糖异生与糖原合成

合集下载

【课件】糖异生作用和糖原的合成

【课件】糖异生作用和糖原的合成

称为乳酸循环,或 Cori循环
糖异生活跃 有6-磷酸葡糖酶
糖异生低下 没有6-磷酸葡糖酶
葡萄糖的异生作用
(二) 乳酸循环(Cori循环) 乳酸循环的意义 1、 乳酸循环是一个耗能的过程 2分子乳酸异生为1分子葡萄糖需6分子ATP
ATP
己糖激酶
ADP
磷酸果糖 ATP 激酶Ⅰ ADP
葡萄糖 6-磷酸葡萄糖
NADH+ H+
1,3-二磷酸甘油酸 ADP
GDP ATP
三磷酸甘油酸
GTP
草酰乙酸
线粒体
ADP
丙酮酸羧化酶
ATP
磷酸烯醇式丙酮酸 丙酮酸激酶 丙酮酸
2丙酮酸+4ATP+2GTP+2NADH+2H++4H2O→葡萄糖 +2NAD++4ADP+2GDP+6Pi
葡萄糖的异生作用
(二) 乳酸循环(Cori循环) 肝
糖原的合成
一 、 糖 原 的 合 成 由葡萄糖合成糖原的过程
糖原储存的主要器官及生理意义 肌肉:肌糖原,180 ~ 300g,供肌肉收缩所需 肝脏:肝糖原, 70 ~ 100g,维持血糖水平
合成部位
组织定位:主要在肝脏、骨骼肌 细胞定位:胞浆 合成阶段:葡萄糖的活化+直链/支链的形成
糖原的合成
ADP
磷酸果糖激酶1 糖酵解途径
6-磷酸果糖
1,6-二磷酸果糖
糖的异生作用 1,6-二磷酸果糖酶
H3PO4
H2O
ATP
己糖激酶
ADP
磷酸果糖 ATP 激酶Ⅰ ADP
葡萄糖 6-磷酸葡萄糖
6-磷酸果糖 1,6-二磷酸果糖

糖的生物合成与代谢途径

糖的生物合成与代谢途径

糖的生物合成与代谢途径糖是生命中不可或缺的重要物质,它是生物体的主要能量来源之一,也是构成生物体的重要组成部分。

糖的生物合成与代谢是一系列复杂而精细的过程,它们通过一定的途径在细胞内进行。

在本文中,我们将探讨糖的生物合成与代谢的主要途径和相关机制。

第一节糖的生物合成糖的生物合成是细胞利用光能或化学能将无机物合成糖类化合物的过程。

主要的合成途径有光合作用和糖异生两种形式。

光合作用是指细胞通过叶绿体内的光化学反应,将二氧化碳和水转化为葡萄糖等有机物的过程。

在光照条件下,叶绿体中的叶绿素可以吸收太阳能,光合色素体可将太阳能转化为化学能,进而促使光合作用的进行。

光合作用分为光反应和暗反应两个阶段。

光反应发生在光合体系中,通过光合色素体捕捉光能,产生氧化还原电位,将光能转化为高能物质膜内的质子激励。

暗反应指的是光合作用中的还原和碳固定反应,主要在叶绿体基质内进行。

通过一系列酶的作用,将光反应所得的ATP和NADPH利用碳源还原为葡萄糖或其他有机物。

糖异生是指细胞在无光照条件下,通过有机物合成糖的过程。

糖异生主要发生在细胞质基质内,包括糖异生途径的两个重要过程:糖酵解和有机酸循环。

糖酵解是指将葡萄糖分解为丁醛酸,再将丁醛酸氧化为甲酸,最终合成糖的过程。

有机酸循环是指细胞质基质内的一系列反应,将葡萄糖分解为丙酮酸、柠檬酸等有机酸,最终通过一系列酶的作用合成糖。

第二节糖的代谢途径糖的代谢指的是细胞对糖化合物进行分解和利用的过程。

糖的代谢途径包括糖酵解、糖异生和糖氧化三个主要途径。

糖酵解是指细胞内部一系列酶的作用,将葡萄糖分解为丙酮酸或乙酸,产生ATP和还原能力分子NADH的过程。

糖酵解包括糖原糖酵解和异物糖酵解两种形式。

糖原糖酵解是指细胞内糖原被酵解,通过一系列的反应将糖原分解为葡萄糖,再进一步分解为丙酮酸,转化为乙酸最终释放能量。

异物糖酵解是指细胞利用外源性的碳水化合物,如蔗糖、木糖等进行糖酵解的过程。

糖异生是指细胞利用非糖类有机物合成糖的过程。

糖原代谢和糖异生

糖原代谢和糖异生
大约90%的葡萄糖残基是以葡 萄糖-1-磷酸形式进入糖酵解 途径。
另有10%葡萄糖残基要经己糖 激酶催化生成葡萄糖-6-磷酸 进行糖酵解的。

15.3 糖原合成
糖原的生物合成不是糖原降解的逆过程,而是通过 另外一条途径。
糖原合成需要的能量是由尿嘧啶核苷三磷酸(UTP) 提供的。
糖原合成的底物是UDP-葡糖。
G o' = -16.3 kJ/mol
旁路III:葡糖-6-磷酸水解生成葡萄糖
葡糖-6-磷酸在葡糖-6-磷酸酶作用下水解为 葡萄糖 和无机磷酸。
G o'= -13.8 kJ/mol

葡糖-6-磷酸酶







糖 异 生 与 糖 酵 解 过 程 能 量 变 化
糖异生是个需能过程,由2分子丙酮酸合成1分子葡萄 糖需要4分子ATP和2分子GTP,同时还需要2分子NADH。 总反应方程式为:
3. 糖异生的调控
磷酸果糖激酶I(PFK-I)和果糖-1,6-二磷酸酶的调节
果糖-2,6-二磷酸可以激活PFK-1,加快糖酵解;而抑制 果糖-1,6-二磷酸酶(FBPase-1),进而抑制糖异生。
当ATP和柠檬酸水平高时,PFK-I受抑制,降低糖酵解速 率;柠檬酸增加果糖-1,6-二磷酸酶活性,从而增加糖异 生速率。当AMP水平高时,PFK-I激活,加快糖酵解,果 糖-1,6-二磷酸酶受抑制,糖异生关闭。
但糖酵解途径中由丙酮酸激酶、磷酸果糖激酶I和己 糖激酶催化的三个高放能反应是不可逆的。
1. 糖异生反应
旁路I:丙酮酸转化为磷酸烯醇式丙酮酸
(1)丙酮酸羧化生成草酰乙酸 在丙酮酸羧化酶(生物素作为辅基)催化下,丙酮酸

糖代谢脂代谢蛋白质代谢三者之间的联系

糖代谢脂代谢蛋白质代谢三者之间的联系

糖代谢、脂代谢和蛋白质代谢的联系糖代谢、脂代谢和蛋白质代谢是人体新陈代谢的三个重要方面。

它们之间密切相关,相互影响,共同维持着人体健康和正常功能。

本文将详细介绍糖代谢、脂代谢和蛋白质代谢的基本概念以及它们之间的联系。

1. 糖代谢糖是人体能量的重要来源,也是构成细胞壁等重要物质的基础。

糖主要通过食物摄入进入人体,经过一系列的代谢过程转化为能量。

糖的主要代谢途径包括糖原合成和分解、糖酵解、糖异生等。

1.1 糖原合成和分解糖原是一种多聚体的葡萄糖储备形式,在肝脏和肌肉中储存着。

当血糖浓度较高时,胰岛素会促使肝脏和肌肉中的葡萄糖转化为糖原储存起来,以备不时之需。

而当血糖浓度降低时,胰岛素的作用减弱,肝脏和肌肉中的糖原会被分解为葡萄糖释放到血液中,供给全身组织使用。

1.2 糖酵解糖酵解是指将葡萄糖分解为乳酸或丙酮酸的过程。

这个过程可以在有氧条件下进行(称为有氧糖酵解),也可以在无氧条件下进行(称为无氧糖酵解)。

有氧糖酵解可以提供较多的能量,并产生水和二氧化碳作为副产物;而无氧糖酵解则产生乳酸,并在一定程度上限制能量产生。

1.3 糖异生糖异生是指将非碳水化合物物质转化为葡萄糖的过程。

当血糖浓度较低时,肝脏和肾上腺皮质会通过一系列反应将乙酰辅酶A、甘油三酯等物质转化为葡萄糖释放到血液中,以维持血糖水平的稳定。

2. 脂代谢脂代谢是指人体对脂肪的合成、分解和利用过程。

脂肪是一种重要的能量储备物质,也是构成细胞膜的主要组成成分。

脂肪代谢主要包括三个方面:脂肪酸合成、脂肪酸氧化和三酰甘油合成与分解。

2.1 脂肪酸合成脂肪酸合成是指将碳源(如葡萄糖)转化为甘油三酯的过程。

在此过程中,糖原会被转化为乙酰辅酶A,并通过一系列反应转化为长链脂肪酸。

这些长链脂肪酸可以在细胞内合成甘油三酯,并储存起来或者释放到血液中供给其他组织使用。

2.2 脂肪酸氧化脂肪酸氧化是指将脂肪酸转化为能量的过程。

当身体需要能量时,储存在细胞内的甘油三酯会被分解为脂肪酸和甘油,脂肪酸进入线粒体后经过β-氧化途径逐步分解为乙酰辅酶A,并通过三羧酸循环和氧化磷酸化产生能量。

糖类的分子生物学研究进展

糖类的分子生物学研究进展

糖类的分子生物学研究进展糖类作为一种广泛存在于生命体中的分子,其生物学作用备受关注。

近年来,糖类的分子生物学研究进展迅速,不断揭示其复杂的生理和病理机制。

本文将从糖类的合成、识别和代谢等方面,综述糖类分子生物学的研究进展。

一、糖类的合成糖类的合成是生命体内一种基本的代谢过程。

糖类合成途径包括糖异生、糖原合成和糖化作用等。

其中,糖异生是通过非糖营养物质合成糖类,其主要途径为糖异生途径和光合作用。

糖异生途径通过糖异生酶催化将丙酮酸、乳酸、甘油等转化为糖类,参与糖异生途径的酶包括磷酸甘油脱氢酶、磷酸已酸酯酶等。

光合作用则通过光合色素在光能的作用下,将二氧化碳转化为葡萄糖。

糖原合成是指通过葡萄糖转化生成糖原,其主要途径为糖原合成酶的作用。

糖化作用是指非酶催化下糖类和胺基酸、核酸和脂肪酸等化合物的结合反应,产生糖基化产物。

目前,糖类合成途径的研究主要关注糖异生途径和糖原合成的调控机制,通过深入研究酶的结构和功能,揭示其在糖类合成中的作用机制,为糖类代谢异常性疾病的治疗提供理论基础。

二、糖类的识别糖类在生命活动中扮演着重要的角色,其作用主要通过与细胞表面的糖类受体相互作用实现。

细胞表面的糖类受体主要包括糖基化蛋白、蛋白质酶和凝集素等。

其中,糖基化蛋白是指由糖基化修饰的蛋白质,在生命体内广泛存在,其糖基化方式包括N-糖基化、O-糖基化和酰胺基酸糖基化等。

糖基化蛋白通过糖基化部位的不同,发挥着不同的生物学功能,包括发挥信号转导、调节细胞凋亡和调节细胞黏附作用等。

蛋白质酶是指具有糖类酶活性的酶,其主要作用是催化糖类水解反应。

凝集素是一种可以结合糖类的蛋白质,其主要作用是介导细胞黏附和相互作用。

当前,糖类识别领域的研究重点是糖基化蛋白的生物学功能和糖类受体的结构和功能,为糖类的药物靶点开发提供理论基础。

三、糖类的代谢糖类代谢是指生命体内糖类的利用和分解过程。

糖类代谢主要分为糖的吸收、利用和储存等三个方面。

糖的吸收是指糖类从肠道吸收到血液中,其主要途径为GLUT和SGLT。

生物化学糖类代谢糖异生及糖原合成

生物化学糖类代谢糖异生及糖原合成

2020/5/7
3-磷酸甘油醛磷酸二羟丙酮
2磷酸烯醇丙酮酸
丙酮酸 激酶
PEP羧激酶 2草酰乙酸
2丙酮酸
丙酮酸羧化酶
3
糖异生途径关键反应之一
P
+ H2O
葡萄糖-6-磷 酸酶
6-磷酸葡萄糖
2020/5/7
H
+Pi
葡萄糖
4
糖异生途径关键反应之二
H2CO P O H2CO P
H HO
+ H2O
H
OH
OH H 1,6-二磷酸果糖
果糖二磷酸 酶-1
H2CO P
O H2COH
H HO + Pi
H
OH
OH H 6-磷酸果糖
2020/5/7
5
糖异生途径关键反应之三
丙酮酸
2020/5/7
CO2
ATP+H2O
ADP+Pi
丙酮酸羧化酶
PEP羧激酶
P
磷酸烯醇丙酮酸
CO2
(PEP)
草酰乙酸 GTP GDP
6
① 丙酮酸羧化酶 ② 磷酸烯醇式丙酮酸羧激酶
22
(2)6-磷酸葡萄糖转变为1-磷酸葡萄糖
OH
O P O CH2
OH
O
HO CH2 O OH
OH OH
OH 磷酸葡萄糖变位酶 OH OH
OP O
OH
OH HO
6-磷酸葡萄糖 (glucose-6-phosphate)
1-磷酸葡萄糖 (glucose-1-phosphate)
6-磷酸葡萄糖
2020/5/7
作用生成自由葡萄糖后转运至肌肉组织加以
利用,这一循环过程就称为乳酸循环(Cori

第八22糖异生及糖原合成

第八22糖异生及糖原合成

• 分枝酶催化合成具有1,6-糖苷键的有
分枝的糖原。 • 分枝酶从至少有11个残基的糖链非还原 性末端将7个葡萄糖残基转移到较内部的 位置上去,形成具有1,6-糖苷键的分 枝链,新形成的分枝必须与原有的糖链 有4个糖残基的距离。
Glycogenin initiates glycogen synthesis and stays inside the glycogen particle
• 淀粉合成中的前体是ADP葡萄糖(但是在最初

• •

阶段依然是UDP葡萄糖)。 淀粉合成酶也是将糖残基转移到淀粉链的非还 原性末端上。 支链淀粉的分枝机制同糖原的是一样的。 ADP葡萄糖焦磷酸化酶催化ADP葡萄糖的形成, 但是这个酶的速度是有限制的。 在细菌中,使用ADP葡萄糖来合成细菌糖原。
在植物的细胞液中,蔗糖是通过UDP 葡萄糖与6-磷酸果糖合成而来的
• 随后。生成的葡萄糖进入血液中。 • 该酶并不存在于肌肉细胞或脑细胞中,
因而这两个组织也不具备糖异生的功能。
• 6-磷酸葡萄糖的另一代谢途径是在肝脏
和肌肉中以糖原的形式存储起来。
糖异生所消耗的能量比糖酵解 产生的能量要多
• 从两分子的丙酮酸形成一分子的葡萄糖共消耗
6个高等磷酸键。从丙酮酸到草酰乙酸消耗一 个ATP,从草酰乙酸到磷酸烯醇式丙酮酸消耗 一个GTP,从3-磷酸甘油酸到1,3-二磷酸 甘油酸消耗一个ATP。尽管整个反应消耗能量, 但是可以使反应容易进行。 • 而通过糖酵解途径,一分子葡萄糖转化为两分 子的丙酮酸,则产生2分子的ATP。
• 糖异生是将三碳原子的化合物(主要是丙酮

酸)转化为葡萄糖的过程。 糖异生与糖酵解的途径基本相似,但是绕过 了糖酵解中的三个不可逆反应(通过其它的 酶)。 糖异生所消耗的能量要比糖酵解所释放的能 量要多。 哺乳动物(大多数的脊椎动物)中,大多数 氨基酸可以产生糖异生的前体,但是一般不 这样认为脂肪酸。 糖异生与糖酵解受某些共同物质的相反调节。

生物化学糖的各种代谢途径

生物化学糖的各种代谢途径

生物化学糖的各种代谢途径糖是生物体内重要的能量来源,它经过一系列代谢途径转化成为能够供给细胞进行生命活动所需能量的物质。

本文将从不同角度介绍糖的代谢途径。

1. 糖的消化与吸收糖的消化与吸收是糖的代谢的第一步。

在消化道中,碳水化合物被酶水解成单糖,如葡萄糖、果糖和半乳糖等。

这些单糖通过细胞膜上的特定转运蛋白进入肠细胞,并进一步转运到血液中。

2. 糖的糖酵解糖酵解是糖的代谢重要途径之一,其主要发生在细胞质中。

在糖酵解过程中,葡萄糖分子通过一系列酶的催化,最终转化为丙酮酸和乳酸。

这个过程产生了少量的ATP,同时还释放出能量。

3. 糖的糖异生糖异生是一种逆向的糖代谢途径,它发生在肝脏、肾脏和肌肉等组织中。

在糖异生过程中,非糖物质如乳酸、氨基酸和甘油等被转化为葡萄糖。

这个过程在低血糖状态下起到维持血糖平衡的作用。

4. 糖的糖原代谢糖原是一种多糖,是动物体内储存能量的主要形式。

糖原代谢包括糖原的合成和降解两个过程。

在糖原合成中,多个葡萄糖分子通过糖原合成酶连接成为长链状的糖原分子。

而在糖原降解中,糖原酶将糖原分子逐步分解成为葡萄糖分子,供给机体能量需求。

5. 糖的糖酮体代谢当机体处于长时间低血糖状态或长期饥饿状态时,脂肪组织会分解脂肪生成酮体,其中乙酰酮酸和羟基丁酸是两种主要的酮体。

在饥饿状态下,脑细胞主要利用酮体供能。

6. 糖的糖醇代谢糖醇是一种糖的衍生物,如甘露醇和山梨醇等。

糖醇可以通过酶的催化作用与糖酮体和糖酵解产物相互转化。

糖醇在机体中具有调节渗透压和抗氧化等功能。

7. 糖的糖基转移糖基转移是一种重要的糖代谢途径,它参与了糖的合成、降解以及信号传导等过程。

糖基转移酶可以将糖基从一种底物转移到另一种底物上,形成新的糖分子。

总结起来,糖的代谢途径涵盖了糖的消化与吸收、糖酵解、糖异生、糖原代谢、糖酮体代谢、糖醇代谢和糖基转移等多个方面。

糖作为生物体内重要的能量来源,其代谢途径的研究不仅有助于理解生命活动的基本过程,还为糖代谢相关疾病的治疗提供了理论依据。

糖原的合成与分解

糖原的合成与分解

糖原的合成与分解糖原是人体内重要的能量物质,它能够供给肝脏和肌肉组织所需的能量,以保持身体正常的生理功能。

在我们的日常生活中,食物中的碳水化合物会被分解成葡萄糖,随后再被合成成糖原存储在肝脏和骨骼肌里。

本文将对糖原的合成和分解进行探讨。

一、糖原的合成糖原的合成是通过糖异生途径完成的。

我们先来看一下这个过程的主要步骤:1.葡萄糖-6-磷酸酶催化下,葡萄糖形成葡糖醛酸。

2.葡糖醛酸先在核心蛋白质上形成个人工基底,然后再和UDP-葡萄糖结合,生成UDP-葡糖醛酸。

3. UDP-葡糖醛酸在磷酸醛酸转移酶的作用下,转化成为ATP-葡糖醛酸,并释放出UDP。

4. ATP-葡糖醛酸通过磷酸化作用,生成ATP-磷酸葡糖醛酸。

5. ATP-磷酸葡糖醛酸在支链酶的作用下,形成支链糖原。

通过上述步骤,我们可以得出一个结论:肝脏细胞和肌肉细胞能够自主地合成和分解糖原,并且维持一定的水平以供能量供给。

二、糖原的分解糖原的分解是通过糖异生途径完成的,也就是糖原通过一系列的反应转化成为葡萄糖。

关键酶是磷酸酯酶,主要控制糖原过程的速率。

具体步骤如下:1.肝脏或肌肉酶将糖原转化为葡萄糖-1-磷酸。

2.葡萄糖-1-磷酸酯酶的作用下,葡萄糖-1-磷酸转化为葡萄糖,并且释放出磷酸。

3.葡萄糖向到达全身各组织细胞的血液中流通,以为身体提供能量。

糖原在体内的分解一般分为糖原保护和糖原降解两种。

糖原保护指的是在饥饿、运动、压力等情况下,糖原会被分解为葡萄糖提供能量维持生理功能,但是人体会保留一定数量的糖原,以确保临界值的能量供给。

糖原降解指的是在糖尿病或酮症酸中毒的病人体内由于胰岛素水平偏低而导致身体无法充分利用葡萄糖,因此需要补充外源性胰岛素。

三、总结糖原的合成和分解是相辅相成的过程,它们保证了人类正常的生理功能和生存需要。

糖原在体内的含量是平衡而动态的,不同的环境因素(例如:节食、运动)都会影响糖原的合成和分解的速率,因此糖原作为人体内的重要储能物质需要人们高度重视和关注。

医学课件磷酸戊糖途径 糖异生及糖原合成

医学课件磷酸戊糖途径 糖异生及糖原合成

葡萄糖 + ATP
6-磷酸葡萄糖+ADP
(2)6-磷酸葡萄糖转变为1-磷酸葡萄糖
OH
O P O CH2
OH
O
HO CH2 O OH
OH OH
OH 磷酸葡萄糖变位酶 OH OH
OP O
OH
OH HO
6-磷酸葡萄糖 (glucose-6-phosphate)
1-磷酸葡萄糖 (glucose-1-phosphate)
(四) 磷酸戊糖途径的调节
最重要的调节因素是:NADP+的水平
餐后的兔肝胞浆中, NADP+/NADPH的比值为0.014 某些条件下, NADP+/NADPH的 比值为700
糖的合成
一、单糖的合成 (一)糖异生概念: 主要指由非糖物质转变成葡萄糖 或糖原的过程
(二)过程
糖异生主 要途径和 关键反应
CHO C OH C OH
CH2OPO3H2
3-磷酸甘油醛
CO
glyceraldehyde 3-phosphate
HO C
H
H C OH
ribulose 5-phosphate CH2OPO3H2
4-磷酸赤藓糖
erythrose 4-phosphate
H C OH
CH2OPO3H2
6-磷酸果糖
Fructose
一、磷酸戊糖途径的概念
以6-葡萄糖开始,在6-磷酸葡 萄糖脱氢酶催化下形成6-磷酸葡萄 糖酸,进而代谢生成磷酸戊糖为中 间代谢物的过程,称为磷酸戊糖途 径。
磷酸戊糖途径 (phosphopentose pathway) 又称磷酸已糖旁路 (hexose monophosphate shunt,HMS) 或Warburg-Dikens途径。

糖异生以及糖原合成

糖异生以及糖原合成
抑制剂:ATP NADH 丙氨酸
七、乙醛酸循环
1、乙醛酸循环的生化历程 2、乙醛酸循环总反应式及其糖异生的关系 3、乙醛酸循环的生理意义
植物种子萌发的脂肪转化为糖
NADH NNAADD+
O CH3-C~SCoA
CoASH
草草酰酰乙乙酸酸
柠檬酸合成酶
苹果酸 脱氢酶
乙醛酸循环 反应历程
顺乌头 酸酶
CoASH
-酮戊二酸 天冬氨酸
苹果酸 谷氨酸
C1
草酰乙酸
丙酮酸
3-P-甘油 乳酸
甘油
乙酰CoA
(胞液) (线粒体)
TCA循环
葡萄糖代谢和 糖异生的关系
天冬氨酸
(PEP) 丙氨酸
(胞液) (线粒体)
(转氨基作用) 谷氨酸
糖异生的调节:
1. 6-P-G与1.6-FBP: 促进异生,抑制酵解:
高浓度的6-P-G 、ATP 和柠檬酸, 促进酵解,抑制异生:
丙酮酸 ①
草酰乙酸

苹果酸/ 天冬氨酸
PEP
糖酵解和葡萄糖异 生的关系
葡萄糖 G-6-P
F-6-P F-1.6-P
3-P-甘油醛
A A G-6-P磷酸酯酶
B F-1.6-P磷酸酯酶
C1 丙酮酸羧化酶
B
C2 PEP羧激酶
磷酸二羟丙酮
天冬氨酸
C2 PEP
草酰乙酸
丙酮酸
-酮戊二酸 谷氨酸 苹果酸 丙氨酸
104
ATP ADP
5、磷酸化酶 b
5
106
(无活性)
磷酸化酶 a(活性) 6
108
6、糖原
1-磷酸葡萄糖
葡萄糖
效率极高。

第八章-5 糖异生及糖原合成

第八章-5 糖异生及糖原合成
激素(胰高血糖素、肾上腺素等)+ 受体 腺苷环化酶 (无活性) 腺苷环化酶(有活性) ATP PKA
(无活性)
cAMP
磷酸化酶b激酶
PKA
(有活性)
Pi
磷蛋白磷酸酶-1
磷酸化酶b激酶-P

糖原合酶
Pi
糖原合酶-P
磷蛋白磷酸酶-1
磷酸化酶b Pi
磷酸化酶a-P
磷蛋白磷酸酶-1

2013-8-10
磷蛋白磷酸酶抑制剂-P 34
30
12~18G
糖原合酶
分枝酶
糖原引物 2013-8-10
糖原合成的限速酶
31
糖原合成的特点:
1.必须以原有糖原分子作为引物; 2.合成反应在糖原的非还原端进行; 3.合成为一耗能过程,每增加一个葡萄糖残基, 需消耗2个高能磷酸键(2分子ATP);
4.关键酶是糖原合酶(glycogen synthase),为
2013-8-10
18
UDPG的结构
G
2013-8-10
UDP
19
糖核苷酸的生成
+
1-磷酸葡萄糖
UTP
UDPG
+PPi
UDPG焦磷酸化酶
2013-8-10
20
UDPG中的葡萄糖连接到果糖上
CH2OH H OH HO H OH H H O H
尿苷 P P 尿苷
+ 果糖
蔗糖合成酶
蔗糖+UDP
尿苷二磷酸葡萄糖 (UDPG)
2013-8-10 10
AMP F-2,6-BP
ATP
-
+
果糖双磷酸酶-1 fructose biphosphatase-1

糖异生及糖原合成课件

糖异生及糖原合成课件

生成葡萄糖
糖异生始于三个非糖前 体分子,即乳酸、甘油 和生糖氨基酸。这些前 体在细胞质中通过一系 列反应转化为丙酮酸。
在线粒体中,丙酮酸羧 化生成草酰乙酸,后者 与乙酰CoA缩合生成柠 檬酸,进入三羧酸循环 。
包括柠檬酸循环中的各 个反应,最终生成草酰 乙酸,后者再转化为磷 酸烯醇式丙酮酸(PEP )。
06
糖异生与糖原合成的研究进展
相关酶的研究进展
糖异生关键酶的研究
丙酮酸羧化酶:该酶催化丙酮酸转化为草酰乙酸,是糖异 生的关键步骤之一。
磷酸烯醇式丙酮酸羧激酶:该酶在糖异生途径中催化草酰 乙酸转化为磷酸烯醇式丙酮酸。
糖原合成关键酶的研究
葡萄糖-6-磷酸酶:该酶催化葡萄糖-6-磷酸水解为葡萄糖 ,是糖原合成的关键步骤。
糖原合成的主要器官和组织
肝脏
肝脏是糖原合成的主要场所,通过摄取血液中的葡萄糖,合成并储存糖原。同时 ,肝脏还能将糖原分解为葡萄糖释放到血液中,以维持血糖水平稳定。
肌肉组织
肌肉组织也能进行糖原合成,储存能量。在运动时,肌肉组织中的糖原分解为葡 萄糖,为肌肉提供能量。
糖原合成与糖异生的关系
联系
糖异生是指非糖化合物(如乳酸、甘油、氨基酸等)转变为葡萄糖的过程。在糖异生过程中,生成的葡萄糖可以 进一步用于糖原合成,储存能量。因此,糖异生与糖原合成之间存在密切的联系,两者共同维持血糖平衡和能量 供应。
关键点控制
两个过程中的关键酶和调控因子在调节这两个过程的平衡中具有重要作用。例如,磷酸烯 醇式丙酮酸羧激酶是糖异生的关键酶之一,而糖酵解中的关键酶如己糖激酶和磷酸果糖激 酶则受到别构效应物和激素的调节。
02
糖异生的生物化学过程
糖异生的基本步骤
起始阶段

糖酵解,糖异生,磷酸戊糖途径,糖原合成

糖酵解,糖异生,磷酸戊糖途径,糖原合成

糖酵解,糖异生,磷酸戊糖途径,糖原合成糖是人体最重要的能源来源,它是细胞的基本组成成分,是人体的主要能量来源。

糖的合成和分解过程主要是通过糖酵解、糖异生、磷酸戊糖途径和糖原合成四种途径来实现的。

首先,糖酵解是一种糖分解反应,能由糖原分解成大分子糖,小分子糖和其它糖苷,在这个反应中被分解的糖原分子会被分解成水和乙醛。

在糖异生过程中,糖分解的淀粉分子会被分解成次甘糖(乙醛)和葡萄糖(乙二醛),这两种小分子的糖苷在人体的细胞内被合成成糖原和糖类化合物(脂类和蛋白质)。

磷酸戊糖途径指的是通过水解磷酸戊糖酯分解成葡萄糖和磷酸组成的反应。

在这个反应中,葡萄糖会被用来合成生物体糖醛酸,其中包括糖原、糖脂类和蛋白质等生物物质。

最后,糖原合成反应是指将葡萄糖和乙二醛结合生成高分子糖原分子的反应。

在这个反应中,葡萄糖会被用来合成糖原酸,从而增强糖原分子的分子量。

糖的合成和分解是人体维持正常生活所必须的基本过程,它不仅起到供能的作用,也起到重要的调节生理功能的作用。

在糖异生、磷酸戊糖途径和糖原合成这三种糖代谢途径中,糖分子被不断合成和分解,为人体提供了有效的能量来源。

同时,这也是维持细胞内糖内容的基础,保证人体的正常功能。

机体的生长、繁殖和发育等一系列活动,离不开糖的参与。

糖酵解、糖异生、磷酸戊糖途径和糖原合成这四种糖代谢途径,起着重要的作用。

它们能把糖原变成有效的能源,并为人体维持正常的生理功能提供基础。

这些途径在糖代谢中起着重要作用,它们是人体血糖水平调节和维持正常生活的基础。

由此可见,糖酵解、糖异生、磷酸戊糖途径、糖原合成是一系列重要的糖代谢过程,它们合成和分解糖原,能够使细胞获得有效的能量,保证细胞能顺利地完成正常的生理功能。

糖代谢不仅能够提供能量,而且能保持细胞的机能,因此,糖的合成和分解是物质稳定性和生物体正常功能的重要保障。

糖异生作用名词解释生物化学

糖异生作用名词解释生物化学

糖异生作用名词解释生物化学
糖异生作用是生物体将多种非糖物质转变成葡萄糖或糖原的过程。

这个过程主要发生在肝脏和肾脏等器官中,是生物体内能量代谢的重要一环。

糖异生作用不仅仅是糖酵解的简单逆转,还包括一系列复杂的酶促反应。

其中,丙酮酸是糖异生作用的主要前体,通过七个步反应最终生成葡萄糖或糖原。

不过,糖异生作用过程中要绕过糖酵解中的三步不可逆反应,因此需要付出更多的能量代价。

糖异生作用的生物学意义包括但不限于以下几个方面:1、保证在饥饿情况下,血糖浓度的相对恒定;2、在激烈运动时,肌肉糖酵解生成大量乳酸,经血液运到肝脏可再合成肝糖原和葡萄糖,有利于回收乳酸分子中的能量,更新肌糖原,防止乳酸酸中毒的发生;3、进食蛋白质后,肝中糖原含量增加,由于组织蛋白质分解,血浆氨基酸增多,糖的异生作用增强,因而氨基酸成糖是氨基酸代谢的主要途径;4、长期禁食后,肾脏的糖异生作用加强,有利于排氢保纳作用的进行,对于防止酸中毒有重要作用。

糖异生作用

糖异生作用

Ⅰ复习提问:⒈什么是糖原合成与糖原分解?⒉回忆糖原生成的基本反应。

Ⅱ新授引言:体内糖原的储备是有限的,但即使禁食24小时,血糖仍保持于正常状态,这时除了周围组织减少对葡萄糖的利用外,主要还是依赖肝脏将氨基酸、乳酸等转变成葡萄糖,不断补充血糖。

这种从非糖物质转变成葡萄糖的过程称糖异生。

第六节糖异生作用* 概念:指从非糖化合物转变为葡萄糖或糖原的过程称糖异生作用(gluconeogenesis)。

* 部位:主要在肝、肾细胞的胞浆及线粒体* 原料:主要有乳酸、甘油、生糖氨基酸一、糖异生途径* 糖异生途径:丙酮酸→葡萄糖的过程。

* 过程:☆糖异生途径与酵解途径大多数反应是共有的、可逆的;☆3个由关键酶催化的不可逆反应须另外的酶。

1. 丙酮酸转变成磷酸烯醇式丙酮酸(PEP)ATP ADP+Pi GTP GDP丙酮酸草酰乙酸PEPCO2 ①CO2 ②①丙酮酸羧化酶,辅酶生物素(线粒体)②磷酸烯醇式丙酮酸羧激酶(线粒体、胞液)述:此过程由两个反应组成,第一个反应由丙酮酸羧化酶催化,辅酶是生物素,反应消耗1分子ATP。

第二个反应由磷酸烯醇式丙酮酸羧激酶催化,反应消耗1分子GTP。

※ 草酰乙酸转运出线粒体述: 由于丙酮酸羧化酶仅存在于线粒体内,故胞液中的丙酮酸 必须进入线粒体,才能羧化生成草酰乙酸。

而磷酸烯醇式丙酮 酸羧激酶在线粒体和胞液中都存在,因此草酰乙酸可在线粒体 中直接转变为磷酸烯醇式丙酮酸再进入胞液,也可在胞液中被 转变成磷酸烯醇式丙酮酸。

但是,草酰乙酸不能直接透过线粒体,需借助两种方式将其转运如胞液:一种是经苹果酸脱氢酶作用,将其还原成苹果 酸,然后再通过线粒体膜进入胞液,再由胞液中苹果酸脱氢酶 将苹果酸脱氢氧化为草酰乙酸而进入糖异生反应途径;另一种 方式是经谷草转氨酶作用,生成天冬氨酸后再逸出线粒体,进 入胞液的天冬氨酸再经胞液中谷草转氨酶的催化而恢复生成草 酰乙酸。

有实验表明,以丙酮酸或能转变成丙酮酸的某些生糖氨基酸作为原料异生成糖时,以苹果酸通过线粒体方式进行糖异生; 而乳酸进行糖异生反应时,常在线粒体生成草酰乙酸后,再转 变成天冬氨酸而进入胞液。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

G-6-P + H2O
葡萄糖-6-磷酸酶
G + Pi
(二)糖原分解的特点:
1. 水解反应在糖原的非还原端进行; 2. 是一非耗能过程; 3. 关键酶是糖原磷酸化酶(glycogen
phosphory-lase),为一共价修饰酶,其辅 酶是磷酸吡哆醛。
三、糖原合成与分解的调节
激素(胰高血糖素、肾上腺素等)+ 受体
H H
OH
OH H
葡萄糖激酶 HO
OH
H
OH
6-磷酸葡萄糖
(glucose-6-phosphate)
葡萄糖 + ATP
6-磷酸葡萄糖+ADP
(2)6-磷酸葡萄糖转变为1-磷酸葡萄糖
OH
O P O CH2
OH
O
HO CH2 O OH
OH OH
OH 磷酸葡萄糖变位酶 OH OH
OP O
OH
OH HO
6-磷酸葡萄糖 (glucose-6-phosphate)
OH H
H
H
OH
O
O H
H OR
H
OH
尿苷二磷酸葡萄糖 (UDPG)
H
OH
H
OH
糖原引物(Gn)
(glycogen primer)
糖原(Gn+1)
UDP
糖原合酶
(glycogen)
CH2OH
H H
OH
HO
OH
H O
CH2OH
CH2OH
H
OH H
O H
H OH H
H
OH H
O
O
R
H
OH
H
OH
H
OH
(5) 分支酶催化糖原不断形成新分支链
• 糖原的分解代谢可分为三个阶段:
1.水解:包括三步反应,循环交替进行。
⑴ 磷酸解:由糖原磷酸化酶(glycogen
phosphorylase)催化对-1,4-糖苷键磷酸
解,生成G-1-P。
*
糖原磷酸化酶
(G)n + Pi
(G)n-1 + G-1-P
⑵ 转寡糖链:当糖原被水解到离分支点四 个葡萄糖残基时,由葡聚糖转移酶催化, 将分支链上的三个葡萄糖残基转移到直 链的非还原端,使分支点暴露。
H
OH
OO P O P O 尿尿苷苷 OH HO
2Pi
尿苷二磷酸葡萄糖(UDPG)
(uridine diposphate glucose)
UTP+1-磷酸葡萄糖
UDPG+ PPi
(4)UDPG中的葡萄糖连接到糖原引物上
CH2OH
CH2OH
CH2OH
H H
OH
HO
OH
H
H
P P 尿尿苷苷 HO
H OH
ATP、NADH、 琥珀酰CoA
丙酮酸 乙酰CoA、NADH、ATP
乙酰辅酶A
ATP
草酰乙酸 柠檬酸
苹果酸
丙酮酸氧化
P和
异柠檬酸
延胡索酸
三羧酸循环 的调节
NADH
琥珀酸
α-酮戊二酸
琥珀酰CoA
琥珀酰CoA、 NADH、ATP
磷酸戊糖途径: 最重要的调节因素是:NADP+的水平
糖异生的调节:
1. 6-P-G与1.6-FBP: 促进异生,抑制酵解:高浓度的6-P-G 、ATP
草酰乙酸
糖异生途径
激素对肝糖原合成 与分解的调控
肾上腺素或 胰高血糖素
肾上腺素或 胰高血糖素
意义:由于
1、腺苷酸环化酶
(无活性)
腺苷酸环化酶(活性)
1
酶的共价修饰 反应是酶促反 应,只要有少 量信号分子 (如激素)存
2、ATP
cAMP
2
102
3、蛋白激酶
R、cAMP
3
(无活性) 蛋白激酶(活性)
在,即可通过 加速这种酶促 反应,而使大 量的另一种酶 发生化学修饰, 从而获得放大 效应。这种调 节方式快速、
糖异生和糖的合成
一、单糖的合成P154 (一)糖异生概念: 主要指由非糖物质转变成葡萄糖 或糖原的过程
(二)过程
糖异生主 要途径和 关键反应
果糖二磷酸 (酯)酶
糖原(或淀粉)
1-磷酸葡萄糖 6-磷酸葡萄糖
己糖激酶
葡萄糖
6-磷酸果糖
果糖 激酶 1,6-二磷酸果糖
葡萄糖6-磷酸酶
3-磷酸甘油醛磷酸二羟丙酮
无氧酵解产生的乳酸来合成糖原。这就 是肝糖原合成的三碳途径或间接途径。
糖代谢的调节过程 一、无氧酵解的调节 二、TCA 的调节 三、磷酸戊糖途径调节 四、糖异生的调节 五、糖原代谢的调节 六、神经和激素对糖的调节
糖酵解过程的调节酶:
酶的名称
变构激活剂 变构抑制剂
已糖激酶
Mg2+, Mn2+
G-6-P
二、糖原合成
定义: 由单糖合成糖原的过程称为糖原的合 成(glycogenesis)。
单糖: 葡萄糖(主要)、果糖、半乳糖等
部位: 肝脏、肌肉组织等细胞的胞浆中
2.缩合:
• 在关键酶糖原合酶的催化下,以原有糖 原分子为引物,添加新的葡萄糖单位。
UDPG + (G)n
*
糖原合酶
(G)n+1 + UDP
糖原合酶的作用机制
3.分支: • 当直链长度达12个葡萄糖残基以上时,在
分支酶(branching enzyme)的催化下,将距 末端6~7个葡萄糖残基组成的寡糖链由1,4-糖苷键转变为-1,6-糖苷键,使糖原出 现分支。
分支酶
(branching enzyme)
-1,4-糖苷键
糖原的合成与分解代谢
1. 必须以原有糖原分子作为引物; 2. 合成反应在糖原的非还原端进行; 3. 合成为一耗能过程,每增加一个葡萄糖残基,
需消耗2个高能磷酸键(2分子ATP); 4.关键酶是糖原合酶(glycogen synthase),为
一共价修饰酶; 5. 需UTP参与(以UDP为载体)。
二、糖原的分解代谢
(一)反应过程:
NADH NNAADD+
O CH3-C~SCoA
CoASH
苹果酸 脱氢酶
乙醛酸循环 反应历程
顺乌头 酸酶
CoASH
O CH3-C~SCoA
苹果酸 合成酶
OO
H-C-C~ OH 乙醛酸
异柠檬酸 裂解酶
COOCH2 CH2 COO-
琥珀酸

O
醛 酸
CoASH CH3-C-SCoA
AMP、 2.6-二磷酸果糖、ADP
二、糖异生的调节
AMP F-2,6-BP
-
ATP
+
果糖双磷酸酶-1 fructose biphosphatase-1
乙酰CoA
+
丙酮酸羧化酶 pyruvate carboxylase
三、糖异生的原料
1.生糖氨基酸: Ala, Cys, Gly, Ser, Thr, Trp→ 丙酮酸 Pro,His,Gln,Arg→ Glu→ -酮戊二酸 Ile,Met,Ser,Thr,Val→ 琥珀酰CoA Phe,Tyr→ 延胡索酸 Asn,Asp→ 草酰乙酸
1-磷酸葡萄糖 (glucose-1-phosphate)
6-磷酸葡萄糖
1-磷酸葡萄糖
CH2OH (3)尿苷二磷酸葡萄糖的生成
H H
OH
HO
OH
H O
O P OH
UTP
UDPG焦磷酸化酶
H
OH
OH
1-磷酸葡萄糖
(glucose-1-phosphate)
H2O
PPi
CH2OH
H H
OH
OH H
HO
O



草酰乙酸
柠檬酸
顺乌头酸

O
羧 酸
CH3-C-SCoA

苹果酸
OO
异柠檬酸


H-C-C~ OH 乙醛酸


延胡索酸

-酮戊二酸



琥珀酸
琥珀酰CoA
乙醛酸循环总反应式及其与 糖异生的关系
O
2
CH3-C~SCoA
+NAD
+
COOCH2 CH2 COO-
琥珀酸
+ 2CoASH+NADH +H+
⑶ 脱枝:由-1,6-葡萄糖苷酶催化。将-
1,6-糖苷键水解,生成一分子自由葡萄糖。
(G)n + H2O
α-1,6-葡萄糖苷酶
(G)n-1 + G
磷酸化酶
脱枝酶 (debranching enzyme)
转移酶活性
α-1,6糖苷 酶活性
2.异构:
G-1-P
磷酸葡萄糖变位酶
G-6-P
3.脱磷酸:
由葡萄糖-6-磷酸酶(glucose-6-phosphatase)催化, 生成自由葡萄糖。该酶只存在于肝及肾中。
葡萄糖激酶(肝) 磷酸果糖激酶-1
丙酮酸激酶
Mg2+, Mn2+
-
Mg2+, AMP, ADP, ATP,H+、柠檬酸,
F-1,6-2P, F-2,6-2P
长链脂肪酸
Mg2+, K+, F-1,6-2P
ATP
葡萄糖激酶/已糖激酶
已糖激酶的分型
Ⅰ~Ⅲ型
Ⅳ型
中文名称
已糖激酶(HK) 葡萄糖激酶(GK)
相关文档
最新文档