滑移线理论_弹塑性力学讲稿共48页文档
弹塑性力学课件-塑性基本概念
ij yxx
xy y
xz yz
11 21
12 22
13
23
zx zy z 31 32 33
(4-1)
由于剪应力的互等性, yx xy zx xz zy yz
3.1应力—应变曲线的理想化模型
(1)理想弹性(perfectly elastic) (2)理想刚塑性(rigid-perfectly elastic) (3)刚—线性强化(rigid-linear strain-hardening) (4)理想弹塑性(elastic-perfectly plastic) (5)弹—线性强化(elastic-linear strain-hardening)
1.3静水压力实验
所谓静水压力就如同均匀流体从四面八方将压力作用于物体。 (1)体积变化 体积应变与压力的关系 (Bridgeman实验公式)
体积压缩模量 派生模量
铜:当p=1000MPa时,ap= 7.31×10-4,而bp2=2.7×10-6。 说明第二项远小于第一项,可以 略去不计。
Bridgeman的实验结果表明, 静水压力与材料的体积改变之 间近似地服从线性弹性规律。 若卸除压力,体积的变化可以 恢复,因而可以认为各向均压 时体积变化是弹性的,或者说 塑性变形不引起体积变化。试 验还表明,这种弹性的体积变 化是很小的,因此,对于金属 材料,当发生较大塑性变形时, 可以忽略弹性的体积变化,即 认为在塑性变形阶段材料是不 可压缩的。
s
n1
一般加载规律
( ) E[1 ( )]
A
其中
( )
弹塑性力学部分讲义(PDF)
弹塑性力学引言一、固体力学在工程中的作用工程中的各种机械都是用固体材料制造而成的、各种结构物也都是用固体材料建造的。
为了使机械结构正常使用、实现其设计的功能,首先要保证它们在工作载荷与环境作用下不发生材料的破坏或影响使用的过大的变形,即保证它们具有足够的强度、刚度和稳定性。
在设计阶段,要根据要求实现的功能,对于设计的机械结构的形式按强度要求确定其各部分的形状和尺寸,以及所需选择的材料。
要完成这样的任务,首先要解决如下基本问题:在给定形状尺寸与材料的机械结构在设计规定载荷与环境(如温度)作用下所产生的变形与应力。
对于柔性结构,如细长梁、薄板、薄壳,以及它们的组合结构,还要分析其是否会丧失稳定性。
这些都是固体力学的基本问题。
如果机械结构所受载荷或环境的作用是随时间变化的,那么,它们的振动特性也对其性能有重要的影响。
在设计时往往要对其进行模态分析,求出影响最大的各个低阶固有频率与相应的振型,以确保不会与主要的激振载荷产生共振,导致过大的交变应力与变形,影响强度和舒适性。
有些情况下还要考虑它们在瞬态或冲击载荷作用下的瞬态响应。
这些也是固体力学的基本问题。
此外、许多机械零件和结构元件在制造工程中,采用各种成型工艺,材料要产生很大的塑性变形。
如何保证加工质量,提高形状准确性、减少残余应力、避免产生裂纹、皱曲等缺陷?如何设计加工用的各种模具,加工的压力,以及整个工艺流程,这里也都有固体力学问题。
正因为工程中提出了各种各样的固体力学问题,有时还有流体力学问题,在19世纪产生了弹性力学和流体力学,才导致力学逐渐从物理学中独立出来。
工程技术发展的要求是工程力学,包括固体力学、流体力学等发展的最重要的推动力。
而工程力学的发展则大大推动了许多工程技术的飞速发展。
因此,力学是许多工程部门设计研究人员的基本素质之一。
二、力学发展概况力学曾经是物理学的一个部分,最初也是物理学中最重要的组成部分。
力学知识最早起源于人们对自然现象的观察和在生产劳动中积累的经验。
弹塑性力学(应变状态理论)讲稿
当体积不变时:
ij e ij
应变偏张量
三、应变参量及计算公式
1. 主切应变
2
x y
2 x y 2
x y
2
cos 2
xy
2
sin 2
sin 2
xy
2
cos 2
1 ( 2 3 ) 2 ( 3 1 ) 3 ( 1 2 )
1 2 3
2. 八面体切应变 与三个应变主轴方向具有相同倾角平面上的应变
m ax 1 3
1 8 (1 2 3 ) m 3 2 2 2 2 8 1 2 2 3 3 1
du u d x dt x x dv v d y dt y y dw w d z dt z z
d xy d yz d zx
u v dt dt y x v w dt dt z z w u dt dt x z
zx
u w z x
4. 应变张量与应变参量
一、应变张量
引入符号:
xy
yz
zx
1 1 v u xy x y 2 2 1 1 w v yz y z 2 2 1 1 u w zx 2 2 z x
v
dy B y
P
A B
u x x v y y
xy
v u x y
v v dy y
u u dy y
三维状态下的几何方程
x
y
几 何 方 程
弹塑性力学讲义 第一章绪论
3
每个分量用一个标量(具有两个下标)与两个并在一起基矢量(并矢) ,称为二阶 张量。矢量可称为一阶张量,标量为零阶张量。 5.2 求和约定 在张量表示说明中,看到张量分量表示是一组符号之和,很长,特别是高阶张量, 为了书写简捷,采用求和约定。 求和约定:当在同一项中,有一个下标字母出现两次时,则表示该项在该指标的取 值范围内遍历求和,且称此种在同一项重复出现一次的下标为哑标。如:
e1 e2 a2 b2 e3
a b ai ei b j e j ai b j eijk ek ai b j ekij ek , 则
c c k eijk ai b j ekij ai b j , a b a1 b1
ij
自动消失。ij 也称为换标符号。
eijk ( i,j,k =1,2,3)
定义: eijk
共有 27 个元素。
1 若(i , j , k ) (1,2,3)或 ( 2,3,1)或 (3,1,2)时 正排列顺序 -1 若(i , j , k ) ( 2,1,3)或(1, 3, 2)或(3, 2, 1)时 逆排列顺序 0 若 i , j , k中任意两指标相同时
(i=1,2,3),用 ri 表示矢径;
同样位移矢量 u,用 ui 表示位移,ij 表示应力
张量。
xi aij y j
i
x1 a11 y1 a12 y2 a13 y3 x2 a21 y1 a22 y2 a23 y3 x a y a y a y 31 1 32 2 33 3 3
矢量场的拉普拉斯算子定义为矢量场的梯度的散度:是一个向量
工程弹塑性力学教学课件第十一章滑移线场理论
y S
0
p
2R
cos
x
sin
y
0
S
S
S
S
p* 2R C p* 2R C
(3)γ=0和φ=0代入(3.10)并积分可得:
(沿线) (沿线)
p* p cosx sin y R K (或 C)
S
(p
2R )
0
( p 2R ) 0
S
p 2R C (沿线) p 2R C (沿线)
4.滑移线基本性质
滑移线上的剪应力等于岩土的抗剪强度 两族滑移线间的夹角与屈服准则有关 对所有岩土材料,重力的存在不影响两族滑移线间 的夹角,但对其形状有影响。对c-φ型岩土材料,粘 聚力的存在不影响两族滑移线的形状和夹角。
4.滑移线基本性质…
(1)Henky第一定律:如果由一条滑移线 α1(或β1 )转到另一条滑移线α2 (或β2), 则沿任何一条β族 (或α族)的滑移线,α线 (或β线)的方向与x轴的夹角的变化值保持 常量。如图1,得:
RA )( p
A)
sin(
2 )( x p
x A
)
cos(
2 )(
yp
yA)
sin 2( pp pB ) (Rp RB )( p B ) sin( 2)(xp xB ) cos( 2)( yp yB )
yp
yA
tg
(
p
A 2
)( x p
xA )
yp
yB
tg
(
p
B 2
)( x p
自由表面上 n 0, n 0 。周界处处不 与滑移线方向相重合。自由表面附近的 应力场与自由表面的形状有关。如果自 由表面是平面,其影响区域将如图7-2.
弹塑性力学讲义9
k P
k
o x
规 定
1) 使变形体素顺时针转的 y 切应力方向为α线方向; 反之为β线方向。
2) 线各点的切线与所取 的x 轴的正向夹角为 , 逆时针转为正,顺时针 转为负 。
3), 构成右手坐标系,
1 在一、三象限。
o
k P
k
x
(2)平面变形时的应力和莫尔圆
3
汉基应力方程
x yx 0 x y
xy x y y 0
y p k sin 2 p k sin 2
x p k sin 2 p k sin 2
xy k cos2
(1) (2)
n = p =k 1 3 3
+k +
p /4
-
3
2
2 = p /2
1
0
-k
n = p
-
0.5 arccos
k 0 k
p n k sin 2 n 2
由莫尔圆
1 n k
3 n k
面的问题
(4)库仑摩擦的接触面
0
3 =-2 k
-
0.5 arccos
0 p k 4
舍去负的
p n k sin 2 0 k sin
p
2
k 2
由莫尔圆
1 0
3 2k
面的问题
(2)无摩擦的接触面
3 = 0
3
+k
+
p /4
-
1 = 0
p/4 p /4
塑性理论第九章滑移线法
摩擦切应力为 K的接触面
σn= σm
摩擦切应力为 K的接触面
α
0 β α α σm σ3 σ3 K β β
0
σm K σ1 α
σ1 K β σm
K
σm 0 K
σm
代数值最大的 σm 主应力σ1的作用线
σ1
0
K σm
K
σ3
σm
K
σ1
σ3
摩擦切应力为K的接触表面的滑移线
(4)摩擦力为某一中间值的接触表面 1 1 xy cos 0 xy K 2 K
1 ( 1 3 ) k 2 1 ( 1 3 ) m 2
z σz= σm= σ2
σm +K
σy
σ1 τyx -K
σ1作用线
τxy
σm σx σ3
0 σx x
σy τxyτyx
y
P
τ
σy (σm,+K) y τyxቤተ መጻሕፍቲ ባይዱ
4
1 m k 2 m 3 m k
xy
0
y
r
y
y
m
K
xy
m
K
3
2
1
xy
0
x
xy
K K
xy
x
x
a
m
x
m
m
y
xy
a)
b)
摩擦切应力为某一中间值的接触面处的滑移线
2、常见的滑移线场类型
直线滑移线场,两族直线 简单滑移线场,一直一曲 有心和无心扇形场 直线与简单滑移线场组合 正交曲线滑移线场
滑移线理论_弹塑性力学讲稿
R ` R R
R
"
S R S
B B`
S `
`
S
`
`
R `
A S
A`
R
`
证明:由于
1 R S 1 R S
(定义)
又可写为
R ` S R ` S
o
★ 屈服条件:(Mises)
(4-37)
化简后为
(4-38)
于是,在塑性区内主应力为
(4-39)
(4-40)
(4-41)
这就是说,在塑性区内任一点 的应力状态,可用静水压力 o 与
o
纯剪应力 两个分量来表示,
如图示。
o o
o o
o
★ 在不计体力的情况下,平衡方程为:
可解出
xm,m1 , ym,m1
(d) 重复计算可得出ABP范围内的塑性应力场。
(3) 第二边值问题(黎曼问题)
已知边界上某一点的两条正交的滑移线,其各点的、 已知,如图示: 求:区域AoBC内的塑性应力场。 步骤: (a) 分网,如图示 (b)求、,由汉基第 y B
(0,n) (o,2) (0,1) (m,0) (1,1) (m-1,n)
沿这两组滑移线分别有一一相
等的值和一一相等的值。而所有
也必相等,应力是均匀分布的,即称为均匀应力场。
例:图示直线边界上 n const, n 0 则
n k sin 2( ) 常数 p n k cos 2( ) 0
n
即
将上式代入(4-51(a)式得:
n k sin 2( ) n k cos 2( )
(塑性成形力学)4滑移线场理论及应用
沿速度不连续线的法线方向的速度是连续的。
速度不连续性:
V’at-V’‘at=c(常数) 切向速度不连续量沿速度不连续线是一常数。
速度不连续性:(小结) 1. 在塑性区及刚性区的边界上一定存在着速度不连续线; 2. 沿速度不连续线的法线方向的速度是连续的; 3. 速度不连续线的方向和滑移线的方向重合;
(塑性成形力学)4滑移线场理论及应用
教学目的和要求
通过本章的学习,掌握滑移线法的基本理论、基 本特点和解题步骤,并能运用该理论解决实际问题。
内容
4.0 前言 4.1 滑移线场的基本概念 4.2 汉基应力方程 4.3 滑移线场的几何性质 4.4 盖林格尔速度方程和速端图 4.5 滑移线场求解的应力边界条件和步骤 4.6 滑移线场的绘制 4.7 滑移线场求解问题实例
度)的方向)。
4.7 滑移线场求解问题实例
4.7.1 光滑平冲头压入半无限体 4.7.2 粗糙平冲头压入半无限体
4.7.1 光滑平冲头压入半无限体
•绘制滑移线 •作速端图
Vα=0 Vβ=
y
o
x
图4.22为开始压入瞬间的滑移线场。
单位压力公式
pD
检查塑性变形功
式(4.1)
y
o
x
φ=π/4,p=k φ=3π/4
式(2.72)
式(4.2)
dp
tanφ
tanφ
式(4.4)
(α线)
1
tanφ
2kdφ
汉基应力方程:
沿α线 沿β线
φ角按弧度值计算。
式(4.12) 式(4.13)
4.3 滑移线场的几何性质
性质1 在同一滑移线上,由a点到b点,静水压力 的变化与滑移线的切线的转角成正比。
弹塑性力学讲稿课件
金属材料的弹塑性分析主要关注金属在受力过程中发生的弹性变形和塑性变形。通过弹塑性分析,可以预测金属 在复杂应力状态下的行为,为金属材料的加工、设计和应用提供理论依据。
混凝土结构的弹塑性分析
总结词
混凝土结构在受到压力时会产生弹性变形和塑性变形,弹塑性分析是研究混凝土结构在受力过程中应 力和变形的变化规律。
总结词
复杂结构与系统的弹塑性行为研究是推动工程应用的重 要基础。
详细描述
在实际工程中,许多结构和系统的弹塑性行为非常复杂 ,如大型桥梁、高层建筑、航空航天器等,需要从整体 和局部多个角度进行研究,以揭示其力学行为和稳定性 规律,为工程安全和优化设计提供科学依据。
THANKS
感谢观看
VS
详细描述
复合材料的弹塑性分析主要关注复合材料 的组成材料和复合方式对弹塑性性能的影 响。通过弹塑性分析,可以预测复合材料 在不同环境下的力学性能,为复合材料的 应用和发展提供理论依据。
工程结构的弹塑性分析
总结词
工程结构在受到外力作用时会产生变形,弹 塑性分析是研究工程结构在外力作用下的应 力和应变的变化规律。
03
弹塑性力学的分析方法
有限元法
有限元法是一种将连续体离散化 为有限个小的单元体的集合,并 对每个单元体进行受力分析的方
法。
有限元法通过将复杂的结构或系 统简化为有限个简单的单元,使
得计算变得简单且精度较高。
有限元法广泛应用于各种工程领 域,如结构分析、热传导、流体
动力学等。
有限差分法
01
有限差分法是一种将偏微分方程 转化为差分方程的方法,通过离 散化空间和时间变量来求解问题 。
其他常见的弹塑性力学分析方法还包括有限体积法、无网格 法等。
《弹塑性力学》课件
材料的弹塑性行为模拟
材料的弹塑性行为模拟是研究材料在 不同应力状态下表现出的弹塑性性质 ,对于理解材料的力学行为和优化材 料设计具有重要意义。
材料弹塑性行为模拟的方法包括分子 动力学模拟、有限元分析等。
通过实验和数值模拟相结合的方法, 可以研究材料的微观结构和宏观性能 之间的关系,预测材料的弹塑性行为 。
THANKS
感谢观看
弹塑性力学在工程实践中的挑战与解决方案
工程实践中,由于材料和结 构的复杂性,弹塑性力学应 用面临诸多挑战,如非线性 行为、边界条件和初始条件
的确定等。
为了解决这些挑战,需要采 用先进的数值计算方法和实 验技术,提高模拟精度和可
靠性。
此外,加强跨学科合作,将 弹塑性力学与计算机科学、 物理学等学科相结合,可以 推动工程实践中的弹塑性力 学应用不断发展。
《弹塑性力学》课件
目录
• 弹塑性力学概述 • 弹性力学基础 • 塑性力学基础 • 材料弹塑性性质 • 弹塑性力学在工程中的应用
01
弹塑性力学概述
弹塑性力学的定义
弹塑性力学是一门研究材料在弹性和 塑性范围内行为的学科。它主要关注 材料在外力作用下发生的变形行为, 以及这种行为与材料内部应力、应变 的关系。
塑性
材料在应力超过屈服极限后发生的不可逆变形。
屈服准则
描述材料开始进入塑性状态的应力条件。
塑性力学的基本方程
应力平衡方程
01
描述受力物体内部应力分布的平衡关系。
几何方程
02
描述材料在塑性变形过程中应变与位移的关系。
屈服准则
03
确定材料进入塑性状态的条件。
弹塑性力学讲义
(1) 受力分析及静力平衡条件 (力的分析)
(2) 变形分析及几何相容条件 (几何分析)
(3) 受力与变形间的本构关系 (物理分析)
哈工大 土木工程学院
10 / 27
01 绪 论
◆ 材料力学研究问题的基本方法:
选一维构 件整体为 研究对象
变形前,在某表 面绘制标志线; 变形后,观察总 结构件表面变形 的规律
1969年,Roscoe等人出版了《临界状态土力学》专著,这 是世界上第一本关于岩土塑性理论的专著,详细研究了土的 实用模型。
1982年,Desai等人也出版了一本《工程材料本构定律》
专著,进一步阐明了岩土材料变形机制,形成了较系统的岩 土塑性力学。
哈工大 土木工程学院
19 / 27
01 绪 论
哈工大 土木工程学院
4 / 27
01 绪 论
弹塑性力学的任务:根据对弹塑性体的实验观察结
果寻求物体在弹塑性状态下的变形规律,建立本构关系及 有关基本理论。
1.建立求解固体的应力、应变和位移分布规律的基本方程 和理论;
2.给出初等理论无法求解的问题的理论和方法,以及对初 等理论可靠性与精确度的度量;
样的结论,同时进一步 证明了各向同性体有两个独立的弹性
系数。
哈工大 土木工程学院
15 / 27
01 绪 论
线性各向同性体弹性力学的发展时期:
1850年,基尔霍夫解决了平板的平衡和震动问题; 1855-1856年,圣维南提出了局部性原理和半逆解法; 1862年,艾里解决了弹性力学的平面问题; 19世纪70年代,建立了各种能量原理,并提出了这些原 理的近似计算方法。
01 绪 论
现代力学的发展及其特点 1、现代力学的发展
弹塑性力学最全课件2
2.全量应力-应变简化模型
二、弹性-线性强化模型 (材料有显著强化率)
s
E
E
加载
d 0
E
s
1 E
1 E
sign
卸载
d 0 d d E
0 s
s E
19
2.全量应力-应变简化模型
三、弹性-幂次强化模型
k n 0
E
1
0
E k n
0 0
0
k 0
E
n
20
2.全量应力-应变简化模型
(1)塑性应变增量的方向与主应力轴的方向一致;
(2)
d
p ij
d
g
ij
, d 为一非负的比例常数,称为塑性因子。
则称 g( ij ) 为塑性势函数。
Drucker塑性共设
34
3.塑性理论基础
二、流动法则
1、Druker塑性公设,必然得出 f g
2、 f g 即屈服函数与塑性势函数相等,称为相关联流动法则; f g 即屈服函数与塑性势函数相等,称为非关联流动法则。
35
3.塑性理论基础
三、硬化法则 1、各向同性强化(各向同性后继屈服准则) 2、随动强化(随动后继屈服准则) 3、混合强化(混合后继屈服准则)
36
3.塑性理论基础
三、硬化法则
1、各向同性强化(各向同性后继屈服准则)
f ij , k f0 ij K k 0
K k 是一个强化函数或增函数,用来确定屈服面的大小。k 是一个强化
T
T
2、随动后继屈服准则:材料进入塑性后,弹性
0T
范围的大小保持不变,而弹性范围的中心移动。
2 0T
C
C
弹塑性力学讲稿
第一章 绪 论 (Introduction)
1.2 几个基本概念
➢ 弹性(elasticity):卸载后变形可以恢复特性,可逆性 ➢ 塑性(plasticity):物体产生永久变形的能力,不可逆性 ➢ 屈服(yielding):开始产生塑性变形的临界状态 ➢ 损伤(damage):材料内部缺陷产生及发展的过程 ➢ 断裂(fracture):宏观裂纹产生、扩展到变形体破断的过程
五、考核方式 闭卷考试
目 录 (contents)
教学大纲 开场白 第一章 绪论……………………………………………………………………..1 第二章 应力分析………………………………………………………………..3 第三章 应变分析……………………………………………………………….10 第四章 物理方程与边界条件………………………………………………….14 例题讲解…………………………………………………………………………….17 第五章 弹性力学的基本原理………………………………………………….24 第六章 弹性力学基本求解方法……………………………………………….26 第七章 塑性力学基础………………………………………………………….49 第八章 断裂力学基础………………………………………………………….54
教学大纲
二、本课程的基本要求
1.要求掌握弹性和塑性变形的力学特点; 2.要求掌握弹性力学的5组基本方程、2组基本原理和2种基本
求解方法; 3.要求掌握应力函数概念、设计思路及求解过程,并对位错的
应力场、厚壁筒、孔边应力集中、残余应力的机械测定原理 等实例形成较深刻的印象; 4.要求掌握塑性条件的两个基本准则(Tresca准则和Mises准 则)和塑性增量与全量理论的基本概念及表达方法; 5.要求掌握金属断裂的基本类型及力学特点。
弹塑性力学讲义 第五章线弹性力学问题的基本解法和一般性原理
平衡方程 0'',',=-jji j ji σσ , 令 '''ji ji ij σσδσ-=则平衡方程为 0,=jji δσδσij 满足无体力平衡方程(齐次方程)。
力的边界条件 0'''=-ij j ijj n n σσ 在S σ上 或0=ij j n δσ δσij 在S σ无面力(齐次边界条件)位移边界条件 0'''=-i i u u 令 '''i i i u u u -=δ 或 0=i u δ 在S u 无位移(齐次边界条件)在弹性体无外力作用、表面无位移(无支座移动)情况属于自然状态——弹性体无(初)应力、无变形。
,则 δσij =0,δu i =0, δεij =0 所以第一组解和第二组解相等。
唯一性定理的好处是无论用什么方法求解,只要能满足全部基本方程和边界条件,就一定是问题的真解。
4.3 圣维南原理——局部效应原理从前面弹性力学基本解法的讨论,可知弹性力学的定解方程要求边界条件处处给出(清楚),待求函数在边界上也须处处满足,但在实际问题中经常碰到情况:(1) 物体局部上的面力分布不清楚,仅知局部面力的合力和合力矩; (2) 解题时往往难于满足逐点给定的精确边界条件:如固定端u 1=u=0、u 2=v=0无法满足。
所以希望能找到一种边界条件的合理简化方案。
1855年圣维南在梁理论的研究中提出:由作用在物体局部表面上的平衡力系(即合力合力矩为零)所引起的PP这个问题为(相当)静水压力问题。
例题2 等截面柱体在自重作用下。
等截面柱体受体力f z = -ρg (在图示坐标系)ρ为柱的密度,g 为重力加速度。
而 f x =f y =0gρ-xxxM T位移。
qqxA 、B 由z=0处的力边界条件和z=h 处w=0的位移边界条件来定。
通过上面几个简例可见,解题采用了逆解法或半逆解法。
弹塑性力学讲义
弹塑性力学讲义弹塑性力学1 弹塑性的概念所谓弹塑性指的是物体在外力作用下发生变形而外力除去后变形不能完全恢复的性质。
变形中可回复的部分称为弹性变形,变形中不可回复的部分称为塑性变形。
塑性变形总是在外力的作用超过一定的限度后出现。
2 简单拉压状态下金属材料弹塑性行为及其数学模型(1)理想塑性材料的弹塑性行为σs主要特点:屈服后加载,表现出一种流动变形现象,材料失去进一步承载的能力;屈服后卸载,应力应变增量大致与弹性变形段相同。
卸载至零后再次加载,应力应变关系相当于原应力应变关系曲线在应变轴方向作了一个平移,平移量为残余塑性应变。
数学表达:Eε(0 ε εs)σ σ(ε)σ(ε ε)s s Eε( εs ε 0)σ σ(ε)(ε εs) σs(2)线性强化材料的弹塑性行为σσs主要特点:屈服后加载,材料仍有进一步承载的能力,但应力应变增量的比例较弹性段小;屈服后卸载,应力应变增量大致与弹性变形段相同。
卸载至零后再次加载,屈服应力为卸载前的应力值(较先前的屈服应力大),应力应变关系相当于原应力应变关系曲线在应变轴方向作了一个平移,平移量为残余塑性应变,同时应力轴伸长。
两种常用的强化模型数学表达:Eε(0 ε εs)σ σ(ε)σ E(ε ε)(ε ε)ss sEε( εs ε 0)σ σ(ε)σs E(ε εs)(ε εs)上述描述弹塑性材料应力应变关系的数学模型称为全量型本构关系。
显然不能代表弹塑性变形规律的全貌。
它描述了单调应力-应变过程。
为了描述弹塑性力学行为的“过程相依”,需要建立增量型本构关系。
记当前应力为σ0,应力增量为dσ,应变增量为dε,分析弹塑性行为可以得出相应的增量变形法则。
理想塑性材料的增量型弹塑性关系(1)由dσ决定dε当σs σ0 σs时,dε dσ/E 当σ0 σs时,dεdλσ0ifdσ 0 dσ/Eifdσ 0dλσ0ifdσ 0当σ0 σs时,dεdσ/Eifdσ 0(2)由dε决定dσ当σs σ0 σs时,dσ Edε0ifdε 0当σ0 σs时,dσEdεifdε 0当σ0 σs时,dσ0ifdε 0 Edεifdε 0例:已经测得某理想弹塑性材料的细杆所经受的轴向应变过程如图所示,试求此杆中的应力过程。
弹塑性力学讲义第十一章塑性力学基础知识(精品PDF)
截面形状
1.5
1.7
1.15-1.17
(2)梁弹塑性弯曲时的变形
在线弹性阶段,梁弯矩和曲率的关系为线性关系
M=EI
( M Me ), 或
M EI
,
将应力与弯矩关系式 My 代入上式,可得 I
Ey
。
在弹塑性阶段,由于梁弯曲时截面仍然保持平面,可得
s Ey0
,
或
y0
s E
代入梁弹塑性弯曲时 M 的表达式
将发生塑性变形。确定材料发生塑性变形的条件为
f () = - s = 0 初始屈服条件(函数) 当软钢应力达到 A 点后,软钢有明显屈服(塑性流动)阶段。
经过屈服阶段后,荷载可再次增加(称为强化阶段,BC 段),但
强化阶段 增幅较少。对于此种材料(有明显屈服流动,强化阶段
应力较少)屈服条件是不变的。当应力满足屈服条件时,卸载将有
2 3
J
* 2
类似于e 的定义,在三维应力状态定义等效应变e:
1
e
2 3
J
* 2
2 3
1 2
eij
eij
2
2 3
eij
eij
2 3
1 2 2 2
3 2 3 1 2
1 2
1
2 3
x
y
2
y
z
2
z
x
23 2
2 xy
2 yz
2 zx
2
e 以发生塑性变形定义的量(由 1、2、3 定义),在变形 过程中的每一瞬时,发生应变增量(d1、d2、d3),则可定义瞬
对于三维应力状态,定义每一点应力状态都存在力学效应相同
的等效应力e
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联Leabharlann 滑移线理论_弹塑性力学讲稿
11、不为五斗米折腰。 12、芳菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 霜下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹