影响滚动轴承寿命的原因分析
轴承损坏形式及原因分析
5、保持架的损坏
保持架的损坏,通常不易判断。若保持架坏了,轴承其它零件也 都坏掉了,这使得原因难以分析。造成架损坏主要原因有以下几种: 震动、转速太高磨损、卡死和歪斜等。
1)震动:当轴承处于震动状况下,轴承内部的力量可能导致保持 架出现疲劳裂痕,渐渐地,会使架破碎。
2)过高的转速:如果轴承以超出保持架材质所能承受的速度运转, 惯性力将使保持架破碎。
对策:油位应该略低于最下面一个滚动体的中心,轴承箱内润滑脂 填充约1/3至1/2空间。
3.油位太高或轴承箱润滑脂完全添满,这样会导致润滑剂充分搅拌而 产生高温或漏油。 对策:润滑脂添入箱内至1/2;若机油润滑,油位略低于最下方滚动 体的中心。
4.轴承间隙不适当,当有热流通过轴心时,导致内环过分膨胀。 对策:检查过热轴承的间隙是否是原始的设计范围,如果是,请改 用较大的间隙,改成C3或C3改成C4。
随着轴承不同程度的破坏,往往都是二次破坏的结果,要有效的 排除这些轴承问题,必须先观察这些轴承应用情况,然后再分析这 些损坏的原因。
轴承损坏形式及原因分析
一、轴承过热:
原因: 1. 润滑脂或机油失效或选用错误。相应的办法是:选择正确的润滑脂
或机油,检查润滑脂或机油的相容性。 2.油位太低,润滑剂从油封流失,轴承箱内润滑脂不足。
7.安装轴承前轴承箱内的碎片,异物没有清除干净。 对策:仔细清洗轴承箱和轴承本身。
8.(交叉定位) 同一轴上有两个定位轴承,而引起的不对正或由于轴热膨胀而导致 轴承内部间隙不足。 对策:调整轴承箱与端盖之间的调整垫片,使轴承箱与外环之间有 一定的间隙。
9. 轴肩摩擦到轴承密封盖,轴肩部直径不正确与保持架摩擦。 对策:重新加工轴肩,检查肩部直径及圆角。
调心球轴承与常见故障分析及解决方法
调心球轴承与常见故障分析及解决方法调心球轴承是一种常用的滚动轴承,具有自我对中能力,能够承受较大的径向负荷和一定的轴向负荷。
在工业生产中,调心球轴承常用于机械设备和工艺装备中的高速旋转部件。
然而,由于工况的复杂性和运行环境的不确定性,调心球轴承会出现一些常见的故障。
本文将重点讨论调心球轴承的常见故障及其解决方法。
首先,调心球轴承最常见的故障是疲劳寿命不足。
疲劳寿命不足会导致轴承寿命缩短,进而影响到整个机械系统的正常运行。
疲劳寿命不足的原因主要有以下几点:1. 轴承负荷过大:如果负荷超过了轴承额定负荷的范围,轴承内部的滚动体与滚道之间的接触压力将变得过大,从而导致轴承疲劳寿命不足。
2. 润滑不良:不良的润滑情况会导致轴承内部摩擦加剧,从而增加了疲劳的发生概率。
为解决轴承疲劳寿命不足的问题,可以采取以下措施:1. 选择适当的轴承:在设计和选择轴承时,应根据实际工况选择合适的轴承类型和规格。
特别是要根据负荷大小和工作条件来选择合适的轴承额定负荷。
2. 注意润滑问题:合适的润滑剂和合理的润滑方式对于轴承的寿命具有重要的影响。
在工作过程中,应定期检查润滑油的情况,及时更换和补充润滑油。
除了疲劳寿命不足外,调心球轴承还常见以下故障:1. 进一步讨论了填充和排空不当带来的故障。
轴承内部的填充和排空是确保轴承正常运行的关键。
填充过多或过少的润滑脂都会导致轴承故障。
解决方法:在填充润滑脂时,应根据轴承工作条件和使用环境的实际情况,选择适当的润滑脂,并根据轴承的规格要求进行正确填充。
2. 进一步探讨了结构和安装不当带来的故障。
轴承在安装过程中如果结构不当或安装不正确,会导致轴承故障。
解决方法:在安装轴承时,应严格按照轴承的安装规范进行操作。
必要时,采用专业设备和工具,确保轴承正确安装并能够正常运行。
3. 进一步探讨了过载和起动不正常带来的故障。
如果轴承承受过大的负荷或因起动不正常引起震动,都会导致轴承故障。
解决方法:在工作过程中,应合理分配负荷,并严格遵守启动和停止的操作规程,避免过载或起动不正常。
滚动轴承常见故障及其原因分析
滚动轴承常见故障及其原因分析滚动轴承是机械设备中常用的一种基础部件,其主要作用是支撑和传递机械装置的力,承受载荷并降低摩擦损失。
然而,由于长期使用和不良维护,常见的故障会在滚动轴承中出现。
本文将详细介绍滚动轴承常见故障以及其可能的原因分析。
1. 滚珠脱落滚珠脱落是滚动轴承常见的故障之一。
通常,滚珠脱落的主要原因是疲劳和损坏。
当滚珠接近疲劳极限或者发生撞击时,会引起损坏并导致滚珠脱落。
此外,如果滚珠与内、外环之间的间隙不足,也会导致滚珠脱落。
2. 席瓦出现磨损席瓦的磨损是滚动轴承中经常出现的故障之一。
一般来说,席瓦的磨损主要是由于其他零部件的磨损或者原材料不良引起的。
如果滚珠或钢球与席瓦的装配不正确,可能会增加席瓦的磨损。
3. 轴承卡死轴承卡死是指滚动轴承无法自由旋转,通常是由于内、外环之间的卡合引起的。
轴承卡死的原因可能有多种,包括使用过度或不当,润滑不良,以及进入异物等。
4. 轴承锈蚀轴承的零部件可能会出现锈蚀,这通常是由于滚珠、内外环表面的锈蚀引起的。
可能是由于零件长期暴露在潮湿的环境中,润滑不好或者外界因素作用引起的。
5. 滚珠氧化当滚珠内的氧化物质增加或者表面氧化时,会导致滚珠失去润滑,引起摩擦和热。
滚珠氧化可能会导致分离或者破碎。
氧化通常是由于过度使用、温度过高、润滑不良或者滚珠表面质量不好等原因引起的。
6. 轴承寿命过短轴承寿命不足可能会导致轴承的失效。
轴承寿命短的原因有很多,包括过度负载、滚珠或滚道表面缺陷或者轴向荷载等。
7. 滚珠辊子表面过靠近如果滚珠、滚柱或钢球与内、外环之间的间隙不足,可能会导致滚珠和滚柱表面过于靠近。
这种情况会增加轴承的滚动摩擦,进而导致轴承过度磨损和损坏。
8. 轴承过度负载轴承的负荷过大可能会导致滚珠、钢球或滚柱过度变形或者应力过大。
过度负载的原因包括电机过载、不恰当的安装方式或者传动系统设计不良等。
9. 不当润滑轴承的润滑对于轴承的正常工作非常重要。
不正确的润滑可能会导致轴承失效。
滚动轴承故障诊断分析全解
滚动轴承故障诊断分析全解
滚动轴承是机械设备中的重要元件,也是故障率最高的构件。
其突发的故障可能会严重影响机械设备的正常运行,即使是轻微的故障,也会降低设备的使用寿命。
因此,对滚动轴承的故障进行及时诊断和维修,是确保轴承的正常运行的关键。
本文将对滚动轴承故障诊断进行全面阐述,以便于有助于轴承的可靠运行。
一般来讲,滚动轴承的故障可以归结为以下几类:
(1)疲劳损坏:由于长期的使用,滚动轴承中的滚动体和锥形齿轮等内部零件可能会因疲劳而损坏,最终导致轴承的故障;
(2)腐蚀破坏:由于设备运行时的温度、湿度及磨损较大,滚动轴承容易受到空气、油品及其他化学性腐蚀剂的作用,从而造成内部零件的磨损;
(3)水分侵入:滚动轴承组装后,如果存在漏油现象,则滚动轴承内部容易污染,从而导致滚动体及锥形齿轮等内部零件受损;
(4)润滑油工作性能不佳:润滑油在机械设备运行时,若由于品质或温度等原因,润滑油的性能不佳,轴承容易受到损坏;
(5)安装不良:滚动轴承安装后,若没有正确地调整轴的负荷和动转瞬间,将会对轴承组件产生振动和噪音,从而导致故障。
滚动轴承寿命预测与故障诊断
滚动轴承寿命预测与故障诊断滚动轴承是机械传动系统中常用的一种关键零部件,因其结构简单、可靠性高、运转稳定等特点被广泛应用于工业制造、交通运输、航天航空等领域。
然而,在长期的使用中,由于负载、转速、温度等因素的影响,滚动轴承很容易出现各种故障,严重影响机械设备的正常性能。
因此,预测滚动轴承的寿命并对其故障进行诊断具有极其重要的意义,不仅能够减少机器设备的维修成本,更能提高机器设备的运行效率和安全性。
一、滚动轴承寿命预测的基本理论滚动轴承寿命预测是指通过对滚动轴承在特定工况下的运行情况进行数学模型建立和系统分析,来预测滚动轴承在未来一段时间内的使用寿命。
其基本理论是寿命公式理论,即基于统计学原理,通过对有限数量的试验数据进行分析,来估计大量相似产品的寿命。
该理论最早由Weibull提出,现广泛应用于各种设备的寿命预测中。
滚动轴承的寿命是指在一定的负载、转速、温度等工况条件下,维持基本性能的使用寿命。
通常将运转时间作为寿命评定标准,其评定方法有两种,即L10寿命和L50寿命。
其中L10寿命是指在有10%以上的滚动轴承失败的情况下所需要的运转时间,L50寿命则是指在有50%以上的滚动轴承失败的情况下所需的运转时间。
滚动轴承寿命预测的方法一般有以下几种:1、基于模型的预测法该方法是在通过对相关参数的观测和测量得到大量样本数据的基础上,建立滚动轴承故障模型,对其进行数学分析和计算,从而提出一定的预测理论。
该方法的优点是可以快速准确地预测滚动轴承的寿命,缺点是在模型建立过程中,需要考虑多种因素的影响,模型的建立难度较高。
2、基于统计模型的预测法该方法是通过统计分析大量实测数据,确定影响滚动轴承寿命的关键因素,建立相应的统计模型,并通过多种分析方法,包括生存分析、半参数估计和回归分析等来预测滚动轴承的寿命。
该方法的优点是具有较强的实用性和普适性,但缺点是要求样本数据的质量和数量均较高,在实际操作中要具备较为广泛的背景知识和大量的经验。
滚动轴承轴承失效的原因分析
不同的轴承故障类型对应的轴承振动的特征是不同的。
轴承的运动部件的使用寿命取决于运动部件接触面材料的疲劳和磨损。
轴承的早期故障产生的原因很多,最常见的因素包括:疲劳、磨损、塑性变形、腐蚀、局部硬化、润滑不良、装配缺陷和设计缺陷。
通常情况轴承的失效是由于多个因素共同作用的结果,或者起初一种因素,随着故障的加重逐渐导致出现多种故障。
在分析轴承失效的过程中,往往会碰到许多错综复杂的现象,各种实验结果可能是相互矛盾或者主次不清,这就需要经过反复实验、论证,以获得足够的证据或反证。
只有运用正确的分析方法、程序、步骤,才能找到引发失效的真正原因。
下面给大家讲解一下一般情况下轴承失效分析大体可分为以下三个步骤:失效实物和背景资料的收集、对失效实物的宏观检查和微观分析。
关于失效原因请点击查看㊙80%的轴承提早失效是因为没有正确的安装(附视频)1.失效实物和背景材料的收集尽可能地收集到失效事物的各个零件和残片。
充分了解失效轴承的工作条件、使用过程和制造质量等。
具体内容包括:(1)主机的载荷、转速、工作状况等轴承的设计工作条件。
(2)轴承及其相关部位其他零件的失效情况,轴承失效的类型。
(3)轴承的安装运转记录。
运转使用过程中有无不正常操作。
(4)轴承工作中所承受的实际载荷是否符合原设计。
(5)轴承工作的实际转速及不同转速出现的频率。
(6)失效时是否有温度的急剧增加或冒烟,是否有噪声及振动。
(7)工作环境中有无腐蚀性介质,轴承与轴颈间有无特殊的表面氧化色或其他沾污色。
(8)轴承的安装记录(包括安装前轴承尺寸公差的复验情况),轴承原始间隙、装配和对中情况,轴承座和机座刚性如何,安装是否有异常。
(9)轴承运转是否有热膨胀及动力传递变化。
(10)轴承的润滑情况,包括润滑剂的牌号、成分、颜色、粘度、杂质含量、过滤、更换及供给情况等,并收集其沉淀物。
(11)轴承的选材是否正确,用材质量是否符合有关标准或图样要求。
(12)轴承的制造工艺过程是否正常,表面是否有塑性变形,有没有表面磨削烧伤。
滚动轴承常见的失效形式及原因分析
滚动轴承常见的失效形式及原因分析+浪逐风尖2008-11-05 10:55滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。
一,疲劳剥落疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。
滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。
点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。
疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面.轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。
这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。
目前对疲劳失效机理比较统一的观点有:1、次表面起源型次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。
2、表面起源型表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。
3、工程模型工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。
疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。
具体因素如下:A、制造因素1、产品结构设计的影响产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。
在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。
滚动轴承常见的失效形式与原因分析
滚动轴承常见的失效形式及原因分析+浪逐风尖2008-11-05 10:55滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。
一,疲劳剥落疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。
滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。
点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。
疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面.轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。
这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。
目前对疲劳失效机理比较统一的观点有:1、次表面起源型次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。
2、表面起源型表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。
3、工程模型工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。
疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。
具体因素如下:A、制造因素1、产品结构设计的影响产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。
在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。
基于时域和频域分析的滚动轴承故障诊断
基于时域和频域分析的滚动轴承故障诊断一、本文概述随着工业技术的不断发展,滚动轴承作为旋转机械中的关键部件,其运行状态直接影响到设备的性能与安全性。
然而,由于工作环境的恶劣、长时间运行以及维护不当等因素,滚动轴承常常会出现各种故障,如疲劳剥落、磨损、裂纹等。
这些故障不仅会降低设备的运行效率,还可能引发严重的安全事故。
因此,对滚动轴承进行故障诊断技术的研究具有重要意义。
本文旨在探讨基于时域和频域分析的滚动轴承故障诊断方法。
文章将简要介绍滚动轴承的工作原理及其常见故障类型,为后续的分析和诊断奠定基础。
然后,重点阐述时域分析和频域分析的基本原理及其在滚动轴承故障诊断中的应用。
时域分析主要关注轴承振动信号的时序特征,通过提取信号中的幅值、相位、频率等信息,揭示轴承的运行状态。
而频域分析则通过对信号进行频谱转换,分析轴承在不同频率下的振动特性,进一步识别潜在的故障特征。
通过结合时域和频域分析,本文旨在提供一种全面、有效的滚动轴承故障诊断方法。
这种方法不仅能够准确识别轴承的故障类型,还能对故障程度进行定量评估,为设备的维护和管理提供有力支持。
本文还将对现有的故障诊断方法进行比较和评价,探讨各种方法的优缺点及适用范围,为相关领域的研究和实践提供参考和借鉴。
二、滚动轴承故障类型及原因滚动轴承作为机械设备中的重要组成部分,其运行状态直接影响到整个设备的性能和稳定性。
因此,对滚动轴承的故障诊断至关重要。
滚动轴承的故障类型多种多样,主要包括疲劳剥落、磨损、腐蚀、裂纹和塑性变形等。
这些故障的产生往往与多种因素有关,如材料质量、制造工艺、运行环境、操作维护等。
疲劳剥落是滚动轴承最常见的故障类型之一,主要是由于轴承在循环应力作用下,材料表面发生疲劳破坏,形成剥落坑。
疲劳剥落的原因主要包括轴承材料的疲劳强度不足、循环应力过大、润滑不良等。
磨损是轴承在运行过程中,由于摩擦力的作用导致材料逐渐损失的现象。
磨损的原因主要包括润滑不良、异物侵入、材料耐磨性不足等。
滚动轴承常见的失效形式及原因分析
滚动轴承常见的失效形式及原因分析滚动轴承是一种用于支撑和减少摩擦的常用机械元件。
它们广泛应用于各种机械设备和领域,如汽车、风力发电、机械制造等。
然而,由于工作环境的恶劣条件或长期运行等原因,滚动轴承可能会出现各种故障和失效。
以下是滚动轴承常见的失效形式及其原因分析。
1.疲劳失效:疲劳失效是滚动轴承最常见的失效形式之一、它通常在长时间高速运转或载荷较大的情况下发生。
轴承在不断重复的载荷下产生微小的裂纹,最终导致轴承出现断裂。
这种失效通常与以下原因有关:-动载荷过大:轴承在长时间内承受过大的动载荷,超出了其额定负荷能力。
-轴承安装不当:安装不当会使轴向载荷分布不均匀,导致局部载荷过大。
-润滑不良:缺乏或过多的润滑剂都会导致轴承摩擦增加,使得轴承易于疲劳失效。
2.磨损失效:磨损是轴承常见的失效形式之一、它通常发生在轴承和周围部件之间的摩擦表面上。
常见的磨损形式包括:-磨粒磨损:当粉尘、金属碎屑等进入轴承内部时,会使滚动体、保持架等部件发生磨损。
-粘着磨损:当润滑不良时,摩擦表面出现直接接触,轴承可能会发生粘着磨损。
-磨料磨损:当轴承受污染物质时,如沙尘、水等,会导致轴承表面产生磨料磨损。
3.返现失效:轴承返现是指滚动体和滚道之间的剥离、严重滚道表面损伤或磨擦减小所引起的失效。
返现失效的原因主要有:-轴承清洗不当:清洗过程中使用的溶剂或清洁剂残留在轴承内部,导致润滑性能下降,滚动体容易返现。
-轴承热胀冷缩:当轴承受到温度变化时,轴承和轴承座之间的配合间隙有可能发生变化,导致轴承返现。
-润滑不良:缺乏或过多的润滑剂会导致轴承受到不均匀的载荷分布,容易引起轴承返现。
4.偏磨失效:偏磨是指轴承滚动体在滚道上发生偏磨,导致滚道表面形变或表面破坏。
-不均匀载荷:长期承受不均匀载荷会导致滚动体在滚道上的位置发生偏移,从而引起偏磨失效。
-润滑不良:过多或过少的润滑剂会导致轴承滚动体和滚道之间的摩擦增加,从而引起偏磨。
滚动轴承常见故障的原因分析
滚动轴承常见故障的原因分析滚动轴承是一种重要的机械传动元件,常见于各种机械设备中。
然而,滚动轴承也常遭遇各种故障,包括磨损、过热、锈蚀、裂纹、脱落等。
下面是一些常见滚动轴承故障的原因分析。
1.磨损:磨损是最常见的滚动轴承故障类型之一、磨损通常是由于轴承受到高负荷、不正确的润滑条件、使用不当或杂质进入轴承内部等原因引起的。
高负荷和不正确的润滑会导致轴承摩擦增加,从而加剧磨损。
轴承使用不当(如过载或不均匀受力)会导致轴承表面不均匀磨损,从而造成轴承缩短寿命。
2.过热:滚动轴承在工作过程中,可能会出现过热的情况。
过热通常是由于摩擦、润滑不良、过载、不正常工作条件等原因引起的。
摩擦产生的热量会导致轴承温度升高,如果润滑不良,会加剧摩擦和热量的产生,进而使得轴承过热。
过载和不正常工作条件也会导致摩擦增加,从而引起轴承过热。
过热会使轴承材料的硬度降低,使其承载能力下降,甚至引起轴承损坏。
3.锈蚀:滚动轴承通常需要在潮湿、有腐蚀性气体或液体的环境中工作。
如果轴承未正确防护或未适时更换润滑剂,就会容易受到腐蚀和锈蚀。
锈蚀会损坏轴承的表面,导致轴承的工作性能下降,甚至发生损坏。
4.裂纹:滚动轴承在使用中,可能会出现裂纹。
裂纹通常是由于载荷过大、冲击负荷、疲劳载荷、材料缺陷等原因引起的。
当轴承承受过大的载荷或冲击负荷时,可能会超过材料的强度极限,导致轴承表面出现裂纹。
疲劳载荷是由长时间的往复运动引起的,经过多次往复运动后,轴承表面产生裂纹,最终导致轴承损坏。
5.脱落:脱落通常是由于轴承的装配不当、润滑不良、轴承材料缺陷等原因引起的。
如果轴承装配不当,例如装配时用力过大,可能会导致轴承的外圈或内圈脱落。
润滑不良会导致轴承的表面磨损加剧,最终导致轴承脱落。
轴承材料缺陷也会影响轴承的使用寿命和可靠性。
以上是常见的滚动轴承故障原因分析,不同类型的滚动轴承可能存在不同的故障原因。
为了避免滚动轴承故障的发生,需要合理选择轴承型号、正确装配和润滑轴承、定期检查和维护轴承等。
18种常见轴承损坏原因分析
润滑剂的选择
油润滑 作为选择时的参考,下图示出了润滑油的温度与粘度的关 系。 润滑油粘度与温度的关系
润滑剂的选择
油润滑 作为选择时的参考,下表示出了轴承在使用条件下选择润 滑油的例子。
运转温度 转 速 轻载荷或通载荷 重载荷或冲击载荷
-30~0℃
容许转速以下
容许转速50%以下
ISOVG 15,22,32(冷冻机油)
采用测声器对会发出异常音 和不规则音,用测声器能够分辨。
运转检查与故障处理
(2) 轴承的振动 运转中的机器,通过振动测定,便可得知轴承有否异常。 采用特殊的振动测量器(频率分析器等)可测量出振动的大 小 , 通过频率分布可推断出异常的具体情况。测得的数值
轴承失效形式比例
14
%
污
染
轴承是精密零件,如果轴承及润滑脂收到污染,将无法有效运行。此外,由于已经注 有润滑脂的免维护密封轴承只占有所有使用轴承中的一小部分,所以所有提前失效的 轴承中至少有 14%是由于污染问题造成的 SKF 拥有卓越的轴承制造和设计能力,可 以为各种恶劣的工作环境提供密封解决方案。
滚子轴承的运行轨迹也一样,(I) 是对在内圈旋转载荷时所使用的圆柱滚子轴承 正确加上径向载荷时的外圈运行轨迹。 (J) 是内圈与外圈相对倾斜, 轴的挠度较 大时的运行轨迹。滚道面的运行轨迹 , 在其纵向上产生浓淡 , 在负载圈的出人口 处 , 运行轨迹是倾斜的。双列圆锥滚子轴承是内圈旋转。 K 表示只负担径向载荷 时的外圈的运行轨迹。 L 表示只受轴向载荷时的轨迹。在内圈与外圈相对倾斜 , 只承受径向载荷的情况时,其运行轨迹偏离在两列轨道面180゜的位置上(m)。
34
%
疲
劳
如果机器出现过载、使用或维护不当,轴承都会收到影响,导致提前失效的轴承中有 34%是由于疲劳引起的。由于轴承在维护不当或应力过大时会发出“提前警告” ,可 以用状态监控设备进行检测和分析,因此突然的或计划外的失效是可以避免的。
滚动轴承故障机理分析
滚动轴承故障机理分析滚动轴承是一种常用的机械零件,广泛应用于各种设备和机械系统中。
它的基本结构包括内圈、外圈、滚动体和保持架。
滚动轴承的主要作用是在轴上承受径向和轴向载荷,并使轴能够转动。
然而,滚动轴承在使用过程中有时会发生故障,导致设备停机和损坏。
这些故障可能是由多种原因引起的,其中包括材料疲劳、润滑不良、污染物进入和不当使用等。
首先,材料疲劳是滚动轴承故障的主要原因之一、滚动轴承通常由金属材料制成,例如钢或铝合金。
在使用过程中,由于承受重载或频繁启停等原因,轴承的内、外圈以及滚动体可能会发生应力集中,从而导致材料疲劳。
当材料疲劳达到一定程度时,轴承可能会发生裂缝或断裂故障。
其次,润滑不良也是导致滚动轴承故障的重要原因。
良好的润滑对于滚动轴承的正常运转至关重要。
在运行中,轴承内的滚动体和内、外圈需要通过润滑剂来减少摩擦和磨损。
如果润滑剂不足或失效,轴承表面间的摩擦会增加,导致磨损加剧,最终使轴承故障。
此外,污染物进入也会导致滚动轴承故障。
在工作环境中,空气中可能存在灰尘、沙粒或颗粒等杂质,如果这些污染物进入到滚动轴承内部,它们会磨损轴承表面,导致摩擦增加和轴承故障。
最后,不当使用也可能引起滚动轴承故障。
这包括错误的装配、过载、轴向或径向间隙不符合要求等。
不当使用会给滚动轴承带来超负荷或不均匀载荷,导致轴承变形或损坏。
总之,滚动轴承故障的机理是多方面的。
材料疲劳、润滑不良、污染物进入和不当使用都可能导致滚动轴承故障。
因此,在使用和维护滚动轴承时,我们应该注意保持良好的润滑、避免污染物进入、正确安装和使用,并定期检查轴承的状态,及时发现并处理潜在的故障问题,以确保设备的正常运转。
滚动轴承的故障现象及原因分析
滚动轴承的故障现象及原因分析滚动轴承是机械设备中常用的一种轴承形式,由内圈、外圈、滚子和保持架组成。
它的主要作用是承载和传递旋转运动或轴向运动的载荷。
然而,在实际的使用过程中,滚动轴承可能会出现各种故障现象。
下面,我将从滚动轴承的故障现象和原因两个方面进行分析。
一、故障现象:1.轴承过热:滚动轴承过热通常表现为温度升高。
过高的温度会导致润滑剂失效,加剧摩擦和磨损,最终导致轴承损坏。
2.噪音:滚动轴承在工作时会发出异常的噪音。
噪音通常由于轴承的松动、减速器齿轮偏心或不平衡导致的振动引起,也可能是轴承部分损坏或磨损的结果。
3.卡住:滚动轴承可能会发生卡死现象,即不能正常转动。
卡住通常由于外部污染物进入轴承内部,或者内外圈之间的配合不当引起。
4.弹性不良:滚动轴承在运转时可能会出现弹性不良现象,即出现过大的变形或破裂。
弹性不良通常由于材料强度不足,或者过载运转和外部冲击引起。
5.寿命短:滚动轴承的使用寿命取决于材料质量、制造工艺和使用环境等因素。
如果这些方面存在问题,轴承的寿命可能会显著减少。
二、原因分析:1.润滑不良:润滑不良是导致滚动轴承故障的常见原因之一、润滑不良会导致轴承过热、摩擦增大和磨损加剧。
常见导致润滑不良的原因包括润滑油质量不合格、润滑油脂添加不足等。
2.过载运转:滚动轴承在过载运转时会受到较大的载荷,使得轴承的压力和摩擦增大,加速磨损和损坏。
过载运转通常是由于设备设计不合理、外部冲击或负载突然变化等原因引起的。
3.安装不当:滚动轴承的安装不当会导致内外圈之间的配合间隙不合适,产生轴承松动或过紧,引起摩擦增大和磨损。
安装不当还可能导致载荷不均匀分布,使得特定部位的轴承负荷过大而损坏。
5.材料质量问题:滚动轴承的材料质量直接影响其使用寿命和性能。
低质量的材料容易导致强度不足、易磨损和易断裂等问题,从而缩短滚动轴承的使用寿命。
综上所述,滚动轴承的故障现象和原因分析包括轴承过热、噪音、卡住、弹性不良、寿命短等故障现象,其原因包括润滑不良、过载运转、安装不当、环境污染和材料质量问题。
滚动轴承常见故障及其原因分析
滚动轴承常见故障及其原因分析一、滚动轴承:是将运转的轴与轴座之间的滑动摩擦变为滚动摩擦,从而减少摩擦损失的一种精密的机械元件。
滚动轴承一般由内圈、外圈、滚动体和保持架四部分组成,内圈的作用是与轴相配合并与轴一起旋转;外圈作用是与轴承座相配合,起支撑作用;滚动体是借助于保持架均匀的将滚动体分布在内圈和外圈之间,其形状大小和数量直接影响着滚动轴承的使用性能和寿命;保持架能使滚动体均匀分布,防止滚动体脱落,引导滚动体旋转起润滑作用。
二、作用:支承转动的轴及轴上零件,并保持轴的正常工作位置和旋转精度,滚动轴承使用维护方便,工作可靠,起动性能好,在中等速度下承载能力较高。
与滑动轴承比较,滚动轴承的径向尺寸较大,减振能力较差,高速时寿命低,声响较大。
三、优点:1、摩擦阻力小,功率消耗小,机械效率高,易起动。
2、尺寸标准化,具有互换性,便于安装拆卸,维修方便。
3、结构紧凑,重量轻,轴向尺寸更为缩小。
4、精度高,转速高,磨损小,使用寿命长。
5、部分轴承具有自动调心的性能。
6、适用于大批量生产,质量稳定可靠,生产效率高。
7、传动摩擦力矩比流体动压轴承低得多,因此摩擦温升与功耗较低。
8、起动摩擦力矩仅略高于转动摩擦力矩。
9、轴承变形对载荷变化的敏感性小于流体动压轴承。
10、只需要少量的润滑剂便能正常运行,运行时能够长时间提供润滑剂。
11、轴向尺寸小于传统流体动压轴承。
12、可以同时承受径向和推力组合载荷。
13、在很大的载荷-速度范围内,独特的设计可以获得优良的性能。
14、轴承性能对载荷、速度和运行速度的波动相对不敏感。
四、缺点:1、噪音大。
2、轴承座的结构比较复杂。
3、成本较高。
4、即使轴承润滑良好,安装正确,防尘防潮严密,运转正常,它们最终也会因为滚动接触表面的疲劳而失效。
五、故障形式:1、轴承转动困难、发热。
2、轴承运转有异声。
3、轴承产生振动。
4、内座圈剥落、开裂。
5、外座圈波落、开裂。
6、轴承滚道和滚动体产生压痕。
滚动轴承磨损分析
滚动轴承磨损分析滚动轴承在机械设备中起着至关重要的作用,但由于长期使用,滚动轴承会遭受各种形式的磨损。
磨损不仅会降低设备的性能和效率,还可能导致设备故障甚至损坏。
因此,对滚动轴承磨损进行分析是非常重要的。
一、磨损类型滚动轴承的磨损类型主要有疲劳磨损、磨粒磨损和微伤磨损。
疲劳磨损是由于轴承长期承受载荷而引起的,主要表现为颗粒状漏损和卡粒状损伤。
磨粒磨损则是杂质、尘埃等颗粒物进入轴承内部引起的,这些颗粒物会与润滑油混合,形成磨粒,与轴承表面产生摩擦和磨损。
微伤磨损主要是由于轴承表面微小凹陷、螺纹等缺陷导致的。
二、磨损原因滚动轴承的磨损原因有多种,其中最主要的有润滑不良、过载、振动和高温。
润滑不良是导致滚动轴承磨损的常见原因之一,当润滑油不足或质量不合格时,会导致轴承表面的润滑层破坏,进而引发磨损。
过载是指轴承承受超过其额定负荷的载荷,这会导致轴承滚珠与内外环接触过度,产生较大的摩擦磨损。
振动则会加剧滚动轴承的磨损,特别是在高速旋转时,振动会引起轴承表面的微小颗粒相互碰撞,进而导致磨粒磨损。
高温也会导致滚动轴承磨损,因为高温会破坏轴承的润滑膜,使得摩擦增加并加速磨损的发生。
三、磨损诊断方法为了及早发现滚动轴承的磨损问题,需要采用一些诊断方法进行检测。
常用的磨损诊断方法有声振、温升和油质分析。
声振检测是通过检测轴承发出的声音来判断轴承的磨损程度。
当轴承磨损严重时,会产生噪音和振动,从而可以判断轴承的健康状况。
温升检测是通过测量轴承的温度来判断轴承的磨损情况,当轴承磨损过度时,会产生过多的摩擦热,使得轴承温度升高。
油质分析是通过对轴承润滑油进行化学分析,判断其中的杂质和金属屑等指标来预测轴承的磨损情况。
四、磨损预防措施为了避免滚动轴承的磨损,需要采取一些预防措施。
首先,要选择合适的润滑油,并根据设备的使用情况定期更换润滑油,保证润滑的良好性能。
其次,合理设计轴承的负荷,避免超过其额定负荷,这可以通过合理设计设备结构和控制设备运行时的工作负荷来实现。
滚动轴承常见故障及原因分析
滚动轴承常见故障及原因分析滚动轴承是一种常用于工业机械和设备中的关键零部件,用于支撑和转动轴承载负荷。
然而,由于工作条件的复杂性和长时间的运行,滚动轴承容易发生故障。
在以下文章中,将介绍一些常见的滚动轴承故障及其原因分析。
1.疲劳破坏:滚动轴承在长时间的负荷工作下容易发生疲劳破坏。
这种破坏通常表现为轴承外圈和内圈的裂纹、剥落或产生大量的磨粒。
这种故障通常是由过大的载荷、不良的润滑、轴承材料缺陷或过高的运转速度引起的。
2.轴承外圈和内圈的磨损:滚动轴承由于工作条件的原因,比如污染物、磨粒、过载和不良的润滑条件,容易导致外圈和内圈的磨损。
油膜的破坏、润滑剂品质差或不足以及灰尘和杂质的进入都可能导致磨损故障。
3.轴承卡死:滚动轴承在运行时,如果存在外部振动、过高的温度或轴承内部润滑剂的缺失,容易造成轴承卡死。
轴承卡死会导致轴承停止旋转,进而引起设备停机。
4.轴承失效:滚动轴承的失效通常表现为轴承运行不稳定、产生噪音和振动、热量过高等症状。
这种失效通常由过高或不足的润滑、轴承受到过大的冲击负荷、轴承材料的缺陷或不当的安装等因素引起。
5.环磨损:滚动轴承环磨损主要是由于边缘载荷不均匀、润滑不良、封盖效果不好等因素引起。
环磨损会导致滚动体与轴承环之间的间隙增大,从而降低轴承的运行精度和寿命。
总结起来,滚动轴承常见的故障有疲劳破坏、轴承磨损、滚动体卡死、轴承失效和环磨损。
这些故障的原因包括过大或不足的载荷、不良的润滑、杂质和污染物的进入、振动和温度过高等因素。
为了避免这些故障的发生,应该选择优质的轴承材料、正确安装轴承、保持良好的润滑和清洁以及定期检查和维护轴承。
滚动轴承常见故障及其原因分析
滚动轴承常见故障及其原因分析
滚动轴承的常见故障可以分为以下几类:疲劳断裂、润滑不良、过度磨损和数值计算错误。
接下来我们逐一进行分析。
1. 疲劳断裂
疲劳断裂是滚动轴承最常见的故障之一。
其主要原因是轴承的
使用寿命已经达到,力学应力集中作用于轴承滚动路径的表面,导
致金属的疲劳断裂。
这种故障的表现是滚动轴承表面的小裂纹开始
出现,若不及时修理,则最终导致滚动轴承的失效。
2. 润滑不良
轴承在工作时需要充分的润滑,否则会产生润滑不良的故障。
这种情况通常出现在润滑脂或润滑油的添加不足或质量不好的情况下。
润滑不良会导致滚动轴承磨损加剧,最终导致滚珠或滚道表面
的磨损或划痕,加速滚动轴承的失效。
3. 过度磨损
过度磨损是因为轴承的质量不佳或使用条件恶劣而引起的。
在
这种情况下,滚动轴承的表面会磨损加剧,从而大大降低滚动轴承
的寿命。
过度磨损通常是由于轴承没有充分的润滑或者轴承的承载
力超过了轴承的设计载荷而导致的。
4. 数值计算错误
在轴承设计和模拟中,数值计算错误也是导致轴承故障的原因
之一。
在轴承设计和模拟时,如果使用的数值计算方法不正确,则
很容易导致轴承失效。
例如,当计算滚珠轴承的承载能力时,如果
数值计算方法不准确,则最终计算出的承载能力与实际承载能力不匹配,导致轴承失效。
综上所述,滚动轴承的故障主要表现为疲劳断裂、润滑不良、过度磨损和数值计算错误。
为了避免轴承故障的发生,在设计和选择轴承时,应选择适当的材料和润滑方式,并遵循正确的设计和模拟方法,以确保轴承稳定可靠的工作。
滚动轴承轴承失效的原因分析
滚动轴承轴承失效的原因分析滚动轴承是一种常用的机械元件,用于支撑旋转或摆动的轴,以减小摩擦和支撑负荷。
然而,由于各种原因,滚动轴承可能会出现失效的情况。
本文将就滚动轴承失效的原因进行分析。
1.疲劳失效:疲劳失效是滚动轴承最常见的失效类型之一、由于长期使用和负荷的变化,滚动轴承内部的应力会不断积累,从而导致失效。
这种失效通常表现为轴承的裂纹、变形或断裂。
2.磨损失效:由于外部污染物(如灰尘、金属碎屑等)的进入或润滑不良,轴承表面可能会发生磨损。
当磨损过度时,轴承的摩擦系数会增加,从而导致轴承失效。
3.轮辋间隙过大:轮辋间隙过大是滚动轴承失效的一个重要原因。
当轮辋间隙过大时,轴承无法正常支撑负荷,从而导致失效。
4.温度过高:高温会导致轴承的材料变形和润滑油的降解,从而降低轴承的工作效率。
当温度过高时,轴承内部可能会出现润滑不良和疲劳失效。
5.润滑不良:滚动轴承需要适量的润滑油或润滑脂来减小摩擦和磨损。
当润滑不良时,轴承可能会发生过度磨损、卡死或疲劳失效。
6.负荷过大:如果滚动轴承所承受的负荷超过了其承载能力,轴承可能会变形、磨损或疲劳失效。
7.安装误差:滚动轴承的安装误差也是轴承失效的一个重要原因。
当轴承安装不平衡、偏斜或受到不良的外力作用时,轴承可能会变形或断裂。
8.振动和冲击:强烈的振动和冲击也会导致滚动轴承失效。
这些外部力量可能会导致轴承断裂、变形或磨损。
综上所述,滚动轴承失效的原因有很多,包括疲劳失效、磨损失效、轮辋间隙过大、温度过高、润滑不良、负荷过大、安装误差、振动和冲击等。
为了延长滚动轴承的使用寿命,需要注意轴承的润滑、安装和使用条件,并及时检测和处理问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响滚动轴承寿命的原因分析
滚动轴承各种故障类型的百分率为润滑与装配占70%,轴承故障20%是由定位或外部因素引起的,10%由于轴承已达到疲劳极限或设计寿命。
滚动轴承故障通常认为主要是由以下一种或几种原因引起的:
1.润滑类型
轴承的润滑有润滑油润滑和润滑脂润滑,润滑脂呈固体或半流体状,流动性较差,适用于低速转动的轴承,托辊用轴承一般用润滑脂润滑,润滑油润滑适用于高速转动的轴承,但需要经常供油,密封要求较严,油润滑对轴承能起到冷却作用。
2.轴承内缺少润滑脂
所用润滑脂种类不符合要求,润滑脂中落入异物而污染,是引起轴承发热的主要原因,只要严格按照要求为轴承加润滑脂即可。
3.轴承内润滑脂过多
托辊在装配时,轴承的空隙、密封圈的空隙等均不能加满润滑脂。
日本几个输送机公司加润滑脂的量如下:
(1)部机械工业(株)的托辊
图1
(2)富士输送机(株)的托辊
图2
(3)普利斯通公司设计由旭精工(株)制造的托辊
图3
由以上可见托辊轴承处的充油量应为其空隙的40%左右为宜。
4.外界环境温度的影响
在夏季或设备本身位于热源附近,其温度超过轴承的工作温度,轴承则容易发热,此时可采取降温、加速散热等措施。
5.轴承游隙过小
由于制造或安装时过盈量过大等原因造成轴承径向游隙过小,从而引起轴承的滚动体与滑道的摩擦发热。
因此轴承要保证一定的间隙,一般此值为轴承内径尺寸的1/2000至1/1000之间(托辊用轴承为大游隙轴承),且在安装时选择适当的过盈量。
6.设备振动
设备振动引起轴承发热,应采取措施消除振动。
7.轴承内圈转动
轴承内圈与轴径配合不合理,对尺寸较小的轴径可采用先堆焊后车削的方法使之达到配合尺寸;对大型的旋转轴就要采取刷镀、喷涂等方法进行处理。
8.轴承外圈转动
(1)对于小型整体式轴承座,如电机端盖上的轴承座,可用羊冲在轴承座内圆面上冲出数个麻点,越多越好,再重新装配可有效的防止外圈转动。
(2)对于较大的上、下分离型的轴承座,可采用压间隙法,再垫以适当厚度的铜皮解决。
如图4所示,假如图中轴承外圈转动,将轴承上盖拆下,在上下 盖结合面a 、b 处,轴承顶圆c 处分别放上直径为φ5mm 左右的铅丝(可用细铅丝拧成几股),用正常扭矩将上盖用螺栓拧紧;再拆下上盖,取出a 、b 、c 三处被压扁的铅丝,用0~25mm 千分尺分别测出a 、b 、c 三点铅丝的厚度Ha 、Hb 、Hc ,那么在轴承顶圆与轴承上盖之间所垫铜皮厚度为:2/)(b a c H H H H +-=。
要注意铜皮宽度应略窄于轴承宽度,长度约为轴承外圆周长的l /4,如此可有效防止轴承外圈转动。
图4 轴承座压间隙法。