应用抽样技术课后习题答案
抽样技术课后习题答案
抽样技术课后习题答案第⼆章习题2.1判断下列抽样⽅法是否是等概的:(1)总体编号1~64,在0~99中产⽣随机数r ,若0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产⽣随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产⽣随机数r 。
然后⽤19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有⼀些⼏个特点:第⼀,按照⼀定的概率以随机原则抽取样本。
第⼆,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当⽤样本对总体⽬标进⾏估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
2.2抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同?解析:抽样理论和数理统计中关于样本均值的定义和性质的不同抽样理论概率统计定义 ∑==ni i y n y 11∑==ni iy n y 11性质1.期望()()()()Y C P E NN C N C ===∑∑==n n1i n i 1i i i 1y y y2.⽅差()()()[]()iiP y E y y V n N21∑=-==()()[]n NC i iiC y E y n N121∑=- ()21S nf -=1.期望()??=∑=n i i y n E y E 11()∑==ni y E 1i n 1[]µµ==n n12.⽅差()[]2µ-=i y E y V211-=∑=n i i y n E µ()ny n 122i σµ=-=E2.3为了合理调配电⼒资源,某市欲了解50000户居民的⽇⽤电量,从中简单随机抽取了300户进⾏,现得到其⽇⽤电平均值=y 9.5(千⽡时),=2s 206.试估计该市居民⽤电量的95%置信区间。
应用抽样技术课后习题答案
=(0.0907,0.4433)
N1的95%的置信区间为: (159,776) 95%的置信区间为 (159, 的置信区间为:
(3)N=1750,n=30, (3)N=1750,n=30,n1=8, t=1.96, p=0.267, q=1q=1-0.267=0.733 由此可计算得: t 2q 1.962 × 0.733 n0 = 2 = =1054.64 r p 0.01× 0.267 n = n0/[1+(n0—1)/N] = 1054.64/[1+1053.64/1750]=658.2942 = 659 计算结果说明,至少应抽取一个样本量为659的简单随机 样本,才能满足95%置信度条件下相对误差不超过10%的精度 要求。
t=1.96 (2)易知,N=1750,n=30, n = 8 1 n 8 N − n 1750 − 30 1− f p= 1 = = 0.267 = = = 0.03389 n −1 (n −1)N 29 ×1750 n 30
pq = p(1 − p) = 0.267 × 0.733 = 0.1957
5.5 证明:由(5.6)得:
V ( yR ) ≈ 1− f n (Yi − RX i )2 ∑
i =1 N
N −n 2 令 Sd = V , Nn
2 d
N −1
=
N −n 2 Sd Nn
则n(NV + S ) = NS ,
2 d
S 2 NSd 从而n = = V 2 2 NV + Sd Sd 1+ NV
第五章 比率估计与回归估计
5.2 N=2000, n=36, 1-α=0.95, t=1.96, ˆ f = n/N=0.018, v(R) = 0.000015359, ˆ se(R) =0.00392 置信区间为[40.93%,42.47%]。 置信区间为[40.93%,42.47%]。
抽样技术课后习题_参考答案_金勇进
第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r ,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。
然后用r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。
第二,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
2.2抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同?300户进行,现得到其日用电平均值=y 9.5(千瓦时),=2s 206.试估计该市居民用电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,5.9y =,2062=s 该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为(394035.95,555964.05) 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。
随机抽取了两百名学生进行调查,得到P=0.35,是估计该大学所有本科生中暑假参加培训班的比例的95%置信区间。
解析:由已知得:10000=N 200=n 35.0=p 02.0==Nnf 又有:35.0)()(===∧p p E p E 0012.0)1(11)(=---=∧p p n fp V该大学所有本科学生中暑假参加培训班的比例95%的置信区间为:])()([2∧∧±P V Z P E α代入数据计算得:该区间为[0.2843,0.4157]2.5研究某小区家庭用于文化方面(报刊、电视、网络、书籍等)的支出,N=200,现抽取一个容量为20的样本,调查结果列于下表:编号 文化支出 编号 文化支出 1 200 11 150 2 150 12 160 3 170 13 180 4 150 14 130 5 160 15 100 6 130 16 180 7 140 17 100 8 100 18 180 9 110 19 170 1024020120估计该小区平均的文化支出Y ,并给出置信水平95%的置信区间。
应用抽样技术课后习题答案.
第二章 抽样技术基本概念
2.7(1)抽样分布: 3 3.67 4.33 5 5.67 6.33 7
1/10 1/10 2/10 2/10 2/10 1/10 1/10 (2)期望为5,方差为4/3 (3)抽样标准误1.155 (4)抽样极限误差2.263 (5)置信区间(3.407,7.933)
第三章 简单随机抽样
3.3为调查某中学学生的每月购书支出水平,在全校 名学生中,用不放回简单随机抽样的方法抽得一 个的样本。对每个抽中的学生调查其上个月的购 书支出金额 (如表1所示)。
(1)在95%的置信度下估计该校学生该月平均购书支 出额;
(2)试估计该校学生该月购书支出超出70元的人数;
(3)如果要求相对误差限不超过10%,以95%的置信 度估计该校学生该月购书支出超出70元的人数比 例,样本量至少应为多少。
故 n ≈ 92.26 ≈93
4.8 解 已知W1=0.7,W2=0.3,p1=1/43,p2=2/57 (1)简单随机抽样 (1+2)/100=0.03 V(P)(1)=0.03*0.97/99=0.0002937 (2)事后分层 Σ0.7*1/43+0.3*2/57=0.0268 V() =Σ2[(1—)/(—1)] =0.72*[1/42](1/43)(42/43)+0.32*[1/56](2/57)(55/57) =0.00031942
由此可计算得:
n0
t2q r2 p
1.962 0.733 0.01 0.267
1054.64
n = n0/[1+(n0—1)] = 1054.64/[1+1053.64/1750]=658.2942 = 659
计算结果说明,至少应抽取一个样本量为659的简单随机样本,才能 满足95%置信度条件下相对误差不超过10%的精度要求。
抽样技术课后习题_参考答案_金勇进
第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r ,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。
然后用r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。
第二,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
2.2抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同?300户进行,现得到其日用电平均值=y 9.5(千瓦时),=2s 206.试估计该市居民用电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,5.9y =,2062=s 该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为(394035.95,555964.05) 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。
随机抽取了两百名学生进行调查,得到P=0.35,是估计该大学所有本科生中暑假参加培训班的比例的95%置信区间。
解析:由已知得:10000=N 200=n 35.0=p 02.0==Nnf 又有:35.0)()(===∧p p E p E 0012.0)1(11)(=---=∧p p n fp V该大学所有本科学生中暑假参加培训班的比例95%的置信区间为:])()([2∧∧±P V Z P E α代入数据计算得:该区间为[0.2843,0.4157]2.5研究某小区家庭用于文化方面(报刊、电视、网络、书籍等)的支出,N=200,现抽取一个容量为20的样本,调查结果列于下表:编号 文化支出 编号 文化支出 1 200 11 150 2 150 12 160 3 170 13 180 4 150 14 130 5 160 15 100 6 130 16 180 7 140 17 100 8 100 18 180 9 110 19 170 1024020120估计该小区平均的文化支出Y ,并给出置信水平95%的置信区间。
应用抽样技术答案
第二章2.1判断题:(1)错;(2)错;(3)对;(4)错;(5)错;(6)错;(7)错;(8)错;(9)对;(10)对;(11)错;(12)错;(13)错。
2.3选择题:(1)b ;(2)b ;(3)d ;(4)c ;(5)c 。
2.7(1)抽样分布:(2)期望为5,方差为4/3 (3)抽样标准误 = = 1.155 (4)抽样极限误差 = 1.96*1.155 = 2.263(5)置信区间 = (5.67-2.263, 5.67+2.263) =(3.407, 7.933)。
若区间两端只考虑抽样分布的可能性取值,则可得该抽样分布作为离散分布的置信区间为[3, 7]第三章3.1 判断题是否为等概率抽样:(1)是;(2)否;(3)是;(4)否。
3.2 (1)5.51==∑iYNY25.6)(122=-=∑Y Y Niσ33.8)(1122=--=∑Y Y N S i (2)样本:(2, 5) (2, 6) (2, 9) (5, 6) (5, 9) (6, 9)()()5.55.775.55.545.361=+++++=∑y E ()∑=+++++=33.8)5.485.05.2485.4(612s E3.3(1) 1682=∑i y 1182662=∑i y03276.0301750/3011=-=-n f 760.5630/1682==y127.8261302^067.503011826611)(11212212=-⨯-=⎪⎭⎫ ⎝⎛--=--=∑∑==y n y n y y n s n i in i i ()07.27271.82603276.012=⨯=-=s nf y v ()203.5)(==y v y se198.10203.596.1)(=⨯=⨯=∆y se t95%置信度下置信区间为(56.067-10.198, 56.067+10.198)=(45.869, 66.265). 因此,对该校学生某月的人均购书支出额的估计为56.07(元),由于置信度95%对应的96.1=t ,所以,可以以95%的把握说该学生该月的人均购书支出额大约在45.87~66.27元之间。
抽样技术课后习题-参考答案-金勇进
抽样技术课后习题-参考答案-金勇进第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r ,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。
然后用r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。
第二,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
2.2抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同?2.3为了合理调配电力资源,某市欲了解50000户居民的日用电量,从中简单随机抽取了300户进行,现得到其日用电平均值=y 9.5(千瓦时),=2s 206.试估计该市居民用电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,5.9y =,2062=s1706366666206*300500003001500001)()ˆ(222=-=-==s nf N y N v YV 19.413081706366666(==)y v 该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为(394035.95,555964.05) 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。
抽样技术课后习题-参考答案-金勇进
抽样技术课后习题-参考答案-金勇进第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r ,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。
然后用r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。
第二,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
2.2抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同?2.3为了合理调配电力资源,某市欲了解50000户居民的日用电量,从中简单随机抽取了300户进行,现得到其日用电平均值=y 9.5(千瓦时),=2s 206.试估计该市居民用电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,5.9y =,2062=s1706366666206*300500003001500001)()ˆ(222=-=-==s nf N y N v YV 19.413081706366666(==)y v 该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为(394035.95,555964.05) 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。
抽样技术课后习题_参考答案_金勇进
第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r,r处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r。
然后用r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。
第二,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
2.2抽样理论和数理统计中关于样本均值y的定义和性质有哪些不同?解析:抽样理论和数理统计中关于样本均值的定义和性质的不同2.3为了合理调配电力资源,某市欲了解50000户居民的日用电量,从中简单随机抽取了300户进行,现得到其日用电平均值=y 9.5(千瓦时),=2s 206.试估计该市居民用电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,5.9y =,2062=s1706366666206*300500003001500001)()ˆ(222=-=-==s n f N y N v YV19.413081706366666(==)y v该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为(394035.95,555964.05) 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。
应用抽样技术答案.doc
第一章1.1判断题:(1)对;(2)对;(3)对;(4)对;(5)错;(6)错;(7)错;(8) 错;(9)错;(10)对•;(11)对。
1.2试分析以下几种抽样属于何种抽样(概率或非概率):(1)概率抽样;(2)非概率抽样;(3)非概率抽样;(4)非概率抽样;(5)非概率抽样;(6)非概率抽样。
1.3选择题:(1) c; (2) c; (3) b; (4) co第二章2.1判断题:(1)错;(2)错;(3)对;(4)错;(5)错;(6)错;(7)错;(8) 错;(9)对;(10)对;(11)错;(12)错;(13)错。
2.3选择题:(2)期望为5,方差为4/3(3)抽样标准误=I,= 1.155(4)抽样极限误差= 1.96*1.155 = 2.263(5)置信区间=(5.67-2.263, 5.67+2.263) = (3.407, 7.933)。
若区间两端只考虑抽样分布的可能性取值,则可得该抽样分布作为离散分布的置信区间为[3,7]第三章3.1判断题是否为等概率抽样:(1)是;(2)否;(3)是;(4)否。
3.2p = — == 0.267 n 30 m=g=°°g30-1⑴歹=土£匕=5.5『=§£(匕_区)2=6.2552 =-^—y(K-r)2 =8.33 N-\- 1(2)样本:(2,5) (2,6) (2,9) (5,6) (5,9) (6,9)此=空(3.5 + 4 + 5.5 + 5.5 + 7 + 7.5)= 5.5 8何)=?Z(4.5 + 8 + 24.5 + 0.5 + 84-4.5) = 8.333.3⑴ £叫=1682 Yy,.2 =118266 上£ =上四登= 0.03276 乙’n 30y = 1682/30 = 56.0672 1 -.2 1 fv -2) H8266-30x50.067A2s =—>()',—)') =—7 L H ~ny = ------------------------------ —— ------------ = 826.271 〃一1旨)30-1*时=上匚2 =0.03276x826.271 = 27.07 nse(项)=0(顼)=5.203△ =,x se(项)=1.96 x 5.203 = 10.19895%置信度下置信区间为(56.067-10.198, 56.067+10.198) = (45.869,66.265). 因此,对该校学生某月的人均购书支出额的估计为56.07 (元),由于置信度95% 对应的『= 1.96,所以,可以以95%的把握说该学生该月的人均购书支出额大约在45.87〜66.27元之间。
抽样技术课后习题-参考答案-金勇进
抽样技术课后习题-参考答案-金勇进第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r ,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。
然后用r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。
第二,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
2.2抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同?2.3为了合理调配电力资源,某市欲了解50000户居民的日用电量,从中简单随机抽取了300户进行,现得到其日用电平均值=y 9.5(千瓦时),=2s 206.试估计该市居民用电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,5.9y =,2062=s1706366666206*300500003001500001)()ˆ(222=-=-==s nf N y N v YV 19.413081706366666(==)y v 该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为(394035.95,555964.05) 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 抽样技术基本概念
2.7(1)抽样分布: 3 3.67 4.33 5 5.67 6.33 7
1/10 1/10 2/10 2/10 2/10 1/10 1/10 (2)期望为5,方差为4/3 (3)抽样标准误1.155 (4)抽样极限误差2.263 (5)置信区间(3.407,7.933)
29、5、28,则客户打入电话的总数: YHH=(35/4)[8/2+29/8+5/1+28/7]=145.46875
(3) 估计量的方差估计 v(YHH)=[n(n—1)]-1Σi=1n(yi/zi—YHH)2 =[352/(4*3)][(8/2—4.15625)2+(29/8—4.15625)2 +(5/1—4.15625)2+(28/7—4.15625)2] =106.4697
(2)易知,N=1750,n=30, n1 8 t=1.96
p n1 8 0.267 n 30
1 f N n 1750 30 0.03389 n 1 (n 1)N 29 1750
pq p(1 p) 0.267 0.733 0.1957
(1 f ) pq 0.03389 0.1957 0.08144 n 1
P2= 0.05, Q2 = 1– P2 = 0.95;
V(p) = 0.05*0.05
PQ
(1) 由
n0
V ( p)
得:
,
n01
0.08 0.92 0.052
30
n02
0.05 0.95 0.052
19
(2 )
Q 由 n0 Cv2 ( p)P 得:
n01
0.92 0.052 0.08
4600
6.1产解生:n令=3个M 0随机10数00,设,则为可1以08得,到59下7表,,75从4,1-则1第00二0、中 第六和第七个单位入样。
6.3欲估计某大型企业年度总利润,已知该企业 有 和8当个年子利公润司Y,i 的下数表据是,各以子M公i作司为上单年位利X润i大X小i 的度量,对子公司进行PPS 抽样,设n=3,试与 简单随机抽样作精度比较。
6.5设总体N=3, zi=1/2,1/3,1/6,Yi=10,8,5, 采取的 n=2的πPS抽样,求πi ,πij (i,j=1,2,3) 。
解:(1)所有可能样本为:(10,8),(10,5),(8, 10),(8,5),(5,10),(5,8),其概率分别为:
=[1402(1—10/140)/10]*194911.1
= 354738222
^
se(Ysrs)= 18834.496
5.6 解 (2) 比率估计: R =∑i=1n Yi/ ∑i=1n Xi = 12600/29.7 = 424.2424 YR= XR = 460*424.2424 = 195151.5(斤)
i 1
1 N 1
N i 1
[Yi
2B(
Xi
X
)
Y
]2
1 1-nf
n
f (SY2
S
2 Y
4B
2
S
2 X
4BSYX
)
1 n
1 f n
SY2 (1 2 ) V ( ylr )
f
[S
2 Y
4B(
BS
2 x
SYX
)]
故估计量 ylr虽然与 yl一r 样都是 Y 的无偏估计,
但方差不小于 yl的r 方差, 当 0时 V ( ylr ) V ( ylr ) ,
表2
某企业各子公司上年与当年利润(单位:万元)
子公司 序号
Xi
Yi
子公司 序号
Xi
Yi
1
1 238 1 353
5
215
281
2
746 639
6
798
954
3
512 650
7
920 1 085
4
594 608
8 1 834 1 629
8
8
6.3 N 8, n 3, X Xi 6857, Yi 7199
V YˆSRS
N
N
n
n
S
2 y
85 3
4580379.69
61071729.2
V YˆSRS 7814.84
PPS 抽样的设计效应是:
deff 342303.5 0.005605 61071729.2
显然对 PPS 抽样,估计量的精度有显著的提高。
6.4 解 (1) PPS的样本抽样方法可采用代码法或拉希里法. (2) 若在时间长度2、8、1、7h中打入电话数量分别为8、
由此可计算得:
n0
t2q r2 p
1.962 0.733 0.01 0.267
1054.64
n = n0/[1+(n0—1)/N] = 1054.64/[1+1053.64/1750]=658.2942 = 659
计算结果说明,至少应抽取一个样本量为659的简单随机 样本,才能满足95%置信度条件下相对误差不超过10%的精度 要求。
n02
0.95 0.052 0.05
7600
第四章 分层抽样
4.3解: (1) yst 20.0( 7 元),s( yst ) 3.0(8 元) (2)按比例分配 n=186,n1=57,n2=92,n3=37 (3)Neyman分配 n=175,n1=33,n2=99,n3=43 4.5 yst 75.7( 9 元),置信区间(60.63,90.95)元。
第五章 比率估计与回归估计
5.2 N=2000, n=36, 1-α=0.95, t=1.96, f = n/N=0.018, v(Rˆ) 0.000015359, se(Rˆ) =0.00392 置信区间为[40.93%,42.47%]。
第五章 比率估计与回归估计
5.3当
方法,当
2CCX=Y时C用X 时第两一种种方方法法都,可当使用。2CC这XY时是用因第为二:种
1 0.0167 2n
P 的95%的置信区间为:
p
(u
1
2
(1 f ) pq 1 ) 0.267 (1.96 0.08144 0.0167) n 1 2n
=(0.0907,0.4433)
N1的95%的置信区间为: (159,776)
(3)N=1750,n=30,n1=8, t=1.96, p=0.267, q=1-0.267=0.733
= CX 2CY
V( y )V(y) 1 f
X
xn
R 2C X (2CY
CX ) 0
CX 2CY
﹥0 V ( y ) V ( y ) 1 f
X
xn
R2CX (2CY
CX )
5.4 解: V(YR)≈[(1—f)/n]Y2[CY2+CX2—2rCYCX] V(Ysrs)=[(1—f)/n]SY2 =[(1—f)/n] CY2Y2
= 20356834
se(Ylr)= 4511.855
5.7解: yElr(ylry)lrEB((EyXlr()ylrx)B) [XYy, VE2(B(xy()lXr])Yx1)nf1nSiYn21(1[ yi
2)
2B(xi
X
)]
V
(
ylr
)
V
{
1 n
n [ yi 2B(xi X )]}=1-nf
第三章 简单随机抽样
3.3为调查某中学学生的每月购书支出水平,在全校 名学生中,用不放回简单随机抽样的方法抽得一 个的样本。对每个抽中的学生调查其上个月的购 书支出金额 yi (如表1所示)。
(1)在95%的置信度下估计该校学生该月平均购书支 出额;
(2)试估计该校学生该月购书支出超出70元的人数;
i 1
i 1
对子公司进行抽样,根据教材(6.7)式:
V (YˆHH )
1 n
N
i 1
Zi
(
Yi Zi
Y )2
1 n
X
N
i 1
Yi 2 Xi
Y
2
1 3
6857
7707.82
71992
342303.5
V YˆHH 585.07
如果对子公司进行简单随机抽样,同样样本量时Y 的 简单估计方差为:
V(Pprop) ≈ΣhWh2 [(1—fh)/nh] Ph Qh ≈ n-1ΣhWh Ph Qh = n-1[0.2*0.1*0.9+0.3*0.2*0.8+0.5*0.4*0.6]
= 0.186 n-1 故 n ≈ 92.26 ≈93
4.8 解 已知W1=0.7,W2=0.3,p1=1/43,p2=2/57 (1)简单随机抽样 Psrs=(1+2)/100=0.03 V(P)=PQ/(n-1)=0.03*0.97/99=0.0002937 (2)事后分层 Ppst=ΣhWhph=0.7*1/43+0.3*2/57=0.0268 V(Ppst) =ΣhWh2[(1—fh)/(nh—1)]phqh =0.72*[1/42](1/43)(42/43)+0.32*[1/56](2/57)(55/57) =0.00031942
Sd2
令
N n Nn
Sd2
V,
则n(NV
S
2 d
)
NS
2,
d
S
2 d
从而n
NS
2 d
V
NV
S
2 d
1
S
2 d
NV
5.6 解 (1) 简单估计:
总产量: Y^ srs=(N/n)∑i=1n Yi=(140/10)[1400+1120+…+480]