人教版数学七年级上册
人教版七年级上册数学全册教学课件完整版
通过对比不同组别或时间点的数据,发现数据间的差异和 变化趋势。比较方法可以是横向比较(同一时间点不同组 别)或纵向比较(同一组别不同时间点)。
数据的相关性分析
探讨两个或多个变量之间的关系,包括正相关、负相关和 无相关。相关性分析可以帮助我们预测一个变量的变化对 另一个变量的影响。
22
06
25
概率在生活中的应用举例
01
02
03
04
游戏公平性的判断
通过计算游戏双方获胜的概率 来判断游戏是否公平。
决策中的风险评估
在决策过程中,通过计算各种 可能结果发生的概率来评估风
险。
医学诊断的准确性
通过计算某种疾病在某种症状 下的条件概率来评估医学诊断
的准确性。
天气预报的可靠性
通过计算某种天气现象在历史 数据中出现的概率来评估天气
04
图形与几何初步
2024/1/26
15
直线、射线、线段和角的概念与性质
射线
射线有一个端点,可以向一个 方向无限延伸。
角的概念
角是由两条有公共端点的射线 组成的图形。
直线
直线是无限延伸的,没有端点 ,可以向两个方向无限延伸。
2024/1/26
线段
线段有两个端点,是直线或射 线的一部分,有一定的长度。
人教版七年级上册数 学全册教学课件完整 版
2024/1/26
1
目 录
2024/1/26
• 绪论 • 有理数及其运算 • 整式的加减与一元一次方程 • 图形与几何初步 • 数据的收集与整理 • 概率初步知识与事件的概率 • 拓展内容:数理逻辑初步
2
01
绪论
2024/1/26
人教版七年级数学上册知识点归纳
第一章有理数1.1 正数和负数(1)大于0的数叫做数;小于0的数叫做数;既不是正数,也不是负数;(2)在同一个问题中,分别用正数和负数表示;(3)和统称为自然数;(4)a 0 ⇔ a是正数; a 0 ⇔ a是非负数;a 0 ⇔ a是负数; a 0 ⇔ a是非正数.1.2 有理数(1)、、统称为整数;、统称为分数;和统称为有理数;(2)有理数的分类:有理数有理数(3)规定了、和的一条直线叫做数轴;(即数轴的三要素)(4)一般地,当a是正数时,则数轴上表示数a的点在原点的,距离原点个单位长度;表示数-a的点在原点的,距离原点个单位长度;(5)一般地,设a是正数,则在数轴上与原点的距离为a的点有个,它们分别在的左右,表示-a和a,我们称这两个点关于对称;(6)称为互为相反数;一般地,a的相反数是;特别地,0的相反数是;(7)相反数的几何意义:数轴上表示相反数的两个点关于原点;(8)a、b互为⇔ a+b= ;(即相反数之和为0)(9)a 、b 互为 ⇔1-=b a 或1-=ab ;(即相反数之 为-1) (10)a 、b 互为 ⇔ |a| |b|;(即相反数的绝对值相等)(11)一般地,在数轴上 叫做a 的绝对值;(|a| 0)(12)一个正数的绝对值是 ;一个负数的绝对值是 ;0的绝对值是 ;绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a (13)01>⇔=a a a ; 01<⇔-=a a a;(14)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从 到 的顺序。
即左边的数 右边的数;(①正数 0,0 负数,正数 负数;②两个负数,其 大的反而小;)1.3 有理数的加减法(1)有理数的加法法则:① 两数相加,取 符号,并把 相加; ② 两数相加,取 符号,并用 减去 ;互为相反数的两个数相加为 ;③一个数与0相加 ;(2)有理数加法的运算律:①加法 律:a+b= ; ②加法 律:(a+b)+c=(3)有理数的减法法则:减去一个数,等于 ;即:a-b=a+( );1.4 有理数的乘除法(1)有理数的乘法法则:①两数相乘,同号得 ,异号得 ,并把 相乘;②任何数与 相乘均为0;(2)倒数:在有理数中仍然成立,即 的两个数互为倒数;(3)积的符号与负因数个数之间的关系:几个不是0的数相乘,当负因数的个数为 数时,积是正数;当负因数的个数为 数时,积是负数;几个数相乘时,当有因数是0时,积为 ;(4)有理数的乘法运算律:①乘法 律:ab= ; ②乘法 律:(ab)c= ; ③乘法 律: a(b+c)= ;(5)有理数的除法法则:除以一个 的数,等于乘以其 ;即:)0(1≠⨯=÷b ba b a (6)两数相除,同号得 ,异号得 ,并把 相除;0除以任一 的数,都得 ;1.5 有理数的乘方(1)乘方: 的运算叫做乘方,乘方的结果叫做 ;(在na 中,a 是 ,n 是 )(2)有理数的乘方运算法则:①负数的 次幂是负数,负数的 次幂是正数;②正数的 次幂是正数;③0的 次幂是0;(3)有理数的混合运算顺序:①先 ,再 ,最后 ;②同级运算,从 到 ;③如有 ,先做 的运算,按 , , 的顺序进行;(4)科学记数法:把一个大于10的数记成 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法;(5)近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数 哪一位.(6)有效数字:从左边 的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.第二章 整式的加减2.1 整式(1)单项式:表示 的式子;(单独一个 或一个 也是单项式)(2)单项式的系数:单项式中的 ;(3)单项式的次数:一个单项式中,所有字母的;(4)多项式:几个的和;(5)多项式的项:叫做多项式的项;(6)多项式的次数:多项式里的次数;(7)常数项:不含的项;(8)整式:与统称为整式;2.2整式的加减(1)同类项:所含相同,并且也相同的项;(几个也是同类项)(2)叫做合并同类项;(3)合并同类项后,所得项的系数是,且字母部分;(4)去(添)括号:①若括号外的因数是数,去括号后原括号内各项的符号与原来的符号相同;②若括号外的因数是数,去括号后原括号内各项的符号与原来的符号相反;不变,都变;(5)一般地,几个整式相加减,如果有括号就先,然后再;第三章一元一次方程3.1 从算式到方程(1)方程:含的叫做方程;(2)一元一次方程:只含一个且都是1的方程叫做一元一次方程;标准式:ax+b=0(x是未知数,a、b是已知数,且a≠0);(3)方程的解:使方程等号左右两边的的值;(4)等式的性质1:等式两边,结果仍相等;如果a=b,那么;等式的性质2:等式两边,或,结果仍相等;如果a=b,那么;如果a=b,c 0,那么;3.2、3.3解一元一次方程——合并同类项与移项、去括号与去分母(1)一元一次方程解法的一般步骤:----------两边同乘()----------注意符号变化()----------注意要变号()--------合并后注意符号()---------等式两边x的系数()3.4实际问题与一元一次方程(1)“表示同一个量的两个不同的式子相等”是一个基本的相等关系;“工作量=人均效率×人数×时间”是计算工作量的常用数量关系式;(2)列一元一次方程解应用题:①读题分析法: 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.②画图分析法: 多用于“行程问题”仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.(3)列方程常用公式1)行程问题:距离=速度×时间;(2)工程问题: 工作量=工效×工时;工程问题常用等量关系: 先做的+后做的=完成量(3)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;顺水逆水问题常用等量关系: 顺水路程=逆水路程(4)商品利润问题: 售价=定价 , %100⨯-=成本成本售价利润率; 利润问题常用等量关系: 售价-进价=利润(5)配套问题:(6)分配问题:第四章 图形认识初步4.1多姿多彩的图形(1)几何图形:把从实物中抽象出的各种图形称为几何图形;(2)立体图形:各部分 同一平面内的几何图形;(如长方体、正方体、圆柱、圆锥、球等)(3)平面图形:各部分 同一平面的几何图形;(如线段、三角形、长方形、圆等)(4)立体图形与平面图形互相联系,立体图形中某些部分是平面图形;(如长方体的侧面是长方形)(5)立体图形的三视图:主视图(从 面看)、左视图(从 面看)、俯视图(从 面看)(6)展开图:有些立体图形是由一些 围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图;(7) 简称为体;(8)包围着体的是 ;(面有 和 两种)(9)面和面相交的地方形成 ;线和线相交的地方形成 ;(10) 动成线、 动成面、 动成体;(11)几何图形都是由、、、组成的,是构成图形的基本元素;4.2 直线、射线、线段(1)一个关于直线的基本事实:经过两点一条直线;简述为:;(2)直线的表示方法:①用一个字母表示直线(如直线l)②用一条直线上的来表示这条直线(如直线AB)射线和线段的表示方法类似;(3)两条直线相交:当两条不同的直线有一个,我们就称这两条直线,这个公共点叫做它们的。
(完整版)最新人教版七年级数学上册目录及知识点汇总
人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
人教版七年级数学上册教案(5篇)
人教版七年级数学上册教案(5篇)最新人教版七年级数学上册教案(5篇)教学过程一般按时间顺序书写,此外也可以加几点总体提示;对教学重点部分所需的时间需要有较好的认知;要有可以舍弃的内容和备用的内容,以便灵活处理。
下面是整理的最新人教版数学七年级上册教案,欢迎阅读与收藏。
最新人教版数学七年级上册教案篇1教学目标【知识与能力目标】1、巩固理解有理数的概念;2、掌握数轴的意义及构成特点,明确其在实际中的应用;3、会用数轴上的点表示有理数。
【过程与方法目标】【情感态度价值观目标】通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
教学重难点【教学重点】数轴的意义及作用。
【教学难点】数轴上的点与有理数的直观对应关系。
课前准备《数学》人教版七年级上册,自制课件教学过程一、探索新知(投影展示)问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m 处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
学生结合上述问题分组讨论,明确以下问题:1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?2、举例说明生活中类似的事例;3、什么叫数轴?它有哪几个要素组成?4、数轴的.用处是什么?5、你会画数轴吗并应用它吗?“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;结论:正数、0和负数可以用一条直线上的点表示出来。
3、展示温度计图形,比较其与图1、2-1的共同点和不同点:共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;不同点:温度计是竖直的,方向感不直观。
4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)(1)数轴的构成三要素:原点、方向、单位长度;(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;5、归纳(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。
人教版数学七年级上册教案(精选14篇)
人教版数学七年级上册教案(精选14篇)人教版数学七年级上册教案第1篇一、教材分析1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用3、教学的重点、难点:重点:邻补角、对顶角的概念,对顶角的性质和应用。
难点:理解对顶角性质的探索(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。
同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。
)4、教学目标:A:知识与技能目标(1).理解对顶角和邻补角的概念,能在图形中辨认.(2).掌握对顶角相等的性质和它的推证过程(3).会用对顶角的性质进行有关的简单推理和计算.B:过程与方法目标(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。
(2).体会具体到抽象再到具体的思想方法.C:情感、态度与价值目标(1).感受图形中和谐美、对称美.(2).感受合作交流带来的成功感,树立自信心.(3).感受数学应用的广泛性,使学生更加热爱数学二、学情分析:在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.三、教法和学法:教法:叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.四、教学过程:1课前准备:课件,剪刀,纸片,相交线模型2教学过程:设置以下六个环节环节一:情景屋(创设情景,激发学习动机)请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线环节二:问题苑(合作交流,解释发现)通过一些问题的设置,激发学生探究的欲望,具体操作:(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。
七年级上册数学课本答案人教版【五篇】
导语:多阅读和积累,可以使学⽣增长知识,使学⽣在学习中做到举⼀反三。
以下是⽆忧考整理的七年级上册数学课本答案⼈教版【五篇】,希望对⼤家有帮助。
习题1.1答案1.解:根据正数、负数的定义可知,正数有:5,o.56,12/5,+2,负数有:-5/7,-3,-25.8,-0.0001.-600.2.解:(1)0.08m表⽰⽔⾯⾼于标准⽔位0.08m;-0.2m表⽰⽔⾯低于标准⽔位0.2m.(2)⽔⾯低于标准⽔位0.1m,记作-0.1m;⾼于标准⽔位0.23m,记作+0.23m(或0.23m).3.解:不对.O既不是正数,也不是负数.4.解:表⽰向前移动5m.这时物体离它两次移动前的位置为Om,即回到了它两次移动前的位置.5.解:这七次测量的平均值为(79.4+80.6+80.8+79.1+80+79.6+80.5)/7=80(m).以平均值为标准,七次测量的数据⽤正数、负数表⽰分别为:-0.6m,+0.6m.+0.8m,-0.9m,Om,-0.4m.⼗0.5rn6.解:氢原⼦中的原⼦核所带电荷可以⽤+1表⽰,氢原⼦中的电⼦所带电荷以⽤-1表⽰.7.解:由题意得7-4-4=-1(℃).8.解:中国、意⼤利服务出⼝额增长了;美国、德国、英国、⽇本服务出⽇额减少了;意⼤利增长率;⽇本增长率最低.习题1.2答案1.解:正数:{15,0.15,22/5,+20,…);负数:{-3/8,-30,-12.8,-60,…}.点拨:依据正负数的概念进⾏准确分类做到不重不漏.2.解:如图1-2-20所⽰.3.解:当沿数轴正⽅向移动4个单位长时,点B表⽰的数是1;当沿数轴反⽅向移动4个单位长时,点B表⽰的数是-7.4.解:各数的相反数分别为4,-2,1.5,0,-1/3,9/4.在数轴上表⽰如图1-2-21所⽰.5.解:⼁-125⼁=125,⼁+23⼁=23,⼁-3.5⼁=3.5,⼁0⼁=0,⼁2/3⼁=2/3,⼁-3/2⼁=3/2,⼁-0.05⼁=0.05.-125的绝对值,0的绝对值最⼩.6.解:-3/2<-2/3<-1/2<-0.25<-0.15<0<0.05<+2.3.7.解:各城市某年⼀⽉份的平均⽓温(℃)按从⾼到低的顺序排列为13.1,3.8,2.4,-4.6,-19.4.8.解:因为l+5l=5,⼁-3.5⼁=3.5,⼁+0.7⼁=0.7,⼁-2.5⼁=2.5,⼁-0.6⼁=0.6,所以从左向右数,第五个排球的质量最接近标准.9.解:-9.6%最⼩.增幅是负数说明⼈均⽔资源占有量在下降.10.解:表⽰数1的点与表⽰-2和4的点的距离相等,都是3.11.解:(1)有,如-0.1,-0.12,-0.57,…;有,如-0.15,-0.42,-0.48,….(2)有,-2;-1,0,1.(3)没有.(4)如-101,-102,-102.5.12.解:不⼀定,x还可能是-2;x=0;x=0.习题1.3答案1.(1)-4;(2)8;(3)-12;(4)-3;(5)-3.6;(6)-1/5;(7)1/15;(8)-41/3.2.(1)3;(2)0;(3)1.9;(4)-1/5.3.(1)-16;(2)0;(3)16;(4)0;(5)-6;(6)6;(7)-31;(8)102;(9)-10.8;(10)0.2.4.(1)1;(2)1/5;(3)1/6;(4)-5/6;(5)-1/2;(6)3/4;(7)-8/3;(8)-8.5.(1)3.1;(2)3/4;(3)8;(4)0.1;(5)-63/4;(6)0.6.解:两处⾼度相差:8844.43-(-415)=9259.43(m).7.解:半夜的⽓温为-7+11-9=-5(℃).8.解:132-12.5-10.5+127-87+136.5+98=383.5(元).答:⼀周总的盈亏情况是盈利383.5元.9.解:25×8+1.5-3+2-0.5+1-2-2-2.5=200-5.5=194.5(kg).答:这8筐⽩菜⼀共194.5kg.10.解:各天的温差如下:星期⼀:10-2=8(℃),星期⼆:12-1=11(℃),星期三:11-0=11(℃),星期四:9-(-1)=10(℃),星期五:7-(-4)=11(℃),星期六:5-(-5)=10(℃),星期⽇:7-(-5)=12(℃).答:星期⽇的温差,星期⼀的温差最⼩.11.(1)16(2)(-3)(3)18(4)(-12)(5)(-7)(6)712.解:(-2)+(-2)=-4,(-2)+(-2)+(-2)=-6,(-2)+(-2)+(-2)+(-2)=-8,(-2)+(-2)+(-2)+(-2)+(-2)=-10,(-2)×2=4,(-2)×3=-6,(-2)×4=8,(-2)×5=-10.法则:负数乘正数积为负,积的绝对值等于两个数的绝对值的积.13.解:第⼀天:0.3-(-0.2)=0.5(元);第⼆天:0.2-(-0.1)=0.3(元);第三天:0-(-0.13)=0.13(元).平均值:(0.5+0.3+0.13)÷3=0.31(元).习题1.4答案1.解:(1)(-8)×(-7)=56;(2)12X(-5)=-60;(3)2.9×(-0.4)=-1.16;(4)-30.5X0.2=-6.1;(5)100×(-0.001)=-0.1;(6)-4.8×(-1.25)=6.2.解:(1)1/4×(-8/9)=-2/9;(2)(-5/6)×(-3/10)=1/4;(3)-34/15×25=-170/3;(4)(-0.3)×(-10/7)=3/7.3.解:(1)-1/15;(2)-9/5;(3)-4;(4)100/17;(5)4/17;(6)-5/27.4.解:(1)-91÷13=-7;(2)-56÷(-14)=4;(3)16÷(-3)=-16/3;(4)(-48)÷(-16)=3;(5)4/5÷(-1)=-4/5;(6)-0.25÷3/8=-2/3.5.解:-5,-1/5,-4,6,5,1/5,-6,4.6.解:(1)(-21)/7=-3;(2)3/(-36)=-1/12;(3)(-54)/(-8)=27/4;(4)(-6)/(-0.3)=20.7.解:(1)-2×3×(-4)=2×3×4=24;(2)-6×(-5)×(-7)=-6×5×7=-210;(3)(-8/25)×1.25×(-8)=8/25×8×5/4=16/5;(4)0.1÷(-0.001)÷(-1)=1/10×1000×1=100;(5)(-3/4)×(-11/2)÷(-21/4)=-3/4×3/2×4/9=-1/2;(6)-6×(-0.25)×11/14=6×1/4×11/14=33/28;(7)(7)×(-56)×0÷(-13)=0;(8)-9×(-11)÷3÷(-3)=-9×11×1/3×1/3=-11.8.解:(1)23×(-5)-(-3)÷3/128=-115+3×128/3=-115+128=13;(2)-7×(-3)×(-0.5)+(-12)×(-2.6)=-7×3×0.5+12×2.6=-10.5+31.2=20.7;(3)(13/4-7/8-7/12)÷(-7/8)+(-7/8)÷(13/4-7/8-7/12)=(7/4-7/8-7/12)×(-8/7)+(-7/8)÷7/24=7/24×(-8/7)-3=-31/3;(4)-⼁-2/3⼁-⼁-1/2×2/3⼁-⼁1/3-1/4⼁-⼁-3⼁=-2/3-1/3-1/12-3=-49/12.9.解:(1)(-36)×128÷(-74)≈62.27;(2)-6.23÷(-0.25)×940=23424.80;(3)-4.325×(-0.012)-2.31÷(-5.315)≈0.49;(4)180.65-(-32)×47.8÷(-15.5)≈81.97.点拨:本题考查⽤计算器进⾏混合运算,要注意计算器的按键顺序与⽅法和计算结果的精确度.10.(1)7500(2)-140(3)200(4)-12011.解:450+20×60-12×120=210(m).答:这时直升机所在⾼度是210m.12.(1)<,<(2)<,<(3)>,>(4)=,=点拨:有理数相乘(除)的法则中明确指出先要确定积的符号,即两数相乘(或相除)同号得正,异号得负.13.解:2,1,-2,-1.⼀个⾮0有理数不⼀定⼩于它的2倍,因为⼀个负数⽐它的2倍⼤.14.解:(-2+3)a.15.解:-2,-2,2.(1)(2)均成⽴,从它们可以总结出:分⼦、分母以及分数这三者的符号,改变其中两个,分教的值不变.习题1.5答案1.解:(1)-27;(2)16;(3)2.89;(4)-64/27;(5)8;(6)36.点拨:本题要根据乘⽅的意义来计算,还应注意乘⽅的符号法则,乘⽅的计算可转化为乘法的计算,计算时应先确定幂的符号.2.解:(1)429981696;(2)112550881;(3)360.944128;(4)-95443,993.3.解:(1)(-1)^100×5+(-2)⁴÷4=1×5+16÷4=5+4=9;(2)(-3)³-3×(-1/3)⁴=-27-3×1/81=-27-1/27=-271/27;(3)7/6×(1/6-1/3)×3/14÷3/5=7/6×(-1/6)×3/14×5/3=-5/72;(4)(-10)³+[(-4)²-(1-3²)×2]=-1000+(16+8×2)=-1000+32=-968;(5)-2³÷4/9×(-2/3)²=-8×9/4×4/9=-8;(6)4+(-2)³×5-(-0.28)÷4=4-8×5-(-0.07)=4-40+0.07=-35.93.4.解:(1)235000000=2.35×10⁸;(2)188520000=1.8852×10⁸;(3)701000000000=7.01×10^11;(4)-38000000=-3.8×10⁷.点拨:科学记数法是⼀种特定的记数⽅法,应明⽩其中包含的基本原理及其结构特征,即要掌握形如a×10^n的结构特征:1≤⼁a⼁<10,n为正整数.5.解:3×10⁷=30000000;1.3×10³=1300;8.05X10^6=8050000;2.004×10⁵=200400;-1.96×10⁴=-19600.6.解:(1)0.00356≈0.0036;(2)566.1235≈566;(3)3.8963≈3.90;(4)0.0571≈0.057.7.解:平⽅等于9的数是±3,⽴⽅等于27的数是3.8.解:体积为a.a.b=a²b,表⾯积为2.a.a+4.a.b=2a²+4ab.当a=2cm,b=5cm时,体积为a²b=2²×5=20(cm³);表⾯积为2a²+4ab=2×2²+4×2×5=48(cm²).9.解:340m/s=1224km/h=1.224×10³km/h.因为1.1×10⁵krn/h>l.224×10³kn/h,所以地球绕太阳公转的速度⽐声⾳在空⽓中的传播速度⼤.点拨:⽐较⽤科学记数法表⽰的两个正数,先看10的指数的⼤⼩,10的指数⼤的那个数就⼤;若10的指数相同,则⽐较前⾯的数a,a⼤的则⼤.10.解:8.64×10⁴×365=31536000=3.1536×10⁷(s).11.解:(1)0.1²=0.01;1²=1;10²=100;100²=10000.观察发现:底数的⼩数点向左(右)移动⼀位时,平⽅数⼩数点对应向左(右)移动两位.(2)0.1³-0.001;1³=1;10³=1000;100³=1000000.观察发现:底数的⼩数点向左(右)移动⼀位时,⽴⽅数⼩数点对应向左(右)移动三位.(3)0.1⁴=0.0001;1⁴—1;10⁴=10000;100⁴=100000000.观察发现:底数的⼩数点向左(右)移动⼀位时,四次⽅数⼩数点对应向左(右)移动四位.12.解:(-2)²=4;2²=4;(-2)³=-8,2³=8.当a<0时,a²>0,-a²<0.故a²≠-a²;a³<0,-a³>0,故a³≠-a³,所以当a<0时,(1)(2)成⽴,(3)(4)不成⽴,。
人教版数学 七年级上册第一章1
对于小于-10的数也可以用类似科学记数法表示. 例如:
-567 000 000= -5.67 ×100 000 000= -5.67×108.
科学记数法的表示步骤: (1)确定a,将原数的小数点移到从左到右第 1 个 不是 0 的数字的后边即可得到 a 的取值. (2)确定 n,有两种方法:①根据原数的整数位数 来确定 n,n 等于原数的整数位数减1,例如, 2 018是一个四位整数,用科学记数法表示为 2.018×103,其中 n=4-1=3;②按小数点移动的位 数来确定 n,小数点向左移动了几位,n 就等于几.
人教版· 数学· 七年级(上)
第一章 有理数
1.5 有理数的乘方
第2课时 科学记数法
学习目标
1.了解科学记数法的意义。 2.会用科学记数法表示较大的数。
导入新知
现实中,我们会遇到一些比较大的数。例如,太阳的 半径、光的速度、目前世界人口等。读写这样较大的 数有一定的难度,那么有没有这样一种表示方法,使 得这些大数易写、易读呢?
A.1.825×105 B.1.825×106 C.1.825×107 D.1.825×108
4.(2019·南通)5G信号的传播速度为300 000 000 m/s,将300 000 000用科 学记数法表示为___3_×__1_08__.
5.用科学记数法表示下列各数: (1)-24 000;
课后练习
1.数据36 000用科学记数法表示为3.6×10n,则n的值是( C )
A.2
B.3
C.4
D.5
2.(2019·内江)-268 000用科学记数法表示为( D )
A.-268×103
B.-268×104
C.-26.8×104
人教版七年级数学上册知识点归纳(附例题解析)
人教版七年级数学上册知识点归纳(附例题解析)第一章:有理数一、有理数的基础知识1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。
②正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A、一个数前面有“-”号,这个数就是负数;B、非负数就是正数;C、一个数前面没有“-”号,这个数就是正数;D、0既不是正数也不是负数;例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-,正整数集合{}整数集合{}负整数集合{}正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是____________, 0米的意义是______________。
例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。
例5 若0>a,则a是;若0<a,则a是;若ba<,则ba-是;若ba>,则ba-是;(填正数、负数或0)2、有理数的概念及分类整数和分数统称为有理数。
人教版七年级上册数学教案6篇
人教版七年级上册数学教案6篇人教版七年级上册数学教案(精选篇1)一、内容特点在知识与方法上类似于数系的第一次扩张,也是后继内容学习的基础。
内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。
二、设计思路整体设计思路:无理数的引入——无理数的表示——实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。
学习对象——实数概念及其运算;学习过程——通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式——操作、猜测、抽象、验证、类比、推理等。
具体过程:首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。
最后教科书总结实数的概念及其分类,并用类比的方法引入实数的`相关概念、运算律和运算性质等。
第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长它的值到底是多少并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。
经历运用计算器探求数学规律的活动,发展合情推理的能力。
第六节:实数。
总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
三、一些建议1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。
人教版数学七年级上册知识点汇总
第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。
人教版七年级数学上册的教学计划(6篇)
人教版七年级数学上册的教学计划一、指导思想七年级数学是初中数学的重要组成部分,通过本学期的教学,要使学生学会适应日常生活,参加生产和进一步学习所必须的基础知识与基本技能,进一步培养运算能力、思维能力和空间观念:能够运用所学的知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质及初步的辩证唯物主义的观点。
二、学生基本情况根据分班考试的情况来分析学生的数学成绩并不理想,总体的水平一般,尖子生少、低分的学生较多。
学生学习积极性不高,厌学情况严重,纪律涣散,意志力薄弱,学习欠缺勤奋,学习的自觉性不高。
三、教学目标要求期中授完第九章,期末授完下册全册。
1、认真做好教学六认真工作。
把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是的老师,爱因斯坦如是说。
激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
6、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。
7、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
8、站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。
人教版七年级数学上册的教学计划(二)为了更好的完成学校的七年级数学的教学任务,依照教导处的工作计划,针对学生的特点和所教班级学生的具体情况特制订如下教学计划:一、教学指导思想结合____版的《初中数学新课程标准》,根据学生实际情况,积极开展课堂教学改革,提高课堂教学效率,向____分钟要质量。
新版七年级上册数学书人教版
新版七年级上册数学书人教版一、有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 例如:3是正整数, - 5是负整数,0.5(即1/2)是分数, - 0.333…(即 - 1/3)也是分数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 任何一个有理数都可以用数轴上的一个点来表示。
例如,2在原点右边2个单位长度处, - 3在原点左边3个单位长度处。
3. 相反数。
- 只有符号不同的两个数叫做互为相反数。
例如,3和 - 3互为相反数,0的相反数是0。
- 在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
4. 绝对值。
- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
例如,5 = 5, - 3=3。
- 绝对值的几何意义:一个数的绝对值就是这个数在数轴上所对应的点到原点的距离。
5. 有理数的加减法。
- 加法法则:- 同号两数相加,取相同的符号,并把绝对值相加。
例如,3+5 = 8,(-2)+(-3)= - 5。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如,3+( - 2)=1, - 5+3=-2。
- 一个数同0相加,仍得这个数。
- 减法法则:减去一个数,等于加上这个数的相反数。
例如,5 - 3 = 5+( -3)=2。
6. 有理数的乘除法。
- 乘法法则:- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如,3×5 = 15,(-2)×(-3)=6,2×(-3)= - 6。
- 任何数同0相乘,都得0。
- 多个有理数相乘:几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
例如,(-2)×(-3)×(-4)= - 24,(-2)×3×4=-24,2×3×4 = 24。
人教版七年级上册数学教学计划(30篇)
人教版七年级上册数学教学计划(30篇)人教版七年级上册数学教学计划(精选30篇)人教版七年级上册数学教学计划篇1一、情况分析1、学生情况:从上学期的教学观察与测试结果看,这班学生的学习态度较端正,学习积极性不高,跟不上教学进度的多。
自主、合作、探究的风气尚未形成。
勤思好问的少。
为此新学期的数学教学要积极尝试自主、合作、探究学习,注意培养学生的学习兴趣和习惯品质,努力提高综合成绩,尽量缩小与其他三个班级的差距。
2、教材情况:本学期是本年级学生初中学习阶段的第二学期。
新授课程主要有相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组。
现行教材、教学大纲要求学生从身边的实际问题出发,乘坐“观察”、“思考”、“探究”、“讨论”、“归纳”之舟,去探索、发现数学的奥妙,用学到的本领去解决“复习巩固”、“综合运用”、“拓展探索”等不同层次的问题。
教师在灵活选用现有教材的基础上,应适度引用新例,把初中数学各单元的知识明晰化、条理化、规律化,激励学生自主、合作、探究学习,培养学习兴趣和习惯品质。
二、目标要求本学期的数学教学要从学生的实际问题出发,积极引导学生“观察”、“思考”、“探究”、“讨论”、“归纳”数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决“复习巩固”、“综合运用”、“拓展探索”等不同层次的问题。
教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力。
在期末考试中力争生均分70分左右,合格率60%以上。
三.教学措施1.认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质。
2.把握学生思想动态,及时与学生沟通,搞好师生关系。
3.充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩。
人教版七年级数学上册的教学计划(34篇)
人教版七年级数学上册的教学计划(34篇)人教版七年级数学上册的教学计划(精选34篇)人教版七年级数学上册的教学计划篇1一、学情分析:本学期我将担任七年级的数学教学工作。
通过上学期的教学,学生的计算能力、阅读理解能力、实践探究能力得到了发展与培养,对图形及图形间数量关系有初步的认识,逻辑思维与逻辑推理能力也得到初步提升,学生由形象思维向抽象思维转变,特别是抽象思维得到了较好的发展。
从上学期的教学中,发现有以下问题:部分学生没有达到应有的水平,学生课外自主拓展知识的能力几乎没有,很少有学生具有课外阅读相关数学书籍的习惯,没有形成对数学学习的浓厚兴趣,不能自行拓展与加深自己的知识面。
本学期将继续促进学生自主学习,让学生亲身参与活动,进行探索与发现,以自身的体验获取知识与技能;努力实现基础性与现代性的统一,提高学生的创新精神和实践能力;体现现代信息社会的发展要求,通过各种教学手段帮助学生理解概念,操作运算,扩展思路。
二、教材分析本学期的教学内容共计六章,第5章:相交线和平行线;第6章:平面直角坐标系;第7章:三角形;第8章:二元一次方程组;第9章:不等式和不等式组;,第10章:数据的收集、整理与描述整个教材体现了如下特点1.现代性——更新知识载体,渗透现代数学思想方法,引入信息技术。
2.实践性——联系社会实际,贴近生活实际。
3.探究性——创造条件,为学生提供自主活动、自主探索的机会,获取知识技能。
4.发展性——面向全体学生,满足不同学生发展需要。
5.趣味性——文字通俗,形式活泼,图文并茂,趣味直观。
三、教学目标知识技能目标:学平行线的有关知识,掌握平面直角坐标系的画法,学会二元一次方程组、不等式及不等式组的解法,能够绘制简单的统计图表。
同时进一步提高学生几何作图能力。
过程方法目标:学会观察和分析几何图形,发现图形的特征和图形之间存在的关联,学会总结规律。
初步建立方程思想,学会使用代数式表示数量及数量之间的关系。
人教版七年级数学上册教案(通用18篇)
人教版七年级数学上册教案〔通用18篇〕篇1:人教版七年级数学上册教案教学目的 1,掌握绝对值的概念,有理数大小比拟法那么.2,学会绝对值的计算,会比拟两个或多个有理数的大小.3.体验数学的概念、法那么来自于实际生活,浸透数形结合和分类思想.教学难点两个负数大小的比拟知识重点绝对值的概念教学过程(师生活动) 设计理念设置情境引入课题星期天黄老师从学校出发,开车去玩耍,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),假如规定向东为正,①用有理数表示黄老师两次所行的路程;②假如汽车每公里耗油0.15升,计算这天汽车共耗油多少升?学生考虑后,老师作如下说明:实际生活中有些问题只关注量的详细值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的间隔和汽油的价格,而与行驶的方向无关;观察并考虑:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的间隔 .学生答复后,老师说明如下:数轴上表示数的点到原点的间隔只与这个点分开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的间隔叫做数a的绝对值,记做|a|例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答那么与符号没有关系,说明实际生活中有些问题,人们只需知道它们的详细数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联络.因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难承受,所以配置此观察与考虑,为建立绝对值概念作准备.合作交流探究规律例1求以下各数的绝对值,并归纳求有理数a 的绝对有什么规律?、-3,5,0,+58,0.6要求小组讨论,合作学习.老师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法那么(见教科书第15页).稳固练习:教科书第15页练习.其中第1题按法那么直接写出答案,是求绝对值的根本训练;第2题是对相反数和绝对值概念进展区分,对学生的分析^p 、判断才能有较高要求,要注意考虑的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法那么,可看做是绝对值概念的一个应用,所以安排此例.学生能做的尽量让学生完成,老师在教学过程中只是组织者.本着这个理念,设计这个讨论.结合实际发现新知引导学生看教科书第16页的图,并答复相关问题:把14个气温从低到高排列;把这14个数用数轴上的点表示出来;观察并考虑:观察这些点在数轴上的位置,并考虑它们与温度的上下之间的关系,由此你觉得两个有理数可以比拟大小吗?应怎样比拟两个数的大小呢?学生交流后,老师总结:14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.在上面14个数中,选两个数比拟,再选两个数试试,通过比拟,归纳得出有理数大小比拟法那么想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的间隔 (即它们的绝对值)以及这两个数的大小之间的关系.要求学生在头脑中有明晰的图形. 让学生体会到数学的规定都来于生活,每一种规定都有它的合理性数在大小比拟法那么第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来理解,所以配置想象练习,加强数与形的想象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
5
活动2
综合归纳 形成新知
a
6
正整数: +10,18,29,+75,110,305,1,2,3,… 零: 0
负整数: -52, -67, -1,-2,…
正分数:
5
1.1, 12.91, 12.96, 182.5,
,
33
,
17
,
2 43
负分数:-7.5,
5, 2
3.25,
3 3 , 5.35, 17
1
2
3a
4
5 14
谢谢各位!!!
a
15
5
,
1.5, 23.25, ⑦
1,
⑧ 2 1.5, 5 ,
2
①
a
9
活动3
分析探究 拓展新知
a
10
探究有理数的分类(二)
小组 探究
1.在左图的有理数中,正整数有:__________; 负分数有:_____________________________;
整数有:_______________________________;
2.在小学里学过的数中,有没有哪类数在上面没有出现?请举例说明.
3.用计算器计算下列各分数的值,说明所有分数都可以化作什么数?
124.由前__面_的_结_43论,,小_学_里_学_的8_5数,可_以_分_为_哪_几, 类? 25.引入__负_数_后_5,,整_数_除_了_小_2学,学_的_整_数_外._,还包含其它的整数吗? 3分数除了小学6学的分数外,7还包含其它的分数吗?
4
3
,
正整数集合
1.1, 12.91, 182.5, 3 3 ,
4
0 负整数集合
零
-7.5,
5, 2
3.25,
33, 4
正分数集合
负分数集合
1
2
3a
4
7
5
探究有理数的分类(一)
由刚才的演示可知: 1.有理数可分为哪两类数?
2.整数可分为哪几类? 3.分数可分为哪几类?
有有分整理理数数数
正负整整零整数数数
18, -7.5, +10.
110 12.91
12.96
0
-52 1. 1
a
+75
122.5
182.5
305
18
-7.5 +10
4
同桌 探究6, 0, -52 1.1,
+75, 305,
18, -7.5, +10.
1.在以上各数中,哪些是在小学里学过的数?它们可以分为哪几类?
小组讨论,合作完成讨论题,集中交流,形成正确分类方法,学生 画出分类示意图,同桌合作画出与分类对应的有理数树.
1
2
3a
4
5 11
活动4
回归生活 应用新知
a
12
课堂练习
1.把下列各数填入它所属于的集合的圈内:
01.51,, 591.3,2,580,,11522 3,2,.31393 .,
正分数集合
分数有:_______________________________.
3,3.25,7, 2,23,0, 75
2.丹丹在做第1题时,发现了新的分类方法,
1,21 ,3.14,10,0 2
她认为:带“+”的数分为一类,带“-”的 数分为一类,数的前面没有符号的作为一
2.5,6,1.5,9. 11
类.你认为她的分类方法对吗?若不对,你发 现什么新的分类方法吗?
负整数集合
正整数集合
负分数集合
以上四个集合能组成有理数集合吗?
1
2
3a
4
5 13
课堂练习
1.依据生活情境回答问题: ①当夜空中繁星密布时,小贝
贝在数星星,他所用到的 数属于什么数? ②一把测量用的刻度尺上可以 读出哪几类有理数? ③一支测量气温用的温度计, 可以从上面读出哪几类有 理数?
2.说出下列生活情景中用到的数 所属的集合. ⑴摩托车的里程表上读出的数; ⑵中央电视台播放的天气预报中, 播报各地的气温所用到的数; ⑶老师批改试卷时用到的数; ⑷烤鸭店的柜台上的电子秤上读出 的数; ⑸表示某一地区的海拔高度所用的 数.
分负正数分分数数
正整数
零
负整数
正分数 负分数
1
2
3a
4
58
依据有理数的分类 示意图,在右图的 卡片上填上下列数 的名称.你发现有 理数的分类示意图 与这棵树枝干的形 状有哪些联系吗?
正整数 零
负整数 正分数 负分数 整数 分数 有理数
63 52
1④ 4
-6
-5
-4
-1 -2 -3
⑤0
⑥
②
③
1 2
,
1
2
3a
女力士唐功红在女子 +75公斤级举重比赛中,不 负众望,以抓举122.5公斤, 挺举182.5公斤,总成绩305 公斤夺得第1188枚金牌,与获 银牌的韩国选手相比,她的 抓举重量-7.5公斤,挺举 重量+10公斤.
4
53
110, 12.91, 12.96, 0, -52 1.1,
122.5, 182.5, +75, 305,
人教版 《数学》 七年级 上册
a
1
活动1
创设情境 导入新课
a
2
在男子110米栏 决赛中,中国选手 刘翔以12.91秒的成 绩夺得金牌,这个成 绩打破了12.96的奥 运会纪录,平了世界 纪录,实现了中国男 子田径金牌00的突破.
在女子柔道 --5522公斤级的冠 军争夺战中,中国 选手冼东妹仅用 11..11分钟,就为中 国柔道队夺得首 枚金牌.