人教版初一数学上册如何学好绝对值
初中数学七年级上册《绝对值》知识简要与举例
初中数学七年级上册《绝对值》知识简要与举例1.绝对值的概念是代数的重要概念之一,它是学习代数后续内容的基础.同时,利用绝对值的概念,能使我们进一步认识已学过的概念.例如,我们可以把任何一个有理数看成是由符号与绝对值两部分组成;又如,互为相反数的两个数,其实质是绝对值相等而符号相反的两个数.像-6和6,它们的符号相反,而其绝对值|-6|=|6|=6.2.理解绝对值的意义,应注意以下三点:(1)绝对值的非负性即任何一个数a的绝对值,总是非负的.即|a|≥0.当a≠0时,|a|>0;当a=0时,|a|=0.(2)绝对值相等的两个数或相等,或互为相反数.如|2|=|+2|=2,|+2|=|-2|=2.一般地,若|x|=|y|,则有x=y或x=-y.(3)学习了绝对值的几何意义后,数轴的概念、画法、利用数轴比较数的大小、相反数以及绝对值,借助数轴,这些知识便都联系到一起了.3.用正负数可以表示具有相反意义的量.但在实际生产和生活中,有时不考虑方向性.如:计算汽车的耗油量时,知道行驶单位路程的耗油量,只需求出汽车行驶的总路程,便可求出耗油量,与行驶的方向无关而汽车所走的路程就只需用正数表示,因此,引出绝对值的概念.4.绝对值的三种表达方法.(1)文字语言表达法(绝对值的概念):一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零.(2)用数学式子法:设a为任意有理数,则(3)绝对值的几何意义:一个数的绝对值就是表示这个数的点离开原点的距离.[例1]判断题(2)|-0.01|<0.( )(3)-(-4)<|-4|.( )(4)|a|=a.( )(5)当a≤0时,|a|+a=0.( )答案:(1)√;(2)×;(3)×;(4)×;(5)√.说明:在有理数的大小比较中,如果含有绝对值或相反数时,可先化简,然后再进行比较.[例2]填空题(5)______________与它的绝对值互为相反数;(6)如果|a|=|-7|,那么a=________.说明:如果两个数相等或互为相反数,那么这两个数的绝对值相等;反之,如果这两个数的绝对值相等,那么这两个数相等或互为相反数.[例3]a为何值时,下列各式成立?(1)|a|=a;(2)|a|=-a;(3)|a|≥a;(4)|a|<a;(5)|a|=5;(6)|a|=-5.解:(1)a≥0;(2)a≤0;(3)a为任意有理数时,都使|a|≥a成立;(4)a为任意有理数时,|a|<a都不成立;(5)a=±5;(6)a为任意有理数时,|a|=-5都不成立.说明:本题解决的关键是牢固掌握绝对值的非负性,即|a|≥0.另外,(3)、(4)小题还要准确理解有理数大小的比较法则.[例4]比较大小:[例5]把下列各数按照从大到小的顺序用“>”连接起来:说明:学了绝对值的概念之后,比较两有理数大小的基本方法,我们便有了两种:(1)数轴法;(2)绝对值法.在这小节的后一部分,介绍了利用绝对值比较两个负数的大小的办法.这既可巩固绝对值的概念,又把比较有理数大小的方法提高了一步.利用绝对值来比较两有理数大小的方法是我们常用的方法之一.前面提到绝对值的概念是代数中重要的概念之一,我们应该很好地掌握它.[例6](1)若a>3,则|a-3|=________;(2)若a=3,则|a-3|=________;(3)若a<3,则|a-3|=________.分析:要想正确地化简|a-3|的结果.关键是确定a-3的符号.当a>3时,a -3>0,即a-3为正,由正数的绝对值是它本身,可得结果为a-3;当a=3时,a -3=0,所以|a-3|=|0|=0;当a<3时,a-3<0,即a-3为负数,由负数的绝对值等于它的相反数可得|a-3|=-(a-3).解:(1)a>3时,|a-3|=a-3;(2)a=3时,|a-3|=0;(3)a<3时,|a-3|=-(a-3)说明:由本题的解法说明,化简含有字母的式子的绝对值时,必须先讨论这个式子的计算结果的正负性.否则会出现错误,如|a-3|=a-3(×).。
人教版数学七年级上册1.2.4《绝对值》教案
人教版数学七年级上册1.2.4《绝对值》教案一. 教材分析《绝对值》是人教版数学七年级上册第1章第2节的内容,本节课主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。
绝对值是数学中的一个基本概念,它在日常生活和工农业生产中有着广泛的应用。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学概念的理解和运用已经有了一定的基础。
但同时,学生对新的数学概念的接受和理解还需要一定的引导和培养。
他们对绝对值的概念和性质可能还存在一些模糊的认识,需要通过实例和练习来加深理解。
三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。
2.培养学生运用绝对值解决实际问题的能力。
3.培养学生的抽象思维能力和逻辑思维能力。
四. 教学重难点1.绝对值的概念和性质。
2.运用绝对值解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法,引导学生通过观察、思考、讨论、操作等活动,掌握绝对值的概念和性质,提高学生的动手操作能力和解决问题的能力。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
3.学生分组合作学习资料。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如温度、距离等,引导学生思考这些问题的共同特点,从而引出绝对值的概念。
2.呈现(10分钟)介绍绝对值的定义,用PPT展示绝对值的图形表示,让学生直观地理解绝对值的概念。
同时,给出绝对值的性质,让学生通过观察和思考来理解这些性质。
3.操练(10分钟)让学生分组合作,运用绝对值的性质解决一些实际问题,如求距离、计算温度等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对绝对值概念和性质的掌握程度。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)让学生思考绝对值在实际生活中的应用,如地图上的距离、股票的涨跌等。
引导学生运用绝对值的知识解决这些问题,提高学生的应用能力。
人教版数学七年级上册1.2.4绝对值(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了绝对值的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对绝对值的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版数学七年级上册1.2.4绝对值(教案)
一、教学内容
人教版数学七年级上册1.2.4绝对值:本节主要内容包括绝对值的概念、绝对值的性质及其在数轴上的表示。具体教学内容如下:
1.理解绝对值的概念,掌握表示方法,例如|a|表示a的绝对值。
2.掌握绝对值的性质,如:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解绝对值的基本概念。绝对值是一个数在数轴上表示的距离,不考虑方向。它是表示数值大小的重要工具,广泛应用于数学和日常生活中。
2.案例分析:接下来,我们来看一个具体的案例。数轴上,点-3和点3的距离都是3,这个距离就是绝对值。通过这个案例,我们可以理解绝对值是如何帮助我们解决距离问题的。
我也注意到,在小组讨论中,有些学生对于绝对值在实际生活中的应用提出了很有创意的想法。这让我感到很高兴,说明学生们能够将所学知识联系到生活实际,这是我教学的一个重要目标。
然而,我也发现了一些需要改进的地方。在重点难点解析部分,我可能需要更多的耐心和不同的教学方法来帮助那些理解起来比较慢的学生。我计划在下一次课时,增加一些互动性更强的问题,让学生们更多地参与到解答过程中来,而不是单向的讲解。
3.重点难点解析:在讲授过程中,我会特别强调绝对值的定义和性质这两个重点。对于难点部分,比如负数的绝对值是它的相反数,我会通过数轴上的具体点和图形来帮助大家理解。
初一数学绝对值知识点、考点及例题梳理
初一数学绝对值知识点、考点及例题梳理绝对值是初一上册数学的重难点之一,很多同学绝对值的学习中都存在着一些问题,所有问题的根源大都是对绝对值的概念理解不透彻,没有建立起完整的知识体系,在此梳理下在绝对值学习中需要注意的一些要点。
在绝对值的学习中,首先需要去理解和掌握的就是绝对值的概念,什么是绝对值呢?在数轴上,一个数所对应的点与原点之间的距离。
在概念的理解中需要注意,绝对值这个概念是从数轴引出的,它表示的是距离,绝对值本质上是数轴上两点之间的距离,哪两点之间的距离呢?表示某个数的点和原点。
那么由绝对值的定义,我们可以得到有关绝对值的那些性质呢?因为绝对值表示的是距离,从日常经验可知,距离最小为0,不可能为负数,所以就得出了绝对值最重要的一条性质:绝对值具有非负性。
从绝对值的定义出发,结合绝对值的非负性,可以得到绝对值的代数意义,也看成是绝对值性质的推广:正数的绝对值等于它本身;0的绝对值是0;负数的绝对值等于它的相反数。
以上三条需要牢记。
这是求绝对值和简化绝对值的方法基础。
除过绝对值的定义和性质之外,在绝对值的学习中还需要注意以下细节和要点:任何数都有绝对值,只有一个,而且是非负的。
但是有两个数的绝对值等于正数,而且是相反的。
很多同学容易漏掉其中的一个,比较容易出错。
在有关绝对值的运算,在解含有绝对值的方程中,经常需要运用到分类讨论思路。
绝对值的概念来源于数轴,代表数轴上两点之间的距离。
绝对值与数轴有着密切的关系,在绝对值相关题目的分析和求解中,一定要注意数形结合思想的应用。
特别是在绝对值的几何意义的理解和应用上,需要结合数轴来分析和解决。
绝对值等于它本身的数是正数和0,绝对值等于它的相反数的数是负数和0.1.解决问题的关键是理解绝对值的定义和性质,把握其非负性。
2、求一个数的绝对值,先判定这个数是正数、负数还是0,再根据绝对值的性质确定最终的结果。
3、利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小。
人教版-数学-七年级上册-《绝对值》学习指导
《绝对值》学习指导学习目标:1、理解、掌握绝对值概念,体会绝对值的作用与意义;2、掌握求一个已知数的绝对值和有理数大小比较的方法.知识点:绝对值一、绝对值的概念一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a |.注:(1)这里的a可以是正数、负数和0.(2)由于绝对值表示的是数轴上a的点与原点的距离,距离是一个非负数,所以可知| a |≥0.二、绝对值的代数含义绝对值是分正数、负数和零三种情况来说明的。
也就是,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
即当a为有理数时,| a | =(0) 0(0)(0)a aaa a⎧⎪=⎨⎪-⎩><.三、绝对值的几何意义一个数的绝对值就是数轴上表示这个数的点离开原点的距离。
即若a是有理数,则| a |就是数轴上表示“a”的点与原点“0”的距离,如,数轴上到原点的长度为6的点有两个,即±6,这个长度6就是6和-6的绝对值。
数轴是中学代数中数形结合思想最简单也是最基本的表现形式,利用数轴强化绝对值概念,不但可以从几何直观上理解绝对值的意义,而且能渗透数形结合的思想方法。
四、绝对值的主要性质(1)正数及负数的绝对值都是正数,零的绝对值还是零。
即,任何一个数的绝对值都是非负数,也就是,若a为有理数,则| a |≥0;(2)任何两个互为相反数的绝对值总相等,即,若a为有理数,则| a | = |-a |;(3)任何一个有理数都不大于它的绝对值,即,若a为有理数,则a≤| a | .预习检测:1、一般地,数轴上表示数a的点与原点的叫做数a的绝对值.记作.2、对于任意数a,若a>0,则| a |= ;若a=0,则| a |= ;若a<0,则| a |= .练习:1、写出下列各数的绝对值:6,-8,-3.9,52,112-,100,0.2、判断下列说法是否正确:(1)符号相反的数互为相反数;(2)一个数的绝对值越大,表示它的点在数轴上越靠右;(3)一个数的绝对值越大,表示它的点在数轴上离原点越远;(4)当a≠0时,| a |总是大于0.3、判断下列说法是否正确:(1)| 5 |=| -5 |;(2)-| 5 |=| -5 |;(3)-5=| -5 |.4、比较下列各数的大小:(1)3和-5;(2)-3和-5;(3)-2.5和-| -2.25 |;(4)35-和34-.参考答案:1、6,8,3.9,52,112,100,0.2、(1)错;(2)错;(3)对;(4)对.3、(1)对;(2)错;(3)错.4、(1)3>-5;(1)-3>-5;(3)-2.5<-| -2.25 |;(4)35->34-.。
人教版七年级数学上册:1.2.4《绝对值》说课稿4
人教版七年级数学上册:1.2.4《绝对值》说课稿4一. 教材分析《人教版七年级数学上册:1.2.4《绝对值》》这一节内容,主要介绍了绝对值的概念及其性质。
绝对值是数学中一个重要的概念,它体现了数轴上点到原点的距离,具有鲜明的几何特征。
教材通过简单的例子引入绝对值的概念,再引导学生探究绝对值的性质,从而使学生掌握绝对值的基本概念和运用。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数轴有了初步的认识。
但他们对绝对值的理解还较为模糊,需要在教学中通过具体例子和几何直观来加深对绝对值概念的理解。
此外,学生在这一阶段正处于从小学到初中的过渡,学习方式和方法需要进行一定的调整,因此在教学过程中,教师需要关注学生的学习习惯和思维方式的培养。
三. 说教学目标1.知识与技能目标:通过本节课的学习,使学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。
2.过程与方法目标:通过观察、思考、探究、交流等过程,培养学生的逻辑思维能力和解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:绝对值的概念及其性质。
2.教学难点:绝对值性质的推导和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极交流。
2.教学手段:利用多媒体课件、数轴模型等辅助教学,增强教学的直观性和趣味性。
六. 说教学过程1.导入新课:通过一个简单的例子,引导学生思考绝对值的概念,激发学生的学习兴趣。
2.讲解绝对值的概念:结合数轴,讲解绝对值的几何意义,使学生理解并掌握绝对值的概念。
3.探究绝对值的性质:引导学生观察、分析、总结绝对值的性质,并通过小组讨论加深理解。
4.运用绝对值解决实际问题:布置一些实际问题,让学生运用绝对值的知识进行解决,巩固所学内容。
5.课堂小结:对本节课的内容进行总结,强调绝对值的概念和性质。
第一章 第6课 绝对值-七年级上册初一数学(人教版)
第一章第6课绝对值-七年级上册初一数学(人教版)1. 绝对值的概念绝对值是数学中的一个重要概念,简单来说,它表示一个数与0的距离。
对于任意一个实数a,它的绝对值记作|a|,定义如下:•如果a大于等于0,则|a|等于a本身;•如果a小于0,则|a|等于-a。
绝对值的计算结果始终为非负数。
2. 绝对值的性质绝对值有以下几个重要的性质:•非负性:对于任意一个实数a,|a|大于等于0。
•正负性:对于任意一个实数a,如果a大于0,则|a|等于a本身;如果a小于0,则|a|等于-a。
•零的绝对值:|0|等于0。
•数轴上的表示:数轴上的点a到原点0的距离就是|a|。
3. 绝对值的运算3.1. 绝对值的加法绝对值的加法遵循以下规则:对于任意两个实数a和b,有以下等式成立:|a + b| <= |a| + |b|即绝对值的加法不会增加数的绝对值,而是有可能减小。
3.2. 绝对值的减法绝对值的减法遵循以下规则:对于任意两个实数a和b,有以下等式成立:|a - b| <= |a| + |b|即绝对值的减法的结果的绝对值不会大于原来两个数的绝对值之和。
3.3. 绝对值的乘法绝对值的乘法遵循以下规则:对于任意两个实数a和b,有以下等式成立:|a * b| = |a| * |b|即绝对值的乘法相当于两个数的绝对值相乘。
4. 绝对值的应用4.1. 距离的计算绝对值可以用来计算两个数在数轴上的距离。
例如,记数轴上的点A和点B的坐标分别为a和b,则点A和点B之间的距离为|a - b|。
4.2. 数据的取模在实际问题中,我们常常需要对数据进行取模运算。
取模运算即取绝对值,可以去除数据的符号,使得结果始终为非负数。
4.3. 求解不等式绝对值可以用来求解一些简单的不等式。
例如,求解|2x - 1| < 5这个不等式,可以分为两种情况讨论:当2x - 1大于等于0时,原不等式可化简为2x - 1 < 5,解得x < 3;当2x - 1小于0时,原不等式可化简为-(2x - 1) < 5,解得x > -2。
人教版七年级数学上册:1.2.4《绝对值》说课稿1
人教版七年级数学上册:1.2.4《绝对值》说课稿1一. 教材分析《绝对值》是人教版七年级数学上册第一章第二节第四个小节的内容。
绝对值是数学中的一个基本概念,它表示一个数在数轴上所对应的点与原点的距离。
这个概念在初中数学中非常重要,它不仅涉及到实数的概念,还与代数、几何等多个数学领域有着密切的联系。
在后续的学习中,绝对值的概念会不断出现,因此,让学生深刻理解绝对值的意义和应用是非常必要的。
二. 学情分析七年级的学生已经具备了一定的实数基础,对于数轴的概念也有了一定的了解。
但是,他们对于抽象的概念的理解还相对较弱,需要通过具体的实例和实际操作来帮助理解。
同时,七年级的学生正处于青春期,注意力容易分散,因此,在教学过程中,需要通过多种教学手段来吸引他们的注意力,激发他们的学习兴趣。
三. 说教学目标1.知识与技能:让学生理解绝对值的定义,掌握绝对值的性质,能够运用绝对值解决实际问题。
2.过程与方法:通过实例和实际操作,让学生体验绝对值的概念,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:绝对值的定义和性质。
2.教学难点:绝对值在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法,通过提问引导学生思考,激发学生的学习兴趣。
2.教学手段:利用多媒体课件,结合板书,以实例和实际操作的方式进行教学。
六. 说教学过程1.导入:通过一个实际问题,引出绝对值的概念,激发学生的学习兴趣。
2.新课导入:介绍绝对值的定义和性质,让学生通过实例来体验绝对值的概念。
3.课堂讲解:通过讲解和实际操作,让学生理解绝对值的性质,能够运用绝对值解决实际问题。
4.课堂练习:设计一些练习题,让学生运用绝对值的知识来解决问题,巩固所学的内容。
5.课堂小结:对本节课的内容进行总结,让学生明确学习的重点。
七. 说板书设计板书设计要清晰、简洁,能够突出绝对值的概念和性质。
七年级上册数学绝对值计算方法
七年级上册数学绝对值计算方法绝对值是数学中常用的概念之一,特别在解决各种实际问题时,经常会用到绝对值。
在七年级上册数学中,绝对值的计算方法是我们需要掌握的基础知识之一。
首先,我们来回顾一下绝对值的定义:对于任意一个实数a,我们称a的绝对值为|a|,表示a离0点的距离。
绝对值的计算方法有以下几种情况:1.如果a是非负数,即a≥0,那么|a| = a。
因为非负数离0点的距离就是它本身。
2.如果a是负数,即a<0,那么|a| = -a。
因为负数离0点的距离是它的相反数。
这两种情况是绝对值计算的基本规则,我们可以通过几个例子来理解和巩固这些概念。
例子1:计算|3|。
由于3是非负数,所以|3|= 3。
例子2:计算|-5|。
由于-5是负数,所以|-5| = -(-5) = 5。
注意,在计算过程中,我们需要将负数取相反数。
例子3:计算|0|。
由于0是非负数,所以|0|= 0。
注意,虽然0离0点的距离是0,但它本身也是一个数,所以绝对值是0。
除了这两种基本情况之外,有时候我们还需要用到一些复杂一点的绝对值计算方法。
3.如果一个式子的绝对值大于某个给定的数字,我们需要求该式子的取值范围。
比如,计算不等式|x-3| > 5。
我们可以通过解不等式的方法来求解。
首先,|x-3| > 5可以分解为两个不等式x-3 > 5和x-3 < -5。
然后解这两个不等式可以得到x > 8或x < -2。
所以这个不等式的解集是x < -2或x > 8。
4.绝对值的加减法。
如果要计算形如|a + b|的式子,我们可以通过绝对值的定义进行转化。
当a+b≥0时,|a + b| = a + b;当a+b<0时,|a + b| = -(a + b)。
例子4:计算|3 + 4|。
由于3+4=7≥0,所以|3 + 4| = 3 + 4 = 7。
例子5:计算|3 + (-4)|。
由于3+(-4)= -1<0,所以|3 + (-4)| = -(3 + (-4)) = -(-1) = 1。
七年级数学上册(人教版)1.2.4绝对值(第1课时绝对值的概念及性质)优秀教学案例
3.教师对学生的学习情况进行评价,关注学生的知识掌握和能力培养,鼓励学生的进步和创新。
4.结合学生的反馈和评价,教师调整教学策略,为后续教学提供参考。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中与绝对值相关的实际问题,如地图上的距离、运动员比赛得分等,引导学生关注绝对值在现实生活中的应用。
本节课的主要内容包括绝对值的概念、绝对值的性质以及绝对值在实际问题中的应用。在教学过程中,教师应注重从实际问题出发,引导学生发现绝对值的意义,并通过合作交流、讨论归纳出绝对值的性质。同时,结合典型例题,让学生在实践中掌握绝对值的应用,提高解决问题的能力。
为了提高教学效果,教师可以运用多媒体教学手段,如动画、图片等,形象地展示绝对值的概念及性质,增强学生的直观感受。同时,注重启发式教学,引导学生主动思考、探究,培养学生的创新精神和实践能力。
3.教师通过典型例题,讲解绝对值在实际问题中的应用,引导学生学会运用绝对值解决问题。
(三)学生小组讨论
1.教师提出小组讨论任务,让学生结合实例探讨绝对值的性质。
2.学生分组讨论,共同分析绝对值的性质,如正数和0的绝对值是其本身,负数的绝对值是其相反数。
3.各小组汇报讨论成果,教师点评并总结绝对值的性质。
(二)问题导向
1.引导学生提出关于绝对值的问题,如“绝对值有什么意义?”,“如何表示一个数的绝对值?”等,激发学生的探究欲望。
2.教师提出具有挑战性的问题,如“你能用绝对值解释生活中的哪些现象?”引导学生运用所学知识解决实际问题。
3.鼓励学生自主探究,引导学生发现绝对值的性质,如正数和0的绝对值是其本身,负数的绝对值是其相反数。
七年级上册绝对值知识点
七年级上册绝对值知识点在数学中,绝对值是一个非常重要的概念。
它已经成为了我们求解问题中不可缺少的一部分。
在七年级上册学习中,绝对值也成为了必学知识点之一。
本篇文章将为大家详细介绍七年级上册绝对值知识点,希望可以帮助大家更好地掌握这一知识。
一、绝对值的概念绝对值是指一个数与零点之间的距离,因此绝对值始终为正数。
在数学符号上,绝对值用竖线包围数值表示,比如|3|表示3的绝对值。
二、绝对值的运算法则1.同号相加,不同号相减如果a、b都是正数或都是负数,则|a|+|b|=|a+b|。
如果a、b分别是正数和负数,则|a|-|b|=|a+b|。
2.绝对值的分段函数表示当x≥0时,|x|=x;当x<0时,|x|=-x。
三、绝对值的应用1.求距离我们可以通过绝对值来求两个点之间的距离。
比如,点A(-5,0)和点B(3,0)之间的距离,可以表示为|3-(-5)|=8。
可以利用勾股定理求得这条线段长度为8。
2.判断大小有时候,我们需要判断两个数谁比较大。
对于正数a和b,如果|a|>|b|,则a的值较大;如果|a|<|b|,则b的值较大;如果|a|=|b|,则a和b的值相等。
3.解不等式绝对值在解不等式中也很常用。
比如,|x+3|>5,我们可以通过将不等式转化为二元一次不等式进行求解,也可以通过绝对值的定义直接求解。
通过上述三个绝对值的应用,我们可以看出绝对值在数学中的重要性。
在学习绝对值的过程中,不仅需要掌握相关定义和运算方法,还需要灵活运用,并结合几何和代数的知识,来解决实际问题。
四、举例说明例1.计算-5与3的绝对值之和。
|(-5)|+|3|=5+3=8。
因此,-5与3的绝对值之和为8。
例2.计算|-5-3|。
|-5-3|=|-8|=8。
因此,|-5-3|=8。
例3.解不等式|2x-6|≥4。
当2x-6≥0时,|2x-6|=2x-6;当2x-6<0时,|2x-6|=-(2x-6)。
人教版七年级数学上册:1.2.4《绝对值》教案4
人教版七年级数学上册:1.2.4《绝对值》教案4一. 教材分析《绝对值》是人教版七年级数学上册第一章第二节第四个小节的内容。
绝对值是实数的一个基本概念,也是初中数学中的重要内容。
它不仅涉及到有理数的分类,而且还是解一元一次方程、不等式以及函数等数学问题的重要工具。
本节课主要让学生了解绝对值的概念,掌握绝对值的性质,并能够运用绝对值解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经学习了有理数、实数等基础知识,对于数的概念有一定的了解。
但是,对于绝对值这一概念,学生可能较为陌生,需要通过实例和讲解来理解和掌握。
同时,学生需要具备一定的抽象思维能力,能够从具体的实例中提炼出绝对值的性质。
三. 教学目标1.让学生了解绝对值的概念,能够正确理解绝对值的定义。
2.让学生掌握绝对值的性质,能够运用绝对值的性质解决一些实际问题。
3.培养学生的抽象思维能力,提高学生解决数学问题的能力。
四. 教学重难点1.绝对值的概念和性质。
2.运用绝对值解决实际问题。
五. 教学方法1.采用情境教学法,通过具体实例引入绝对值的概念,让学生在实际情境中理解和掌握绝对值。
2.采用讲授法,讲解绝对值的性质,引导学生通过归纳总结出绝对值的性质。
3.采用练习法,让学生通过解决实际问题,巩固对绝对值的理解和运用。
六. 教学准备1.准备相关的实例,用于引入绝对值的概念。
2.准备PPT,用于展示绝对值的性质和实例。
3.准备一些练习题,用于巩固学生对绝对值的理解和运用。
七. 教学过程1.导入(5分钟)通过一个具体实例,如“小明的家距离学校5公里,请问小明从学校出发,走到家还是走到学校,距离分别是多少?”让学生思考并解答,引出绝对值的概念。
2.呈现(15分钟)PPT展示绝对值的性质,引导学生通过观察和思考,归纳总结出绝对值的性质。
同时,对学生的回答进行点评和指导。
3.操练(15分钟)让学生通过解决一些实际问题,运用绝对值的性质进行计算和解答。
初中数学初一数学上册《绝对值》教案、教学设计
c.编写一个关于绝对值的小故事或小案例,要求能够体现绝对值的概念和解题方法。
3.实践作业:鼓励学生参与实践活动,将绝对值知识应用于实际问题中。
a.调查并记录一天内家中或学校的温度变化,用绝对值表示温度差。
b.通过互联网或图书馆资源,查找绝对值在科学、工程等领域中的应用实例,并撰写简要报告。
3.情感态度与价值观:强调数学在实际生活中的重要作用,激发学生学习数学的兴趣,培养积极向上的学习态度。
4.课后作业:布置适量的课后作业,巩固所学知识,提高学生的解题能力。
五、作业布置
1.基础作业:根据课堂学习内容,布置以下基础作业,旨在巩固学生对绝对值概念的理解和应用。
a.完成课本第chapter页的练习题,包括填空、选择和解答题,要求学生在规定时间内独立完成。
2.教学过程:
a.导入:通过一个关于距离的问题,引出绝对值的概念,激发学生的好奇心。
b.新课内容:讲解绝对值的概念、性质和应用,结合数轴、几何图形等直观手段,帮助学生形象地理解。
c.例题讲解:设计不同类型的例题,由浅入深地讲解,让学生掌握解决含有绝对值问题的方法。
d.课堂练习:布置具有梯度、层次的练习题,让学生在练习中巩固所学知识,提高解题能力。
3.通过解决实际问题,培养学生的实际应用能力,提高解决现实问题的信心。
4.培养学生的逻辑思维能力,严谨求实的科学态度,形成良好的思维习惯。
5.鼓励学生积极参与课堂讨论,尊重他人意见,培养团结协作精神。
二、学情分析
针对初中一年级学生,他们在学习《绝对值》这一章节时,已经掌握了有理数的概念、运算法则及数轴的基本知识。在此基础上,学生对绝对值的学习具备了一定的基础。然而,由于绝对值的概念较为抽象,学生可能会在理解上存在困难。因此,在教学过程中,教师需要关注以下几点:
绝对值人教版数学七年级上册教案
绝对值人教版数学七年级上册教案一、教学目标1.理解绝对值的概念,掌握绝对值的性质。
2.能够正确求解绝对值表达式。
3.培养学生的逻辑思维能力和解决问题的能力。
二、教学重点与难点重点:绝对值的概念和性质。
难点:绝对值表达式的求解。
三、教学过程1.导入同学们,我们之前学习了有理数的概念,那么大家知道什么是绝对值吗?今天我们就来学习绝对值的相关知识。
2.新课讲解我们来了解一下什么是绝对值。
绝对值是一个数到0的距离,用符号“”表示。
比如,|-5|表示-5到0的距离,也就是5。
同样,|5|也表示5到0的距离,也是5。
我们来看一下绝对值的性质:①任何数的绝对值都是非负数。
②0的绝对值是0。
③互为相反数的两个数的绝对值相等。
下面,我们通过一些例子来巩固一下绝对值的概念。
请大家看黑板,我要写一些数,你们来判断这些数的绝对值分别是多少。
3.课堂练习(1)求下列数的绝对值:|-3|,|4|,|-7|,|0|。
(2)判断下列说法是否正确:①绝对值是正数。
②0的绝对值是1。
③互为相反数的两个数的绝对值相等。
(3)求解下列绝对值表达式:①|a|,其中a为任意实数。
②|a3|,其中a为任意实数。
③|a+5|,其中a为任意实数。
4.讨论与交流同学们,现在请大家分成小组,讨论一下如何求解含有绝对值的一元一次方程。
比如,|x2|=3。
每个小组可以尝试给出解题思路,然后我们一起分享。
经过大家的讨论,我们发现求解含有绝对值的一元一次方程的关键是去掉绝对值符号。
具体步骤如下:①当绝对值等于正数时,可以去掉绝对值符号。
②当绝对值等于0时,方程只有一个解。
③当绝对值等于负数时,方程无解。
①|x1|=4②|2x3|=5③|x+2|=06.课后作业(1)教材P42习题1、2、3。
(2)预习下节课内容:绝对值的几何意义。
四、教学反思重难点补充:1.教学重点补充:在讲解绝对值的概念时,通过具体例子让学生直观感受绝对值的意义。
如:|-3|表示-3到0的距离,也就是3,让学生在数轴上标出-3和0,直观看到这个距离。
人教版数学七年级上册1.2.4《绝对值》教学设计
人教版数学七年级上册1.2.4《绝对值》教学设计一. 教材分析绝对值是初中数学中的一个重要概念,对于七年级学生来说是全新的内容。
本节课的内容主要包括绝对值的定义、性质以及绝对值在数轴上的表示方法。
教材通过简单的例子引导学生探究绝对值的性质,让学生在理解绝对值概念的基础上,能够运用绝对值性质解决问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于数轴、有理数等概念有一定的了解。
但绝对值作为一个新的概念,对学生来说仍然具有一定的抽象性。
因此,在教学过程中,教师需要关注学生的认知水平,通过生动形象的例子和直观的数轴演示,帮助学生理解和掌握绝对值的概念和性质。
三. 教学目标1.理解绝对值的定义,掌握绝对值的性质。
2.能够运用绝对值性质解决简单问题。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.绝对值的定义和性质。
2.绝对值在数轴上的表示方法。
3.运用绝对值性质解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入绝对值的概念,让学生在具体的情境中感受绝对值的意义。
2.数形结合法:利用数轴直观地表示绝对值,帮助学生理解和掌握绝对值的性质。
3.引导发现法:教师引导学生发现绝对值的性质,培养学生的探究能力和思维品质。
4.归纳总结法:在教学过程中,教师引导学生总结绝对值的性质,加深学生对知识点的理解。
六. 教学准备1.教学课件:制作内容丰富、形式多样的课件,帮助学生理解和掌握绝对值的概念和性质。
2.数轴教具:准备数轴教具,方便学生直观地理解绝对值在数轴上的表示。
3.练习题:准备一定数量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例引入绝对值的概念,如:“小明的家距离学校5公里,那么小明的家到学校的距离是多少?”引导学生思考并回答问题,引出绝对值的概念。
2.呈现(10分钟)介绍绝对值的定义,即一个数的绝对值是它到原点的距离。
通过数轴演示,让学生直观地理解绝对值的意义。
七年级数学上册(人教版)1.2.4绝对值(第一课时)优秀教学案例
1.设计问题链:设计一系列问题,引导学生从已知的有理数概念逐步过渡到绝对值的概念,激发学生的思考。
2.引导学生探究:通过问题的引导,让学生自主探究绝对值的计算方法,培养学生的自主学习能力。
3.问题解决:引导学生运用绝对值的概念解决实际问题,提高学生解决问题的能力。
(三)小组合作
1.分组讨论:将学生分成小组,让他们在小组内进行讨论,共同探究绝对值的概念和运用方法。
4.小组合作的学习模式:通过分组讨论和小组展示,培养了学生的合作意识和沟通能力,提高了学生的表达能力和解决问题的能力。
5.及时的反馈与总结:在教学过程中,教师及时给予学生反馈,指出学生的错误,并帮助学生改进。在课程结束时,教师引导学生进行总结,巩固所学知识,提高学生的学习效果。
这些亮点体现了本教学案例在教学内容、教学方法和教学评价等方面的优秀表现,有助于提高学生的学习兴趣、培养学生的自主学习能力和合作意识,促进学生的全面发展。同时,这些亮点也展示了教师在教学中的专业素养和敬业精神,为学生的成长提供了良好的教育环境。
2.运用绝对值解决实际问题:通过生活实例,引导学生运用绝对值解决实际问题,提高学生解决问题的能力。
3.数形结合思想:通过数轴的演示,让学生理解绝对值与数轴的关系,培养学生的数形结合思想。
(三)情感态度与价值观
1.培养学生的学习兴趣:通过生动有趣的教学活动,激发学生对绝对值学习的兴趣,提高他们的学习积极性。
2.掌握绝对值的计算方法:学生能够熟练地计算正表示:学生能够理解绝对值在数轴上的表示方法,能够根据绝对值判断点在数轴上的位置。
(二)过程与方法
1.探究绝对值的方法:通过实际例子,引导学生探究绝对值的计算方法,培养学生自主学习能力。
2.小组展示:各小组代表进行展示,分享他们的讨论成果,培养学生的表达能力和合作能力。
人教版初一数学上册绝对值(基础)知识讲解
绝对值(基础)【学习目标】1.掌握一个数的绝对值的求法和性质;2.进一步学习使用数轴,借助数轴理解绝对值的几何意义;3.会求一个数的绝对值,并会用绝对值比较两个负有理数的大小; 4. 理解并会熟练运用绝对值的非负性进行解题. 【要点梳理】 要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0. 要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:两数同号 同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号 正数大于负数 -数为0正数与0:正数大于0 负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1ab<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小. 【典型例题】类型一、绝对值的概念1.求下列各数的绝对值.112-,-0.3,0,132⎛⎫-- ⎪⎝⎭【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解. 【答案与解析】 解法一:因为112-到原点距离是112个单位长度,所以111122-=.因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0. 因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭.解法二:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭.因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0. 因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭. 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法:首先判断这个数是正数、负数还是0.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是0.从而求出该数的绝对值.2.(2015•毕节市)下列说法正确的是( ) A. 一个数的绝对值一定比0大 B. 一个数的相反数一定比它本身小 C. 绝对值等于它本身的数一定是正数 D. 最小的正整数是1 【答案】D .【解析】A 、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B 、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C 、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D 、最小的正整数是1,正确. 【总结升华】此题主要考查了绝对值以及有理数和相反数的定义,正确掌握它们的区别是解题关键. 举一反三:【变式1】求绝对值不大于3的所有整数.【答案】绝对值不大于3的所有整数有-3、-2、-1、0、1、2、3.【变式2】(2015•镇江)已知一个数的绝对值是4,则这个数是 . 【答案】±4.【变式3】数轴上的点A 到原点的距离是6,则点A 表示的数为 . 【答案】6或-6类型二、比较大小3.(2016春•上海校级月考)比较大小: ﹣(﹣1.8)(填“>”、“<”或“=”).【思路点拨】先化简,再比较大小,即可解答. 【答案】<.【解析】解:|﹣1|=1=1.75,﹣(﹣1.8)=1.8, ∵1.75<1.8,∴|﹣1|<﹣(﹣1.8),故答案为:<. 【总结升华】本题考查了有理数大小比较,解决本题的关键是掌握绝对值的化简以及多重复号的化简方法.举一反三:【高清课堂:绝对值比大小 356845 典型例题2】 【变式1】比大小: 653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000;1.38-______-1.384; -π______-3.14.【答案】>;=;>;>;<【变式2】下列各数中,比-1小的数是( )A .0B .1C .-2D .2【答案】C【变式3】数a 在数轴上对应点的位置如图所示,则a ,-a ,-1的大小关系是( ).A .-a <a <-1B .-1<-a <aC .a <-1<-aD .a <-a <-1 【答案】C类型三、绝对值非负性的应用4. 已知|2-m|+|n-3|=0,试求m-2n 的值.【思路点拨】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m|=0,|n-3|=0.因此,2-m=0,n-3=0,所以m=2,n=3.【答案与解析】因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0所以|2-m|=0,|n-3|=0即2-m=0,n-3=0所以m=2,n=3故m-2n=2-2×3=-4.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.类型四、绝对值的实际应用5.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【点评】绝对值越小,越接近标准.举一反三:【变式1】某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L 的误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数.检查结果如下表:+0.0018 -0.0023 +0.0025-0.0015 +0.0012 +0.0010请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?【答案】(1)绝对值不超过0.002的有4瓶,分别是检查结果为+0.0018,-0.0015,+0.0012,+0.0010的这四瓶.(2)第6瓶净含量与规定的净含量相差最少,最接近规定的净含量.【变式2】一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【答案】小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm) .小虫得到的芝麻数为54×2=108(粒) .附录资料:方程的意义(基础)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.【要点梳理】【高清课堂:从算式到方程一、方程的有关概念】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).【高清课堂:从算式到方程二、一元一次方程的有关概念】要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.【高清课堂:从算式到方程三、解方程的依据——等式的性质】要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;⑦251x=+;⑧28553x x-=.【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.举一反三:【变式】下列四个式子中,是方程的是()A. 3+2=5B. x=1C. 2x﹣3<0D. a2+2ab+b2 【答案】B.2.(2015春•孟津县期中)下列方程中,以x=2为解的方程是()A. 4x﹣1=3x+2B. 4x+8=3(x+1)+1C. 5(x+1)=4(x+2)﹣1D. x+4=3(2x﹣1)【答案】C.【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.举一反三:【变式】下列方程中,解是x=3的是( )A.x+1=4 B.2x+1=3 C.2x-1=2 D.217 3x+=类型二、一元一次方程的相关概念3.(2016春•南江县期末)在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.A.1 B.2 C.3 D.4【思路点拨】根据一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1次的整式方程,可以逐一判断.【答案】B.【解析】解:①x2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;③x=0,是一元一次方程;④3﹣=2,是等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B.【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.举一反三:【变式】下列方程中是一元一次方程的是__________(只填序号). ①2x-1=4;②x =0;③ax =b ;④151x-=-. 【答案】①②.类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的. (1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________; (3)如果4334t -=,那么t =________. 【答案与解析】解: (1). 11;根据等式的性质1,等式两边都加上11; (2).(-by ); 根据等式的性质1,等式两边都加上-by ; (3).916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c.B .在等式a =b 两边除以c 2+1,可得2211a bc c =++. C .在等式b ca a=两边都除以a ,可得b =c. D .在等式2x =2a-b 两边都除以2,可得x =a-b. 【答案】B.类型四、设未知数列方程5.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题? 【答案与解析】解:设小明要做对x 道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80. 可以采用列表法探究其解显然,当x =21时,4x-(25-x)×1=80. 所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式.举一反三:【变式】根据下列条件列出方程.(l)x的5倍比x的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.。
人教版七年级数学上册【教学设计】《.4绝对值》(人教)
《1.2.4绝对值》绝对值是新人教版七年级上册第一章第二节第四课时的内容,教材之所以把它安排在此处,是基于以下两个方面的考虑:其一,学生在小学就已经具备距离、两个同类量之间比较的概念,进入初中以来又学习了有理数、数轴、相反数。
学生已经具有了接受绝对值的相关知识的基础。
其二,绝对值概念的掌握可以促进对数轴概念的理解,同时也是数的大小比较、数的运算的基础。
由此,我认为教材把绝对值安排在了此处是起到了承前启后、承上启下的作用。
【知识与能力目标】1、能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值。
2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
【过程与方法目标】1、经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指点思维活动的能力。
2、培养学生分析解决问题的能力,逐步渗透数形结合的数学思想。
【情感态度价值观目标】1、通过解释绝对值的几何意义,渗透数形结合的思想。
2、体验运用直观知识解决数学问题的成功。
【教学重点】绝对值的概念。
【教学难点】绝对值的概念与两个负数的大小比较。
收集相关文本资料,相关图片,相关动画等碎片化资源。
第一课时一、学前准备问题:如下图两辆汽车从同一处O出发,分别向东、西方向行驶10 km,到达A,B两处,它们的行驶路线相同吗?它们的行驶路程相同吗?结论:它们的行驶路线不同,行驶路程相同。
二、合作探究、归纳1、由上问题可以知道,10到原点的距离是,—10到原点的距离也是到原点的距离等于10的数有个,它们的关系是一对 .这时我们就说10的绝对值...是10,—10的绝对值...也是10。
例如,—3.8的绝对值是3.8;17的绝对值是17;—613的绝对值是613。
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣。
问题2:练习,讨论,归纳.1、2的绝对值是____,说明数轴上表示-2 的点到____的距离是____个长度单位。
七年级数学绝对值教案【三篇】
⼩编整理了七年级数学绝对值教案【三篇】,希望对你有帮助!绝对值教案1●教学内容七年级上册课本11----12页1.2.4绝对值●教学⽬标1.知识与能⼒⽬标:借助于数轴,初步理解绝对值的概念,能求⼀个数的绝对值,初步学会求绝对值等于某⼀个正数的有理数。
2.过程与⽅法⽬标:通过从数形两个侧⾯理解绝对值的意义,初步了解数形结合的思想⽅法。
通过应⽤绝对值解决实际问题,体会绝对值的意义。
3.情感态度与价值观:通过应⽤绝对值解决实际问题,培养学⽣浓厚的学习兴趣,使学⽣能积极参与数学学习活动,对数学有好奇⼼与求知欲。
●教学重点与难点教学重点:绝对值的⼏何意义和代数意义,以及求⼀个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某⼀个正数的有理数。
●教学准备多媒体课件●教学过程⼀、创设问题情境1、两只⼩狗从同⼀点O出发,在⼀条笔直的街上跑,⼀只向右跑10⽶到达A点,另⼀只向左跑10⽶到达B点。
若规定向右为正,则A处记作__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(⽤⽣动有趣的引例吸引学⽣,即复习了数轴和相反数,⼜为下⽂作准备)。
2、这两只⼩狗在跑的过程中,有没有共同的地⽅?在数轴上的A、B两点⼜有什么特征?(从形和数两个⾓度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表⽰-和的点呢?⼩结:在实际⽣活中,有时存在这样的情况,⽆需考虑数的正负性质,⽐如:在计算⼩狗所跑的路程中,与⼩狗跑的⽅向⽆关,这时所⾛的路程只需⽤正数,这样就必须引进⼀个新的概念———绝对值。
⼆、建⽴数学模型1、绝对值的概念(借助于数轴这⼀⼯具,师⽣共同讨论,引出绝对值的概念)绝对值的⼏何定义:⼀个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
⽐如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何学好绝对值
绝对值是中学数学的一个重要概念,学好它非常重要。
要学好绝对值,除了熟练掌握正负数、相反数和绝对值的性质外,还应掌握绝对值的几何意义,具体来说要注意以下几点。
一、正确判断正负数,准确写出相反数
例1. 三个数a 、b 、c 在数轴上的对应点如图1,化简a a b c b c ++---=_____。
解:由图1可知c b a b c b a <<><>000,,,,||||。
∴+<-<a b b c 00,
∴原式=--++-=a a b c b c 0
二、逆用绝对值的性质解题
例2. 已知
a b -==123,||,且a b >,则a b +的值为_________。
解: ±=22
∴-=a 12或a -=-12
∴=a 3或a =-1
同理可得b =±3
a b >
∴==-a b 33,或a b =-=-13,
故a b +的值为0或-4
三、利用好绝对值的非负性
例3. 已知
a a
b -+++=3250,求a b +的值。
解: a -3与a b ++25都是非负数,且它们的和为零
∴-=a 30且a b ++=250
∴==-∴+=-=-a b a b 34
341,
四、注意零这一特殊数
例4. 如果a a -+-=440,那么a 的取值范围是_________。
解:由已知式可知a a
-=-44 a -4与4-a 互为相反数
∴-≤∴≤a a 40
4
注意:在这里许多同学只重视a -4是一个负数,而忽视了a -=40也成立这一特殊性,易把答案填为a <4。
五、要有分类讨论的思想
例5. 求代数式a a b b ab ab ++2的值。
解:(1)当a b >>00,时,
原式=
++=++=a a b b ab ab 21214
(2)当a b <<00,时,
原式=
-+-+=--+=-a a b b ab ab 21212
(3)当a b ><00,时,
原式=
+-+-=--=-a a b b ab ab 21212
(4)当a b <>00,时,
原式=
-++-=-+-=a a b b ab ab 21210
综上所述,所求代数式的值为4、-2和0。
六、熟练掌握其几何意义
例6. 求31-+-x x 的最小值。
解:如图2,设数轴上的三点A 、B 、C 所表示的数分别为1、3、x ,其中C 可视为一个动点,这样,此题就可转化为求A C BC +的最小值。
由图形可知,当点C 在线段AB 上时A C BC +最小,此时A C BC A B +==2,故当13≤≤x 时,31-+-x x 有最小值,其最小值为2。
1、已知一个数的两个平方根分别是2a+3和4-a ,求这个数负的平方根是多少
3、已知a 、b 0b =,解关于x 的方程()122
-=++a b x a 。
化简、|23- | + |23-|- |12- |。