种滤波函数的选用类似于低通。 (2)理想高通有明显振铃现象,即图像的边缘有抖动现象。 (3)巴特沃斯高通滤波效果较好,但计算复杂,其优点是有少量低频通过,H(u,v)是渐变的, 振铃现象不明显。 (4)指数高通效果比Butterworth差些,振铃现象不明显. (5)梯形高通会产生微振铃效果,但计算简单,较常用。 (6)一般来说,不管在图像空间域还是频率域,采用高频滤波不但会使有用的信息增强,同时也 使噪声增强。因此不能随意地使用。 (7)高斯低通滤波器无振铃效应是因为函数没有极大值、极小值,经过傅里叶变换后还是本身 , 故没有振铃效应。 15.同态滤波:在频域中同时将亮度范围进行压缩(减少亮度动态范围)和对比度增强的频域方法。 现象:(1)线性变换无效(2)扩展灰度级能提高反差,但会使动态范围变大(3)压缩灰度级,可以减 小灰度级,但物体的灰度层次会更不清晰 改进措施:加一个常数到变换函数上,如:H(u,v)+A(A取0→1)这种方法称为:高度强调(增强)。 为了解决变暗的趋势,在变换结果图像上再进行一次直方图均衡化,这种方法称为:后滤波处理。
科大数字图像处理复习
【复习要点比较杂,比较乱,总结得比较宽泛,需要各人筛选记忆复习】1.什么是模拟图像与数字图像,二者有什么区别?模拟图像:空间坐标和明暗程度连续变化的、计算机无法直接处理的图像,属于可见图像。
三维空间连续,时间上连续,波谱上连续,可见物理图像。
图像上信息是连续变化的模拟量。
数字图像:用计算机存储和处理的图像,是一种空间坐标和灰度均不连续,以离散数学原理表达的图像,在计算机内部,数字图像表现为二维矩阵属于不可见图像。
区别:模拟图像连续可见,不便于用计算机处理,也不便于图像的储存、传输;数字图像不连续不可见。
2.数字图像处理包括哪几个层次?各层次之间有何区别和联系?数字图像处理层次:①狭义的图像处理;②图像识别与分析;③图像理解。
区别:狭义的图像处理:主要在图像像素级上进行的,是低级处理,处理的数据量非常大,输入输出均为图像,是图像—图像的过程,如图像缩放、图像平滑、对比度增强;图像识别与分析: 通过分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式的描述,是中级处理,输入图像,输出提取的特征,是图像—数值或符号的过程,如区域分割、边界检测;图像理解: 根据较抽象的描述进行解析、判断、决策,其处理过程和方法与人类的思维推理有许多类似之处,是高级处理,输入为图像,输出为规则,是图像—描述及解释的过程,如无人驾驶,自动机器人、模式识别。
联系:随着抽象程度的提高,数据量是逐渐减少的。
具体说来,原始图像数据经过一系列的处理过程,逐步转化为更有组织和用途的信息。
在这个过程中,语义不断引入,操作对象也逐步发生变化。
另外,高层操作对低层操作有指导作用,能提高低层操作的效能,完成复杂的任务。
3.数字图像处理系统由哪些模块组成?各模块起何作用?模块组成:数字图像处理系统由图像输入,图像存储,图像输出,图像通信,图像处理和分析5个模块组成。
各模块作用:图像输入模块:图像输入也称图像采集或图像数字化,它是利用图像采集设备(如数码照相机,数码摄像机等)来获取数字图像,或通过数字化设备(如图像扫描仪)将要处理的连续图像转换成适于计算机处理的数字图像。
哈工大数字图像处理知识点总结
1. 引言1.1图像的概念图像:是对客观存在的物体的一种相似性的、生动性的模仿或描述,是一种不完全的、不精确的,但在某种意义上是适当的表示。
也是对客观存在的物体的某种属性的描述。
(非所见即所得,对事物不能完全描述)1.2数字图像的起源与应用1.3 数字图像处理的概念●图像的类型:从图像生成角度:物理图像(可见图像(光学图像)、不可见图像(红外)、数学图像等)从照明角度:多光谱图像(特指不可见光谱)和单光谱图像(激光);从人眼视觉特点上:可见图像、不可见图像。
从波段多少分为:单波段(每点只有一亮度值)、多波段(每点不只一特性如红绿蓝光谱图像)和超波段图像。
从图像空间坐标和明暗程度的连续性:模拟图像、数字图像(空间坐标和灰度均不连续,用离散的数字表示)。
●图像的表现形式●图像的属性:构成数字图像的要素,灰度坐标图像的属性:1.对比度:灰度差别 0~255(256个灰度级)2. 灰度分辨力:适于人眼3.空间分辨力:越高越好4.放大率对比度与灰度的关系:量化?灰度量化最高、最暗差值尽可能大。
减少灰度级一般会提高图像的对比度。
构成数字图像的要素:地址(坐标)和灰度值●数字图像的处理概念及三种分类:处理\分析\理解操作对象:狭义数字图像处理:图像——图像图像分析:图像——数据(特征值)图像理解:数据——概念狭义图像处理强调图像之间进行变换,指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。
图像分析是对图像中感兴趣的目标进行检测的测量,从而建立对图像的描述,是从图像到数值或符号的过程。
经分割和特征提取,把原来以像素构成的图像转变成比较简洁的非图像形式的描述。
图像理解研究图像中各目标的性质和它们之前的相互联系,并得出对图像容含义的理解以及对原来客观场景的解译,人而指导和规划行动●数字图像的运算形式:全局、局部、点,串行、并行全局:快速傅立叶变换局部:点运算:对于一幅输入图像,经过点运算产生一幅输出图像,后者的每个像素的灰度值仅由相应输入像素的值决定(对比度增强,对比度拉伸,灰度变换)串行:后一像素输出结果依赖于前面像素处理的结果,并且只能依次处理各像素而不能同时对各像素进行相同处理的一种处理形式。
数字图像处理复习材料要点
数字图像处理复习材料要点考试题型⼀、填空题(10分,10空)⼆、判断题(5分,5题)三、名词解释(15分,5题)图像,数字图像,数字图像处理,彩⾊图像,灰度图像,⾊度,采样,量化,灰度直⽅图,直⽅图均衡化,直⽅图规定化,图像增强,图像锐化,图像复原,图像滤化,中值滤波,均值滤波,数据压缩,⽆失真编码,⼏何畸变四、简答题(20分,4题)1.RGB,HIS模型2.视觉效应(判断,填空)3.图像复原(5.3 5.4 5.5 简答,名词解释)4.第六章5.7.2 边缘检测五、计算题(50分,5题)1.平移镜像错切(作业题)2.放⼤缩⼩(作业题)3.平滑,中值滤波,均值滤波(PPT)4.哈夫曼编码(参数计算,熵,效率,编码P148)5.均衡化(第四章P69 4.1)注意:看⼀下⼩波变换怎么⽤原理第⼀章绪论1.图像:对客观存在对象的⼀种相似性的、⽣动性的描述或写真。
2.模拟图像:空间坐标和明暗程度都是连续变化的、计算机⽆法直接处理的图像3.数字图像:空间坐标和灰度均不连续的、⽤离散的数字(⼀般整数)表⽰的图像(计算机能处理)。
是图像的数字表⽰,像素是其最⼩的单位。
4数字图像处理(Digital Image Processing):利⽤计算机对数字图像进⾏(去除噪声、增强、复原、分割、特征提取、识别等)系列操作,从⽽获得某种预期的结果的技术。
(计算机图像处理)5.数字图像处理的特点(优势):(1)处理精度⾼,再现性好。
(2)易于控制处理效果。
(3)处理的多样性。
(4)图像数据量庞⼤。
(5)图像处理技术综合性强。
6.数字图像处理的主要研究内容:(1)图像的数字化:如何将⼀幅光学图像表⽰成⼀组数字,既不失真⼜便于计算机分析处理;主要包括的是图像的采样与量化(2)图像的增强:加强图像的有⽤信息,消弱⼲扰和噪声(3)图像的恢复:把退化、模糊了的图像复原。
模糊的原因有许多种,最常见的有运动模糊,散焦模糊等(4)图像的编码:简化图像的表⽰,压缩表⽰图像的数据,以便于存储和传输。
广东海洋大学数字图像处理复习要点
●第1讲绪论⏹什么是数字图像◆连续图像与数字图像的定义◆图像采集◆图像的表示◆空间分辨率与灰度级分辨率◆采样和量化与图像的质量⏹视觉系统对光的感知特点⏹什么是数字图像处理◆图像工程3个层次(图像处理、图像分析、图像理解)及其关系⏹数字图像处理的发展历史⏹数字图像处理的主要内容◆基本概念:图像采集、图像增强、图像复原、形态学处理、分割、对象识别、表示&描述、彩色图像处理、图像压缩◆数字图像处理的主要方法(空域法与变换域法)◆数字图像处理系统的组成及其功能(图像采集系统、计算机、图像输出设备)⏹数字图像处理的应用示例⏹数字图像的未来●第2讲像素空间关系⏹像素的邻域◆4-邻域、对角邻域、8-邻域⏹像素间的邻接、连接和连通◆像素的邻接与连接的联系、区别◆4-连接、8-连接、m-连接◆4-连通、8-连通、通路⏹像素间的距离◆欧氏距离、城区距离、棋盘距离●第3讲图像的几何变换⏹几何变换基础◆基础概念◆齐次坐标⏹图像的位置变换◆图像的平移◆图像的镜像◆图像的旋转⏹图像的形状变换◆图像的比例变换(缩小、放大、插值)◆图像的偏移变换⏹图像的几何失真校正◆空间变换与灰度插值●第4讲图像的空域增强技术⏹空域增强技术的概述◆空域的概念◆空域增强的模型◆空域增强技术的分类(基于像素的空域增强、基于模板的空域增强)⏹图像间运算◆算术运算◆逻辑运算⏹直接灰度映射◆灰度映射原理◆各种典型灰度映射算法:图像求反、分段线性增强、动态范围压缩(对数变换)、灰度切割(灰度级分层)、阈值化处理、幂律变换、位图切割⏹直方图修正——直方图均衡化◆直方图和累积直方图、归一化直方图和归一化累积直方图◆直方图均衡化原理◆直方图均衡化的实现步骤⏹空间滤波机理⏹线性滤波◆技术分类(平滑滤波、锐化滤波)和实现原理(模板卷积)◆两种线性平滑滤波器(邻域平均、加权平均)⏹非线性滤波◆非线性平滑滤波器(中值滤波器、最大值滤波器、最小值滤波器、中点滤波器)◆非线性锐化滤波器(基于一阶微分的锐化滤波器、基于二阶微分的锐化滤波器)●第5讲图像变换——傅里叶变换⏹傅里叶变换及其反变换◆一维连续傅里叶变换及反变换◆二维连续傅里叶变换及反变换◆一维离散傅里叶变换及反变换◆二维离散傅里叶变换及反变换⏹傅里叶变换的性质◆平移性质、分配律、线性性质、旋转性、周期性和共轭对称性、平均值、可分离性、卷积、相关性⏹快速傅里叶变换(FFT)●第6讲频域图像增强⏹频率域滤波基础◆傅里叶变换的频率分量和图像空间特征之间的联系◆频率域滤波的基本步骤◆频域滤波与空域滤波的关系(低通与平滑、高通与锐化)⏹频率域低通滤波器◆三种经典低通滤波器(理想低通滤波器、巴特沃思低通滤波器、高斯低通滤波器)的定义与性能对比⏹频率域高通滤波器◆三种经典高通滤波器(理想高通滤波器、巴特沃思高通滤波器、高斯高通滤波器)的定义与性能对比◆高频提升滤波、高频加强滤波的实现●第7讲图像复原⏹图像退化/复原过程的模型◆图像退化、复原的概念及其关系◆图像复原与图像增强的比较◆图像退化/复原模型的定义⏹噪声模型◆噪声的来源◆噪声的类型:均匀噪声、指数噪声、高斯噪声、瑞利噪声、伽马(爱尔兰)噪声、脉冲(椒盐)噪声⏹空间域滤波复原(仅由噪声而引起的退化复原方法:去噪)⏹退化函数的估计◆图像观察估计法、试验估计法、模型估计法(散焦模糊、运动模糊、大气湍流模糊)⏹常见的图像复原方法◆逆滤波、维纳滤波的原理与实现,逆滤波与维纳滤波的比较●第8讲图像边缘检测⏹概述◆图像边缘的产生◆图像边缘的定义◆图像的边缘模型◆图像的导数与边缘的关系◆边缘检测的基本步骤⏹基本的边缘检测技术◆梯度(一阶微分)的定义及其性质◆各种经典梯度算子的实现(直接差分算子、Roberts算子、Prewitt算子、Sobel算子)及其比较⏹先进的边缘检测技术◆Marr-Hildreth边缘检测算法的原理与实现◆最优边缘检测算法的3条准则◆Canny边缘检测算法的原理与实现●第9讲形态学图像处理⏹概述◆形态学图像处理的基本思想⏹集合论基础知识◆集合的并、交、补、差◆集合的反射与平移◆二值图像的逻辑运算⏹膨胀和腐蚀(Dilation & Erosion)◆结构元素的定义◆膨胀运算的定义与实现◆腐蚀运算的定义与实现⏹开启和闭合(Opening & Closing)◆开启运算的定义与实现◆闭合运算的定义与实现⏹形态学的主要应用◆边界提取、孔洞填充、连通分量的提取、骨架抽取等算法的设计与实现Welcome To Download !!!欢迎您的下载,资料仅供参考!。
数字图像处理期末重点复习
1.欧氏距离:坐标分别位于(x,y)和(u,v)处的像素p和像素q之间的欧氏距离定义为:D e(p,q)=(x−u)2+(y−u)212。
2.街区距离:坐标分别位于(x,y)和(u,v)处的像素p和像素q之间的街区距离定义为:D4p,q=x−u+y−v。
3.棋盘距离:坐标分别位于(x,y)和(u,v)处的像素p和像素q之间的街区距离定义为:D8p,q=man(x−u,y−v)。
4.灰度数字图像有什么特点?答:灰度数字图像的特点是只有灰度(亮度)属性,没有彩色属性。
对于灰度级为L的图像,起灰度取值范围为[0,L-1].5.一副200×300的二值图像、16灰度级图像和256灰度级图像分别需要多少存储空间?答:由于存储一副M×N的灰度级为L 的数字图像所需的位数为:M ×N×L,其中L=2k。
二值图像,16灰度级图像和256灰度级图像的k值分别为1、4和8,也即存储一个像素需要的位数分别为1位、4位和8位。
所以,一副200×300的二值图像所需的存储空间为200×300×1/8=7.5kB;一副200×300的16灰度级图像所需的存储空间为200×300×4/8=30kB;一副200×300的256灰度级的图像所需的存储空间为200×300×8/8=60kB。
6.简述采样数变化对图像视觉效果的影响。
答:在对某景物的连续图像进行均匀采样时,在空间分辨率(这里指线对宽度)不变的情况下,采样数越少,即采样密度越低,得到的数字图像阵列M×N越小,也即数字图像尺寸就越小。
反之,采样数越多,即采样密度越高,得到的数字图像阵列M×N 越大,也即数字图像的尺寸就越大。
7.简述灰度级分辨率变化对图像视觉效果的影响。
答:灰度级分辨率是指在灰度级别克分辨的最小变化。
灰度级别越大,也即图像的灰度级分辨率越高,景物图像总共反映其亮度的细节就越丰富,图像质量也就越高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理考试要点第二章1、在实际采样过程中,采样点间隔的选取很关键。
应满足采样定理(二维采样定理:Nyguist准则):采样频率大于信号中最高频率的2倍。
2、量化分为等间隔量化、非等间隔量化,非等间隔量化包括对数量化、Max量化、锥形量化。
3、图像质量评估方法与标准分两类:主观评价、客观测量噪声的定义:不可预测,只能用概率统计方法来认识的随机误差。
图像噪声:妨碍人们视觉器官对所接收的信源信息理解的因素。
第三章4、一般人的眼睛可以感知的电磁波的波长在400~760nm之间,可见光的波长范围为380nm~780nm。
5、瞳孔——光圈,透明体(晶状体)——透镜6、眼球是由一系列曲率半径和折光指数都不相同的折光体所组成的折光系统。
7、6米以外直至无限远处的物体发出或反射出的光线到眼的折光系统时近于平行,可在视网膜上形成清晰的像。
8、但人眼不是无条件的看清任何远处的物体,因为:1)光线过弱,不足以兴奋感光细胞;2)距离过大,小到视网膜分辨能力的限度以下。
9、比6米近的物体,折射后的成像位置在主焦点,即视网膜位置之后,尚未聚焦,物像是模糊的。
10、人眼视觉模型11、人从亮处进入暗室,最初看不清楚东西,经过一段时间,恢复了在暗处的视力,这称为暗适应;相反,从暗处到亮处是明适应。
12、人眼对蓝光的灵敏度远远低于对红光和绿光的灵敏度,对波长为550nm左右的黄绿色最为敏感。
红(700nm),绿(546.1nm),蓝(435.8nm)13、从人的主观感觉角度,颜色包含三个要素:色调、饱和度、明亮度。
14、颜色模型是用来精确标定和生成各种颜色的一套规则和定义,某种颜色模型所标定的所有颜色就构成了一个颜色空间。
15、对于人来说,可以通过色调、饱和度、亮度来定义颜色(HSL颜色模型);对于显示设备来说,可以用红、绿、蓝磷光体的发光量来描述颜色(RGB颜色模型);对于打印设备来说,可以用青色、品红、黄色和黑色颜料的用量来指定颜色(CMYK颜色模型)。
16、理论上,青色、品红和黄色三种基本色素等量混合能得到黑色。
但实际上,因为所有打印油墨都会包含一些杂质,这三种油墨混合实际上产生一种土灰色,必须与黑色(K)油墨混合才能产生真正的黑色,所以再加入黑色作为基本色形成CMYK颜色模型,CMYK模型称为相减混色模型。
第四章17、图像增强是有选择地突出有意义的信息,抑制无用信息。
18、图像增强的方法1) 空间域处理:全局运算、局部运算、点运算;2)频域处理:在图像的Fourier变换域上进行处理。
19、对比度增强1)灰度变换法:线性变换、对数变换、指数变换;2)直方图调整法:直方图均衡化、直方图匹配。
20、1)线性灰度变换:对比度不足时,图像中的细节分辨不清,这时可将灰度范围线性扩展;2)分段线性灰度变换:将感兴趣的灰度范围线性扩展,相对抑制不感兴趣的灰度区域。
3)非线性灰度变换:对数变换:低灰度区扩展,高灰度区压缩;指数变换:高灰度区扩展,低灰度区压缩。
21、直方图均衡化是将原图像的直方图通过变换函数修正为均匀的直方图。
图像均衡化处理后,图像的直方图是平直的。
22、要找到一种变换S=T(r) 使直方图变平直,直方图均衡化后的灰度需仍保持从黑到白的单一变化顺序。
23、计算题(直方图均衡化)24、直方图均衡化实质上是减少图像的灰度级以换取对比度的加大。
25、直方图匹配:修改一幅图像的直方图,使得它与另一幅图像的直方图匹配或具有一种预先规定的函数形状。
第五章26、图像增强方法从增强的作用域出发,可分为空间域增强和频率域增强两种。
27、空间域增强是直接对图像各像素进行处理;频率域增强是将图像经傅立叶变换后的频谱成分进行处理,然后逆傅立叶变换获得所需的图像。
28、图像在传输过程中,由于各种干扰会造成图像毛糙,此时需要对图像进行平滑处理。
平滑可以抑制高频成分,但也使图像变得模糊。
29、理想低通滤波器是非因果系统。
30、巴特沃斯低通滤波器,H(u,v)降为最大值的31、1阶巴特沃斯低通滤波器,在高低频率间的过渡比较光滑,所以输出图的振铃效应不明显。
随着阶数的增加振铃现象增加。
巴特沃斯低通滤波器的平滑效果不如理想低通滤波器,要根据平滑效果和振铃现象来折中确定巴特沃斯低通滤波器的阶数。
32、指数型低通滤波器,H(u,v)降为最大值的33、空间域平滑处理采用局部平均法,直接在空间域上对图像进行平滑处理,计算速度快。
34、简单局部平均法,平滑后噪声方差为处理前的1 / M,M为总点数。
35、 中值滤波法用局部中值代替局部平均值。
第六章36、 图像锐化目的:加强图像轮廓,使图像看起来比较清晰。
37、 图像轮廓是灰度陡然变化的部分,包含着丰富的空间高频成分,突出高频分量,可使轮廓清晰。
38、 图像中大部分能力集中在低频分量里,高通滤波后光滑区域灰度减弱变暗甚至接近黑色。
39、 高频增强滤波器:放大系数k = A-1, 常数c = 1。
40、 指数高通滤波器在通过与滤掉的频率之间没有不连续的分界,振铃现象比较弱,转移函数随频率增加在开始阶段增加的比较快,能使一些低频分量也可以通过,更有利于保护图像的灰度层次。
41、 梯形高通滤波器在高低频率间有个过渡,振铃现象比巴特沃斯高通滤波器更明显。
42、 空域锐化方法,微分可以锐化图像(邻域平均或加权平均(都对应积分)平滑图像)。
锐化处理可以用空间微分来完成。
图像微分增强了边缘和其他突变(如噪声)而削弱了灰度变化缓慢的区域。
43、 用差值定义一元函数f(x)一阶微分:(1)()f f x f x x∂=+-∂ 44、 用差分定义一元函数f(x)的二阶微分:22(1)(1)2()f f x f x f x x∂=++--∂ 45、 拉普拉斯微分算子强调图像中灰度的突变,弱化灰度慢变化的区域。
46、 空间锐化方法:基于一阶微分的图像增强 梯度法47、 反锐化掩蔽的进一步普遍形式称为高频提升滤波。
48、 图像的点特征是许多计算机视觉算法的基础:使用特征点来代表图像的内容。
一类重要的点特征:角点。
Harris 角点响应函数R 对于图像的旋转具有不变性。
第七章49、 同态滤波的目的:消除不均匀照度的影响而又不损失图像细节。
50、 图像的灰度由照射分量和反射分量合成。
照射分量的频谱落在空间低频区域,反射分量的频谱落在空间高频区域。
第八章51、 伪彩色处理:把黑白图像处理成伪彩色图像。
52、 假彩色处理:把真实的自然彩色图像或遥感多光谱图像处理成假彩色图像。
53、 伪彩色处理:频域滤波法:不同的映射函数就能将灰度图像转化为不同的伪彩色图像。
54、 假彩色处理 如用计算机上口红1. 腐蚀是一种消除边界点,使边界向内部收缩的过程。
可以用来消除小且无意义的物体。
腐蚀的算法:用3x3的结构元素,扫描图像的每一个像素用结构元素与其覆盖的二值图像做“与”操作如果都为1,结果图像的该像素为1。
否则为0。
结果:使二值图像减小一圈2. 膨胀是将与物体接触的所有背景点合并到该物体中,使边界向外部扩张的过程。
可以用来填补物体中的空洞。
膨胀的算法:用3x3的结构元素,扫描图像的每一个像素用结构元素与其覆盖的二值图像做“与”操作如果都为0,结果图像的该像素为0。
否则为1 结果:使二值图像扩大一圈3. 先腐蚀后膨胀的过程称为开运算。
用来消除小物体、在纤细点处分离物体、平滑较大物体的边界的同时并不明显改变其面积。
4. 先膨胀后腐蚀的过程称为闭运算。
用来填充物体内细小空洞、连接邻近物体、平滑其边界的同时并不明显改变其面积。
相减DSA:检测运动物体图像融合(ImageFusion)技术是指将多源信道所采集到的关于同一目标的图像经过一定的图像处理,提取各自信道的信息,最后综合成同一图像以供观察或进一步处理。
第九章55、代数运算包括:相加、相减(DSA、运动物体检测)、相乘(提取或删掉图像某部分)、相除(遥感多光谱图像相除抵消入射分量)、图像融合。
56、腐蚀是一种消除边界点,使边界向内部收缩的过程。
1、向前映射法:通过输入图像像素位置, 计算输出图像对应像素位置;将该位置像素的灰度值按某种方式分配到输出图像相邻四个像素2、向后映射法:通过输出图像像素位置, 计算输入图像对应像素位置;根据输入图像相邻四个像素的灰度值计算该位置像素的灰度值两种映射方法的对比对于向前映射:每个输出图像的灰度要经过多次运算;对于向后映射:每个输出图像的灰度只要经过一次运算。
实际应用中,更经常采用向后映射法。
其中,根据四个相邻像素灰度值计算某位置的像素灰度值即为灰度级插值。
最近邻(Nearest neighbor)双线性插值算法(Bilinear)双立方插值算法(Bicubic,...)第十章57、点运算对单幅图像做处理,不改变像素的空间位置;代数运算对多幅图像做处理,也不改变像素的空间位置;几何运算对单幅图像做处理,改变像素的空间位置;几何运算包含两个独立的算法:灰度级插值算法和空间变换算法。
58、实际应用中,更经常采用向后映射法(根据输出图像像素位置,计算输入图像对应像素位置),其中,根据四个相邻像素灰度值计算某位置的像素灰度值即为灰度级插值。
第十一章59、冗余:数据表达了无用的信息;数据表达了已表达的信息。
60、数据冗余类别:1)编码冗余:与灰度分布的概率特性有关;2)像素相关冗余:空间冗余,几何冗余;3)心理视觉冗余主观感觉有关。
减少/消除其中的一种/多种冗余,就能取得数据压缩的效果。
61、编码冗余:用较少的比特数表示出现概率较大的灰度级,用较多的比特数表示出现概率较小的灰度级。
62、像素间冗余:规则的图形冗余大,不规则的图形冗余小。
63、心理视觉冗余:主观:因人而异,因应用要求而异。
与实在的视觉信息有联系(损失不可逆转)。
64、主观保真度准则:主观测量图像的质量,因人而异,应用不方便。
65、客观保真度准则:用编码输入图与解码输出图的某个确定函数表示损失的信息量,便于计算或测量。
66、图像编解码系统模型图像压缩可能性分析:67、一般原始图像中存在很大的冗余度。
68、用户允许图像一定失真;信道的分辨率不及原始图像的分辨率时;用户对原始图像信号不感兴趣,可用特征提取和图像识别方法,丢掉大量无用信息。
69、原始图像越有规则,各像素之间的相关性越强,它可能压缩的数据就越多。
70、基于不同的图像结构特性,应采用不同的压缩编码方法。
71、全面评价一种编码方法的优劣,除了看它的编码效率、实时性和失真度以外,还要看它的设备复杂程度,是否经济与实用。
(常用是混合编码方案)72、图像数据压缩的目的是在满足一定图像质量条件下,用尽可能少的比特数来表示原始图像,以提高图像传输的效率和减少图像存储的容量,在信息论中称为信源编码。
73、信源编码分为两大类:1)无失真编码;2)有失真编码或限失真编码。