概率论与数理统计总结之第四章

合集下载

概率论与数理统计总结之第四章

概率论与数理统计总结之第四章
协方差及相关系数
量 称为随机变量X与Y的协方差,记为Cov(X,Y),即
Cov(X,Y)=
而 称为随机变量X与Y的相关系数
是一Байду номын сангаас无量纲的量
协方差的性质有:
1. ,a,b是常数
2.
当| |较大时,X,Y线性相关的程度较好,当| |较小时,X,Y线性相关的程度较差,当 =0,称X和Y不相关
若X,Y独立,则其不相关,但若X,Y不相关,并不能说明其独立
方差的几个重要性质:
1.设C是常数,则D(C)=0
2.设X是随机变量,C是常数,则有
3.设X,Y是两个随机变量,则有
特别地,若X,Y相互独立,则有
D(X+Y)=D(X)+D(Y)
4.D(X)=0的充要条件是X以概率1取常数C,即P{X=C}=1,显然这里C=E(X)
定理:(切比雪夫不等式)
设随机变量X具有数学期望E(X)=μ,方差D(X)= ,则对于任意正数 ,不等式 成立
矩、协方差矩阵
设X,Y是随机变量,若 …存在,称它为X的k阶原点矩,简称k阶矩
若 …存在,称它为X的k阶中心矩
若 …存在,称它为X和Y的k+l阶混合矩
若 …存在,称它为X和Y的k+l阶混合中心矩
设n维随机变量 … 的二阶混合中心矩

都存在,则称矩阵
为n维随机变量 … 的协方差矩阵
由于 ,因而上述矩阵是一个对称矩阵
若A,B相互独立,则有E(AB)=E(A)E(B)
3.设X,Y是两个随机变量,则有E(X+Y)=E(X)+E(Y)
方差
设X是一个随机变量,若 存在,则称 为X的方差,记为D(X)或Var(X),即D(X)=Var(X)=

概率论与数理统计 --- 第四章{随机变量的数字特征} 第一节:数学期望

概率论与数理统计 --- 第四章{随机变量的数字特征} 第一节:数学期望
32 30 17 21 0 1 2 3 1.27 100 100 100 100
这个数能否作为 X的平均值呢?
若统计100天,
可以想象, 若另外统计100天, 车工小张不出废品, 这另外100天每天的平均废品数也不一定是1.27. 一般来说, 若统计n天 ,
(假定小张每天至多出三件废品)
又设飞机机翼受到的正压力W 是V 的函数 : W kV 2 ( k 0, 常数), 求W 的数学期望.
解: 由上面的公式
1 1 2 E (W ) kv f (v )dv kv dv ka a 3 0
2 2

a
例7 设二维连续型随机变量(X , Y)的概率密度为
A sin( x y ) 0 x , 0 y f ( x, y) 2 2 0 其它 (1)求系数A , ( 2)求E ( X ), E ( XY ).
x f ( x )x
i i i
i
阴影面积近似为
这正是:


f ( xi )xi

x f ( x )dx
的渐近和式.
小区间[xi, xi+1)
定义: 设X是连续型随机变量, 其密度函数为 f (x), 如果积分: xf ( x )dx
概率论


绝对收敛, 则称此积分值为X的数学期望, 即:
2. 设二维连续型随机变量 (X, Y) 的联合概率密度为 f (x, y), 则: E ( X )
E (Y )


xf X ( x )dx

yfY
( y )dy




xf ( x , y )dxdy,

《概率论与数理统计》第四章考点手册

《概率论与数理统计》第四章考点手册

《概率论与数理统计》第四章 随机变量的数字特征考点33 离散型随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.设X 是离散型随机变量,概率分布为P {X =x i }=p i ,i =1,2,…。

则∑∞==1)(i i ip x X E 为X 的数学期望(或均值)。

2.常用离散型随机变量的数学期望(1)两点分布:X ∼B(1,p),0<p<1,则E(X)=p 。

(2)二项分布:X ∼B(n,p),其中0<p<1,则E(X)=np 。

(3)泊松分布:X ∼P(λ),其中λ>0,则E(X)=λ。

考点34 连续型随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.设X 是连续型随机变量,则称⎰∞∞-=dx x f x X E )()(为X 的数学期望。

2. 常用连续型随机变量的数学期望(1)均匀分布若X~U[a,b],即X 服从[a,b]上的均匀分布,则; 21)()(b a dx a b x dx x xf X E b a +=-==⎰⎰+∞∞- (2)指数分布若X 服从参数为λ的指数分布,则 ; /1)(0λλλ⎰+∞-==dx e x X E x 正态分布若X 服从),(2s µN ,则.)(μ=X E考点35 二维随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.二维离散型随机变量的数学期望:设二维离散型随机向量(X,Y)的概率分布为p ij ,i=1,2,⋯,j=1,2,⋯.则:.),()],([11åå¥=¥==i j ij j i p y x g Y X g E2. 二维连续型随机变量的数学期望:设二维连续型随机向量(X,Y)的密度函数为f(x,y),则:. ),(),()],([dxdy y x f y x g Y X g E òò¥¥-¥¥-=考点36 数学期望的性质(★★★一级考点,选择、填空)(1).设C 是常数,则E(C)=C;E(C)=C ×1=C(2).若k 是常数,则E(kX)=kE(X);(3).E(X+Y)=E(X)+E(Y);(4).设X,Y 相互独立,则E(XY)=E(X)E(Y);考点37 方差的概念(★★二级考点,选择、填空)1.方差的概念:设X 是一随机变量,若E [X -E (X )]2 存在,则称其为X 的方差,记成Var(X ),即Var(X )=E {[X -E (X )]2} 并称)(X Var 为X 的标准差。

概率论与数理统计第四章

概率论与数理统计第四章

E (b) b E (aX ) aE ( X )
2. E(X+Y) = E(X)+E(Y);
推广 : E [ X i ] E ( X i )
i 1 i 1 n n
E ( ai X i ) ai E ( X i )
i 1 i 1
n
n
3. 设X、Y独立,则 E(XY)=E(X)E(Y);
例2.(X,Y)服从二维正态分布,其概率密度为 1 f ( x, y ) 2 21 2 1
1 y 1 2 x 1 y 2 y 2 2 exp{ [( ) 2 ( )( )( ) ]} 2 1 1 2 2 (1 )
证明: XY
Cov(kX, kY)=k2Cov(X,Y)
■相关系数
定义 设D(X)>0, D(Y)>0, 称
XY
Cov( X , Y ) X EX Y EY E[ ] D( X ) D(Y ) DX DY
为随机变量X和Y的相关系数(标准协方差)
X Y E( X Y ) XY
练习
1.设离散型随机变量(X,Y)的分布列为 Y 0 1 2 X 则E(XY)=( ) 0 1/3 1/6 1/9 1 0 1/6 1/9 2 0 0 1/9
2.设随机变量X的概率密度为
e x f ( x) 0 x0 其它
Y=e-2X,则EY=( )
■数学期望的性质
1. 设a,b是常数,则E(aX+b)=aE(X)+b;
对正态分布而言,X、Y相互独立 与互不相关是等价的。
例4.设随机变量(X,Y)~N(1, 1, 9, 16, -0.5) 令
第四章 随机变量的数字特征

同济大学概率论与数理统计第四章

同济大学概率论与数理统计第四章
.
•0
•1 •0变量,服从参数为0.1 的指数分布。现在该地刚发生了一次强地震,试 求(1)今后三年内再次发生强地震的概率;(2 )今后三至五年内再次发生强地震的概率。
•0
例6∶某人上班所需时间(单位∶分钟) X:N(50,100),己知上班时间为早晨8 点,他每天7点出门,试求
同济大学概率论与数理统计 第四章
二. 一维离散型随机变量
1 概率函数 2 分布函数 3 常见离散型分布
•1 概率函数
2 分布函数
3 常见离散型分布
三.一维连续型随机变量
• 1 概率密度函数 • 2 常见连续型随机变量
•1.概率密度函数
•f(x) •F(x) •0 •x
•a
进一步有
•常见连续型随机变量
•均匀分布
•指数分布
•正态分布
•c
•a
•b
•1
•a
•b
• 例:公共汽车站每隔5分钟有一辆车通过, 乘客在5分钟内任一时刻到达汽车站是等可 能的,求乘客候车时间在1到3分钟内的概率
(1)某天迟到的概率;
(2)某周(按五天计)最多迟到一次的 概率。
•精品课件

•精品课件

概率论与数理统计复习4-5章

概率论与数理统计复习4-5章
+∞
∑ g ( x ) p 绝对收敛,则Y的期望为 ∞
k =1 k k
∑ g(x
k =1
k
) pk
(2) 设X是连续型随机变量,概率密度为 f ( x) , 如果积分 ∫−∞ g ( x) f ( x)dx 绝对收敛,则Y的期望为
E (Y ) = E[ g ( X )] = ∫ g ( x ) f ( x )dx
例 设X的概率分布律为
X −1
0 12
1
2
p 1 3 1 6 1 6 1 12 1 4
试求Y=-X+1及 Z = X 2 的期望和方差。 X -1 0 1/2 解 由于 P 1/3 1/6 1/6 Y =-X+1 2 1 1/2 Z = X2 1 0 1/4
1 1 1 1 1 1 2 E (Y ) = ( −1) ⋅ + 0 ⋅ + ⋅ + 1⋅ + 2 ⋅ = 4 12 2 6 6 3 3
2 2
D( Z ) = E ( Z 2 ) + [ E ( Z )]2 = 2.23264
1 + x − 1 < x < 0 例 设随机变量X的概率密度为 f ( x ) = 1 − x 0 ≤ x < 1 1)求D(X), 2)求 D ( X 2 )
解 (1) E ( X ) = ∫ x(1 + x)dx + ∫ x(1 − x)dx
第四章 随机变量的数字特征
离散型随机变量的数学期望 连续型随机变量的数学期望 数学期望的性质及随机变量函数的期望 方差及其性质
4.1数学期望 数学期望
数学期望——描述随机变量取值的平均特征 数学期望——描述随机变量取值的平均特征 一、离散型随机变量的数学期望 定义 设离散型随机变量X的概率分布为

概率论与数理统计第四章

概率论与数理统计第四章

上述定理还可以推广到两个或两个以上随 机变量的函数的情况。
02
该公式的重要性在于: 当我们求E[g(X)]时, 不必知道g(X)的分布,而只需知道X的分布就可以了. 这给求随机变量函数的期望带来很大方便.
01
例6
例 7
解:
设(X,Y)在区域A上服从均匀分布,其中A为x轴,y轴和直线x+y+1=0所围成的区域。 求EX,E(-3X+2Y),EXY。
例5
若将这两个电子装置串联连接组成整机,求整机
寿命(以小时计) N 的数学期望.
的分布函数为
三、随机变量函数的数学期望
1. 问题的提出:
设已知随机变量X的分布,我们需要计算的不是X的期望,而是X的某个函数的期望,比如说g(X)的期望. 那么应该如何计算呢?
一种方法是,因为g(X)也是随机变量,故应有概率分布,它的分布可以由已知的X的分布求出来. 一旦我们知道了g(X)的分布,就可以按照期望的定义把E[g(X)]计算出来.
若设
i=1,2,…,n
则 是n次试验中“成功” 的次数

X~B(n,p),
“成功” 次数 .
则X表示n重努里试验中的
于是
i=1,2,…,n
由于X1,X2,…, Xn 相互独立
= np(1- p)
E(Xi)= p,
D(Xi)=
p(1- p) ,
例7

1
展开
2
证:D(X)=E[X-E(X)]2
3
=E{X2-2XE(X)+[E(X)]2}
4
=E(X2)-2[E(X)]2+[E(X)]2
5
=E(X2)-[E(X)]2

《概率论与数理统计》第04章习题解答

《概率论与数理统计》第04章习题解答

第四章 正态分布1、解:(0,1)ZN(1){ 1.24}(1.24)0.8925P Z ∴≤=Φ={1.24 2.37}(2.37)(1.24)0.99110.89250.0986P Z <≤=Φ-Φ==-= {2.37 1.24}( 1.24)( 2.37)(1.24)(2.37)0.89250.99110.0986P Z -<≤-=Φ--Φ-=-Φ+Φ=-+=(2){}0.9147()0.9147 1.37{}0.05261()0.0526()0.9474 1.62P Z a a a P Z b b b b ≤=∴Φ==≥=-Φ=Φ==,,得,,,得2、解:(3,16)XN8343{48}()()(1.25)(0.25)0.89440.59870.295744P X --∴<≤=Φ-Φ=Φ-Φ=-= 5303{05}()()(0.5)(0.75)44(0.5)1(0.75)0.691510.77340.4649P X --<≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 31(25,36){25}0.95442(3,4){}0.95X N C P X C X N C P X C -≤=>≥、()设,试确定,使;()设,试确定,使解:(1)(25,36){25}0.9544X N P X C -≤=,{2525}0.9544P C X C ∴-≤≤+=25252525()()0.954466()()2()10.9544666()0.9772,21266C C C C CC CC +---Φ-Φ=-Φ-Φ=Φ-=Φ=∴==即, (2)(3,4){}0.95XN P X C >≥,331()0.95()0.952231.6450.292C CCC ---Φ≥Φ≥-≥≤-即,,4、解:(1)2(3315,575)XN4390.2533152584.753315{2584.754390.25}()()575575(1.87)( 1.27)(1.87)1(1.27)0.969310.89800.8673P X --∴≤≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= (2)27193315{2719}()( 1.04)1(1.04)10.85080.1492575P X -≤=Φ=Φ-=-Φ=-=(25,0.1492)YB ∴4440{4}(0.1492)(10.1492)0.6664ii i i P Y C -=∴≤=-=∑5、解:(6.4,2.3)X N{}{}1()81(1.055)10.85540.14462.3(85}0.17615 6.451(0.923)(0.923)0.82121()2.3P X P X X P X -Φ>-Φ-∴>>======->-Φ-Φ-Φ6、解:(1)2(11.9,(0.2))XN12.311.911.711.9{11.712.3}()()(2)(1)(2)1(1)0.20.20.977210.84130.8185P X --∴<<=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 设A ={两只电阻器的电阻值都在欧和欧之间} 则2()(0.8185)0.6699P A ==(2)设X , Y 分别是两只电阻器的电阻值,则22(11.9,(0.2))(11.9,(0.2))X N Y N ,,且X , Y 相互独立[]22212.411.9{(12.4)(12.4)}1{12.4}{12.4)}1()0.21(2.5)1(0.9938)0.0124P X Y P X P Y -⎡⎤∴>>=-≤⋅≤=-Φ⎢⎥⎣⎦=-Φ=-=7、一工厂生产的某种元件的寿命X (以小时计)服从均值160μ=,均方差为的正态分布,若要求{120200}0.80P X <<≥,允许最大为多少解:因为2(160,)XN σ由2001601201600.80{120200}()()P X σσ--≤<<=Φ-Φ从而 40402()10.80()0.9σσΦ-≥Φ≥,即,查表得401.282σ≥,故σ≤8、解:(1)2(90,(0.5))XN8990{89}()(2)1(2)10.97720.02280.5P X -∴<=Φ=Φ-=-Φ=-= (2)设2(,(0.5))X N d由808080{80}0.991()0.99()0.99 2.330.50.50.5d d d P X ---≥≥∴-Φ≥Φ≥≥,,,即 从而d ≥ 9、解:22~(150,3),~(100,4)X Y X N Y N 与相互独立,且则(1)2221~(150(100,3)4)(250,5)W X Y N N =+++=()222222~2150100,(2)314(200,52)W X Y N N =+-⨯+-⨯+⨯=-22325~(125,)(125,(2.5))22X Y W N N +== (2)242.6250{242.6}()( 1.48)1(1.48)10.93060.06945P X Y -+<=Φ=Φ-=-Φ=-= 12551255125522212551251255125()1()(2)1(2)2.5 2.522(2)220.97720.0456X Y X Y X Y P P P ⎧+⎫++⎧⎫⎧⎫->=<-+>+⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭--+-=Φ+-Φ=Φ-+-Φ=-Φ=-⨯=10、解:(1)22~(10,(0.2)),~(10.5,(0.2))X N Y N X Y ,且与相互独立22~(0.5,2(0.2))(0.5,(0.282))X Y N N ∴--⨯=-0(0.5){0}()(1.77)0.96160.282P X Y ---<=Φ=Φ=(2)22~(10,(0.2)),~(10.5,)X N Y N X Y σ设,且与相互独立222~(0.5,2(0.2))(0.5,(0.2))X Y N N σ∴--⨯=-+0.90{0}P X Y ≤-<=Φ=Φ由1.28≥,故σ≤11、设某地区女子的身高(以m 计)2(1.63,(0.025))WN ,男子身高(以m 计)2(1.73,(0.05))MN ,设各人身高相互独立。

概率论与数理统计第四章

概率论与数理统计第四章

)
(
)
(
)
,
(
Y
D
X
Dபைடு நூலகம்
Y
X
Cov
xy
=
r
=4[E(WV)]2-4E(W2)×E(V2)≤0
01
得到[E(WV)]2≤E(W2)×E(V2). →(8)式得到证明.
02
设W=X-E(X),V=Y-E(Y),那么
03
其判别式
由(9)式知, |ρ xy|=1 等价于 [E(WV)]2=E(W2)E(V2). 即 g(t)= E[tW-V)2] =t2E(W2)-2tE(WV)+E(V2) =0 (10) 由于 E[X-E(X)]=E(x)-E(X) =0, E[Y-E(Y)]=E(Y)-E(Y) =0.故 E(tW-V)=tE(W)-E(V)=tE[X-E(X)]-E[Y-E(Y)]=0 所以 D(tW-V)=E{[tW-V-E(tW-V)]2}=E[(tW-V)2]=0 (11) 由于数学期望为0,方差也为0,即(11)式成立的充分必要条件是 P{tW-V=0}=1
随机变量X的数学期望是随机变量的平均数.它是将随机变量 x及它所取的数和相应频率的乘积和.
=
(1)
)
2
3
(
)
(
-
=
ò
µ
µ
-
dx
x
x
E
j
x
可见均匀分布的数学期望为区间的中值.
例2 计算在区间[a,b]上服从均匀分布的随机变量 的数学期望
泊松分布的数学期望和方差都等于参数λ.
其他
02
f(x)=
01
(4-6)
03
(4)指数分布

概率论与数理统计第4章 随机变量的数字特征与极限定理

概率论与数理统计第4章  随机变量的数字特征与极限定理
4.2.1 随机变量方差的概念 数学期望是随机变量重要的数字特征.但是,在 刻画随机变量的性质时,仅有数学期望是不够的.例如, 有两批钢筋,每批各10根,它们的抗拉强度指数如下:
25
定义4.3 设X是随机变量,若E[X-E(X)]2存 在,则称它为X的方差,记为D(X),即
由定义4.2,随机变量X的方差反映了X的可能取值 与其数学期望的平均偏离程度.若D(X)较小,则X的 取值比较集中,否则,X的取值比较分散.因此,方差 D(X)是刻画X取值离散程度的一个量.
3
定义4.1 设离散型随机变量X的分布律为
4
5
6
7
8
9
4.1.2 几个常用分布的数学期望 1.0—1分布 设随机变量X服从以p为参数的(0—1)分布,则X 的数学期望为
2.二项分布 设随机变量X~B(n,p),则X的数学期望为
10
3.泊松分布 设随机变量X~P(λ)分布,则X的数学期望为
41
Hale Waihona Puke 424.3 协方差、相关系数及矩
4.3.1 协方差 对于二维随机变量(X,Y),除了分量X,Y的数 字特征外,还需要找出能体现各分量之间的联系的数字 特征.
43
44
4.3.2 相关系数 定义4.5 设(X,Y)为二维随机变量,cov (X,Y),D(X),D(X)均存在,且D(X)>0,D(X) >0,称
15
16
17
定理4.2 设(X,Y)是二维随机变量,z=g(x,y) 是一个连续函数. (1)如果(X,Y)为离散型随机变量,其联合分布 律为
18
19
20
4.1.4 数学期望的性质 数学期望有如下常用性质(以下的讨论中,假设所 遇到的数学期望均存在):

概率论与数理统计 第4章 随机变量的数字特征

概率论与数理统计 第4章  随机变量的数字特征

解:
1 (5 0.5x)( 3 x2 x)dx
0
2
4.65(元)
2021/7/22
21
4.1.2 随机变量函数的数学期望
将定理4.1推广到二维随机变量的情形.
定理4.2 设Z是随机变量X,Y的函数Z = g(X,Y), g是连续函数.
(1) 若(X,Y)是二维离散型随机变量,其分布律
为P{X xi ,Y yj } pij, i, j 1,2,, 则有
解:由于 P{ X k} k e ,k = 0,1,2,…,
k!
因而
E( X ) kP{ X k} k k e
k0
k0 k!
k e
k1 (k 1)!
e
k 1
k1 (k 1)!
e k ee k0 k!
2021/7/22
12
4.1.1 数学期望的概念
2. 连续型随机变量的数学期望
2021/7/22
18
4.1.2 随机变量函数的数学期望
定理4.1 设Y为随机变量X的函数:Y = g(X) (g是连续
函数).
(1) 设X是离散型随机变量,其分布律为
P{X xk } pk , k 1,2,
若级数 g( xk ) pk绝对收敛,则 E(Y ) E[g( X )] g( xk ) pk
f ( x) 25( x 4.2), 4 x 4.2,
0,
其 它.
求pH值X的数学期望E(X).
解:
E( X ) xf ( x)dx
4
4.2
x 25( x 3.8)dx x (25)(x 4.2)dx
3.8
4
4
2021/7/22
15

概率论与数理统计教程第四章优秀PPT

概率论与数理统计教程第四章优秀PPT

k1
0.5 npq
np
注 意 点 (2)
中心极限定理的应用有三大类: i) 已知 n 和 y,求概率; ii) 已知 n 和概率,求y ; iii) 已知 y 和概率,求 n .
一、给定 n 和 y,求概率
例4.4.3 100个独立工作(工作的概率为0.9)的部件组 成一个系统,求系统中至少有85个部件工作的概率.
n
n
p
1
4.2.2 常用的几个大数定律
大数定律一般形式:
若随机变量序列{Xn}满足:
nlim
P
1 n
n
i 1
Xi
1 n
n
E(Xi)
i 1
1
则称{Xn} 服从大数定律.
切比雪夫大数定律
定理4.2.2
{Xn}两两不相关,且Xn方差存在,有共 同的上界,则 {Xn}服从大数定律. 证明用到切比雪夫不等式.
依概率收敛的性质
定理4.3.1 若 Xn P a, Yn P b
则{Xn}与{Yn}的加、减、乘、除 依概率收敛到 a 与 b 的加、减、乘、除.
4.3.2 按分布收敛、弱收敛
对分布函数列 {Fn(x)}而言,点点收敛要求太高.
定义4.3.2 若在 F(x) 的连续点上都有
nlim Fn(x) F(x) 则称{Fn(x)} 弱收敛于 F(x) ,记为
§4.3 随机变量序列的两种收敛性
两种收敛性: i) 依概率收敛:用于大数定律; ii) 按分布收敛:用于中心极限定理.
4.3.1 依概率收敛
定义4.3.1 (依概率收敛)
若对任意的
>0,有
nlim
P
Yn
Y
1
则称随机变量序列{Yn}依概率收敛于Y, 记为

概率论与数理统计第四章_几种重要的分布

概率论与数理统计第四章_几种重要的分布
用贝努公式计算ξ的分布律下
ξ
0
1
2
3
4
p 0.0016 0.0256 0.1536 0.4096 0.4096
4.2超几何分布(了解)
主要内容: (一)了解超几何分布的概念 (二)了解超几何分布的期望和方差
4.2超几何分布
例1 某班有学生20名,其中有5名女同学,今从 班上任选4名学生去参观展览,被选到的女同学数ξ
k1 (k 1)!(n k)!
n
(k 11)n! pk (1 p)nk
k1 (k 1)!(n k)!
n
(k 1)n!
n
pk (1 p)nk
n!
pk (1 p)nk
k1 (k 1)!(n k)!
k1 (k 1)!(n k)!
n
n!
n
pk (1 p)nk
n!
pk (1 p)nk
k2 (k 2)!(n k)!
解 可以取0,1,2,3这4个值。
P(
=k)=
C3k
C4k 17
C420
(k=0,1,2,3,)
列成概率分布如下
ξ
0
1
2
3
p 0.4912 0.4211 0.0842 0.0035
定义42 设N个元素分为两类,有N1个属于第一类, N2个属于第二类(N1+N2=N)。从中按不重复抽 样取n个,令ξ表示这n个中第一(或二)类元素的个数,
k1 (k 1)!(n k)!
n2
n1
n(n 1)Cnl 2 pl2 (1 p)n2l nCnj1 p j1(1 p)n1 j
l0
j0
n2
n(n 1)Cnl 2 pl2 (1 p)n2l l0

概率论与数理统计 第4章

概率论与数理统计 第4章

dx 令t
t2 2
x

,得
E( X )
1 2



( t )e
dt
1-91
31
1 E( X ) x e 2
( x )2 2 2
dx 令t
t2 2
x

,得
E( X )
1 2



( t )e
t2 2

从而
的概率密度为:
1-91
21
故所求数学期望分别为
1-91
22
三.数学期望的性质
性质1: 设 C 为常数,则 性质2: 设 C 为常数,X 为随机变量, 则有 性质3: 设 X , Y 为任意两个随机变量, 则有 为 n 个随机变量,
推论1 设
为常数,则
1-91
23
性质4 设X 和Y 是相互独立的随机变量,则有
证: 因为 X 和 Y 相互独立,所以 于是
推广:
1-91 24
例7. 将 n只球随机放入M 只盒子中去,设每只球 落入各个盒子是等可能的,求有球的盒子数 X 的 均值 解 引入随机变量
显然有
1-91
25
例7. 将 n只球随机放入M 只盒子中去,设每只球 落入各个盒子是等可能的,求有球的盒子数 X 的 均值
1-91
18
例5. 设某公共汽车站于每小时的10分, 50分发车, 乘客在每小时内任一时刻到达车站是随机的。求 乘客到达车站等车时间的数学期望。
解: 设T 为乘客到达车站的时刻, 则
其概率密度为
设Y 为乘客等车时间,则
1-91
19
已知
1-91

概率论与数理统计第4章

概率论与数理统计第4章

随机变量的数学期望是概率论中最重要的 概念之一.它的定义来自习惯上的平均值概念.
5
一、离散型随机变量的数学期望
引例 某企业对自动流水线加工的产品实行质量 监测,每天抽检一次,每次抽取5件,检验产品是 否合格,在抽检的30天的记录中,无次品的有18天, 一件次品的有9天,两件次品的有3天,求日平均次 品数.
k

这启发我们引出如下连续型随机变量的数 学期望定义:
30
二、连续型随机变量的数学期望
设连续型随机变量 X 的概率密度为 f ( x ), 若积分
x f ( x ) d x
绝对收敛, 则称积分 x f ( x ) d x 的值为随机


变量 X 的数学期望, 记为 E ( X ) . 即 E ( X ) x f ( x )d x.
n
n 1
n( n 1)( n i ) i 1 n i 1 p q i! i 0
n 1
令i k 1
( n 1)( n i ) i ( n1) i np pq i! i 0
n 1
np C
i 0
n 1
i n 1
pq
i
( n 1 ) i
试问哪个射手技术较好?
12
解 设甲、乙射手击中的环 数分别为 X 1 , X 2 .
E ( X 1 ) 8 0.3 9 0.1 10 0.6 9.3(环), E ( X 2 ) 8 0.2 9 0.5 10 0.3 9.1(环),
故甲射手的技术比较好. 乙射手 甲射手
Y
1500
0.0952
2000
2500
3000
0.7408

概率论与数理统计 第四章

概率论与数理统计   第四章

50 1 1 1 ( ) 49 2 100 2
数理统计
28

骣n 1 2 2 E (S ) = E 琪 X i - nX 琪 å 琪 n - 1 桫= 1 i
= 1 n- 1 n n 1
2
1 n 2 2 EX i nEX n 1 i 1
2
(n E X
若总体X是连续型随机变量,其概率密度为
f ( x ),
则样本的联合概率密度为
f ( x1 , x 2 , , x n ) f ( x1 ) f ( x 2 ) f ( x n )
对于离散型总体,有相似的结论。
数理统计 17
例 设 ( X 1 , X 2 , , X n ) 是取自正态总体 N ( , 2 ) 的 样本,求样本的概率分布。 解 总体X的密度函数为
数理统计
30
X EX 1 P DX
X 1 P 1 10
0 .0 2 E X DX
E(X ) 0 D(X ) 1 100
显然
X ( 1 ) m in X i ,
1 i n
X (n) m ax X i ,
1 i n
两者也分别称为最小次序统计量和最大次序统计量. 称
R X ( n ) X ( 1 ) 为样本极差
X n1 ( 2 ) Md 1 (X n X n ( ) (1 ) 2 2 2 n 为奇数 (4 - 15) n 为偶数
总体 样本
随机变量 X 随机向量
( X 1 , X 2 , , X n )
数理统计
15
在一次试验中,样本的具体观测值 称为样本值。记为 ( x 1 , x 2 , , x n ) . 有时候样本与样本值使用同一符号, 但含义不同。 简单随机样本 若 X 1 , X 2 , X n 是相互独立的并与总体

概率论与数理统计第04章随机变量的数字特征第2讲

概率论与数理统计第04章随机变量的数字特征第2讲

| x-m |
2
| x - m | e 2
e
2
f ( x) d x
2
s 2 ( x - m ) f ( x) d x 2 . e - e
此不等式也可写为:
s P{| X - m | e } 1 - 2 e
2
(2.10)
16
这个不等式给出了, 在随机变量X的分布未知 的情况下事件{|X-m|<e}的概率的下限估计. 例 如, 在(2.10)式中分别取e=3s, 4s得到 P{|X-m|<3s}0.8889, P{|X-m|<4s}0.9375. 在书末附表1中列出了多种常用的随机变量的 数学期望和方差, 供读者查用.
2 2
2
4
方差的几个重要性质 (1) 设C是常数, 则D(C)=0. (2) 设X是随机变量, C是常数, D(CX)=C2D(X).
(3) 对任意两个随机变量X,Y, D(X+Y)=D(X)+D(Y) +2E{[X-E(X)][Y-E(Y)]} (2.5) 特别, 若X,Y相互独立, 则 D(X+Y)=D(X)+D(Y) (2.6) (4) D(X)=0的充要条件是X以概率1取以cm计)X~N(22.40, 0.032), 气缸的直径Y~N(22.50, 0.042), X,Y相互独立. 任取一只活塞, 任取一只气缸, 求活塞能装入 气缸的概率. 解 按题意须求P{X<Y}=P{X-Y<0}. 由于 X-Y~N(-0.10, 0.0025), 故有 P{X<Y}=P{X-Y<0}
概率论与数理统计
第四章 随机变量的数字特征
第2讲
1
例1 设随机变量X具有数学期望E(X)=m, 方差 D(X)=s20. 记X *=(X-m)/s . 1 1 * 则 E ( X ) E ( X - m ) [ E ( X ) - m ] 0; s s 2 X - m * *2 * 2 D( X ) E ( X ) - [ E ( X )] E s

概率论与数理统计总结之第四章

概率论与数理统计总结之第四章

概率论与数理统计总结之第四章第四章概率论与数理统计总结第四章是概率论与数理统计中的重要章节,主要介绍了概率分布以及随机变量的性质和应用。

本章内容相对较为复杂,需要掌握一定的数学基础知识,但是只要我们认真学习并进行实践,就能够掌握其中的核心概念和方法。

本章的重点内容包括:离散型随机变量及其概率分布、连续型随机变量及其概率密度函数、随机变量的函数分布、两个随机变量的联合分布、随机变量的独立性等。

首先,我们需要了解离散型随机变量及其概率分布。

离散型随机变量是一种取有限或可数个数值的随机变量,其概率分布可以通过概率分布列或概率质量函数进行描述。

常见的离散型随机变量有二项分布、泊松分布等。

我们需要掌握这些分布的定义、性质以及应用,能够计算其均值、方差以及分布函数等。

接着,我们学习了连续型随机变量及其概率密度函数。

连续型随机变量是一种取连续数值的随机变量,其概率分布可以通过概率密度函数进行描述。

常见的连续型随机变量有均匀分布、正态分布等。

我们需要了解这些分布的定义、性质以及应用,能够计算其期望、方差以及分位数等。

随后,我们学习了随机变量的函数分布。

通过对随机变量进行函数变换,可以得到新的随机变量,其概率分布可以通过原始随机变量的概率分布进行推导。

我们需要了解函数分布的计算方法,能够根据随机变量的分布函数和概率密度函数计算新的随机变量的分布函数和概率密度函数。

然后,我们学习了两个随机变量的联合分布。

对于两个随机变量,我们可以通过联合分布来描述它们的联合概率分布。

对于离散型随机变量,我们可以通过联合分布列来描述;对于连续型随机变量,我们可以通过联合概率密度函数来描述。

我们需要掌握联合概率分布的计算方法,能够计算两个随机变量的联合概率、边缘概率以及条件概率等。

最后,我们学习了随机变量的独立性。

当两个随机变量的联合概率分布可以通过各自的边缘概率分布表示时,我们称它们是独立的。

我们需要了解独立性的定义和性质,能够判断两个随机变量是否独立,并能够计算独立随机变量的联合概率分布。

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案1.在下列句子中随机地取一个单词,以X 表示取到的单词包含的字母的个数,试写出X 的分布律,并求)(X E .Have a good time解:本题的随机试验属于古典概型.所给句子共4个单词,其中有一个单词含一个字母,有3个单词含4个字母,则X 的所有可能取值为1,4,有41)1(==X P ,43)4(==X P ,从而413434411)(=⋅+⋅=X E .2.在上述句子的13个字母中随机地取一个字母,以Y 表示取到的字母所在的单词所含的字母数,写出Y 的分布律,并求)(Y E .解:本题的随机试验属于古典概型.Y 的所有可能取值为1,4,样本空间Ω由13个字母组成,即共有13个样本点,则131)1(==Y P ,1312)4(==Y P ,从而1349131241311)(=⋅+⋅=Y E .3.一批产品有一、二、三等品及废品4种,所占比例分别为60%,20%,10%和10%,各级产品的出厂价分别为6元、8.4元、4元和2元,求产品的平均出厂价.解:设产品的出厂价为X (元),则X 的所有可能取值为6,8.4,4,2,由题设可知X 的分布律为X 68.442P6.02.01.01.0则16.51.021.042.08.46.06)(=⨯+⨯+⨯+⨯=X E (元).4.设随机变量X 具有分布:51)(==k X P ,5,4,3,2,1=k ,求)(X E ,)(2X E 及2)2(+X E .解:3)54321(51)(=++++=X E ,11)54321(51)(222222=++++=X E ,274)(4)()44()2(222=++=++=+X E X E X X E X E .5.设离散型随机变量X 的分布列为k k kk X P 21)!2)1((=-=, ,2,1=k ,问X 是否有数学期望.解:因为∑∑∞=∞==⋅-111212)1(k k k k kkk 发散,所以X 的数学期望不存在.6.设随机变量X 具有密度函数⎪⎩⎪⎨⎧≤≤-=其他.,0,22,cos 2)(2πππx x x f 求)(X E 及)(X D .解:因为x x 2cos 在]2,2[ππ-上为奇函数,所以0d cos 2d )()(222=⋅==⎰⎰-∞+∞-πππx x x x x f x X E ,2112d cos 2d )()(2222222-=⋅==⎰⎰-∞+∞-ππππx x x x x f x X E ,故2112)]([)()(222-=-=πX E X E X D .7.设随机变量X 具有密度函数⎪⎩⎪⎨⎧<<-≤<=其他.,0,21,2,10,)(x x x x x f 求)(X E 及)(X D .解:1d )2(d d )()(2112=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,67d )2(d d )()(2121322=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,61)]([)()(22=-=X E X E X D .8.设随机变量X 在)21,21(-上服从均匀分布,求)sin(X Y π=的数学期望与方差.解:由题可知X 的密度函数为⎪⎩⎪⎨⎧<<-=其他.,0,2121,1)(x x f 则0d 1sin d )(sin )][sin()(2121=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21d 1sin d )(sin )]([sin )(21212222=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21)]([)()(22=-=Y E Y E Y D .9.某正方形场地,按照航空测量的数据,它的边长的数学期望为350m ,又知航空测量的误差随机变量X 的分布列为X (m)30-20-10-0102030P05.008.016.042.016.008.005.0而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即X Y +=350,求场地面积的数学期望.解:设场地面积为S ,则2Y S =,16.01042.0016.0)10(08.0)20(05.030)(⨯+⨯+⨯-+⨯-+⨯-=X E 005.03008.020=⨯+⨯+,16.01042.0016.0)10(08.0)20(05.0)30()(222222⨯+⨯+⨯-+⨯-+⨯-=X E 18605.03008.02022=⨯+⨯+,故)350700(])350[()()(2222++=+==X X E X E Y E S E 122686350)(700)(22=++=X E X E .10.A ,B 两台机床同时加工零件,每生产一批较大的产品时,出次品的概率如下表所示:A 机床次品数X 0123概率P7.02.006.004.0B 机床次品数X 0123概率P8.006.004.010.0问哪一台机床加工质量较好.解:44.004.0306.022.017.00)(=⨯+⨯+⨯+⨯=X E ,8.004.0306.022.017.00)(22222=⨯+⨯+⨯+⨯=X E ,6064.0)]([)()(22=-=X E X E X D ,44.010.0304.0206.018.00)(=⨯+⨯+⨯+⨯=Y E ,12.110.0304.0206.018.00)(22222=⨯+⨯+⨯+⨯=Y E ,9264.0)]([)()(22=-=Y E Y E Y D ,)()(Y E X E =,但)()(Y D X D <,故A 机床加工质量较好.11.设随机变量X 与Y 相互独立,且方差存在,试证:22)]()[()()]([)()()(Y E X D Y D X E Y D X D XY D ++=,由此得出)()()(Y D X D XY D ≥.证:22)]([])[()(XY E XY E XY D -=222)]()([)(Y E X E Y X E -=2222)]([)]([)()(Y E X E Y E X E -=2222)]([)]([})]([)(}{)]([)({Y E X E Y E Y D X E X D -++=22)]()[()()]([)()(Y E X D Y D X E Y D X D ++=.因为)(X D ,)(Y D ,2)]([X E ,2)]([Y E 非负,所以)()()(Y D X D XY D ≥.12.已知随机变量X 的密度函数为⎩⎨⎧≤≤++=其他.,010,)(2x c bx x a x f又已知5.0)(=X E ,15.0)(=X D ,求a ,b ,c .解:c b a x c bx x a x x f ++=++==⎰⎰∞+∞-2131d )(d )(1102,c b a x c bx x a x x x f x X E 213141d )(d )()(5.0102++=++===⎰⎰∞+∞-,⎰⎰++-=-==∞+∞-1222d )()5.0(d )()]([)(15.0xc bx x a x x x f X E x X D 41314151-++=c b a ,解之得12=a ,12-=b ,3=c .13.设),(Y X 的分布律为(1)求)(X E 及)(Y E ;(2)设XYZ =,求)(Z E ;(3)设2)(Y X Z -=,求)(Z E .解:(1)2)13.00(3)1.001.0(2)1.01.02.0(1)(=++⨯+++⨯+++⨯=X E ,0)1.01.01.0(1)3.001.0(0)01.02.0()1()(=++⨯+++⨯+++⨯-=Y E ,(2)1.01)3.001.0(00)31(1.021(2.01)(⨯+++⨯+⨯-+⨯-+⨯-=Z E 1511.0311.021-=⨯+⨯+,(3)1.0)01(0)]1(3[1.0)]1(2[2.0)]1(1[)(2222⨯-+⨯--+⨯--+⨯--=Z E 51.0)13(1.0)12(1.0)11(3.0)03(0)02(22222=⨯-+⨯-+⨯-+⨯-+⨯-+.14.设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,0,10,20,3),(y x yx y x f求)(X E ,)(Y E ,)(Y X E +及)(22Y X E +.解:⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(911d d 31020=+⋅=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x yf Y E d d ),()(95d d 31020=+⋅=⎰⎰y x y x y ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(916d d 3)(1020=+⋅+=⎰⎰y x y x y x ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(2222613d d 3)(102022=+⋅+=⎰⎰y x y x y x .15.),(Y X 在区域}1,0,0|),{(≤+≥≥=y x y x y x D 上服从均匀分布,求)(X E ,)23(Y X E -及)(XY E .解:由题可知),(Y X 的联合密度函数为⎩⎨⎧≤≤-≤≤=其他.,0,10,10,2),(y y x y x f ⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(31d d 21010==⎰⎰-yy x x ,⎰⎰∞+∞-∞+∞--=-y x y x f y x Y X E d d ),()23()23(31d d )23(21010=-=⎰⎰-yy x y x ,⎰⎰∞+∞-∞+∞-=y x y x xyf XY E d d ),()(121d d 21010==⎰⎰-y y x xy .16.设二维随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧>+≤+=.1,0,1,1),(2222y x y x y x f π证明:随机变量X 与Y 不相关,也不相互独立.证:⎰⎰⎰⎰⋅=⋅=∞+∞-∞+∞-πθθππ201d d cos 1d d 1)(r r r y x x X E ,同理,0)(=Y E ,⎰⎰⎰⎰⋅⋅=⋅=∞+∞-∞+∞-πθθθππ201d d sin cos 1d d 1)(r r r r y x xy XY E ,0)()()(),cov(=-=Y E X E XY E Y X ,故随机变量X 与Y 不相关.当11≤≤-x 时,ππ21112d 1d ),()(22x y y y x f x f x x X -===⎰⎰---∞+∞-,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2x x x f X π同理,⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2y y y f Y π易得)()(),(y f x f y x f Y X ≠,故随机变量X 与Y 不相互独立.17.设随机变量1X ,2X 的概率密度分别为⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x f x ,⎩⎨⎧≤>=-.0,0,0,e 4)(42y y y f y 试用数学期望的性质求:(1))(21X X E +及)32(221X X E -;(2)又设1X ,2X 相互独立,求)(21X X E .解:由题可知1X ~)2(E ,2X ~)4(E ,则21)(1=X E ,41)(2=X E ,161)(2=X D ,81)]([)()(22222=+=X E X D X E .(1)43)()()(2121=+=+X E X E X X E ,85)(3)(2)32(221221=-=-X E X E X X E .(2)81)()()(2121==X E X E X X E .18.(1)设1X ,2X ,3X 及4X 独立同在)1,0(上服从均匀分布,求)51(41∑=k k kX D ;(2)已知随机变量X ,Y 的方差分别为25和36,相关系数为4.0,求Y X U 23+=的方差.解:(1)由题易得121)(=i X D ,)51(41∑=k k kX D )(5141∑==k kkX D )](4)(3)(2)([514321X D X D X D X D +++=21)4321(121512222=+++⋅=.(2)由已知25)(=X D ,36)(=Y D ,4.0)()(),cov(==Y D X D Y X XY ρ,得12),cov(=Y X ,)2,3cov(2)2()3()23()(Y X Y D X D Y X D U D ++=+=513),cov(232)(2)(322=⋅⋅++=Y X Y D X D .19.一民航送客车载有20位旅客自机场开出,旅客有10个车站可以下车,如果到达一个车站没有旅客下车就不停车,以X 表示停车的次数,求)(X E (设每位旅客在各个车站下车是等可能的,并设各旅客是否下车相互独立).解:引入随机变量⎩⎨⎧=站无人下车.,在第站有人下车;,在第i i X i 01,10,,2,1 =i .易知1021X X X X +++= .按题意,任一旅客在第i 站不下车的概率为9.0,因此20位旅客都不在第i 站下车的概率为209.0,在第i 站有人下车的概率为209.01-,也就是209.0)0(==i X P ,209.01)1(-==i X P ,10,,2,1 =i .由此209.01)(-=i X E ,10,,2,1 =i .进而)()()()()(10211021X E X E X E X X X E X E +++=+++= 784.8)9.01(1020=-=(次).20.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求)(X E .解:引入随机变量⎩⎨⎧=号盒子.号球未放入第第号盒子号球放入第第i i i i X i ,0,,1,n i ,,2,1 =,则n X X X X +++= 21,显然n X P i 1)1(==,则nX P i 11)0(-==,n i ,,2,1 =,从而nX E i 1)(=,n i ,,2,1 =,于是1)()()()()(2121=+++=+++=n n X E X E X E X X X E X E .21.设随机变量),(Y X 的分布律为试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.证:0)25.00(2)025.0(1)025.0()1()25.00(2)(=+⨯++⨯++⨯-++⨯-=X E ,5)25.00025.0(4)025.025.00(1)(=+++⨯++++⨯=Y E ,0)4(25.0)8(0225.0125.0)1(02)(⨯-+⨯-+⨯+⨯+⨯-+⨯-=XY E 025.0804=⨯+⨯+,所以0)()()(),cov(=-=Y E X E XY E Y X ,故X 与Y 不相关.易知25.025.00)2(=+=-=X P ,5.0025.025.00)1(=+++==Y P ,0)1,2(==-=Y X P ,有)1()2()1,2(=-=≠=-=Y P X P Y X P ,故X 与Y 不相互独立.22.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤+=其他.,0,10,10,),(y x y x y x f 求)(X E ,)(Y E ,)(X D ,)(Y D ,)(XY E ,),cov(Y X 及XY ρ.解:127d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,125d d )(d d ),()(1010222=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,得127)(=Y E ,14411)(=Y D ,31d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ.23.设X ~),(2σμN ,Y ~),(2σμN ,且X ,Y 相互独立.求Y X Z βα+=1和Y X Z βα-=2的相关系数(α,β是不为0的常数).解:由题可知μ==)()(Y E X E ,2)()(σ==Y D X D ,则2222)]([)()(σμ+=+=X E X D X E ,2222)]([)()(σμ+=+=Y E Y D Y E ,μβαβα)()()(1+=+=Y X E Z E ,μβαβα)()()(2-=-=Y X E Z E ,222221)()()()()(σβαβαβα+=+=+=Y D X D Y X D Z D ,222222)()()()()(σβαβαβα+=+=-=Y D X D Y X D Z D ,)()])([()(222221Y X E Y X Y X E Z Z E βαβαβα-=-+=))(()()(22222222σμβαβα+-=-=Y E X E ,222212121)()()()(),cov(σβα-=-=Z E Z E Z Z E Z Z ,22222121)()(),cov(21βαβαρ+-==Z D Z D Z Z Z Z .24.设),(Y X 的联合概率密度为⎩⎨⎧≤≤≤≤--=.,0,10,10,2),(其他y x y x y x f (1)求),cov(Y X ,XY ρ和)32(Y X D -;11(2)X 与Y 是否独立?解:(1)125d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,41d d )2(d d ),()(1010222=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,61d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,125)(=Y E ,14411)(=Y D ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ,)3,2cov(2)3()2()32(Y X Y D X D Y X D -+-+=-144155),cov(12)(3)(222=-+=Y X Y D X D .(2)当10≤≤x 时,x y y x y y x f x f X -=--==⎰⎰∞+∞-23d )2(d ),()(10,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(x x x f X 同理,⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(y y y f Y 因为)()(),(y f x f y x f Y X ≠,故X 与Y 不相互独立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理
设Y是随机变量X的函数:Y=g(X)(g是连续函数)
1)X是离散型随机变量,它的分布律为 …,若 绝对收敛,则有
2)X是连续型随机变量,它的概率密度为f(x)。若 绝对收敛,则有E(Y)=E[g(X)]=
数学期望的几个重要性质:
1.设C是常数,则有E(C)=C
2.设X是一个随机变量,C是常数,则有E(CX)=CE(X)
协方差及相关系数
量 称为随机变量X与Y的协方差,记为Cov(X,Y),即
Cov(X,Y)=
而 称为随机变量X与Y的相关系数
是一个无量纲的量
协方差的性质有:
1. ,a,b是常数
2.
当| |较大时,X,Y线性相关的程度较好,当| |较小时,X,Y线性相关的程度较差,当 =0,称X和Y不相关
若X,Y独立,则其不相关,但若X,Y不相关,并不能说明其独立
若A,B相互独立,则有E(AB)=E(A)E(B)
3.设X,Y是两个随机变量,则有E(X+Y)=E(X)+E(Y)
方差
设X是一个随机变量,若 存在,则称 为X的方差,记为D(X)或Var(X),即D(X)=Var(X)=
,记为σ(X),称为标准差或均方差
对于离散型随机变量,
对于连续型随机变量,
随机变量X的方差计算公式:
矩、协方差矩阵
设X,Y是随机变量,若 …存在,称它为X的k阶原点矩,简称k阶矩
若 …存在,称它为X的k阶中心矩
若 …存在,称它为X和Y的k+l阶混合矩
若 …存在,称它为X和Y的k+l阶混合中心矩
设n维随机变量 … 的二阶混合中心矩

都存在,则称矩阵
为n维随机变量 … 的协方差矩阵
由于 ,因而上述矩阵是一个对称矩阵
方差的几个重要性质:
1.设C是常数,则D(C)=0
2.设X是随机变量,C是常数,则有
3.设X,Y是两3;Y)=D(X)+D(Y)
4.D(X)=0的充要条件是X以概率1取常数C,即P{X=C}=1,显然这里C=E(X)
定理:(切比雪夫不等式)
设随机变量X具有数学期望E(X)=μ,方差D(X)= ,则对于任意正数 ,不等式 成立
第四章 数学期望和方差
数学期望:
设离散型随机变量X的分布律为 …
若级数 绝对收敛,则称级数 的和为随机变量X的数学期望,记为E(X),即E(X)=
设连续型随机变量X的概率密度为f(x),
若积分 绝对收敛,则称积分 的值为随机变量X的数学期望,记为E(X),即E(X)=
数学期望简称期望,又称为均值
数学期望E(X)完全由随机变量X的概率分布所确定,若X服从某一分布也称E(X)是这一分布的数学期望
相关文档
最新文档