材料力学实验报告——桥路与弯曲应力

合集下载

大学材料力学实验报告——桥路与弯曲应力

大学材料力学实验报告——桥路与弯曲应力
实实实实实实实矩形截面梁的加力点位置与支座位置是否正确以梁上刻准梁的截面实实实实实实实实实实实实实实根据尺寸及机械性能指p0实实实实实实实实实实实实实实实熟悉并掌握机的操作程及高速静实实实实实实要稍大于pn实实实实实实实实实以便使不因操作造成实实实实实实实实实实实实实实操作算机的控制行初始平实实实实pn实实量n实实5实实实实实实是否牢靠器工作是否正常排除故障然后重做
75.17019
75.99654
1.09%
40.4
5500
4
383
379
0
0
9
40.4
500
0
381
387
379.5
364.90385
75.17019
75.99654
1.09%
40.4
5500
2
380
378
0
0
(5)按下式计算梁的上下表面最大应力的实验值与理论值的相对误差
并分析产生误差的原因。
产生
分析可能误差:
-60.1163
-50.6644
6.73
5500
7
-297
-304
0
0
4
13.5
500
-1
-150
-149
-151.5
-145.6731
-30.0087
-25.3322
13.5
5500
7
-147
-154
0
0
5
20.2
500
0
-4
-4
-7
-6.730769
-1.38654
0
20.2
5500
5
-5
-10

弯曲正应力实验报告

弯曲正应力实验报告

浙江大学材料力学实验报告(实验项目:弯曲正应力)一、实验目的:1、初步掌握电测方法和多点测量技术。

;2、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。

二、设备及试样:1. 电子万能试验机或简易加载设备;2. 电阻应变仪及预调平衡箱;3. 进行截面钢梁。

三、实验原理和方法:1、载荷P 作用下,在梁的中部为纯弯曲,弯矩为1M=2Pa 。

在左右两端长为a 的部分内为横力弯曲,弯矩为11=()2M P a c -。

在梁的前后两个侧面上,沿梁的横截面高度,每隔4h贴上平行于轴线上的应变片。

温度补偿块要放置在横梁附近。

对第一个待测应变片联同温度补偿片按半桥接线。

测出载荷作用下各待测点的应变ε,由胡克定律知E σε=另一方面,由弯曲公式MyIσ=,又可算出各点应力的理论值。

于是可将实测值和理论值进行比较。

2、加载时分五级加载,0F =1000N ,F ∆=1000N ,max F =5000N ,缷载时进行检查,若应变差值基本相等,则可用于计算应力,否则检查原因进行复测(实验仪器中应变ε的单位是610-)。

3、实测应力计算时,采用1000F N ∆=时平均应变增量im ε∆计算应力,即i im E σε∆=∆ ,同一高度的两个取平均。

实测应力,理论应力精确到小数点后两位。

4、理论值计算中,公式中的31I=12bh ,计算相对误差时 -100%e σσσσ=⨯理测理,在梁的中性层内,因σ理=0,故只需计算绝对误差。

四、数据处理1、实验参数记录与计算:b=20mm, h=40mm, l=600mm, a=200mm, c=30mm, E=206GPa, P=1000N ∆, max P 5000N =, k=2.193-641I==0.1061012bh m ⨯ 2、填写弯曲正应力实验报告表格 (1)纯弯曲的中部实验数据记录(2)横力弯曲的两端实验数据记录五、实验总结与思考题:实验总结:1、在纯弯曲变形的理论中有两个假设,即(1)平面假设,(2)纵向纤维间无正应力。

材料力学——弯曲应力

材料力学——弯曲应力

公式推导
线应变的变化规律 与纤维到中性层的距离成正比。
从横截面上看: 点离开中性轴越远,该点的线应变越大。
2、物理关系
当σ<σP时 虎克定律
E
E
y
y
弯曲正应力的分布规律 a、与点到中性轴的距离成正比; 沿截面高度 线性分布; b、沿截面宽度 均匀分布; c、正弯矩作用下, 上压下拉; d、危险点的位置, 离开中性轴最远处.
M max ymax IZ
x
67.5 103 90 103 5.832 105
104.17MPa
6、已知E=200GPa,C 截面的曲率半径ρ q=60KN/m A FAY B 1m C 3m FBY
M C 60kN m
I z 5.832 105 m 4
M EI
4 103 88 103 46.1MPa 6 7.64 10
9KN
4KN
C截面应力计算
A FA
M 1m
C 1m
B
1m FB
C截面应力分布 应用公式
t ,max
My Iz
2.5KNm
2.5 103 88 103 28.8MPa 6 7.64 10
Fb Fa
C截面: max M C Fb3 62.5 160 32 46.4MPa d W 3
zC
2
0.13
32
(5)结论 轮轴满足强度条件
一简支梁受力如图所示。已知 [ ] 12MPa ,空心圆截面 的内外径之比 一倍,比值不变,则载荷 q 可增加到多大? q=0.5KN/m A B
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式

材料力学梁的弯曲应力

材料力学梁的弯曲应力

ab (y)dd yd
ab
dx
d
y
(a)
——横截面上距中性轴为y处的轴向变形规律。
曲率 1 ( ), 则 ( ); 曲率 1 ( ), 则 ( ); 1 C, y.
当 y0时,0;yym时 ax,ma.x
与实验结果相符。
.
9
(2)应力分布规律
在线弹性范围内,应用胡克定律
sE E y
120
B
x
180
K
FBY
y
FS 90KN
( )
() x
90KN
M ql2/867.5kNm
( )
x
.

30 2. C 截面最大正应力 z C 截面弯矩 MC60kNm
C 截面惯性矩
IZb1h 325.83210 5m4
s C max
M C y max IZ
60 10 3 180 10 3
2 5 . 832 10 5
92 .55 MPa
21
y
q=60KN/m
A
1m
FAY
C
l = 3m
120
B
x
180
K
FBY
y
FS 90KN
( )
() x
90KN
M ql2/867.5kNm
( )
x
.

30 3. 全梁最大正应力 z 最大弯矩
Mmax67.5kNm
截面惯性矩
Iz
bh 3 5.83210 5m4 12
Hale Waihona Puke s maxM max y max IZ
385.106Pa38M 5 Pa
19

《材料力学》 第五章 弯曲内力与弯曲应力

《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。

二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。

变形特点——杆轴线由直线变为一条平面的曲线。

三、梁的概念:主要产生弯曲变形的杆。

四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。

变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。

五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。

2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。

3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。

4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。

5、按杆的横截面上的应力分——纯弯曲;横力弯曲。

六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。

(二)、梁的简化:以梁的轴线代替梁本身。

(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。

2、分布力——荷载作用的范围与整个杆的长度相比不很小时。

3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。

(四)、支座的简化:1、固定端——有三个约束反力。

2、固定铰支座——有二个约束反力。

3、可动铰支座——有一个约束反力。

(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。

超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。

§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。

求:距A 端x 处截面上内力。

解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。

电测弯曲应力实验报告

电测弯曲应力实验报告

电测弯曲应力实验报告电测弯曲应力实验报告一、实验目的通过本次实验,了解弯曲应力的概念,掌握电测法测量材料弯曲应力的方法,熟悉电阻应变片的使用,同时探究不同载荷下的弯曲应力变化规律。

二、实验器材和材料1. 电测模量仪2. 平板弯曲装置3. 电阻应变片4. 匀强截面悬臂梁样品5. 钳子、卡尺等辅助工具三、实验原理1. 弯曲应力在悬臂梁上加一个偏斜载荷,悬臂梁就会发生形变,并且形成一个转矩,这个转矩可以使悬臂梁弯曲。

弯曲时,弯曲截面的一侧受到压应力,而另一侧受到拉应力,弯曲应力就是材料中某一点所受的横向、超出其所处截面的轴向力分量。

2. 电阻应变片电阻应变片又称应变电阻器,是一种基于金属电阻的变形量测量装置。

当电流通过电阻应变片时,金属电阻发生变化,通过电阻测量电路转换为输出的电压信号,这个电压信号与金属电阻的变化成正比。

电阻应变片可以用来测量材料中的应变变化量。

3. 电测法测量弯曲应力利用电阻应变片,可以将材料中的弯曲形变量转化为电阻值变化信号,进而用电阻检测电路将其转换为电压信号。

通过电流、电压和几何参数的关系,可以计算出样品的弯曲应力。

四、实验步骤1. 安装样品将样品安装在平板弯曲装置上,注意悬臂梁的固定端应放置在装置固定架上。

2. 调整电测模量仪接上电源,根据仪器说明书调整仪器,使其能够正常工作,并调整测量范围。

3. 安装电阻应变片将电阻应变片按照说明书装配,并用胶水固定在样品的下表面。

4. 进行载荷实验用载荷装置施加不同的偏斜载荷,记录电测模量仪的读数,并记录电压计量器的读数。

5. 数据处理根据仪器说明书,用实验数据计算弯曲应力的数值,并绘制出不同载荷下的弯曲应力-载荷曲线。

五、实验结果利用电测法测量到的悬臂梁的弯曲应力-载荷曲线如下图所示:六、实验讨论和结论通过电测法测量弯曲应力可以得到样品在不同偏斜载荷下的弯曲应力-载荷曲线,通过观察、分析,可以得出以下结论:1. 随着偏斜载荷的增加,样品弯曲应力的数值也逐渐增大,符合弯曲时弯曲截面的一侧受到压应力,而另一侧受到拉应力的规律。

桥路与弯曲应力实验(工程力学)

桥路与弯曲应力实验(工程力学)

P
h
ε
实验方法 测试 实验 ?
3 4 2 1
σ=Eε

理论
My
I
y
9个测点
5 6 7 8 9
截面
应力分布图

σ
σ
单向应力状态
பைடு நூலகம்
电阻片的工作原理
金属丝的电阻应变效应
电阻应变片主要是根据金属丝的电阻应变效应的物理 学原理工作的。由物理学可知,导线电阻的表达式:
R l s
将电阻应变片粘贴在受载构件上,当受到拉伸、压缩时 金属丝长度将发生变化,造成电阻值发生变化。由实验 可知,当变形在一定范内,线应变与电阻变化率之间存 在线性关系。即:
半桥 全桥
对臂
启动测试系统软件
用鼠标双击该图标
联机参数设置界面
2.08 (ΔR/R=kε)
选择与接线相对应的 组桥方式: 1-1 公用补偿的¼ 桥 1-2 半桥 1-4 对臂 1-5 全桥
联机后,计算机自动检 测到的测量单元编号
自动平衡
1. 检查通道是否接通 2. 读取初始值,通道清零
接好导线
正确画法
实验应力计算 σ σ
单向应力状态
单向虎克定律: 实验
E
实验应力计算
σy xy σx σx
xy
σy
复杂应力状态
广义虎克定律:???
每个通道都是一个独立的惠斯通电桥可以组等一个通道放大图一个通道放大图11用鼠标双击该图标用鼠标双击该图标12联机后计算机自动检测到的测量单元编号联机后计算机自动检测到的测量单元编号208选择与接线相对应的组桥方式
材料力学电测实验部分
桥路与弯曲实验
航天航空学院工程力学系

材料力学(给排水)第四章-弯曲应力

材料力学(给排水)第四章-弯曲应力

弯曲应力的计算方法
1 梁弯曲公式
常用于计算直梁受弯时的应力分布和最大应 力值。
2 等强度法
常用于计算不同形状截面的梁受弯时的应力 分布。
弯曲应力的分布特点
1 最大应力出现在最远离中性轴的位置
2 中性轴附近应力应变
2 下表面拉应变
3 中性面应变为0
弯曲应力的应力-应变关系
1 胡克定律
当弯曲应力小于材料的弹性极限时,应力与 应变成正比关系。
2 弹性模量
描述了材料在受力时的变形程度。
材料力学中常见的弯曲应力计算问题
1 悬臂梁的最大弯曲应力计算
2 叠木梁的弯曲应力分布计算
3 榀形梁的弯曲应力计算
弯曲应力的工程应用及实例
1 建筑结构设计
弯曲应力的分析和计算对 于设计坚固和稳定的建筑 结构至关重要。
2 桥梁工程
弯曲应力的研究可以帮助 工程师设计和评估桥梁的 结构和安全性。
3 车辆设计
在汽车和飞机等交通工具 的设计过程中,弯曲应力 是一个重要的考虑因素。
材料力学(给排水)第四章 -弯曲应力
在材料力学中,弯曲应力是一个重要的概念,它涉及到物体在受力时的弯曲 情况。本章将介绍弯曲应力的定义、计算方法、分布特点、应变状态、应力应变关系以及其工程应用及实例。
弯曲应力的定义
1 弯曲应力
当一个物体受到外力作用而发生弯曲时,物体内部会出现垂直于弯曲面的应力,这种应 力即为弯曲应力。

材料弯曲实验报告doc

材料弯曲实验报告doc

材料弯曲实验报告篇一:3-材料力学实验报告(弯曲)材料力学实验报告(二)实验名称:弯曲正应力实验一、实验目的二、实验设备及仪器三、实验记录测点1的平均读数差ΔA1平=? ? ? ? A? 10 ? ?61平1平梁的材料:低碳钢(Q235) 梁的弹性模量E=200GPa梁的截面尺寸高H=宽b= 加载位置 a=W ? bH2抗弯截面模量 Z 6?平均递增载荷? P 平 ?与ΔP相应的弯矩 ? M ? ?Pmax2平? a ?四、测点1实验应力值与理论应力值的比较?1 实 ?E . ??1平?? ?Mmax1 理 ?W?Z误差: ?1理??1实? 100?%?1理五、回答问题1.根据实验结果解释梁弯曲时横截面上正应力分布规律。

2.产生实验误差的原因是由哪些因素造成的?审阅教师篇二:材料力学实验报告(2)实验一拉伸实验一、实验目的1.测定低碳钢(Q235)的屈服点?s,强度极限?b,延伸率?,断面收缩率?。

2.测定铸铁的强度极限?b。

3.观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。

4.熟悉试验机和其它有关仪器的使用。

二、实验设备1.液压式万能实验机;2.游标卡尺;3.试样刻线机。

三、万能试验机简介具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成;1)加载部分,利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。

2)测控部分,指示试件所受载荷大小及变形情况。

四、试验方法1.低碳钢拉伸实验(1)用画线器在低碳钢试件上画标距及10等分刻线,量试件直径,低碳钢试件标距。

(2)调整试验机,使下夹头处于适当的位置,把试件夹好。

(3)运行试验程序,加载,实时显示外力和变形的关系曲线。

观察屈服现象。

(4)打印外力和变形的关系曲线,记录屈服载荷Fs=22.5kN,最大载荷Fb =35kN。

(5)取下试件,观察试件断口: 凸凹状,即韧性杯状断口。

桥路与弯曲应力实验实验报告

桥路与弯曲应力实验实验报告

桥路与弯曲应⼒实验实验报告桥路与弯曲应⼒实验实验报告实验⽇期:2011年10⽉31⽇姓名:王泽源学号:2010010161 同组⼈:谭谦、李好⼀、实验⽬的1、测定矩形梁在横弯条件下指定截⾯的应⼒分布规律,并与理论值进⾏⽐较;2、初步掌握电阻应变仪的使⽤⽅法。

3、利⽤已有布⽚⽅案进⾏各种组桥,并⽐较不同组桥⽅式的测量结果,学习提⾼测量灵4、敏度的⽅法,并计算出各种组桥⽅式下的桥臂系数B;⼆、实验设备及装置简图1、实验装置简图对于该简图,有以下要求:(1)跨度L,⽀点到截⾯距离a要校准;(2)梁⾼h与梁宽b需要⾃⼰量测;(3)侧⾯电阻⽚间距8mm,上、下⽚距边缘4mm。

2、实验设备实验所⽤设备包括:游标卡尺(精度0.02mm)、刻度尺(精度1mm)、YE2539⾼速静态应变仪、补偿⽚、压⼒机三、实验内容及步骤简述实验内容:1、测量矩形截⾯梁指定截⾯的应⼒分布。

通过接线箱对梁上9枚电阻⽚逐⽚进⾏单臂测量,要求每枚电阻⽚不少于2遍有效差值。

所谓差值就是⽤末读数减去初读数,即ε=ε末-ε初2、利⽤梁上下表⾯各两⽚电阻⽚进⾏组桥训练。

内容包括:(1)半桥测量:两⽚⼯作⽚,选所感应的应变值符号相反,⼤⼩相等的;(2)对臂测量:两⽚⼯作⽚,选所感应的应变值符号相同。

⼤⼩相等的;(3)全桥测量:四⽚⼯作⽚,选所感应的应变值相同,符号两两相同的。

实验步骤:1、使⽤游标卡尺测量实验梁梁⾼h,梁宽b2、调节实验梁的位置,使梁与压⼒机接触的受压点在梁的正中,尽量保证压⼒没有偏⼼从⽽产⽣弯矩。

调节⽀点使⽀点与截⾯的距离a校准(约为200mm),两个⽀点之间的距离L约为560mm3、梁与⽀点调节好后,先使⽤压⼒机对梁施加约500N的压⼒。

接线,对9个电阻⽚进⾏单臂测量测,测量步骤为:(1)按顺序将试件上粘贴的各个应变⽚(⼯作⽚)接到每个通道的AB接线端上,BB’为短接状态;(2)将温度补偿⽚接到公共端;(3)运⾏软件,⾃动检测联机状态;(4)在参数设置界⾯,设置各测量点连接形式为应变1-1 和设置各测量点灵敏系数K=2.08等参数;(5)在初始载荷时先在⾃动平衡状态按‘⾃动平衡’,显⽰测量的⾃动平衡结果;然后转到测量状态,按‘扫描采样’采样⼀次,显⽰初始值,数值⼩于19999,接线正常;(6)正式实验,在初载500N 时‘⾃动平衡’和‘扫描采样’,测量初始应变值;(7)在末载5500N 时,直接‘扫描采样’ ,测量末载应变值;(8)实验时随时抄下采集的数据,平衡数据不抄。

材料的抗弯实验实验报告(3篇)

材料的抗弯实验实验报告(3篇)

第1篇一、实验目的1. 了解材料在弯曲载荷作用下的力学行为。

2. 掌握材料抗弯性能的测试方法。

3. 研究不同材料在弯曲载荷下的变形和破坏规律。

4. 通过实验数据,分析材料的抗弯强度和弯曲刚度。

二、实验原理材料在受到弯曲载荷时,其内部将产生弯矩和剪力,导致材料发生弯曲变形。

本实验通过测试材料在弯曲载荷作用下的变形和破坏情况,来研究材料的抗弯性能。

根据材料力学理论,材料的抗弯强度和弯曲刚度可以通过以下公式计算:1. 抗弯强度(σ):σ = M / W,其中M为弯矩,W为截面模量。

2. 弯曲刚度(E):E = F / ΔL,其中F为作用力,ΔL为弯曲变形长度。

三、实验设备及材料1. 实验设备:万能材料试验机、游标卡尺、弯曲试验台、支架、砝码等。

2. 实验材料:低碳钢、铝合金、木材等不同材料的试件。

四、实验步骤1. 准备实验材料:根据实验要求,选择不同材料的试件,并按照规定的尺寸进行加工。

2. 安装试件:将试件固定在万能材料试验机的弯曲试验台上,确保试件中心线与试验机中心线对齐。

3. 设置实验参数:根据实验要求,设置试验机的加载速度、最大载荷等参数。

4. 加载:缓慢加载至规定载荷,观察试件的变形和破坏情况。

5. 记录数据:记录试件的弯曲变形、破坏载荷等数据。

五、实验结果与分析1. 低碳钢试件:在弯曲载荷作用下,低碳钢试件首先发生弯曲变形,随后出现裂缝,最终发生断裂。

实验结果表明,低碳钢具有较高的抗弯强度和弯曲刚度。

2. 铝合金试件:在弯曲载荷作用下,铝合金试件发生较大的塑性变形,但最终未发生断裂。

实验结果表明,铝合金具有较高的弯曲刚度,但抗弯强度相对较低。

3. 木材试件:在弯曲载荷作用下,木材试件首先发生弯曲变形,随后出现裂缝,最终发生断裂。

实验结果表明,木材具有较高的抗弯强度,但弯曲刚度相对较低。

六、结论1. 低碳钢、铝合金、木材等不同材料在弯曲载荷作用下的抗弯性能有所不同。

2. 低碳钢具有较高的抗弯强度和弯曲刚度,适用于承受较大弯曲载荷的场合。

材料弯曲实验报告总结(3篇)

材料弯曲实验报告总结(3篇)

第1篇一、实验目的本次材料弯曲实验的主要目的是了解和掌握材料在弯曲过程中的力学性能,验证材料力学基本理论,提高对材料力学实验方法的认识。

通过实验,观察和分析不同材料在不同条件下的弯曲行为,为工程设计和材料选择提供理论依据。

二、实验原理材料在弯曲过程中,受到弯矩和剪力的影响,产生正应力和剪应力。

根据材料力学的基本理论,我们可以通过计算得到材料在弯曲过程中的应力分布和变形情况。

实验中,我们主要关注材料的弯曲正应力,即材料在弯曲过程中产生的垂直于中性轴的应力。

三、实验设备与材料1. 实验设备:弯曲试验机、万能材料试验机、测量仪器(如位移计、应变片等)、计算机等。

2. 实验材料:碳素钢、不锈钢、铝合金、塑料等。

四、实验步骤1. 根据实验要求,选择合适的材料,并进行加工处理,确保试样的尺寸和形状符合实验要求。

2. 将试样安装在弯曲试验机上,调整试验机的参数,如加载速度、加载方式等。

3. 对试样进行弯曲试验,记录实验过程中的数据,如位移、应变等。

4. 利用测量仪器对试样进行应变测量,通过应变片采集数据。

5. 对实验数据进行处理和分析,计算材料在弯曲过程中的应力分布和变形情况。

五、实验结果与分析1. 实验结果表明,不同材料在弯曲过程中的力学性能存在差异。

碳素钢具有较高的抗弯强度和刚度,适用于承受较大载荷的工程结构;不锈钢具有良好的耐腐蚀性能,适用于腐蚀性环境;铝合金具有较低的密度,适用于轻量化设计;塑料具有较好的韧性,适用于需要一定变形能力的场合。

2. 实验结果表明,材料在弯曲过程中的应力分布呈现非线性规律。

中性轴附近应力较大,远离中性轴的应力逐渐减小。

在材料弯曲过程中,最大应力出现在中性轴处。

3. 实验结果表明,材料在弯曲过程中的变形情况与材料的弹性模量和泊松比有关。

弹性模量较大的材料,其变形较小;泊松比较大的材料,其横向变形较大。

六、实验结论1. 通过本次材料弯曲实验,我们掌握了材料在弯曲过程中的力学性能,验证了材料力学基本理论。

桥路与弯曲应力实验 ppt课件

桥路与弯曲应力实验 ppt课件

电测法的基本原理:
电阻应变测量(简称电测法)原理是用电阻丝用基体 材料封装成一张片作为敏感元件,将被测构件表面的物理 量等非电量转换成电量进行测量的一种实验方法。

电阻片

测量仪器


构 件
光、电、机械

数据采集与处理
量 值
传感器












敏感元件之一——电阻应变片
电阻片的构造
B 半桥
横截面上应力的分布理论分析基础
在平面弯曲条件下,矩形梁任一 截面Байду номын сангаас的应力沿高度的变化:
No Image
图示分布规律
L/2 x
加载点应该在中点
PL/4
M
2 1 M-x弯距图 -σ -σ

3 4 5 6 7
89
布片图
σ

σ
应力分布图
应力状态
应力与应变关系(小变形条件下) 1.弯曲正应力公式:
Jy 2.虎克定律:
2.半桥测量:桥路中相邻的两个桥臂参与构件的机械变形。 输出的桥压为:
U BD E 4 R R 11E 4K 1
3. 对臂测量:桥路中相对的两个桥臂参与构件机械变形。输
出的桥压为:
U 4 EK EK
4 BD
12 3 4
41
4.全桥测量:桥路中四个桥臂全部参与构件机械变形。输 出的桥压为:
形时,桥臂上的阻值分别变为: R1+R1 、R2+R2、 R3+R3、
R4+R4。此时BD点的输出电压为:

材料力学-弯曲应力

材料力学-弯曲应力
超静定梁
超静定梁
q
Hale Waihona Puke L/2L/2q
L
M
M
*
5-6 提高梁强度的主要措施
合理设计截面
合理放置截面
增大 WZ
*
5-6 提高梁强度的主要措施
合理放置截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
充分利用材料特性合理设计截面
脆性材料:
宜上下不对称截面:
T 形,不等边工字型,不等边矩形框等;
中性轴偏向受拉区的一侧
理想的中性轴的位置: 应是最大拉应力和最大压应力同时达到许用应力。
*
讨论:钢筋混凝土楼板,钢筋应该铺设在哪一边?
等强梁的概念与应用
等截面梁WZ为常数,横力弯曲时弯矩M是随截面位置变化的。只有|M|max位置的横截面上应力达到[]。 不合理!
某车间欲安装简易吊车,大梁选用工字钢。已知电葫芦自重
材料的许用应力
起重量
跨度
试选择工字钢的型号。
例题
(4)选择工字钢型号
(5)讨论
(3)根据
计算
(1)计算简图
(2)绘弯矩图
解:
36c工字钢
*
作弯矩图,寻找需要校核的截面
要同时满足
分析:
非对称截面,要寻找中性轴位置
T型截面铸铁梁,截面尺寸如图示。
强度条件
h
max
*
叠合梁问题
悬臂梁由三块木板粘接而成。跨度为1m。胶合面的许可切应力为0.34MPa,木材的〔σ〕= 10 MPa,[τ]=1MPa,求许可载荷
1.画梁的剪力图和弯矩图

弯曲实验报告

弯曲实验报告

弯曲实验报告弯曲实验报告引言:弯曲实验是力学实验中常见的一种实验方法,通过对材料在外力作用下的弯曲变形进行观察和分析,可以得到材料的弯曲性能和力学特性。

本文将围绕弯曲实验展开讨论,包括实验原理、实验步骤、实验结果和实验结论等内容。

实验原理:弯曲实验是利用外力作用在材料上,使其产生弯曲变形,从而研究材料的力学性能。

在实验中,我们通常会使用弯曲试件,如梁或杆,施加一定的力或力矩,观察材料的弯曲变形,并测量相关的物理量,如位移、应变和应力等。

实验步骤:1. 准备工作:选择合适的材料和试件,根据实验要求进行加工和制备。

确保试件的尺寸和几何形状符合实验设计要求。

2. 搭建实验装置:根据实验要求,搭建适当的实验装置,包括支撑和加载系统。

确保试件在实验过程中能够受到均匀的力或力矩作用。

3. 加载试件:施加一定的力或力矩在试件上,使其发生弯曲变形。

可以通过加载装置上的指示器或测力计等设备,实时监测加载力的大小。

4. 记录位移和应变:使用位移计或应变计等设备,记录试件在加载过程中的位移和应变情况。

可以通过数据采集系统,将数据保存在计算机中,以便后续的数据处理和分析。

5. 测量应力:根据试件的几何形状和加载方式,计算或测量试件上的应力分布。

可以使用应力计或应变计等设备,测量试件上不同位置的应力值。

6. 停止加载:当试件达到预定的加载条件或发生破坏时,停止加载试件。

记录停止加载时的位移和应变等数据。

实验结果:通过对实验数据的处理和分析,我们可以得到试件在弯曲加载下的位移、应变和应力等数据。

根据这些数据,可以绘制位移-载荷曲线、应变-载荷曲线和应力-应变曲线等图形。

通过分析曲线的特征和趋势,可以得到试件的弯曲刚度、屈服强度、弹性模量和断裂强度等力学参数。

实验结论:根据实验结果和数据分析,我们可以得出以下结论:1. 弯曲试件在加载过程中会发生弯曲变形,位移和应变随着加载力的增加而增加。

2. 弯曲试件的弯曲刚度与几何形状、材料性质和加载方式等因素有关。

弯曲韧性实验报告

弯曲韧性实验报告

一、实验目的本次实验旨在研究材料在弯曲载荷作用下的韧性性能,通过实验了解材料在弯曲过程中的应力-应变关系、断裂机理以及影响材料韧性的因素。

通过实验结果,对材料的韧性进行评估,为材料的选择和设计提供理论依据。

二、实验原理弯曲韧性实验是材料力学实验中的一种基本实验,主要研究材料在弯曲载荷作用下的韧性性能。

实验原理如下:1. 根据材料力学理论,当材料受到弯曲载荷作用时,横截面上会产生正应力、剪应力以及弯矩。

正应力在材料的弹性变形阶段和塑性变形阶段分别表现为弹性应力和塑性应力。

2. 材料的韧性是指材料在受到外力作用时,抵抗裂纹扩展和断裂的能力。

韧性越好,材料在断裂前能够承受的塑性变形越大。

3. 实验中,通过测量材料在弯曲过程中的最大载荷、断裂载荷、最大弯曲角度、断裂时的塑性变形等参数,可以评估材料的韧性。

三、实验设备与材料1. 实验设备:万能试验机、拉伸试验机、游标卡尺、钢直尺、放大镜等。

2. 实验材料:Q235钢材,规格为50mm×10mm×100mm。

四、实验步骤1. 准备实验材料:将实验材料加工成标准尺寸的试样。

2. 测量试样尺寸:使用游标卡尺测量试样的厚度、宽度、长度等尺寸,确保试样尺寸准确。

3. 加载试验:将试样安装在万能试验机上,调整试验机夹具,使试样处于正确的加载位置。

4. 加载过程:启动试验机,按照预定的加载速度对试样进行弯曲试验。

在试验过程中,实时观察试样的变形情况,记录最大载荷、断裂载荷、最大弯曲角度等参数。

5. 断裂试验:在试样断裂后,使用放大镜观察断口,记录断裂类型和断裂机理。

6. 数据处理:根据实验数据,计算材料的韧性指标,如最大载荷、断裂载荷、最大弯曲角度、断裂时的塑性变形等。

五、实验结果与分析1. 实验数据:实验过程中,记录了以下数据:(1)最大载荷:F_max = 12345N(2)断裂载荷:F_break = 9876N(3)最大弯曲角度:θ_max = 45°(4)断裂时的塑性变形:δ_plastic = 8mm2. 结果分析:(1)最大载荷和断裂载荷:实验结果表明,最大载荷F_max大于断裂载荷F_break,说明材料具有一定的韧性。

材料弯曲实验报告

材料弯曲实验报告

材料弯曲实验报告篇一:3-材料力学实验报告(弯曲)材料力学实验报告(二)实验名称:弯曲正应力实验一、实验目的二、实验设备及仪器三、实验记录测点1的平均读数差ΔA1平=? ? ? ? A? 10 ? ?61平1平梁的材料:低碳钢(Q235) 梁的弹性模量E=200GPa梁的截面尺寸高H=宽b= 加载位置 a=W ? bH2抗弯截面模量 Z 6?平均递增载荷? P 平 ?与ΔP相应的弯矩 ? M ? ?Pmax2平? a ?四、测点1实验应力值与理论应力值的比较?1 实 ?E . ??1平?? ?Mmax1 理 ?W?Z误差: ?1理??1实? 100?%?1理五、回答问题1.根据实验结果解释梁弯曲时横截面上正应力分布规律。

2.产生实验误差的原因是由哪些因素造成的?审阅教师篇二:材料力学实验报告(2)实验一拉伸实验一、实验目的1.测定低碳钢(Q235)的屈服点?s,强度极限?b,延伸率?,断面收缩率?。

2.测定铸铁的强度极限?b。

3.观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。

4.熟悉试验机和其它有关仪器的使用。

二、实验设备1.液压式万能实验机;2.游标卡尺;3.试样刻线机。

三、万能试验机简介具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成;1)加载部分,利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。

2)测控部分,指示试件所受载荷大小及变形情况。

四、试验方法1.低碳钢拉伸实验(1)用画线器在低碳钢试件上画标距及10等分刻线,量试件直径,低碳钢试件标距。

(2)调整试验机,使下夹头处于适当的位置,把试件夹好。

(3)运行试验程序,加载,实时显示外力和变形的关系曲线。

观察屈服现象。

(4)打印外力和变形的关系曲线,记录屈服载荷Fs=22.5kN,最大载荷Fb =35kN。

(5)取下试件,观察试件断口: 凸凹状,即韧性杯状断口。

材料力学纯弯曲实验报告

材料力学纯弯曲实验报告

i实测 E i实测
这里, i 表示测量点, E 为材料弹性模量,
c
x y
i 实测
为实测应变。
a
a
P
有关的参数记录 梁截面 b 15.2 (mm) , h 40.0 (mm) 力臂 a 150.0 (mm) ,横力弯曲贴片位置 c 75.0 (mm) 贴片位 置
y1 , y6 y 2 , y7 y3 , y8 y4 , y9 y5 , y0
实验二:梁的纯弯曲正应力试验 一、 实验目的 1、 测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高度变化的分布 规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高 度线性分布。 2、 学习多点静态应变测量方法。
二:实验仪器与设备: ① 贴有电阻应变片的矩形截面钢梁实验装置 ② DH3818 静态应变测试仪 1台 1件
i 实测- i 理论 i
理论
100 %
五、实验步骤 1、开始在未加载荷的时候校准仪器。 2、逆时针旋转实验架前端的加载手轮施加载荷。加载方案采用等量加载法,大约 500N 为一 个量级,从 0N 开始,每增加一级载荷,逐点测量各点的应变值。加到最大载荷 2000N;每次 读数完毕后记录数据。 3、按照上述步骤完成了第一遍测试后卸掉荷载再来一遍。 4、整理实验器材,完成实验数据记录。 六:实验数据与数据处理:
Page 4 of 10
-166 -158 -162 -76 -72 -74 2 2 2 78 76 77 156 152 154
-212 -210 -211 -98 -100 -99 4 0 2 104 102 103 202 202 202
中山大学工学院、理论与应用力学刘广编制

电测弯曲应力试验报告

电测弯曲应力试验报告
天津大学机械工程学院力学工程实验中心
电测弯曲应力试验
姓名 同组人 一、实验目的:
专业
年级
实验报告
班级 得分
二、实验设备: 设备名称
型号
量程
分辨力
三、装置简图:
四、数据记录和处理
1.梁的基本参数
宽度 高度 跨距 加载点至支座

b
h
l
a

mm mm mm
mm


2.电阻应变片规格 ①尺寸:
电测弯曲应力试验
误差δ
电测弯曲应力试验
2
试验日期:
年月日
天津大学机械工程学院力学工程实验中心4.根据试验测得之应力值绘制梁各面的应力分布图实验报告
五、结论(可结合讲义中的思考题)
电测弯曲应力试验
3
试验日期:
年月日
测点应变平 均值∆ε
由应变试验 值计算应力
∆σ试验 计算理论值
∆σ理论 应力相对
误差δ
测点号
桥路 联接图
载荷 N
总值 增量
应变µε 读数 增量
应变µε 读数 增量
应变µε 读数 增量
应变µε 读数 增量
应变µε 读数 增量
测点应变平 均值∆ε
由应变试验 值计算应力
∆σ试验 计算理论值
∆σ理论 应力相对
②电阻值:
应变片距中性层 Y1 mm
应变片距中性层 弹性模量
Y2
E
mm
Gpa
③灵敏系数:
1
试验日期:
年月日
天津大学机械工程学院力学工程实验中心
实验报告
3.测试结果与分析 测点号
桥路 联接图
载荷 N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验名称:桥路与弯曲应力实验
实验日期:2012.3.22 实验人:XXX 学号:XXXXXX
班级:XXXXX 同组人员:XXX
一.实验目的
1. 测量矩形截面梁在横弯时指定截面的最大应变值,比较和掌握不同组桥方式如何提高测量灵敏度的方法。

并求出各种组桥方式下的桥臂系数B。

2. 测量矩形梁在横弯条件下指定截面的应力分布规律,并与理论值进行比较。

二.实验装置及仪器设备
1.实验装置
本实验是将矩形截面梁安置在WDW-3020型电子万能试验机上,梁的受力方式为三点弯曲。

通过试验机的控制面板操作试验机,实现对三点弯曲梁加载,施加的载荷由控制面板读出。

在指定截面上沿梁的高度分布有9枚电阻应变片,施加到额定载荷时,由YE2539高速静态应变测试系统自动检测电阻应变片所感受的应变值。

装置简图如图2-7所示。

2.实验设备
1)WDW-3020电子万能试验机
2)矩形截面梁一根
3)YE2539高速静态应变测试系统
三.实验基本原理
在平面弯曲条件下,矩形截面梁任一截面上的应力沿高度的变化可按下式计算。

式中:
M——该截面上的弯距;
Jy ——截面惯性距;
Z——所求点至中性轴的距离。

其最大应力产生在上、下表面,最大值为
式中W为梁的抗弯截面系数。

(2-13)式是在平面假设的条件下推导出来的,是否正确可通过实验来验证。

本实验指定截面的电阻应变片布置如图(2.7)所示。

在初载荷P0和末载荷PN时,通过应变仪分别读出测量值即为初读数ε0 和末读数εN。

此时各片电阻片的测量应变值为Δε=εN-ε0,通过ζ=Eε即可计算出各点的应力值。

在梁的上下表面各布置了两枚电阻片,可利用各种组桥方式测定最大应变值,并比较各种组桥方式下的灵敏度大小。

四.实验步骤
1. 检查矩形截面梁的加力点位置与支座位置是否正确(以梁上刻线为准),梁的截面
尺寸由同学自己测量。

2. 根据试样尺寸及机械性能指标计算试验的许可载荷,并确定初载荷P0及末载荷PN,
单位为牛(N)。

3. 熟悉并掌握试验机的操作规程及高速静态应变测试系统的使用方法;设置试验的
负荷定载值,该值要稍大于PN值,以便使试样不因误操作造成试样的损坏。

启动
试验机预加载荷到P0值。

待仪器稳定后,通过操作计算机的控制软件进行初始平
衡和试采样,使测量的各通道应变初值ε0置零;然后将载荷加至PN值测量εN,
求出两次读数差值。

共重复加卸载2~3次,每次 ε相对误差不超过5%,否则应
检查接线是否牢靠,仪器工作是否正常,排除故障然后重做。

4.用单臂组桥方法测9个应力片的ε0、εN,计算实验△ε、σ实,理论σ理,并比较相对误差。

测量梁的尺寸数据。

5. 完成全部试验内容,实验数据经教师检查合格后,卸掉载荷、关闭电源、拆下引
线、整理好实验装置,将所用工具放回原处后离开实验室。

5. 试验数据的整理及结果计算
(5)按下式计算梁的上下表面最大应力的实验值与理论值的相对误差
并分析产生误差的原因。

产生
分析可能误差:
1.仪器测定应变的精度。

2.可能载荷的加载有误差,不是500,5500N。

3.应变片贴面的位置不处于均分状态。

4.由于弯曲应力公式中Iz的计算h三次方项,因此h的测定会产生较大的误差。

5.应变片本身的问题,如,本实验中第一号应变片位于上表面,在上下表面其他的三个应
变片都十分接近的情况下,唯独其一个有较大误差,受载荷不正对的可能性排除,因此十分有可能就是应变片自身的误差。

七. 思考题
1.如果中性层的实测应变值不为零是由什么原因产生的?它与相临两片的数据有何
关系,如何修正?
2.分析造成梁上表面或下表面两片电阻片的实测值不相同的原因,如何修正。

3.如果试验机压头不垂直与梁的表面,会对实验结果产生什么影响,如何利用组桥方
法消除这种影响。

4.假如一个立柱受偏心压缩,如何布片既能测出轴力又能测出弯距。

如何组桥?
八. 实验原始数据
1. 初载荷P
0=500N;末载荷P
N=5500N。

2. 梁的截面尺寸:h=40.38mm ;b=24.21。

3. 支座跨度L=650mm,a=200mm。

4. 电阻应变仪的灵敏系数K仪=2.0, 电阻片灵敏系数K片=2.08。

6. 试样的弹性模量E=2.06×10^5Mpa。

7. 加载速度1mm/min,接近额定载荷时0.05mm/min。

相关文档
最新文档