教学中常用的几种数学思想方法

合集下载

小学数学教材中蕴涵的7种常见数学思想方法

小学数学教材中蕴涵的7种常见数学思想方法

小学数学教材中蕴涵了几种常见的数学思想方法,梳理一下,大概有以下七种:1.归纳。

归纳是通过特例的分析引出普遍的结论。

在研究一般性问题时,先研究几个简单、个别的、特殊的情况,从中概括出一般的规律和性质,这种由部分到整体、由特殊到一般的推理被称为归纳。

小学数学中的有些数学问题是直接建立在类比之上的归纳,有些数学问题是建立在抽象分析之上的归纳。

小学阶段学生接触较多的是不完全归纳推理。

加法结合律,我们就采用了不完全归纳推理展开教学。

例如,28个男生在跳绳,17个女生在跳绳,23个女生在踢毽子。

求跳绳和踢毽子的一共有多少人,可以先求跳绳的人数列出算式(28+17)+23计算,也可以先求女生的人数列出算式28+(17+23)计算。

这两道算式的算理是等价的,得数也相同,因此可以写成等式(28+17)+23=28+(17+23)。

在这第一个实例中,学生看到的数学现象是不是普遍性的规律,需要在类似的情况中验证。

于是,我们让学生分别算一算(45+25)+13和45+(25+13)、(36+18)+22和36+(18+22),看看每组的两道算式是不是相等,两道算式中间能不能填上等号,再看看这些相等的算式有什么结构上的特点,猜想有这种结构特点的算式结果是否一定相等,通过实验发现第一个实例中的数学现象在类似的情况中同样存在。

接着,鼓励学生自己写出类似的几组算式,进行更多的验证,体验现象的普遍性。

学生通过进行类似的实验,在实验中概括出加法结合律,并用字母a、b、c分别表示三个加数,写成(a+b)+c= a+(b+c)。

这样,学生在学习加法结合律等的过程中,就经历了由具体到一般的抽象、概括过程,不仅可以发现数学规律、定理,而且能够初步感受归纳的思想方法,使思维水平得到提升。

2.演绎。

演绎与归纳相反,是从普遍性结论或一般性的前提推出个别或特殊的结论。

在研究个别问题时,以一般性的逻辑假设为基础,推出特定结论,这种从一般到特殊的推理被称为演绎。

十大数学思想方法

十大数学思想方法

十大数学思想方法数学思想是数学研究活动中解决问题的根本方法,是数学的灵魂和生命力。

因此,在教学过程中,要重视数学思想的提炼、渗透。

分析近几年的高考试题,高考中重点考察学生函数与方程思想、分类讨论思想、数形结合思想、转化或化归思想。

在不等式解题中,若能恰当地运用这些思想方法,可使许多复杂问题化难为易,化繁为简,从而达到优化解题过程,提高思维能力的目的。

一、函数与方程思想函数与方程是高中数学内容之重点,应用广泛,是解决数学问题的有力工具,在高考中占据非常重要的地位。

因此,在教学中要培养学生如何建立函数关系或构造函数,运用函数的图像、性质去分析问题,解决问题。

例1已知某∈(0,+∞),求证: 根据不等式的结构特征,恰当地构造辅助函数,此时,若均值不等式取最值时等号不成立,常常考虑利用函数的单调性来解决。

二、分类讨论思想分类讨论是数学能力培养的一个重要组成部分,在解某些数学问题时,当在整个范围内不易解决时,往往可以将这个大范围划分成若干个小范围来讨论研究。

分类讨论只能确定一个标准,必须坚持不重不漏的原则。

例2.设a为实数,函数f(某)=2某2+(某-a)|某-a|。

(1)求f(某)的最小值; (2)设函数h(某)=f(某),某∈(a,+∞)解不等式h(某)≥1评注:分类讨论的关键是要根据问题实际找到分类的标准,本题函数解析式中含有绝对值,所以首先必须分类讨论去绝对值,其次在解不等式中必须对判别式△进行讨论,当△>0时还需讨论根的大小。

分类时标准的确定须使任何两类交集为空集且并集为全集,这样才能在解题过程中,做到分类合理,并力求最简。

三、数形结合思想数与形是现实世界中客观事物的抽象与具体的反映。

数形结合思想,其实质是将代数式的精确刻划与几何图形的直观描述有机结合起来,通过对图形的处理,实现代数问题几何化,几何问题代数化。

解题时要充分进行数形转换,借助数的逻辑推演与形的直观特性求解,既直观又深刻。

例3.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元。

十大数学思想方法

十大数学思想方法

数学(mathematics或maths,来⾃希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的⼀门学科,从某种⾓度看属于形式科学的⼀种。

下⾯请欣赏店铺为⼤家带来的⼗⼤数学思想⽅法,希望对⼤家有所帮助~ 1、配⽅法: 所谓配⽅,就是把⼀个解析式利⽤恒等变形的⽅法,把其中的某些项配成⼀个或⼏个多项式正整数次幂的和形式。

通过配⽅解决数学问题的⽅法叫配⽅法。

其中,⽤的最多的是配成完全平⽅式。

配⽅法是数学中⼀种重要的恒等变形的⽅法,它的应⽤⾮常⼴泛,在因式分解、化简根式、解⽅程、证明等式和不等式、求函数的极值和解析式等⽅⾯都经常⽤到它。

2、因式分解法: 因式分解,就是把⼀个多项式化成⼏个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的⼀个有⼒⼯具、⼀种数学⽅法在代数、⼏何、三⾓函数等的解题中起着重要的作⽤。

因式分解的⽅法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、⼗字相乘法等外,还有如利⽤拆项添项、求根分解、换元、待定系数等等。

3、换元法: 换元法是数学中⼀个⾮常重要⽽且应⽤⼗分⼴泛的解题⽅法。

我们通常把未知数或变数称为元,所谓换元法,就是在⼀个⽐较复杂的数学式⼦中,⽤新的变元去代替原式的⼀个部分或改造原来的式⼦,使它简化,使问题易于解决。

4、判别式法与韦达定理: ⼀元⼆次⽅程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2—4ac,不仅⽤来判定根的性质,⽽且作为⼀种解题⽅法,在代数式变形,解⽅程(组),解不等式,研究函数乃⾄解析⼏何、三⾓函数运算中都有⾮常⼴泛的应⽤。

韦达定理除了已知⼀元⼆次⽅程的⼀个根,求另⼀根;已知两个数的和与积,求这两个数等简单应⽤外,还可以求根的对称函数,计论⼆次⽅程根的符号,解对称⽅程组,以及解⼀些有关⼆次曲线的问题等,都有⾮常⼴泛的应⽤。

5、待定系数法: 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,⽽后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从⽽解答数学问题,这种解题⽅法称为待定系数法。

常用的小学数学思想方法:对应思想方法、假设思想方法、

常用的小学数学思想方法:对应思想方法、假设思想方法、

常用的小学数学思想方法:对应思想方法、假设思想方法、比较思想方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思维方法、变中抓不变的思想方法、数学模型思想方法、整体思想方法等等。

数学的思想方法是人们对数学知识和规律本质的认识,是分析、处理和解决数学问题的根本想法。

它不象数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而是隐藏于教材之外的无“形”的知识系统。

但是却对学生数学的学习和终身发展起着至关重要的作用。

所以,在数学教学中,教师要深入挖掘文本中的数学思想和方法,适时对学生进行数学思想和方法的渗透。

那么,在小学阶段,教师要注意渗透哪些数学思想和方法呢?1、对应思想利用数量间的对应关系来思考数学问题,就是对应思想。

集合、函数、坐标等问题都以这一思想为基础。

找数量之间的对应关系,也是解答应用题的一种重要的思维方式。

在低、中年级整数应用题训练时,教师就应该让学生明白数量之间存在着一一对应的关系。

例如,水果店上午卖出橘子6筐,下午又卖出同样的橘子8筐,比上午多卖100元。

每筐橘子多少元?在这里存在着钱数和筐数的对应关系,学生如果能看出下午比上午多卖的100元,对应的筐数是(8-6)筐,此题就迎刃而解了。

即100÷(8-6)=50(筐)。

此外,在教学归一问题,相遇问题等都要让学生找到题中数量之间的对应关系。

到了高年级学分数乘除法应用题时,则要找到具体数量和分率之间的对应关系。

分数应用题虽然千变万化,但万变不离其宗,找到了对应关系,也就找到了解题的关键。

例如,修一段路,第一天修了全长的1/4,第二天修了全长的 2/5,还剩2100米,这条路全长多少米?根据题意列出对应关系表:总米数————“1”第二天米数——— 2/5第一天米数——— 1/4 剩下2100米——(1-1/4-2/5)从上表可以看到2100米对应的分率就是(1-1/4-2/5),也就是说,总米数的(1-1/4-2/5)就是2100米。

小学数学常见的数学思想方法

小学数学常见的数学思想方法

小学数学常见的数学思想方法在小学数学中,有一些常见的数学思想方法,这些方法不仅帮助学生理解和解决数学问题,还培养了他们的逻辑思维和问题解决能力。

本文将介绍一些常见的小学数学思想方法。

第一、归纳法归纳法是一种从特殊到一般的思维方法。

通过观察和分析特殊情况,再总结规律,推广到一般情况。

例如,学习排列组合时,可以先从2个数字的排列开始归纳,然后推广到更多数字的排列。

这样做可以帮助学生理解和记忆更抽象的概念。

第二、类比法类比法是通过寻找事物之间的共同特征,把问题转化为已知问题的方法。

例如,在学习解方程时,可以把方程看作一个天平,通过移项和化简,使方程两边平衡。

这种类比可以帮助学生把抽象的数学问题转化为更具体和易于理解的形式。

第三、分解法分解法是将复杂的问题分解为若干简单的子问题来解决的思维方法。

例如,在学习长除时,可以将被除数分解成各个位的数字,并逐位进行计算。

这种分解的思维方法可以帮助学生理清思路,简化问题,更容易得到答案。

第四、逆向思维法逆向思维法是从问题的结果出发,逆向推导出解决问题的方法。

例如,在学习排序时,可以先思考如何将数字从大到小排列,然后将步骤反转,即可得到从小到大排列的方法。

逆向思维法可以培养学生的逻辑思维和反向推理能力。

第五、模型法模型法是通过建立数学模型,把实际问题转化为数学问题来解决的思维方法。

例如,在学习面积时,可以通过绘制图形模型来计算面积。

这种方法可以帮助学生理解数学概念,并将数学应用于实际问题中。

第六、试错法试错法是通过尝试不同的方法和策略,找到解决问题的最优解的思维方法。

例如,在学习解方程时,可以尝试不同的代入法或变形法,直到找到满足方程的解。

试错法可以培养学生的探索精神和自主解题能力。

小学数学常见的数学思想方法多种多样,每种方法都有其独特的特点和适用范围。

学生在学习数学时,可以根据问题的性质和自己的思维特点选择合适的方法,培养灵活运用数学思想方法的能力。

通过不断练习和思考,学生可以提高数学思维能力,更好地理解和应用数学知识。

小学十大数学思想方法

小学十大数学思想方法

小学十大数学思想方法数学是一门抽象而又具体的学科,它是一种思维方式,也是一种解决问题的工具。

在小学阶段,数学思想方法的培养尤为重要,它不仅能够帮助学生更好地理解数学知识,还能够培养学生的逻辑思维能力和解决问题的能力。

下面,我们就来介绍小学十大数学思想方法。

1. 观察法。

观察是数学思维的起点,通过观察,学生可以发现问题的规律和特点,从而更好地解决问题。

例如,通过观察不同形状的图形,学生可以总结出它们的特点和性质,从而更好地理解几何知识。

2. 比较法。

比较是一种重要的思维方式,通过比较不同的数学对象,学生可以找出它们的相同点和不同点,从而更好地理解数学概念。

例如,比较不同大小的数值,可以帮助学生理解数值的大小关系。

3. 分类法。

分类是整理和归纳的一种重要方式,通过分类,学生可以将问题进行归类,找出其中的规律和特点。

例如,将不同形状的图形进行分类,可以帮助学生更好地理解图形的性质和特点。

4. 推理法。

推理是数学思维的核心,通过推理,学生可以从已知的条件出发,得出未知的结论。

例如,通过已知的几何定理,可以推导出一些未知的几何性质。

5. 归纳法。

归纳是从具体到一般的思维方式,通过归纳,学生可以从具体的事例中总结出一般的规律和结论。

例如,通过观察一系列数列的规律,学生可以总结出数列的通项公式。

6. 演绎法。

演绎是从一般到具体的思维方式,通过演绎,学生可以从一般的规律出发,得出具体的结论。

例如,通过已知的数学定理,可以推导出一些具体的数学问题的解法。

7. 抽象法。

抽象是数学思维的重要特点,通过抽象,学生可以将具体的问题转化为符号或者图形,从而更好地进行推理和计算。

例如,将实际问题转化为代数方程式,可以帮助学生更好地解决问题。

8. 反证法。

反证是一种重要的证明方法,通过反证,学生可以通过假设反命题,从而推导出矛盾,从而证明原命题的正确性。

例如,通过反证法可以证明平行线的性质。

9. 递归法。

递归是数学思维的一种重要方式,通过递归,学生可以通过递推关系得出数列的通项公式。

小学数学常用的16种解题思想方法

小学数学常用的16种解题思想方法

数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。

但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。

1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

初中数学思想方法

初中数学思想方法

初中数学思想方法数学思想方法是解决数学问题的灵魂,也是把数学知识转化为数学能力的桥梁。

初中数学中常用的思想方法有:整体思想、分类讨论思想、函数思想、方程思想、转化思想、类比思想、分类讨论思想等。

1、整体思想整体思想是从问题的整体性质出发,通过研究问题的整体形式、整体结构、整体与局部的内在等,找出解决问题的途径。

2、分类讨论思想当一个问题因为某种量或条件的改变,而引起演变结果的改变时,我们就需要对问题从各种不同的角度或分类讨论加以解决。

3、函数思想用运动变化的观点去分析和研究具体问题中的数量关系,用函数的形式,把这种数量关系用函数表示出来。

4、方程思想方程思想就是从分析问题的数量关系入手,通过设定未知数,把问题中的已知量与未知量的数量关系,转化为方程或方程组,然后利用方程的理论和方法,使问题得到解决。

5、转化思想转化思想是将要解决的问题转化成一个或几个已经解决的简单问题。

6、类比思想类比是根据两个具有相同或相似性质的事物之间进行比较,从而找到另外一些具有相同或相似性质的事物。

7、分类讨论思想分类讨论是根据所研究对象的差异,将其划分成不同的种类,分别加以研究,从而分解矛盾,化整为零,化一般为特殊,变抽象为具体,然后再一一加以解决。

分类依赖于标准的确定,不同的标准会有不同的分类方式。

总之数学思想方法是分析解决数学问题的灵魂,也是数学知识的精髓,是把数学知识转化为数学能力的桥梁。

一、引言在现今的初中数学教学中,培养学生的数学思想方法已经成为了一个重要的目标。

《初中数学思想方法导引》这本书,以其独特的视角和深入的剖析,成为了初中数学教师的重要参考书籍。

本书主要介绍了初中数学中的各类思想方法,如方程思想、函数思想、化归思想等,对于提高学生的数学素养,增强他们的解题能力,具有极大的指导意义。

二、数学思想方法的重要性数学思想方法是一种对数学规律和数学本质的深刻认识和理解,是对数学知识进行高度概括和抽象的结果。

在初中数学教学中,培养学生的数学思想方法不仅可以提高学生的数学成绩,更重要的是可以培养他们的逻辑思维能力、创新能力和解决问题的能力。

数学思想方法有哪些

数学思想方法有哪些

数学思想方法有哪些
1. 归纳法: 通过对少量特殊情况的验证,从而得到一般情况的结论。

2. 逆向思维: 从已知结果出发,逆向推导出问题的解决方法。

3. 等式变形: 使用代数运算法则,将方程或不等式中的项进行重组和移项,从而简化问题。

4. 反证法: 假设问题的反面而推导出矛盾的结论,从而得出原命题的正确性。

5. 分而治之: 将复杂的问题分解为若干个相对简单的子问题,然后逐个解决这些子问题。

6. 枚举法: 通过穷举所有可能的情况,找出满足条件的解。

7. 几何方法: 利用几何图形的性质和关系,进行推导和证明。

8. 求反函数: 通过求解原函数的反函数,得到问题的解。

9. 近似方法: 将复杂的问题简化为近似的计算方式,得到问题的近似解。

10. 统计分析: 利用统计学的方法对问题进行分析和推断,并得出相应的结论。

小学二年级下册数学数学小学数学常用的16种思想方法

小学二年级下册数学数学小学数学常用的16种思想方法

数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。

但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。

1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

小学数学中常用的数学思想方法

小学数学中常用的数学思想方法

小学数学中常用的数学思想方法在小学数学教学中,常用的数学思想方法有以下几种:1.查找规律法:通过观察一系列数的特点,总结出它们之间的规律和规则。

例如,观察一个数列的每个项与前一项之间的关系,推理出数列的通项公式。

2.分类讨论法:对于一个问题,将其分为几种情况进行讨论,然后分别解决。

例如,求解一个实际问题中的数字运算题,可以将问题中的数字进行分类,分别计算后再进行合并。

3.反证法:当问题较难解决时,可以通过假设结论不成立,再推导出矛盾的结论,证明原结论一定成立。

例如,证明一个数是素数时,可以先假设该数是合数,然后推导出矛盾的结论。

4.归纳法:通过寻找一个问题的基本情况和递推关系,进行逐步推导,从而得出结论。

例如,通过归纳法可以证明等差数列的通项公式。

5.求同法:将问题中的数学关系与其他几个问题中的数学关系进行对比,从而找出相似之处。

例如,解决一个数学问题时,可以将其与类似的已解决问题进行比较,找到解决问题的方法。

6.分析法:将一个复杂的问题拆解成多个简单的部分,然后逐个分析解决。

例如,解决一个几何问题时,可以将其分解成多个几何图形,逐个进行研究和解决。

7.探究法:鼓励学生自主探索,通过实际操作和观察,发现问题的规律和解决方法。

例如,通过实际测量和比较,学生可以探究出相似三角形的性质。

8.逆向思维法:从问题的目标出发,反向思考解决问题的方法。

例如,当一个问题无法直接求解时,可以考虑从目标得出的信息反向推导,从而找到解决问题的线索。

9.列出方程法:通过将问题中的数学关系用方程式表示,转化为代数问题进行求解。

例如,解决一个关于两个未知数的问题时,可以先列出方程组,然后求解方程组得出结果。

10.图形化表示法:通过绘制图形来表示问题,直观地观察和推理问题的特点。

例如,在解决一个几何问题时,可以先绘制出对应的图形,再进行推理和求解。

以上是小学数学教学中常用的一些数学思想方法,帮助学生更好地理解和解决数学问题。

初中数学常用的17种思想方法

初中数学常用的17种思想方法

初中数学常用的17种思想方法1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

又如三角形可以按边分,也可以按角分。

不同的分类标准就会有不同的分类结果,从而产生新的概念。

对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

人教版五年级数学下册数学小学数学常用的16种思想方法

人教版五年级数学下册数学小学数学常用的16种思想方法

人教版五年级数学下册数学小学数学常用的16种思想方法数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。

但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。

1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

数学常用的数学思想方法有哪些

数学常用的数学思想方法有哪些

数学常用的数学思想方法有哪些初中数学涉及到的思想方法很多,在此仅仅谈谈常见的八种思想方法:一、用字母表示数的思想这是基本的数学思想之一.在代数第一册第二章“代数初步知识”中,主要体现了这种思想。

例如: 设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b)(2)甲数的2倍与乙数的5倍差:2a-5b二、数形结合的思想“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。

“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括.数学教材中下列内容体现了这种思想。

1、数轴上的点与实数的一一对应的关系。

2、平面上的点与有序实数对的一一对应的关系。

3、函数式与图像之间的关系。

4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。

5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。

6、“圆”这一章中,圆的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。

7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。

实际上就是通过“形”来反映数据扮布情况,发展趋势等。

实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。

三、转化思想(化归思想) 在整个初中数学中,转化(化归)思想一直贯穿其中。

转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

下列内容体现了这种思想: 1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。

2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。

3、证明四边形的内角和为360度.是把四边形转化成两个三角形的.同时探索多边形的内角和也是利用转化的思想的.四、分类思想有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。

小学数学常用的9种思想方法

小学数学常用的9种思想方法

小学数学常用的9种思想方法1、极限的思想方法极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。

现行小学教材中有许多处注意了极限思想的渗透。

在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1 ÷ 3 = 0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。

2、函数的思想方法恩格斯说:“数学中的转折点是笛卡儿的变数。

有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。

”我们知道,运动、变化是客观事物的本质属性。

函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。

学生对函数概念的理解有一个过程。

在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。

函数思想在人教版一年级上册教材中就有渗透。

如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。

3、对应的思想方法对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。

小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。

如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。

4、集合的思想方法把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学中常用的几种数学思想方法
数形结合思想:数和式是问题的抽象和概括、图形和图像是问题的具体和直观的反映。

华罗庚先生说得好:“数缺形时少直观,形少数时难入微,数形结合百般好。

”这句话阐明了数形结合思想的重要意义。

初中代数教材列方程解应用题所选例题多数采用数形结合中的图示法,教学过程中利用图形的直观性和具体性,引导学生从图形上发现数量关系找出解决问题的突破口。

学生掌握了这一思想要比掌握一个公式或一种具体方法更有价值,对解决问题更具有指导意义。

再如在讲“圆与圆的位置关系”时,可自制圆形纸板,进行运动实验,让学生首先从形的角度认识圆与圆的位置关系,然后可激发学生积极主动探索两圆的位置关系反映到数上有何特征。

这种借助于形通过数的运算推理研究问题的数形结合思想,在教学中要不失时机地渗透;这样不仅可提高学生的迁移思维能力,还可培养学生的数形转换能力和多角度思考问题的习惯。

方程思想:众所周知,方程思想是初等代数思想方法的主体,应用十分广泛,可谓数学大厦基石之一,在众多的数学思想中显得十分重要。

所谓方程思想,主要是指建立方程(组)解决实际问题的思想方法。

教材中大量出现这种思想方法,如列方程解应用题,求函数解析式,利用根的判别式、根于系数关系求字母系数的值等。

在教学中有意识的引导学生发现等量关系从而建立方程。

如讲“利用待定系数法确定二次函数解析式”时,可启发学生去发现确定解析式的关键是求出各项系数,可把他们看成三个“未知量”,告诉学生利用方程思想来解决,那学生就会自觉的去找三个等量关系建立方程组。

在这里如果单讲解题步骤,就会显得呆板、僵硬,学生只知其然,不知其所以然。

与此同时,还要注意渗透其他与方程思想有密切关系的数学思想,诸如换元,消元,降次,函数,化归,整体,分类等思想,这样可起到拨亮一盏灯,照亮一大片的作用。

辩证思想:辩证思想是科学世界观在数学中的体现,是最重要的数学思想之一。

自然界中的一切现象和过程都存在着对立统一规律,数学中的有理数和无理数、整式和分式、已知和未知、特殊和一般、常量和变量、整体和局部等同样蕴涵着这一辩证思想。

教学时,应有意识地渗透。

如初三《分式方程》一节,就体现了分式方程与整式方程的对立统一思想,教学时,不能只简单介绍分式方程的概念和解法,而要渗透上述思想,我们可以从复习整式和分式的概念出发,然后依据辩证思想自然引出分式方程,接着带领学生领会两个概念的对立性(非此即彼)和统一性(统称有理方程),再利用未知与已知的转化思想启发学生说出分式方程的解题基本思想,从而发现两种方程在解法上虽有不同,但却存在内在的必然联系。

相关文档
最新文档