06第六章核酸
核酸降解与核苷酸代谢
嘧啶碱的分解
不同生物嘧啶碱的分解过程也不 一样,一般情况下含氨基的嘧啶要 先水解脱去氨基,脱氨基也可以在 核苷或核苷酸水平上进行。
2.嘧啶碱的分解
NH 2 N
N
O
H
-NH2
β-丙氨酸
O
NH
二氢尿嘧啶
N
O
H
(开环)
H2O
H2O
β-脲基丙酸
嘧啶还原途径的分解
-CH3
嘧啶分解
• 其中二氧化碳经呼吸道排出体外,氨在
AMP激酶
AMP + ATP —— 2ADP
glycolytic enzymes or oxidative phosphorylation
ADP —— ATP
2 .ATP通过核苷单磷酸激酶生成其他NDP
ATP + NMP —— ADP + NDP
3.NTP的生成
核苷二磷酸激酶
XTP + NDP
XDP + NTP
肠黏膜细胞中还有核苷酸酶 (磷酸单 酯酶),水解核苷酸为核苷和Pi。
脾、肝等组织中的核苷酶进一步水解 核苷为戊糖和碱基。
核酸酶
核酸
核苷酸酶
核苷酸
磷酸
核苷酶
核苷
戊糖
碱基
(嘌呤碱,嘧啶碱)
核酸酶(Nuclease)
核酸酶是作用于核酸磷酸二酯键的水 解酶,包括核糖核酸酶(RNase)和脱氧核 糖核酸酶(DNase),其中能水解核酸分子 内磷酸二酯键的酶又称为核酸内切酶 (endonuclease),从核酸的一端逐个水解 下核苷酸的酶称为核酸外切酶 (exonuclease)。
NH 2 N
N
N H
N
第六章 生物化学核酸讲解
生物化学核酸讲解核酸是遗传物质1868年瑞士Miesher.从脓细胞的细胞核中分离出可溶于碱而不溶于稀酸的酸性物质。
间接证据:同一种生物的不同种类的不同生长期的细胞,DNA含量基本恒定。
直接证据:T2噬菌体DNA感染E.coli用35S标记噬菌体蛋白质,感染E.coli,又用32P标记噬菌体核酸,感染E.coliDNA、RNA的分布(DNA在核内,RNA在核外)。
第一节核酸的化学组成核酸是一种线形多聚核苷酸,基本组成单位是核苷酸。
结构层次:核酸核苷酸组成核酸的戊糖有两种::D-核糖和D-2-脱氧核糖,据此,可以将核酸分为两种:核糖核酸(RNA)和脱氧核糖核酸(DNA)P330 表5-1 两类核酸的基本化学组成一、碱基1. 嘌呤碱:腺嘌呤鸟嘌呤2. 嘧啶碱:胞嘧啶尿嘧啶胸腺嘧啶P331 结构式3. 修饰碱基植物中有大量5-甲基胞嘧啶。
E.coli噬菌体中,5-羟甲基胞嘧啶代替C。
稀有碱基:100余种,多数是甲基化的产物。
DNA由A、G、C、T碱基构成。
RNA由A、G、C、U碱基构成。
二、核苷核苷由戊糖和碱基缩合而成,糖环上C1与嘧啶碱的N1或与嘌呤碱的N9连接。
核酸中的核苷均为β-型核苷P332 结构式腺嘌呤核苷胞嘧啶脱氧核苷DNA 的戊糖是:脱氧核糖RNA 的戊糖是:核糖三、核苷酸核苷中戊糖C3、C5羟基被磷酸酯化,生成核苷酸。
1、构成DNA、RNA的核苷酸P333表5-32、细胞内游离核苷酸及其衍生物①核苷5’-多磷酸化合物A TP、GTP、CTP、ppppA、ppppG在能量代谢和物质代谢及调控中起重要作用。
②环核苷酸cAMP(3’,5’-cAMP)cGMP(3’,5’-cGMP)它们作为质膜的激素的第二信使起作用,cAMP调节细胞的糖代谢、脂代谢。
③核苷5’多磷酸3’多磷酸化合物ppGpp pppGpp ppApp④核苷酸衍生物HSCoA、NAD+、NADP+、FAD等辅助因子。
GDP-半乳糖、GDP-葡萄糖等是糖蛋白生物合成的活性糖基供体。
第六章 核酸的结构与功能
tRNA三级结构之中的氢键配对
tRNA三级结构之中的氢键配对
rRNA
核糖体合成蛋白质
所有的核糖体都含有大小两个亚基 rRNA约占据核糖体的2/3 高度的链内互补序列导致大量的碱基配对 rRNA 充当核糖体蛋白的支架 大肠杆菌的23S rRNA是转肽酶! 一级结构上相似性并不高,但它们的二级结 构却惊人地相似。 核糖体的整体构象由rRNA决定,核糖体蛋 白质一般正好位于RNA螺旋之间
已步入古稀之年的Watson(左)和 Crick(右)在讨论DNA双螺旋结构模型
B型双螺旋
DNA二级结构的主要形式为Watson和Crick于1953年提出的B 型双螺旋,其主要内容是: (1)DNA由两条呈反平行的多聚核苷酸链组成,两条链相互缠 绕形成右手双螺旋; (2)组成右手双螺旋的两条链是互补的,它们通过特殊的碱基 对结合在一起,一条链上的A总是与另一条链的T,G总是和C 配对。其中AT碱基对有二个氢键,GC碱基对有3个氢键; (3)碱基对位于双螺旋的内部,并垂直于暴露在外的脱氧核糖 磷酸骨架。碱基对之间通过疏水键和范德华力相互垛叠在一 起,对双螺旋的稳定起一定的作用; (4)双螺旋的表面含有明显的大沟和小沟(其宽度分别为2.2nm 和1.2nm; (5)双螺旋的其它常数包括相邻碱基对距离为0.34nm,并相差 约36°。螺旋的直经为2nm,每一转完整的螺旋含有10个碱基 对,其高度为3.4nm。
A型双螺旋、B型双螺旋和Z型双螺旋的比较
Z-DNA
由Alex Rich发现
存在于DNA富含G:C的区域 G为顺式构象 C 保持反式,但整个胞苷酸(碱基和脱 氧核糖)翻转180度 结果是 G:C 氢键在Z-DNA中得以保持!
《核酸》 讲义
《核酸》讲义一、什么是核酸核酸,这个在生物学和医学领域中频繁出现的词汇,对于我们理解生命的奥秘起着至关重要的作用。
简单来说,核酸是一种生物大分子。
它分为两类,分别是脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA 就像是生命的“蓝图”,承载着生物体的遗传信息。
它决定了生物体的特征、生长发育以及遗传特性的传递。
我们每个人独特的外貌、身体特征,甚至是容易患上某些疾病的倾向,都在一定程度上由 DNA所决定。
RNA 则在遗传信息的表达中发挥着关键作用。
它参与了蛋白质的合成过程,将 DNA 中的遗传信息转化为实际的生物功能。
核酸的基本组成单位是核苷酸。
核苷酸由一个含氮碱基、一个五碳糖和一个磷酸基团组成。
含氮碱基包括腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)、胞嘧啶(C)和尿嘧啶(U)。
在 DNA 中,碱基是 A、T、G、C;而在 RNA 中,则是 A、U、G、C。
二、核酸的结构DNA 通常呈现出双螺旋结构。
就像一个扭曲的梯子,碱基对构成了梯子的横档,而磷酸和脱氧核糖组成了梯子的两侧扶手。
A 总是与 T配对,G 总是与 C 配对,这种碱基互补配对原则保证了遗传信息复制和传递的准确性。
RNA 结构相对多样,有单链的信使 RNA(mRNA)、转运 RNA (tRNA)以及核糖体 RNA(rRNA)等。
三、核酸的功能DNA 的主要功能是遗传信息的储存和传递。
亲代通过生殖细胞将DNA 传递给子代,确保了物种的延续和遗传特征的稳定。
RNA 在蛋白质合成中起着重要作用。
mRNA 携带了从 DNA 转录而来的遗传信息,然后在核糖体中指导蛋白质的合成;tRNA 则负责搬运氨基酸到核糖体上,按照 mRNA 的指令组装成蛋白质;rRNA 是核糖体的重要组成部分,参与了蛋白质合成的过程。
四、核酸的研究历史核酸的研究可以追溯到很久以前。
在 19 世纪,科学家们就已经开始对核酸进行初步的探索。
但真正对核酸的结构和功能有深入理解,还是在 20 世纪。
《核酸》 学历案
《核酸》学历案在当今社会,“核酸”这个词对于我们来说已经不再陌生。
从新冠疫情的防控,到日常的医学检测,核酸检测技术都发挥着至关重要的作用。
那么,究竟什么是核酸?它在生命活动中扮演着怎样的角色?又有着怎样的应用呢?核酸是由许多核苷酸聚合成的生物大分子化合物,为生命的最基本物质之一。
它分为脱氧核糖核酸(DNA)和核糖核酸(RNA)两大类。
DNA 是遗传信息的携带者,就像是一个生命的“蓝图”。
它存在于细胞核中,呈双螺旋结构。
DNA 中的碱基排列顺序决定了生物的遗传特征,从我们的外貌、身体特征到生理功能,都受到 DNA 的调控。
比如,我们的眼睛颜色、头发的卷曲程度,甚至是容易患某些疾病的倾向,都在 DNA 中有着特定的编码。
RNA 则在遗传信息的传递和表达中发挥着关键作用。
信使 RNA (mRNA)根据 DNA 的指令,将遗传信息从细胞核传递到细胞质,指导蛋白质的合成。
转运 RNA(tRNA)则负责将氨基酸运送到核糖体,参与蛋白质的组装。
还有核糖体 RNA(rRNA),它是核糖体的重要组成部分,为蛋白质合成提供场所。
核酸的结构十分精妙。
核苷酸是构成核酸的基本单位,每个核苷酸由含氮碱基、五碳糖和磷酸基团组成。
碱基包括腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)、胞嘧啶(C)(在 RNA 中,胸腺嘧啶被尿嘧啶(U)取代)。
这些碱基之间遵循着严格的配对原则,A 与 T(在RNA 中是 A 与 U)配对,G 与 C 配对,这种配对原则保证了遗传信息的准确传递和复制。
核酸的功能极其重要。
首先,它是遗传信息的储存和传递者。
生物体通过复制 DNA,将遗传信息传递给下一代,确保物种的延续和遗传特征的稳定。
其次,核酸参与了蛋白质的合成,控制着生命活动的各种进程。
再者,某些 RNA 还具有催化功能,能够加速化学反应的进行。
在医学领域,核酸检测技术的应用越来越广泛。
以新冠病毒为例,通过检测患者体内是否存在新冠病毒的核酸片段,可以快速、准确地诊断是否感染。
生化笔记:第六章 核酸----大二
第六章核酸核酸是遗传物质1868年瑞士Miesher.从脓细胞的细胞核中分离出可溶于碱而不溶于稀酸的酸性物质。
间接证据:同一种生物的不同种类的不同生长期的细胞,DNA含量基本恒定。
直接证据:T2噬菌体DNA感染E.coli用35S标记噬菌体蛋白质,感染E.coli,又用32P标记噬菌体核酸,感染E.coliDNA、RNA的分布(DNA在核内,RNA在核外)。
第一节核酸的化学组成核酸是一种线形多聚核苷酸,基本组成单位是核苷酸。
结构层次:核酸核苷酸组成核酸的戊糖有两种::D-核糖和D-2-脱氧核糖,据此,可以将核酸分为两种:核糖核酸(RNA)和脱氧核糖核酸(DNA)P330 表5-1 两类核酸的基本化学组成一、碱基1. 嘌呤碱:腺嘌呤鸟嘌呤2. 嘧啶碱:胞嘧啶尿嘧啶胸腺嘧啶P331 结构式3. 修饰碱基植物中有大量5-甲基胞嘧啶。
E.coli噬菌体中,5-羟甲基胞嘧啶代替C。
稀有碱基:100余种,多数是甲基化的产物。
DNA由A、G、C、T碱基构成。
RNA由A、G、C、U碱基构成。
二、核苷核苷由戊糖和碱基缩合而成,糖环上C1与嘧啶碱的N1或与嘌呤碱的N9连接。
核酸中的核苷均为β-型核苷P332 结构式腺嘌呤核苷胞嘧啶脱氧核苷DNA 的戊糖是:脱氧核糖RNA 的戊糖是:核糖三、核苷酸核苷中戊糖C3、C5羟基被磷酸酯化,生成核苷酸。
1、构成DNA、RNA的核苷酸P333表5-32、细胞内游离核苷酸及其衍生物①核苷5’-多磷酸化合物A TP、GTP、CTP、ppppA、ppppG在能量代谢和物质代谢及调控中起重要作用。
②环核苷酸cAMP(3’,5’-cAMP)cGMP(3’,5’-cGMP)它们作为质膜的激素的第二信使起作用,cAMP调节细胞的糖代谢、脂代谢。
③核苷5’多磷酸3’多磷酸化合物ppGpp pppGpp ppApp④核苷酸衍生物HSCoA、NAD+、NADP+、FAD等辅助因子。
GDP-半乳糖、GDP-葡萄糖等是糖蛋白生物合成的活性糖基供体。
第六章DNA和RNA的提取
β-巯基乙醇是抗氧化剂,有效地防止酚氧化成醌,避免褐变,使酚容易去除
(二)基因组DNA的提取- CTAB法
组份
CTAB提取缓冲液的改进配方
Tris-HCl EDTA NaCl (pH8.0) (pH8.0) 100 mM 20 mM 1.4M CTAB 3%(W/ V) PVP40 5%(W/ V) β-巯基乙醇 2%(V/V) 使用前加入
主要方法: (1)浓盐法 利用RNP和DNP在电解溶液中溶解度不同,将二者分离。 1)用1M 氯化钠提取,得到的DNP粘液 2) 与含有少量异戊醇的氯仿一起摇荡,使乳化 3) 离心除去蛋白质,此时蛋白质凝胶停留在水相及氯仿相 中间,而DNA位于上层水相中 4) 用2倍体积95%乙醇可将DNA 钠盐沉淀出来.
质粒DNA的提取
使用处于对数期的新鲜菌体 (老化菌体导致开环质粒增加)
质粒DNA-碱裂解法
碱裂解法原理
染色体DNA比质粒DNA分子大得多,且染色体DNA为线状分 子,而质粒DNA为共价闭合环状分子; 当用碱处理DNA溶液时,线状染色体DNA容易发生变性,共 价闭环的质粒DNA在回到中性pH时即恢复其天然构象; 变性染色体DNA片段与变性蛋白质和细胞碎片结合形成沉 淀,而复性的超螺旋质粒DNA分子则以溶解状态存在液相 中,从而可通过离心将两者分开。
磁珠
磁性微粒挂上不同基团可吸附不同的目的 物,从而达到分离目的。
(三)基因组DNA-其它方法
浓盐法:
利用RNP和DNP在盐溶液中溶解度不同,将二者分离
有机溶剂抽提法:
有机溶剂作为蛋白变性剂,同时抑制核酸酶的降解作用
密度梯度离心法:
利用不同内容物密度不同的原理分离各种内容物
第六章核酸的分离与纯化
三、鉴定、保存与应用
(一)核酸的鉴定
1.浓度鉴定核酸浓度的定量鉴定可通过紫外分光光度法与荧光光度法进行。
(1)紫外分光光度法:紫外分光光度法是基于核酸分子成分中的碱基均具有一定的紫外线吸收特性,最大吸收波长在250nm~270nm之间。这些碱基与戊糖、磷酸形成核苷酸后,其最大吸收波长不变。由核苷酸组成核酸后,其最大吸收波长为260nm,该物理特性为测定溶液中核酸的浓度奠定了基础。在波长260nm的紫外线下,1个OD值的光密度大约相当于50µg/ml的双链DNA,38µg/ml的单链DNA或单链RNA,33µg/ml的单链寡聚核苷酸。如果要精确定量已知序列的单链寡核苷酸分子的浓度,就必须结合其实际分子量与摩尔吸光系数,根据朗伯-比尔定律进行计算。若DNA样品中含有盐,则会使A260的读数偏高,尚需测定A310以扣除背景,并以A260与A310的差值作为定量计算的依据。紫外分光光度法只用于测定浓度大于0.25µg/ml的核酸溶液。
2.纯度鉴定紫外分光光度法还是荧光光度法,均可用于核酸的纯度鉴定。
2019年生物化学笔记第六章核酸.doc
第六章核酸提要一.概述核酸分类分布与功能二.核苷酸碱基嘌呤与嘧啶DNA与RNA中的核苷与核苷酸多磷酸核苷酸环核苷酸三.DNA的结构磷酸二酯键DNA的一级结构DNA的二级结构DNA 的三级结构DNA的拓扑结构四.RNA的结构DNA与RNA的区别RNA 的种类与功能tRNA的结构特点mRNA的结构特点五.核酸的理化性质紫外吸收DNA的变性与复性限制性内切酶第一节概述一发现核酸占细胞干重的5-15%,1868年被瑞士医生Miescher发现,称为“核素”。
在很长时间内,流行“四核苷酸假说”,认为核酸是由等量的四种核苷酸构成的,不可能有什么重要功能。
1944年Oswald Avery 通过肺炎双球菌的转化实验首次证明DNA是遗传物质。
正常肺炎双球菌有一层粘性发光的多糖荚膜,有致病性,称为光滑型(S型);一种突变型称为粗糙型(R型),无荚膜,没有致病能力(缺乏UDP-葡萄糖脱氢酶)。
1928年,格里菲斯发现肺炎双球菌的转化现象,即将活的粗糙型菌和加热杀死的光滑型菌混合液注射小鼠,可致病,而二者单独注射都无致病性。
这说明加热杀死的光滑型菌体内有一种物质使粗糙型菌转化为光滑型菌。
艾弗里将加热杀死的光滑型菌的无细胞抽提液分级分离,然后测定各组分的转化活性,于1944年发表论文指出“脱氧核糖型的核酸是型肺炎球菌转化要素的基本单位”。
其实验证据如下:化要素的化学元素分析与计算出来的DNA 组成非常接近。
超速离心、扩散和电泳性质上与DNA 的相似。
蛋白质或脂类而损失。
理不影响其转化活性。
RNA 酶处理也不不影响其转化活性。
DNA 酶可使其转化活性丧失。
艾弗里的论文发表后,有些人仍然坚持蛋白质是遗传物质,认为他的分离不彻底,是混杂的微量的蛋白质引起的转化。
1952年,Hershey 和Chase 的T2噬菌体旋切实验彻底证明遗传物质是核酸,而不是蛋白质。
他们用35S 标记蛋白质,用32P 标记核酸。
用标记的噬菌体感染细菌,然后测定宿主细胞的同位素标记。
第六章、核酸与蛋白质序列分析2
2019/1/30
30
第六章、核酸和蛋白质序列分析
(2)SIM4:http://pbil.univ-lyon1.fr/sim4.php
2019/1/30
31
第六章、核酸和蛋白质序列分析
6、CpG岛分析
CpG岛,是指哺乳动物基因启动子及其附近大 量的CpG位点(CpG表示指C、G以磷酸基连接)。 事实上基因组中60%~ 90% 的CpG 都被甲基 化, 未甲基化的CpG 成簇地组成CpG 岛, 位于结 构基因启动子的核心序列和转录起始点。有实验 证明超甲基化阻遏转录的进行。
2019/1/30
35
第六章、核酸和蛋白质序列分析
7、终止信号分析
r.it/~webgene/wwwHC polya.html
2019/1/30
36
第六章、核酸和蛋白质序列分析
8、基因定位分析
2019/1/30
37
第六章、核酸和蛋白质序列分析
1、遮蔽重复序列
在进行任何真核生物序列的基因辨识分析 之前,最好把散布和简单的重复序列找出来并 从序列中除去。虽然这些重复序列可能正好覆 盖了由RNA聚合酶Ⅱ转录的部分区域,它们几 乎不会覆盖启动子和外显子编码区。这样,这 些重复序列的定位能为其它基因特征的定位提 供重要的反面信息。 重复序列还常常会搅乱其它分析,特别是 在数据库搜索中。
2019/1/30 5
第六章、核酸和蛋白质序列分析
• 功能位点(functional site)
-与特定功能相关的位点,是生物分子序列上的一个功能 单元,或者是生物分子序列上一个较短的片段。 • 功能位点又称为功能序列(functional
sequence)、序列模式(motif)、信号 (signal)等。
2024人教版化学《核酸》PPT完美课件新教材1
人教版化学《核酸》PPT完美课件新教材1contents •核酸概述与分类•核酸组成单位-核苷酸•DNA结构与功能解析•RNA结构与功能解析•核酸提取、纯化和鉴定方法•核酸在生物技术中应用前景目录核酸概述与分类核酸定义及功能核酸定义核酸功能核酸种类与结构特点核酸种类结构特点生物体内核酸分布及作用分布DNA主要分布在细胞核中,少量存在于线粒体和叶绿体中;RNA主要分布在细胞质中,包括mRNA、tRNA和rRNA等多种类型。
作用DNA作为遗传信息的载体,负责储存和传递遗传信息;RNA则参与蛋白质合成过程,包括转录和翻译等步骤。
此外,RNA还在基因表达调控、细胞信号传导等方面发挥重要作用。
02核酸组成单位-核苷酸磷酸基团五碳糖碱基030201核苷酸基本结构核苷酸种类与命名规则核苷酸种类命名规则核苷酸的命名通常由碱基名称、五碳糖类型和磷酸基团数目三部分组成,如腺嘌呤脱氧核糖核苷酸。
核苷酸间连接方式磷酸二酯键碱基配对DNA结构与功能解析DNA双螺旋结构特点双链反向平行碱基互补配对主链与碱基对之间的空间关系螺距与旋转角度遗传信息的编码遗传信息的稳定性遗传信息的多样性遗传信息的可变性DNA遗传信息储存原理复制和修复的意义DNA 复制和修复机制对于生物体的遗传信息传递、生物进化以及维持生命活动的正常进行具有重要意义。
DNA 复制以亲代DNA 为模板,在DNA 聚合酶的催化下,按照碱基互补配对原则合成子代DNA 的过程。
复制过程具有半保留性和半连续性。
DNA 修复生物体在进化过程中形成了一套完善的DNA 修复机制,包括直接修复、切除修复、重组修复和跨损伤修复等,以维持基因组的稳定性和完整性。
复制与修复的关系DNA 复制过程中可能出现错误配对或损伤,此时需要启动DNA 修复机制进行纠正。
同时,DNA 修复机制也可以保证复制过程的顺利进行。
DNA 复制和修复机制RNA结构与功能解析RNA单链结构特点作为信使RNA(mRNA),携带遗传信息并指导蛋白质合成作为转运RNA(tRNA),携带氨基酸进入核糖体并识别mRNA上的遗传密码作为核糖体RNA(rRNA),与核糖体蛋白共同组成核糖体,提供蛋白质合成的场所RNA在蛋白质合成中作用不同类型RNA功能介绍mRNA(信使RNA)tRNA(转运RNA)rRNA(核糖体RNA)其他非编码RNA核酸提取、纯化和鉴定方法核酸提取方法比较酚氯仿抽提法离心柱法磁珠法纯化策略及操作注意事项去除蛋白质使用蛋白酶K消化或有机溶剂去除蛋白质杂质。
第六章 核酸(Sixth chapter nucleic acid)
第六章核酸(Sixth chapter nucleic acid)Sixth chapter nucleic acidNucleic acids are genetic materialIn 1868, Miesher. acid isolated from the nuclei of pus cells in Switzerland was soluble in alkalis and not soluble in dilute acids.Circumstantial evidence: DNA levels are essentially constant in different types of cells at different growth stages of the same species.Direct evidence: T2 phage DNA infected with E.coliThe phage protein was labeled with 35S, infected with E.coli, and infected with E.coli by 32P labeled phage nucleic acidThe distribution of DNA and RNA (DNA in the nucleus and RNA outside the nucleus).Section 1 chemical composition of nucleic acidsNucleic acid is a linear polynucleotide, the basic unit of which is nucleotides.Structure level: nucleic acidnucleotideNucleoside phosphatePentose baseThere are two kinds of pentose that make up nucleic acids: D- ribose and D-2- ribose. Thus, nucleic acids can be divided into two kinds: RNA and DNAP330 Table 5-1 the basic chemical composition of two types of nucleic acidsBase1. purine base: adenine guanine2. pyrimidine bases: cytosine, uracil, thymineP331 structure formula3. modified baseThere is a large amount of 5- methyl cytosine in plants.E.In coli phage, 5- hydroxymethyl cytosine instead of C.Rare base: more than 100 species, most of which are methylated products.DNA consists of A, G, C, and T bases.RNA consists of A, G, C, and U bases.Two nucleosideNucleotides are condensed from pentose and bases, C1 on the sugar ring, or N1 of the pyrimidine base, or the N9 connection with the purine base.Nucleosides in nucleic acids are beta nucleosideP332 structured adenine nucleoside cytosine nucleosideDNA's pentose is: deoxy riboseRNA's pentose is riboseThree nucleotidesIn nucleoside, pentose C3 and C5 hydroxyl groups are esterified by phosphoric acid to produce nucleotides.1, constitute the nucleotide of DNA and RNAP333, table 5-32. Intracellular free nucleotides and their derivativesNucleoside 5 '- polyphosphateATP, GTP, CTP, ppppA, ppppGIt plays an important role in energy metabolism, metabolism and regulation.The cyclic nucleotideCAMP (3, 5, -cAMP), cGMP (3, 5, -cGMP)They act as second messengers of the hormone in the plasma membrane, and cAMP regulates glucose metabolism and lipid metabolism in cells.Nucleoside 5 'polyphosphate 3' - polyphosphatePpGpp pppGpp ppAppNucleotide derivativeHSCoA, NAD+, NADP+, FAD and other cofactors.GDP- galactose, GDP- and glucose are active glycosyl donors for glycoprotein biosynthesis.Second section DNA structureLevel 1: molecular linkage and sequence of DNA nucleotides.Two stage: double helix structure formed by hydrogen bonds between two strands of DNA.Three stage: DNA double chains are further folded and curled to form conformation.I. The primary structure of DNAThe primary structure of DNA is a linear polymer of 4 nucleotides (dAMP, dGMP, dCMP, dTMP) linked by 3/, 5/-, phosphate two ester bonds. The 3/ and 5/- phosphate two ester bonds are the backbone structures of DNA and RNA.P334, figure 5-1Writing method: 5/ = 3/:5 '-pApCpTpG-3' or '5'... ACTG... "3" (in DNA, 3/-OH is usually free)In DNA molecules, the invariant skeleton component, the phosphate two ester bond, is gradually omitted, and the order of the bases that really represent the biological significance of DNA is the order of the bases.Genetic information is stored in the base sequence of DNA, and biological diversity lies in the precise sequence of the 4 nucleotides of the DNA molecule.Two, DNA's two stage structureIn 1953, Watson and Crick proposed a double helix model of DNA based on the Chargaff law and the X ray diffraction data of DNA and Na salt fibers.1, Watson-Crick double helix structure foundationChargaff law, 1950A. in all DNA, A=T, G=C, and A+G=C+T.P334 table 5 - 4.The base composition of B. DNA has a species specificity, that is, DNA of different organisms has its own unique base composition.C.DNA base composition has no tissue or organ specificity.D., age, nutritional status, environment and other factors did not affect the base composition of DNA.X ray diffraction analysis of Na salt fiber and DNA crystal of DNA.Relative humidity 92%, DNA sodium salt crystallization, B - DNA.Relative humidity 75%, DNA sodium salt crystallization, A - DNA.Z - DNA.DNA in organism is B - DNA.Franklin's jobDouble helix structure model of 2 and Watson-CrickP335, figure 5 - 2A. two anti parallel polynucleotide chains around the same axis phase winding, forming a right-handed double helix, 5 '- 3', another 3 '- 5'B. purine and pyrimidine bases are located on the inside of the double helix, with phosphate and ribose on the outside. Phosphoric acid and ribose are linked to each other by 3/, 5/-, and phosphate two ester bonds, forming the backbone of DNA molecules.Width 1.2 nm wide 0.6NmBig ditch ditchDeep 0.85nm deep 0.75nmC. helix average diameter 2nmEach coil contains 10 nucleotidesBase stacking distance: 0.34nmPitch: 3.4nmD. two nucleotide chains that depend on a chain of hydrogenformed between bases of each other. The base plane is perpendicular to the spiral axis. A=T, G=CP336, figure 5 - 4The principle of base complementation is of great biological importance,The molecular basis of DNA replication, transcription and reverse transcription is base complementation.3, stable double helix structure factorThe base accumulation force (main factor) forms hydrophobic environment.Base pairing hydrogen bonds. The more GC content, the more stable.The negative charge on the phosphate group forms an ionic bond with the cations in the medium or the positive ions of the histones, neutralizing the repulsion between the negative charges on the phosphate group and contributing to the stabilization of the DNA.The base is in the hydrophobic environment of double helix and can be attacked by small water-soluble molecules.The heterogeneity and polymorphism of the two and three DNA structures(I) heterogeneity of the DNA two stage structure1, reverse repeats (palindromic sequences)In the DNA sequence, a pair of base pairs in the central axis of a symmetric axis, both sides of the axis are sequentially read and read the same, that is, the symmetry axis of the side of the rotation of 180 degrees, with the other side of the symmetrical repetition.The long palindrome structure may form a stem ring cross structure and a hairpin structure under certain factors. The function is not fully understood, but the termination of transcription is related to the palindrome structure.A shorter palindrome that serves as a specific signal, such as restriction endonucleases.2, rich in A and T sequencesIn higher organisms, the levels of A+T and C+G are approximately equal, but in certain areas of their chromosomes, A and T levels may be high.In many DNA regions that have important regulatory functions (not protein coding regions), A and T base pairs are abundant.Especially in the DNA region of the replication starting point and the starting Pribnow box, rich in A T pairs. This is important for the initiation of replication and transcription, because G C pairs have three hydrogen bonds, while A T pairshave only two hydrogen bonds, where double bonds are easy to unravel.(two) the polymorphism of DNA two stage structure;P339 tables 5-6, A-, B-, and Z-DNA are compared1, B - DNA: typical Watson-Crick double helix DNARight double helixEach coil has 10.4 base pairsEach of theScrew twist angle 36 degreesPitch: 3.32nmBase inclination: 1 degrees2, A-DNADNA fibers obtained under 75% rh.A-DNA is also the right hand double helix, short and thick in shape.RNA-RNA and RNA-DNA hybrids have this structure.3, Z-DNALeft hand spiral DNA.Local areas of natural B-DNA can form Z0-DNA.4, DNA three strand helixIn the DNA helix segment consisting of a pyrimidine and a multimeric group, the sequence has a longer mirror image, and repeats may form a partial three stranded helix, called H-DNA.Mirror image repetition:TAT pairingC+GC acid pairThe three chain structure of DNA often appear in initiation of DNA replication, recombination and transcription or regulatory sites, third shares of the existence of a chain may make some regulatory proteins or RNA polymerase were difficult to combine with the section, and thereby prevent the expression of genetic information.Four, ring DNASome DNA in organisms exist in the form of double stranded cyclic DNA, including:Certain viruses, DNACertain bacteriophage DNACertain bacterial chromosomes, DNABacterial plasmid DNAMitochondrial DNA and chloroplast DNA in eukaryotic cells1, different conformations of ring DNAP340 graph 5-8 relaxation ring, solution link and negative hyper helix(1) relaxation ring DNADirect cyclization of linear DNA(2) unwinding ring DNALinear DNA, loosen and then ring(3) positive and negative helical DNAThe linear DNA is screwed or twisted and then turned into an ultra helical structure.Two strands of rope to the right direction at one end of the rope winding, if the rotation to wrapped up tight direction, then connect both ends of the rope, will produce a left-handed supercoiling, to remove the extra strain caused by the rotation of the screw, so called super positive supercoils.If the rope ends in a loose direction, and then the ends of the rope are joined together, a right-handed spiral will be generated to relieve the additional rotation caused by the deflection, which is called a super negative spiral.For right-handed helical DNA molecules, if the base number of each primary helix is less than 10.4, then the secondary structure is in tight state, and the positive helix is positive.If the base number of each primary helix is greater than 10.4, the secondary structure is in loose state, and the negative helix is negative.2, topological characteristics of ring DNATake the linear B-DNA composed of 260bp, for example, the number of spiral cycles 260/10.4=25.P340 graph 25-8 relaxation ring, solution link and negative hyper helixSerial number (L)In DNA double helix, the number of times a strand is twisted by the right hand around another strand, expressed in L.Relaxation ring: L=25Link: L=23Ultra helix: L=23Winding number (T)The number of Watson-Crick helices in DNA molecules represented by TRelaxation ring T=25Link link T=23Hyper helical T=25The number of super helical cycles (distortion number W)Relaxation ring W=0Link link W=0Ultra helical W= -2L=T+WThe ratio of serial difference (lambda)Represents the degree of helicity of the DNALambda = (L - L0) /L0L0 refers to the L value of a relaxation ring DNAThe density of natural DNA is generally -0.03~-0.09, with an average of 3-9 negative helices per 100bp.Negatively supercoiled DNA is due to the two strand winding, very easy chain, easy to copy, recombination and transcription of DNA will need to take two separate to the chain reaction.3, topoisomeraseThis enzyme can change the L value of the DNA topological isomer.Topoisomerase enzyme I (screwed)The double stranded negative supercoiling DNA into relaxation shaped DNA, every action can make the L value increased by 1, at the same time, the relaxation of DNA into Zhengchao spiral ring.Topoisomerase enzyme II (loose)The relaxation loop DNA can be transformed into a negative helical DNA, which reduces L by 2 per time, while converting the positive super helix into a relaxed DNA.Five. The structure of chromosomes1. Escherichia coli chromosomeThe Escherichia coli chromosome is composed of 4.2 * 106bp consisting of double stranded cyclic DNA molecules with about 3000 genes.Escherichia coli DNA binding protein: each cellH two identical subunits of two 28KD, 30000 dimersHU two distinct subunits of each 9KD, 40000 two body polymersSubunit of HLP1 17KD, 20000 monomersThe subunit of P 3KD is unknownThese DNA binding proteins, 4.2 x 106bp E.coli chromosome DNA compression as a scaffolding structure, structure of the center is a variety of DNA binding protein, DNA double helix molecules have many binding sites with these proteins, forming about 100 areas, each area of DNA is negatively supercoiled, a small DNA the two end is relatively independent of each cell protein fixed.chartWhen treated with extremely small amounts of DNA enzyme I, only a small area of DNA can become relaxed, while other cells remain hyper helical.2. Eukaryotic chromosomesMainly composed of histones and DNA.Histones are basic proteins rich in alkaline A.A (Lys, Arg). They can be divided into five kinds: H1, H2A, H2B, H3 and H4 according to different Lys/Arg ratios. They are single stranded proteins with molecular weight of 11000-21000.The two molecules of H2A, H2B, H3 and H4 are symmetrically aggregated into histone eight.146bp lengths of DNA double helices are coiled on eight polymers to form nucleosomes.Between nucleosomes, DNA length 15-100bp (general 60BP), which combines H1chart2H2A, 2H2B, 2H3, 2H4, histone eight, 146bpDNA, nucleosomeTandem chromatin folding chromosomeDNA (diameter 2nm)The coiled protein eight aggregates, in combination with H1, have a compression ratio of 1/7Nucleosome (primary structure)Helical compression ratio 1/6Solenoid (two stage structure)Re helix, compression ratio, 1/40Solenoid (three stage structure)Folding, compression ratio, 1/5Chromatid (four stage structure)Total compression ratio: 1/8400~1/10000Six, the biological function of DNAThe first direct demonstration of the genetic function of DNA is the Avery pneumococcal transformation test.The pneumococcal transformation test of P342, 1~4 and AveryThird section RNA structureI. The primary structure of RNARNA is a linear polymer formed by 3/, CMP and 5/ phosphate two ester bonds of AMP, GMP, and UMP.P343 figure 5-10 the basic structure of RNAThe pentose sugar that makes up RNA is riboseU of base RNA replaces T in DNA, and there are some rare bases in RNA.Natural RNA molecules are single stranded linear molecules, only part of the region is A- type double helix structure. The double helix region accounts for about 50% of the RNA molecule.Two, the type of RNARNA in cells can be divided into three types according to their roles in protein synthesis.Ribosomal RNA rRNATransport RNA tRNAMessenger RNA mRNAIn addition, eukaryotic cells contain small amounts of small nuclear RNA (small, nuclear, RNA, snRNA)P344 table 5-7 RNA in Escherichia coliSettlement factor: the rate of sedimentation in a unit centrifugal field, in S units, i.e., 10-13 seconds.Such as 23S rRNA, the unit centrifuge field sedimentation 23 * 10-13 seconds5S rRNA, sedimentation in unit centrifugal field, 5 * 10-13 secondsThree, tRNA structureTRNA accounts for about 15% of all RNAMain functions: transport of amino acids during protein biosynthesis.There are 160 types of tRNA known as primary structures, each of which carries a particular A.A, and a A.A can be carried by one or more tRNA tRNA.Structure characteristicsThe molecular weight is about 25kd, 70-90b, and the sedimentation coefficient is about 4SThere are many rare bases in the base compositionchart(3) at the end of... CpCpA-OH is used to receive the activated amino acid, which is called the terminal.The ends of '5' are mostly pG... Or pC...The two stage structure is trefoilP345 diagram 5-12 tRNA two level structure (Shamrock model)In 1966, Crick proposed a base pairing wobble theory for tRNA to identify several codons":Think outside except A-U, G-C, and non standard I-A, I-C, I-Umatching, and emphasizes on the 5 'end codon first, second base pairing and strictly follow the standard, third bases can be non standard pairing, swing has a certain degree of flexibility.Four, mRNA structureMRNA is from the DNA transcription and its function is based on the genetic information of DNA, guide the biosynthesis of various proteins, each protein cell by a corresponding mRNA encoding, mRNA? Many different types, sizes, each kind of content is very low.Functionally, a gene is a CIS, and the mRNA of a prokaryote is a mRNA, and the eukaryotic one is the daughter.CIS: a genetic unit defined by a cis trans test, a gene equivalent to a protein.1. Eukaryotic mRNA(1) and 3 '- end has a polyA of about 30-300 nucleotides.PolyA is transcribed and added to the polyA polymerase, and the polyA polymerase is specific to mRNA.Prokaryotic mRNA is generally without polyA. PolyA is related to the half-life of mRNA. The newly synthesized mRNA has a longer polyA, while the senescent mRNA has shorter polyA.PolyA function:PolyA is the form of mRNA necessary for nuclear entry into cytoplasm.PolyA greatly enhances the stability of mRNA in the cytoplasm.(2), 5 '- hat, hatGuanine N7 is methylated at the end of '5' and guanine nucleotide is linked to one of the adjacent nucleotides via pyrophosphate, forming 5 '-5' - phosphoric acid two ester bond.P346 hat structureHat function:Can resist 5 'exonuclease degradation mRNA.It provides the recognition sites for ribosomes, enabling mRNA to bind rapidly to ribosomes and promote the formation of protein synthesis initiation complexes.2, prokaryotic mRNA (trans CIS)The prokaryotic mRNA is composed of a pilot region, an insertion sequence, a translation region, and an end sequence. No 5/ hat and 3/polyA.Listed as: MS2 virus mRNA, 3569 B, there are three CIS, respectively, encoding A protein, coat protein and replication enzyme three proteins.Figure MS2 disease mRNAIn the 5 'end, there is a purine base sequence, typically 5' -AGGAGGU-3 ', located about 10 nucleotides before the start codon AUG, found in Shine and Dalgarno, called the SD sequence.The SD sequence is complementary to the nucleotide sequence of the 3 terminal terminal of the ribosomal 16S rRNA, which is related to mRNA recognition of ribosomes.Prokaryotic mRNA metabolism is very fast, half a lifetime, a few seconds to ten minutes.Five, rRNA structureRRNA accounts for about 80% of the total RNA.Function: rRNA is the backbone of ribosomes, which forms ribosomes with ribosome bound proteins and provides sites for the synthesis of proteins.There are three types of rRNA (prokaryotic) in E. coli5S rRNA16S rRNA23S rRNAThere are four classes of eukaryotic cells, rRNA5S rRNA5.8S rRNA18S rRNA28S rRNAFig. prokaryotic ribosome (rRNA part)Fig. eukaryotic ribosome (rRNA part)P346 figure 5-14 Escherichia coli 5S rRNA structureProperties of nucleic acids in fourth sectionsDissociation propertiesPolynucleotides have two classes of ionizable groups: phosphoric acid and bases, which give rise to amphoteric dissociation.Phosphoric acid is a moderately strong acid, and its base is weak. Therefore, the isoelectric point of nucleic acids is in the lower pH range.DNA isoelectric point 4 - 4.5RNA isoelectric point 2 - 2.5The hydrogen energy of ribose C '2-OH in RNA chain forms hydrogen chain with hydroxyl oxygen in phosphate ester, which promotes the dissociation of hydroxyl hydrogen atom of phosphate ester.Two. Hydrolysis property1, alkali hydrolysisAt room temperature, 0.1mol/LNaOH can be hydrolyzed completely to yield a mixture of 2 '- or 3' - RNA nucleoside phosphate.chartUnder the same conditions, DNA is not hydrolyzed. This is because the presence of C '2-OH' in RNA promotes the hydrolysis of the phosphate bond.The difference of the degree of hydrolysis between DNA and RNA is of great physiological significance.DNA stability, genetic information.RNA is the messenger of DNA, degraded after completion of the task.2. Enzymatic hydrolysisThere are many kinds of nuclease in organismRNA hydrolase RNaseDNA hydrolase DNaseAll enzymes outside the nucleic acidThe most important restriction endonuclease: restriction endonucleaseThree. Light absorptionBase pairs have conjugated double bonds, enabling bases, nucleosides, nucleotides and nucleic acids to have strong light absorption in the ultraviolet band of 240~290nm, lambda max=260nm1. Identification purityThe DNA of pure A260/A280 should be 1.8 (1.65-1.85), if greater than 1.8, indicating contamination of RNA.Pure RNA should be 2 for A260/A280.If the solution contains protein or phenol, the A260/A280 ratio decreases obviously.2, content calculationThe 1 ABS value is equivalent to: 50ug/mL double helix DNAOr: 40ug/mL single helix DNA (or RNA)Or: 20ug/mL nucleotides3, the hyperchromic effect and hypochromic effectP347 figure 5-15 UV absorption spectra of DNAEnhancement effect: molar absorption coefficient increases during the denaturation of DNAHypochromic effect: the DNA refolding process, the molar absorption coefficient decreases.Four. Settlement characteristics (DNA)Nucleic acids of different conformation (linear, toroidal, hyper helix) are different in density and sedimentation rate, and can be distinguished by Cs-Cl density gradient centrifugation. This method is often used for purification of plasmid DNA.Plasmid DNA was purified by Cs-Cl density gradient centrifugation at 5 - 16 P348Relative sedimentation constantLinear double helix molecule 1Relaxation double chain closed loop 1.14Cut double links 1.14Single stranded loop 1.14Linear single stranded 1.30Positive or negative double helix double loop 1.41The collapse of 3Five, denaturation, renaturation and hybridizationDenaturation and renaturation are important physicochemical properties of nucleic acids. Compared with proteins, nucleic acids can tolerate repeated degeneration and renaturation. This is also the basis of nucleic acid research technology.1, denaturation(1) degeneration:The hydrogen bonds in the double helix of the nucleic acid break into single strands without involving covalent bonds. The cleavage of covalent bonds on the polynucleotide skeleton is called the degradation of nucleic acids.The degeneration of DNA is explosive, and the denaturation occurs in a narrow temperature range.P350 figure 5-18 denaturation processThermal denaturationAcid base denaturation (pH is less than 4 or greater than 11 and hydrogen bonds between bases are broken)Denaturant (urea, guanidine hydrochloride, formaldehyde)260nm uptake increased.The viscosity decreases after modification, and the buoyancy density increases.Two stage structural change, partial deactivation.(2) melting temperature (Tm), or melting point:The double helix of DNA loses half its corresponding temperature. The Tm of DNA is usually between 70 and 85 degrees centigrade.At concentrations of 50ug/mL, double stranded DNA A260=1.00 is fully denatured (single stranded) A260= 1.37 when the A260 increases to half the maximum increase value, or 1.185, the corresponding temperature is Tm.(3) factors affecting the Tm value of DNADNA uniformity is high, and melting process takes place in very small temperature rangeIn.The G-C content and the Tm value is proportional to the content of G-C is high, the higher the Tm, the determination of Tm and G-C content..G-C%= (Tm-69.3) * 2.44P351 figure 5-19, figure 5-20. Relationship between Tm value and GC contentIon strength in mediumOther conditions are constant, ionic strength is high, Tm is high.P351, figure 5-212, renaturationDenatured DNA in the proper (generally lower than Tm20 - 25 DEG C) conditions, the two chains re - associate double helix structure.Denatured DNA can be refolded during slow cooling (rapid cooling prevents refolding). The greater the DNA fragment, the slower the refolding; the greater the concentration of DNA, the faster the refolding.The refolding rate can be measured by Co & T.Co is denatured DNA, original concentration mol = L-1, t is time, expressed in seconds.P352, figure 5-22, the refolding time of different DNA.A.1 pairs of nucleotides (A.U)Cot1/2=4 x 10-6mol.s/L on the mapIf the concentration is Co=1.0m mol/LThe time required for recovery is 50% seconds t=0.004 secondsFor all renaturation, Cot=10-4 t=0.1 secondsB.E.coli 4.2 * 106 base pairsCot1/2=10 mol.s/L was found on the mapIf the concentration is Co=1.0 umol/L requires 115 seconds, 50% days, for restoration of t=107. Renaturation of 100%Cot=500 mol.s/LT=5 * 108 seconds, 5758 days.For E.coli, 4.2 x 106bp, the concentration reached umol/L, the concentration has been high.Refolding mechanism: 10-20bp, zipper3, hybridization (DNA - DNA, DNA - RNA)Mix DNA from different sources, heat it up, cool it down gradually, and make it complex. If these heterologous DNA share the same sequence in some regions, the hybrids will form as a result of renaturation.Fifth nucleic acid research techniquesI. isolation and purification of nucleic acidsRequirements: keep as natural as possible.Mild conditions to prevent over acid, alkali.Avoid vigorous agitation and inhibit nuclease.1, DNA isolation and purificationEukaryotic DNA exists in the form of nucleoprotein (DNP), and DNP is soluble in water or salt (1mol/L) but not soluble in 0.14mol/L Nacl. By virtue of this property, DNP can be separated from RNA nucleoprotein and DNP is extracted.DNA nucleoprotein can be extracted with water saturated phenol to remove protein. Chloroform can also be used to remove protein.2, RNA preparation (focuses on the separation and purification of mRNA)DNP was precipitated by 0.14mol/L and Nacl, and the supernatant was RNA nuclear protein (RNP).Remove protein: guanidine hydrochloride, phenol, etc.RNA enzymes must be prevented from damaging RNA.Two. Gel electrophoresis of nucleic acids1 agarose electrophoresisThe size and mobility of nucleic acid molecules are inversely proportional to the logarithm of molecular weightGel concentrationThe conformation of DNA is the fastest, the linear and the fastest.The current is not greater than 5V/cm2 and PAGE electrophoresisThree restriction endonucleases (discovered in 1979)1, restriction modification systemchart2 and II endonucleasesEndonucleases have three types: I, II, and III. Among them, type II enzymes are very useful in DNA cloning.Characteristics of type II enzymes: restriction and modification activity are separated; protein structure is a single component, cofactor Mg2+, site sequence rotationally symmetric (reverse repeats).Cleavage frequency of type II enzymesThe recognition site was 4 44=2566 46=40968 48=65536Not I GCGGCCGCRestriction enzyme nomenclature: E.coRIFirst: the generic name E (uppercase)Second, third: the first two letters of the alphabet, lowercase CoFourth: strain RFifth bits: Rome characters, the numbers of this class of enzymes isolated from the bacteria.Lyase: a source of different restriction enzymes (naturally different in name), identifying the same nucleotide target sequence, producing the same cut and forming the same end.。
(整理)第六章 核酸
第六章核酸核酸是遗传物质1868年瑞士Miesher.从脓细胞的细胞核中分离出可溶于碱而不溶于稀酸的酸性物质。
间接证据:同一种生物的不同种类的不同生长期的细胞,DNA含量基本恒定。
直接证据:T2噬菌体DNA感染E.coli用35S标记噬菌体蛋白质,感染E.coli,又用32P标记噬菌体核酸,感染E.coliDNA、RNA的分布(DNA在核内,RNA在核外)。
第一节核酸的化学组成核酸是一种线形多聚核苷酸,基本组成单位是核苷酸。
结构层次:核酸核苷酸组成核酸的戊糖有两种::D-核糖和D-2-脱氧核糖,据此,可以将核酸分为两种:核糖核酸(RNA)和脱氧核糖核酸(DNA)P330 表5-1 两类核酸的基本化学组成一、碱基1. 嘌呤碱:腺嘌呤鸟嘌呤2. 嘧啶碱:胞嘧啶尿嘧啶胸腺嘧啶P331 结构式3. 修饰碱基植物中有大量5-甲基胞嘧啶。
E.coli噬菌体中,5-羟甲基胞嘧啶代替C。
稀有碱基:100余种,多数是甲基化的产物。
DNA由A、G、C、T碱基构成。
RNA由A、G、C、U碱基构成。
二、核苷核苷由戊糖和碱基缩合而成,糖环上C1与嘧啶碱的N1或与嘌呤碱的N9连接。
核酸中的核苷均为β-型核苷P332 结构式腺嘌呤核苷胞嘧啶脱氧核苷DNA 的戊糖是:脱氧核糖RNA 的戊糖是:核糖三、核苷酸核苷中戊糖C3、C5羟基被磷酸酯化,生成核苷酸。
1、构成DNA、RNA的核苷酸P333表5-32、细胞内游离核苷酸及其衍生物①核苷5’-多磷酸化合物A TP、GTP、CTP、ppppA、ppppG在能量代谢和物质代谢及调控中起重要作用。
②环核苷酸cAMP(3’,5’-cAMP)cGMP(3’,5’-cGMP)它们作为质膜的激素的第二信使起作用,cAMP调节细胞的糖代谢、脂代谢。
③核苷5’多磷酸3’多磷酸化合物ppGpp pppGpp ppApp④核苷酸衍生物HSCoA、NAD+、NADP+、FAD等辅助因子。
GDP-半乳糖、GDP-葡萄糖等是糖蛋白生物合成的活性糖基供体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章核酸提要一.概述核酸分类分布与功能二.核苷酸碱基嘌呤与嘧啶DNA与RNA中的核苷与核苷酸多磷酸核苷酸环核苷酸三.DNA的结构磷酸二酯键DNA的一级结构DNA的二级结构DNA的三级结构DNA的拓扑结构四.RNA的结构DNA与RNA的区别RNA的种类与功能tRNA的结构特点mRNA的结构特点五.核酸的理化性质紫外吸收DNA的变性与复性限制性内切酶第一节概述一发现核酸占细胞干重的5-15%,1868年被瑞士医生Miescher发现,称为“核素”。
在很长时间内,流行“四核苷酸假说”,认为核酸是由等量的四种核苷酸构成的,不可能有什么重要功能。
1944年Oswald Avery通过肺炎双球菌的转化实验首次证明DNA是遗传物质。
正常肺炎双球菌有一层粘性发光的多糖荚膜,有致病性,称为光滑型(S型);一种突变型称为粗糙型(R 型),无荚膜,没有致病能力(缺乏UDP-葡萄糖脱氢酶)。
1928年,格里菲斯发现肺炎双球菌的转化现象,即将活的粗糙型菌和加热杀死的光滑型菌混合液注射小鼠,可致病,而二者单独注射都无致病性。
这说明加热杀死的光滑型菌体内有一种物质使粗糙型菌转化为光滑型菌。
艾弗里将加热杀死的光滑型菌的无细胞抽提液分级分离,然后测定各组分的转化活性,于1944年发表论文指出“脱氧核糖型的核酸是型肺炎球菌转化要素的基本单位”。
其实验证据如下:1.纯化的、有高度活性的转化要素的化学元素分析与计算出来的DNA组成非常接近。
2.纯化的转化要素在光学、超速离心、扩散和电泳性质上与DNA的相似。
3.其转化活性不因抽取去除蛋白质或脂类而损失。
4.用胰蛋白酶和糜蛋白酶处理不影响其转化活性。
5.用RNA酶处理也不不影响其转化活性。
6. DNA酶可使其转化活性丧失。
艾弗里的论文发表后,有些人仍然坚持蛋白质是遗传物质,认为他的分离不彻底,是混杂的微量的蛋白质引起的转化。
1952年,Hershey和Chase的T2噬菌体旋切实验彻底证明遗传物质是核酸,而不是蛋白质。
他们用35S标记蛋白质,用32P标记核酸。
用标记的噬菌体感染细菌,然后测定宿主细胞的同位素标记。
当用硫标记的噬菌体感染时,放射性只存在于细胞外面,即噬菌体的外壳上;当用磷标记的噬菌体感染时,放射性在细胞内,说明感染时进入细胞的是DNA,只有DNA是连续物质,所以说DNA是遗传物质。
1956年,Fraenkel Conrat的烟草花叶病毒(TMV)重建实验证明,RNA也可以作为遗传物质。
把TMV在水和酚中震荡,使蛋白质与RNA分开,然后分别感染烟草,只有RNA可以使烟草感染,产生正常后代。
1953年DNA的双螺旋结构模型建立,被认为是本世纪自然科学的重大突破之一。
由此产生了分子生物学、分子遗传学、基因工程等学科和技术,此后的30年间,核酸研究共有15次获得诺贝尔奖,占总数的1/4,可见核酸研究在生命科学中的重要地位。
二、核酸的分类核酸是由核苷酸组成的大分子,分子量最小的是转运RNA,分子量25kd左右;人类染色体DNA分子量高达1011kd。
核酸分为DNA和RNA两类,DNA主要集中在细胞核中,在线粒体和叶绿体中也有少量DNA。
RNA主要分布在细胞质中。
对病毒来说,或只含DNA,或只含RNA。
因此可将病毒分为DNA病毒和RNA病毒。
核酸可分为单链(single strand,ss)和双链(double strand,ds)。
DNA一般为双链,作为信息分子;RNA单双链都存在。
第二节核苷酸一、核苷酸的结构核苷酸可分解成核苷和磷酸,核苷又可分解为碱基和戊糖。
因此核苷酸由三类分子片断组成。
戊糖有两种,D-核糖和D-2-脱氧核糖。
因此核酸可分为两类:DNA和RNA。
(一)碱基(base)核酸中的碱基分为两类:嘌呤和嘧啶。
1.嘧啶碱(pyrimidine,py)是嘧啶的衍生物,共有三种:胞嘧啶(cytosine,Cyt)、尿嘧啶(uracil,Ura)和胸腺嘧啶(thymine,Thy)。
其中尿嘧啶只存在于RNA中,胸腺嘧啶只存在于DNA中,但在某些tRNA中也发现有极少量的胸腺嘧啶。
胞嘧啶为两类核酸所共有,在植物DNA中还有5-甲基胞嘧啶,一些大肠杆菌噬菌体核酸中不含胞嘧啶,而由5-羟甲基胞嘧啶代替。
因为受到氮原子的吸电子效应影响,嘧啶的2、4、6位容易发生取代。
2.嘌呤碱(purine,pu) 由嘌呤衍生而来,常见的有两种:腺嘌呤(adenine,Ade)和鸟嘌呤(guanine,Gua)。
嘌呤分子接近于平面,但稍有弯曲。
自然界中还有黄嘌呤、次黄嘌呤、尿酸、茶叶碱、可可碱和咖啡碱。
前三种是嘌呤核苷酸的代谢产物,是抗氧化剂,后三种含于植物中,是黄嘌呤的甲基化衍生物,具有增强心脏功能的作用。
此外,一些植物激素,如玉米素、激动素等也是嘌呤类物质,可促进细胞的分裂、分化。
一些抗菌素是嘌呤衍生物。
如抑制蛋白质合成的嘌呤霉素,是腺嘌呤的衍生物。
生物体中(A+T)/(G+C)称为不对称比率,不同生物有所不同。
比如人的不对称比率为1.52,酵母为79,藤黄八叠球菌为0.35。
3.稀有碱基除以上五种基本的碱基以外,核酸中还有一些含量极少的稀有碱基,其中大多数是甲基化碱基。
甲基化发生在核酸合成以后,对核酸的生物学功能具有重要意义。
核酸中甲基化碱基含量一般不超过5%,但tRNA中可高达10%。
(二)核苷核苷是戊糖与碱基缩合而成的。
糖的第一位碳原子与嘧啶的第一位氮原子或嘌呤的第九位氮原子以糖苷键相连,一般称为N-糖苷键。
戊糖是呋喃环,C1是不对称碳原子,核酸中的糖苷键都是β糖苷键。
碱基与糖环平面互相垂直。
糖苷的命名是先说出碱基名称,再加“核苷”或“脱氧核苷”。
在tRNA中含有少量假尿嘧啶核苷(用Ψ表示),它的核糖与嘧啶环的C5相连。
规定用三字母符号表示碱基,用单字母符号表示核苷,前面加d表示脱氧核苷。
戊糖的原子用带’的数字编号,碱基用不带’的数字编号。
(三)核苷酸核苷中的戊糖羟基被磷酸酯化,就形成核苷酸。
核糖核苷的糖环上有三个羟基,可形成三种核苷酸:2’、3’和5’-核糖核苷酸。
脱氧核糖只有3’和5’两种。
生物体内游离存在的多是5’核苷酸。
用碱水解RNA可得到2’和3’核糖核苷酸的混合物。
稀有碱基也可形成相应的核苷酸。
在天然DNA中已找到十多种脱氧核糖核苷酸,在RNA中找到了几十种核糖核苷酸。
(四)多磷酸核苷酸细胞内有一些游离的多磷酸核苷酸,它们具有重要的生理功能。
5’-NDP是核苷的焦磷酸酯,5’-NTP是核苷的三磷酸酯。
最常见的是5’-ADP和5’-ATP。
ATP上的磷酸残基由近向远以αβγ编号。
外侧两个磷酸酯键水解时可释放出7.3千卡能量,而普通磷酸酯键只有2千卡,所以被称为高能磷酸键(~P)。
因此ATP在细胞能量代谢中起极其重要的作用,许多化学反应需要由ATP提供能量。
高能磷酸键不稳定,在1NHCl中,100℃水解7分钟即可脱落,而α磷酸则稳定得多。
利用这一特性可测定ATP和ADP中不稳定磷的含量。
细胞内的多磷酸核苷酸常与镁离子形成复合物而存在。
GTP,CTP,UTP在某些生化反应中也具有传递能量的作用,但不普遍。
UDP在多糖合成中可作为携带葡萄糖的载体,CDP在磷脂的合成中作为携带胆碱的载体。
各种三磷酸核苷酸都是合成DNA或RNA的前体。
鸟嘌呤核苷四磷酸酯和五磷酸酯在代谢调控中起作用,在大肠杆菌中,它们参与rRNA合成的控制。
(五)环化核苷酸磷酸同时与核苷上两个羟基形成酯键,就形成环化核苷酸。
最常见的是3',5'-环化腺苷酸(cAMP) 和cGMP。
它们是激素作用的第二信使,起信号传递作用。
可被磷酸二酯酶催化水解,生成相应的5'-核苷酸。
二、有关缩写符号碱基用三字母符号表示,核苷用大写单字母符号表示,前面加d表示脱氧核苷。
戊糖的原子用带’的数字编号,碱基用不带’的数字编号。
稀有核苷(修饰核苷)也用单字母符号表示,如D表示二氢尿嘧啶核苷,T表示胸苷。
如果碱基上有修饰基团,就在表示核苷的大写字母前加上代表修饰基团的小写字母,在这个小写字母的右上方写明修饰位置,右下方写明修饰基团的数量(如只有一个可省略)。
如m2G表示2-N-甲基鸟苷,m2,2,73G表示N2,N2,7-三甲基鸟苷,S4U表示4-硫代尿苷。
核糖上的修饰基团写在表示核苷的大写字母右边,如Cm表示2'-O-甲基胞苷。
核苷酸可在核苷符号旁加小写p表示,写在左边表示5'核苷酸,写在右边表示3'核苷酸。
写几个就表示几个磷酸。
3',5'-环化核苷酸可在前面加小写c,2',3'-环化核苷酸可在核苷符号后加〉P,如U〉P表示2',3'-环化尿苷酸。
三、核苷酸的功能1.作为核酸的成分。
2.为需能反应提供能量。
UTP用于多糖合成,GTP用于蛋白质合成,CTP用于脂类合成,ATP 用于多种反应。
3.用于信号传递。
如cAMP、cGMP是第二信使。
4.参与构成辅酶。
如NAD、FAD、CoA等都含有AMP成分。
5.参与代谢调控。
如鸟苷四磷酸等可抑制核糖体RNA的合成。
又如反义RNA。
第三节DNA的结构一、DNA的一级结构1.定义DNA是由成千上万个脱氧核糖核苷酸聚合而成的多聚脱氧核糖核酸。
它的一级结构是它的构件的组成及排列顺序,即碱基序列。
2.结构在DNA分子中,相邻核苷酸以3’,5’-磷酸二酯键连接构成长链,前一个核苷酸的3’-羟基与后一个核苷酸的5’-磷酸结合。
链中磷酸与糖交替排列构成脱氧核糖磷酸骨架,链的一端有自由的5’-磷酸基,称为5’端;另一端有自由3’-羟基,称为3’端。
在DNA 中,每个脱氧核糖连接着碱基,碱基的特定序列携带着遗传信息。
3.书写书写DNA时,按从5’向3’方向从左向右进行,并在链端注明5’和3’,如5’pApGpCpTOH3’。
也可省略中间的磷酸,写成pAGCT。
这是文字式缩写。
还有线条式缩写,用竖线表示戊糖,1'在上,5'在下。
二、DNA的二级结构(一)双螺旋结构的建立DNA双螺旋结构的阐明,是本世纪最重大的自然科学成果之一。
在40年代,人们已经发现脱水DNA的密度很高,X射线衍射表明DNA中有0.34nm和3.4nm的周期性结构。
1950年,Chargaff通过对碱基的分析发现了互补配对规律:在任何DNA中,A=T,G=C,所以有A+G=T+C。
1953年Watson和Crick根据Wilkins的DNAX-射线衍射数据和碱基组成规律,建立了DNA 的双螺旋结构模型,从而揭开了现代分子生物学的序幕。
当年Watson只有24岁,在剑桥Cavendish实验室进修,他在美国时就认识到核酸的重要性,所以在大家都在研究蛋白质时致力于核酸研究,从而得到了划时代的成果。