(人教版初中数学)韦达定理

合集下载

中考数学复习韦达定理应用复习[人教版]

中考数学复习韦达定理应用复习[人教版]
ladbrokes正网
[单选]关于稿件来源的说法,错误的是()。A.引进稿件是指通过著作权贸易或者出版交流而获得的稿件B.组织稿件是出版单位获得稿件的主要途径C.引进稿件一般都正式出版过,不需再进行审稿和编辑加工D.自投稿意味着作者主动将该作品的出版权授予出版单位 [单选,A1型题]β衰变发生于()A.激发态原子核B.贫中子原子核C.富中子原子核D.质子数大于82的原子核E.超重原子核 [单选]齿轮箱结合面紧固,定位孔和定位销接触面积在()以上。A、80%B、60%C、50%D、40% [单选,A2型题,A1/A2型题]管理过程中,在计划实施前采取预防措施防止问题的发生,而不是在实施中出现问题后的补救,这种控制类型称为()A.过程控制B.同期控制C.反馈控制D.前馈控制E.要素质量控制 [单选,A2型题,A1/A2型题]不符合β-地中海贫血杂合子的是()A.β-R链合成减少B.HbA减少C.HbA2减少D.HbF增高E.以上都不是 [问答题,简答题]虚拟目录与站点主目录下的实际目录有什么异同? [单选]有关纤维支气管镜检查,下列哪项不正确()A.可直接窥视1~4级支气管内肿块B.可发现叶、段支气管腔阻塞C.可进行选择性支气管造影D.可直接窥视肺野浸润性病灶E.可进行肺浸润性病灶或肺外周肿块的活检 [单选]我国知识产权的主体包括著作权、专利权和()。A.发现权B.商标专用权C.发明权D.其他科技成果权 [单选]关于早期食管癌的病理分型哪项正确()A.乳头型多为原位癌B.斑块型少见C.乳头型最早D.隐伏型均为原位癌E.糜烂型为高分化 [单选]某建设单位欲新建一座大型综合超市,于2006年3月20日领到工程施工许可证。开工后因故于2006年10月15日中止施工。根据建筑法施工许可证制度的规定,该建设单位向施工许可证发证机关报告的最迟期限是2006年()。A.10月15日B

(完整版)韦达定理教学案例

(完整版)韦达定理教学案例
教学过程
教学环节
教师活动
预设学生行为设计Βιβλιοθήκη 图问题引探解下列方程:
2x2+5x+3=0 3x2-2x-8=0
并根据问题2和以上的求解填写下表
请观察上表,你能发现两根之和、两根之积与方程的系数之间有什么关系吗?
问题4.请根据以上的观察发现进一步猜想:方程ax2+bx+c=0(a≠0)的根x1,x2与a、b、c之间的关系:____________。
学情分析
1.学生已学习用求根公式法解一元二次方程,。
2.本课的教学对象是初中三年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征,
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力
3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。
4、使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。
⑤当a≠0,c=0时,方程必有一根为0。
学生交流探讨
本设计采用“实践——观察——发现——猜想——证明”的过程,使学生既动手又动脑,且又动口,教师引导启发,避免注入式地讲授一元二次方程根与系数的关系,体现学生的主体学习特性,培养了学生的创新意识和创新精神。

初中数学——韦达定理的力量

初中数学——韦达定理的力量

【例 1】 已知 、 是方程 x 2 x 1 0 的两个实数根,则代数式 2 ( 2 2) 的值为

思路点拨:所求代数式为 、 的非对称式,通过根的定义、一元二次方程的变形转化为(例
【例 2】如果 a 、 b 都是质数,且 a 2 13a m 0 , b 2 13b m 0 ,那么 b a 的值为( ) ab
1)
的值是(
)
A.1
B.-l
C. 1 D. 1
2
2
7、若关于 x 的一元二次方程的两个实数根满足关系式: x1 (x1 1) x2 (x2 1) (x1 1)(x2 1) ,判断
(a b) 2 4 是否正确?
8、已知关于 x 的方程 x 2 (2k 3)x k 2 1 0 。 (1) 当 k 是为何值时,此方程有实数根; (2)若此方程的两个实数根 x1 、 x2 满足: x2 x1 3 ,求 k 的值。
1
CD、AB 的另一隐含关系式。 注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形” 向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.
2
韦达定理学历训练
1、(1)已知
x1

x2
为一元二次方程
2x2
2x
3m
1
0
的两个实根,并
x1
A、 123 22
B、 125 或 2 22
C、 125 D、 123 或 2
22
22
思路点拨:可将两个等式相减,得到 a 、 b 的关系,由于两个等式结构相同,可视 a 、 b 为方程 x 2 13x m 0 的两实根,这样就为根与系数关系的应用创造了条件。 注:应用韦达定理的代数式的值,一般是关于 x1 、x2 的对称式,这类问题可通过变形用 x1 + x2 、x1 x2 表 示求解,而非对称式的求值常用到以下技巧: (1)恰当组合;(2)根据根的定义降次;(3)构造对称式。 【例 3】 已知关于 x 的方程: x 2 (m 2)x m 2 0

初中数学韦达定理习题及答案

初中数学韦达定理习题及答案
解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;
B、应为a4÷a=a3,故本选项错误;
C、应为a3a2=a5,故本选项错误;
D、(﹣a2)3=﹣a6,正确.
故选D.
点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.
2.
考点:多项式乘多项式。1923992
13.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为_________ .
答案:
7.
考点:零指数幂;有理数的乘方。1923992
专题:计算题。
分析:(1)根据零指数的意义可知x﹣4≠0,即x≠4;
(2)根据乘方运算法则和有理数运算顺序计算即可.
解答:解:(1)根据零指数的意义可知x﹣4≠0,
分析:根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,计算即可.
解答:解:(x﹣a)(x2+ax+a2),
=x3+ax2+a2x﹣ax2﹣a2x﹣a3,
=x3﹣a3.
故选B.
点评:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.
3.
13.
考点:整式的混合运算。1923992
分析:运用完全平方公式计算等式右边,再根据常数项相等列出等式,求解即可.
解答:解:∵(x+2)2﹣1=x2+4x+4﹣1,
∴a=4﹣1,
解得a=3.
故本题答案为:3.
点评:本题考查了完全平方公式,熟记公式,根据常数项相等列式是解题的关键.
以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工作。

中考数学复习韦达定理应用复习[人教版]

中考数学复习韦达定理应用复习[人教版]
娱乐58
关于低密度脂蛋白(LDL)描述错误的是A.VLDL是LDL的降解产物B.主要作用是将胆固醇从肝内运送至肝外组织C.LDL含量升高不引起血浆混浊D.LDL义可分为LDL和LDL两个亚型E.血浆LDL水平升高与心血管病患病率和病死率升高有关 安宫牛黄丸组成中不含有的药物为()A.黄芩B.黄连C.黄柏D.牛黄E.雄黄 根据信号传输方式的不同,入侵报警系统的组建模式宜分为模式。A.分线制B.无线制C.总线制D.多线制 沥青底涂层的优点是能消音和预防飞石的冲击,目前在车身上使用这种防腐蚀材料。A.钢板B.铝板C.玻璃纤维塑料板 按照货币主义的观点,下面哪些因素最可能使自然失业率永久下降()。1.直接税和间接税的削减2.货币供给的增加3.政府对劳动力重新培训的支出的增加A.1、2、3B.l、2C.2、3D.3 经发包人同意后,承包人可以将部分工程的施工分包给分包人完成。该条款所依据的法律基础是《中华人民共和国合同法》中有关的规定。A.债权转让B.债务承担C.由第三人向债权人履行债务D.债务人向第三人履行债务 实施三级预防时,重点在第一级预防,同时兼顾二、三级预防的疾病是A.急性阑尾炎B.流行性感冒C.食物中毒D.冠心病E.阑尾炎 造成胎儿宫内生长迟缓最常见的原因是A.脐带绕颈B.本身发育异常C.双胎D.臀位E.妊高征 阿片类止痛药下列正确的是。A.恶心、呕吐、便秘等不良反应很快会耐受B.便秘不良反应不会因长期用而产生耐受C.恶心、呕吐不良反应不会因长期用而产生耐药D.出现恶心、呕吐、便秘不良反应,应该停用阿片类E.出现嗜睡症状,应立即停药 "主四肢"的脏是A.肝B.心C.脾D.肺E.肾 下列哪项不是肺痨的别名A.尸疰B.劳疰C.伏连D.呷嗽E.飚碟 关于强直性脊柱炎,下列哪项是错误的A.主要侵犯骶髂关节和脊柱B.以中年男性多见C.90%~95%患者HLA-B阳性D.类风湿因子阴性E.多有明显腰背痛,多缺乏皮下结节 对于跨度不小于m的现浇钢筋混凝土梁,板,其模板应按设计要求起拱。A.2B.3C.4D.5 关于集体"四荒"土地的说法,不正确的是。A.包括荒山、荒沟、荒丘、荒滩B.其使用权最长不得超过30年C.使用权可以继承、转让、抵押或参股联营D.同等条件下,本集体组织成员有对其的优先承包权 我国的《著作权法》对一般文字作品的保护期是作者有生之年和去世后50年,德国的《版权法》对一般文字作品的保护期是作者有生之年和去世后70年。假如某德国作者已去世60年,以下说法中正确的是A.我国M出版社拟在我国翻译出版该作品,需要征得德里作者继承人的许可方可在我国出版发 我国《建设工程安全生产管理条例》规定,实行施工总承包的建设工程发生生产安全事故后,负责向当地安全生产监督管理部门上报事故的责任者是()。A.总承包单位B.分包单位C.事故现场工人D.事故现场管理人员 国家对传染病防治实行的方针是。A.服务群众B.标本兼治C.预防为主D.监督管理E.依靠科学 水运工程混凝土和砂浆材料用量定额中规定半干硬性混凝土设计坍落度每增减1cm,水泥用量相应增减。A.1%B.2%C.3%D.4% 一般人群预防流行性乙型脑炎的有效方法是A.戴口罩B.开窗通风C.灭蚊、防蚊D.饭前便后洗手E.口服抗生素 玻璃用密封胶固定后,黏合剂需要固化h。A.3~4B.6~8C.8~10 腔癌在临床上常表现为型、型、型三种。 对于正常产褥,下列哪项是不恰当的A.一般在产后24小时内体温轻度升高,不超过38℃B.出汗量多,睡眠和初醒时更为明显C.子宫复旧主要是肌细胞数目减少及体积缩小D.浆液恶露内含细菌E.产后约2周经腹部检查不易触及宫底 Wallenberg综合征主要表现不包括A.同侧小脑性共济失调B.吞咽困难和声音嘶哑C.同侧Horner征D.交叉性感觉障碍E.视物模糊 口腔局部麻醉常用的方法包括、和。 医学道德保密的作用最核心的是</br>医学道德保密的作用中提法不正确的是A.体现了患者对医务人员的无比信任B.体现了医务人员对病人人格和权利的尊重C.有利于保护医务人员个人的权利D.有利于医护工作的开展和医护质量的提高E.可以避免因泄密而给病人带来危害和发生医患纠纷 只有行政机关工作人员先行使职权的行为,才有可能引起国家赔偿。以下行为中,不是行政机关工作人员的职权行为。A.公安机关对某一违法者进行处罚B.消防队灭火前后,在乖车途中交通肇事的行为C.勤务时间以外执行职务的行为D.工作时间内购买办公设备的行为 男,20岁。因3天来高热、腹痛、腹泻,1天来头晕入院。查体:T39.4℃,面部潮红、球结膜充血,有出血斑且水肿,皮肤有细小出血点,BP60/40mmHg,血WBC16×109/L,Hb165g/L,尿蛋白(+++),大便水样,镜检WBC0~2/HP。本病人抗病毒药物治疗多选用A.干扰素B.利巴韦林C.阿糖腺苷 七情致病,最易损伤的脏腑是A.心肺脾B.心肝脾C.心肝肾D.心肺肝E.肝脾肾 泪膜的脂质层A.促进上皮增长B.阻止泪液蒸发C.为泪液的主要成分D.降低表面张力E.以上都不是 试述影响我国古代小农经济形成的主要因素。 下列哪项属于胆碱能受体A.M、&alpha;B.M、&beta;C.M、&alpha;1和&beta;1D.M、&alpha;2、&beta;2E.M、N1和N2 男,44岁,因进食生鱼胆引起少尿,血尿素氮及肌酐升高,被诊断为急性肾功能衰竭,保守治疗,观察每天补液量适中的指标为A.中心静脉压测定B.每日体重不增加C.血清钠浓度正常D.皮下无脱水及水肿E.以上均是 患者的左侧瞳孔缩小、眼球内陷、眼裂变小及左侧面部无汗,最可能的诊断是A.Parinaud综合征B.Horner综合征C.ArgyllRobertson瞳孔D.Adie瞳孔 对医疗机构内的甲类传染病患者的密切接触者,医疗机构应采取的措施是。A.对疫点进行卫生处理B.强制隔离治疗C.在指定场所进行医学观察D.在指定场所单独治疗E.划定疫点 上下牙弓牙面接触最广,牙尖相互交错位置不是.A.牙尖交错位B.牙位C.正中关系位D.最广泛接触位E.正中位 地方性氟中毒的预防主要是A.改水B.饮水加除氟剂C.种植吸氟植物D.食物除氟E.治疗氟斑牙 原发性开角型青光眼最早视野缺损发生在()A.周边视野B.旁中心视野C.中心视野D.Bjerrum区E.上半部视野 利凡诺羊膜腔内穿刺时如刺入胎盘,可能会出现以下何种并发症A.凝血功能障碍B.胎盘前置C.胎盘早剥D.脐带断裂E.胎盘粘连 古埃及宫廷学校常用的教育方法是。A.惩戒B.鞭打C.模仿D.学徒式训练 黏合剂直接黏合托槽开始运用于A.20世纪50年代B.20世纪60年代C.20世纪70年代D.20世纪80年代E.20世纪40年代

韦达定理经典例题及解题过程

韦达定理经典例题及解题过程

韦达定理经典例题及解题过程韦达定理经典例题及解题过程一、概述韦达定理是初中数学中的一个重要定理,它是数学中的基本原理之一,广泛应用于初中数学和高中数学的相关知识点中。

韦达定理通过等比的概念,可以解决一些复杂的代数方程问题,具有很强的普适性和实用性。

本文将重点介绍韦达定理的相关概念、经典例题及解题过程,希望能让读者对韦达定理有更深入的理解。

二、韦达定理的相关概念1. 韦达定理的基本概念韦达定理是数学上一个重要的定理,它通过等比的概念,解决了关于代数方程的一些问题。

韦达定理的基本说法是:对于一元三次方程ax³+bx²+cx+d=0,如果它有三个不等实根,那么这三个根分别是p、q、r,那么有以下等式成立:p+q+r=-b/apq+qr+rp=c/apqr=-d/a2. 韦达定理的证明韦达定理的证明可以通过多种方式来完成,其中一种比较常见的方法是使用代数方程的解法和数学归纳法。

我们可以通过对一元三次方程的通解进行分析,最终得到韦达定理的结论。

这个过程需要一定的代数方程知识和数学推理能力。

三、经典例题及解题过程为了更好地理解韦达定理,我们将通过几个经典例题来演示解题过程。

例题一:已知一元三次方程x³-6x²+11x-6=0的根为p、q、r,求p+q+2r的值。

解题过程:根据韦达定理,我们可以得到以下等式:p+q+r=6pq+qr+rp=11pqr=6根据题目中的要求,我们需要求p+q+2r的值,所以我们可以先求出p+q+r的值,然后再将r的值替换为2r即可。

通过代数方程的解法,我们可以求得p+q+r=6,再将r替换为2r,得到p+q+2r=6+2r的值。

例题二:已知一元三次方程2x³-7x²+7x-3=0的根为p、q、r,求p²+q²+r²的值。

解题过程:同样地,根据韦达定理我们可以得到以下等式:p+q+r=7/2pq+qr+rp=7/2pqr=3/2题目中要求的是p²+q²+r²的值,我们可以通过(p+q+r)²-2(pq+qr+rp)的公式来求得。

中考数学复习韦达定理应用复习[人教版]

中考数学复习韦达定理应用复习[人教版]
澳门网络买球犯法吗
[单选]下列的会计恒等式,不正确的是()。A.资产=权益=债权人权益+所有者权益B.资产=负债+所有者权益C.所有者权益=资产+负债D.收入一费用=利润 [单选]当两轴相交时,选用()传动。A、人字齿轮B、圆锥齿轮C、圆弧齿轮D、圆柱齿轮 [单选]医疗机构发现了疑似甲类传染病病人在明确诊断前,应()A.转回社区卫生服务中心观察B.留急诊室观察C.在指定场所单独隔离治疗D.收住院进行医学观察E.转到其他医院 [单选]使用小版样核对印刷后的文字图案时,要注意文字、颜色、()和位置是否一致。A.外语B.单位C.间距D.标记 [单选]()是指政府提供政策优惠,限定套型面积和销售价格,按照合理标准建设,面向城市低收入住房困难家庭供应,具有保障性质的政策性住房。A、廉租住房B、经济适用住房C、普通商品房D、工业用房 [单选]可有效激发机体抗肿瘤效应的佐剂为()A.福氏佐剂B.胞壁肽C.细胞因子D.羊毛脂E.多聚核苷酸 [单选]感染邪毒型产后发热的发热特点为()A.高热寒战,热势不退B.发热恶寒,鼻流清涕C.身热微寒,头晕眼花D.潮热盗汗,颧红唇赤E.寒热交替,恶露臭秽 [单选,A1型题]膀胱镜检查后给予的护理措施可除外()A.密切观察患者血尿出现情况B.嘱病人多饮水C.必要时可用抗生素预防感染D.必要可使用止痛药E.有明显血尿应减少饮水量 [单选]初孕妇,25岁,月经周期正常,停经38周,24h尿E3值1周内由15mg减至5mg,胎儿监护仪观察40min,胎动2次,每次胎动后加速不明显。应首选的措施是().A.人工破膜引产B.立即剖宫产C.OCTD.B超生物物理评分E.羊水L/S测定 [单选]误服敌百虫中毒时忌用哪种溶液洗胃()A.1:5000高锰酸钾B.温开水C.4%碳酸氢钠D.生理盐水E.以上均是 [单选,A2型题,A1/A2型题]2型糖尿病发病机制

韦达定理初三常考题型

韦达定理初三常考题型

韦达定理初三常考题型1. 引言韦达定理是初中数学中的一个重要定理,常常出现在初三的考试中。

它是一种用于解决三角形中的边长和角度关系的工具,通过利用正弦定理和余弦定理来推导出未知量之间的关系。

在本文中,我们将介绍韦达定理的基本概念、推导过程以及常见的应用题型。

2. 韦达定理的定义与推导2.1 定义韦达定理,也称作三角形法则,是指在任意三角形ABC中,设边长a、b、c分别对应角A、B、C,则有以下关系成立:a² = b² + c² - 2bc * cosA b² = a² + c² - 2ac * cosB c² = a² + b² - 2ab * cosC2.2 推导过程我们可以通过正弦定理和余弦定理来推导出韦达定理。

#### 正弦定理:在任意三角形ABC中,设边长a、b、c分别对应角A、B、C,则有以下关系成立:sinA/a = sinB/b = sinC/c余弦定理:在任意三角形ABC中,设边长a、b、c分别对应角A、B、C,则有以下关系成立:cosA = (b² + c² - a²) / 2bc cosB = (a² + c² - b²) / 2ac cosC = (a² + b² - c²) / 2ab通过将正弦定理和余弦定理结合起来,我们可以推导出韦达定理的三个公式。

3. 韦达定理的应用题型3.1 已知两边和夹角,求第三边这是韦达定理最常见的应用题型之一。

当我们已知一个三角形的两边长度和它们之间的夹角时,可以利用韦达定理来求解第三边的长度。

例如,已知一个三角形ABC,其中AB = 5cm,AC = 8cm,∠BAC = 60°,求BC的长度。

根据韦达定理公式b² = a² + c² - 2ac * cosB,代入已知条件计算得到:BC² = 5² + 8² - 2 * 5 * 8 * cos60° BC = √(25 + 64 -80cos60°) BC ≈ √(89 -40) BC ≈ √49 BC ≈ 7cm3.2 已知三边,求夹角另一个常见的应用题型是已知一个三角形的三边长度,求解它们之间的夹角。

人教版九年级数学上册教案:21.2.4韦达定理

人教版九年级数学上册教案:21.2.4韦达定理

武陟县实验中学教育集团群体智慧教学活动案学 科 数学 级九级设计者苗小林 授课人:刘小娟时 间 9.7课 题 一元二次方程根与系数的关系计划学时1重 点 理解根与系数的关系及应用课 标 要 求 知道一元二次方程根与系数的关系课 时 目 标 掌握一元二次方程根与系数的关系,能够灵活解决一些简单的有关的一元二次方程问题。

引 桥 突 破 公式法的求根公式教 法 先学后用,学用结合 学 法 先学后用,学用结合教学内容 及过程群体智慧设计个性化批注一 :温故知新:一元二次方程的一般式:(a,b,c 为常数,a≠0)一元二次方程的解法:直接开平方法, 配方法, 公式法,因式分解法一元二次方程的求根公式: (a ≠0, b2-4ac ≥0)二:探知求疑1.阅读提示(阅读教材15——16页) 小组交流重点内容和困惑。

2. 完成基训课前预习和课堂练习。

3. 学生扮演课堂练习5和课后训练2里的五个小题。

4.归纳韦达定理:通过三个提问,复习旧知,做好铺垫。

学生自主完阅读课本,动手推到公式。

总结规律,得出韦达定理。

20ax bx c ++=X=20ax bx c ++=两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比。

若ax2+bx+c=0(a≠0)的两个根是x1,x2,用式子表示你发现的规律为X1+x2 = X1x2=注意事项:应用一元二次方程根与系数的关系时,应注意:(1)根的判别式,(2)二次项系数不为零,才能应用根与系数的关系。

三:巩固提高不解方程求下列方程两个根的和与积X2-3x=15 3x2+2=1-4x5x2-1=4x2+x 2x2-x+2=3x-1判断对错,如果错了,说明理由。

1) 2x2-11x+4=0两根之和11,两根之积4。

2)x2+2=0两根之和0,两根之积2。

3)x2+x+1=0两根之和-1,两根之积1。

四:探究内化已知关于的方程的一个根为,则实数的值为()A.1B.C.2D.关于x的一元二次方程3x²-5x+ (m-1)=0,当m =___时,方程的两根为互为倒数.拓展延伸已知方程X2+kX+k+2=0的两个根是X1、X2,且X12+X22 = 4,求k的值。

韦达定理说课稿范文

韦达定理说课稿范文

韦达定理说课稿范文一、引言韦达定理是数学中极为重要的定理之一,也是初中数学中的基础知识点。

它的提出与证明对于学生的数学思维发展非常有帮助。

本节课的目标是让学生理解韦达定理的概念及应用,并能够熟练运用该定理解决具体问题。

二、教学过程1. 概念解释1.1 韦达定理的定义:韦达定理是指在一个三角形中,两条边的长度已知,求第三边的平方时,可以使用韦达定理来计算。

2. 实例演示2.1 通过一个具体的实例来演示韦达定理的应用:- 给定一个三角形ABC,已知边AB的长度为3,边BC的长度为4,我们需要计算边AC的长度。

- 根据韦达定理,我们有AC^2 = AB^2 + BC^2,带入已知数值,即可解得AC的长度。

- 在黑板上展示计算步骤,并解释每一步的原因。

3. 学生练3.1 学生自主进行练:- 提供多个练题,让学生运用韦达定理计算未知边长。

- 鼓励学生主动思考问题,并尝试不同的解题方法。

- 监督学生的解题过程,及时给予指导和纠正。

4. 拓展应用4.1 将韦达定理应用到实际生活中的问题:- 举例说明在地图测绘、建筑设计等领域中,韦达定理的应用。

- 引导学生思考其他可能的实际应用场景。

5. 总结回顾5.1 对本节课的内容进行总结回顾:- 强调韦达定理的重要性和应用范围。

- 提醒学生在实际问题中运用韦达定理时需注意条件的符合性。

- 鼓励学生多进行练,提高对韦达定理的理解和掌握程度。

三、教学评价1. 研究效果评价1.1 通过观察学生在课堂上的表现及参与度来评价研究效果:- 学生是否能准确运用韦达定理来解决问题。

- 学生在练环节中的错误率和纠正情况。

2. 学生反馈评价2.1 通过学生的反馈来评价教学效果:- 听取学生对本节课的总结和反馈。

- 记录学生对韦达定理及其应用的理解和印象。

3. 教师自评3.1 教师对本节课的自我评价:- 分析课堂教学过程中的优点和不足。

- 总结改进方法,以提高教学效果。

四、课后作业- 布置练题,让学生继续巩固和运用韦达定理。

七年级多元方程解法韦达定理学习材料

七年级多元方程解法韦达定理学习材料

一元二次方程根与系数关系(韦达定理),多元方程解法,高次方程解法一元二次方程根与系数的关系现行初中数学教材主要要求学生掌握一元二次方程的概念、解法及应用,而一元二次方程的根的判断式及根与系数的关系,在高中教材中的二次函数、不等式及解析几何等章节有着许多应用.本节将对一元二次方程根的判别式、根与系数的关系进行阐述.一)、一元二次方程的根的判断式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:(1) 当240b ac ->时,右端是正数.因此,方程有两个不相等的实数根:(2) 当240b ac -=时,右端是零.因此,方程有两个相等的实数根:(3) 当240b ac -<时,右端是负数.因此,方程没有实数根.由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac ∆=-【例1】不解方程,判断下列方程的实数根的个数:(1) 22310x x -+=(2) 24912y y +=(3) 25(3)60x x +-=说明:在求判断式时,务必先把方程变形为一元二次方程的一般形式.【例2】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1) 方程有两个不相等的实数根; (2) 方程有两个相等的实数根 (3)方程有实数根;(4) 方程无实数根.【例3】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.二)、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:1222b b bx x a a a-+--+=+=-,12244ac cx x a a⋅====定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:说明:所以通常把此定理称为”韦达定理”.【例4】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值: (1) 2212x x +;(2)1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.分析:本题若直接用求根公式求出方程的两根,再代入求值,将会出现复杂的计算.这里,可以利用韦达定理来解答.说明:利用根与系数的关系求值,要熟练掌握以下等式变形:*【例5】一元二次方程042=+-a x x求a 的取值范围。

【机构适用;新人教版九年级上学期】韦达定理及一元二次方程的应用

【机构适用;新人教版九年级上学期】韦达定理及一元二次方程的应用

一、韦达定理[准备知识回顾]:1、一元二次方程)0(02≠=++a c bx ax 的求根公式为)04(2422≥--±-=ac b aac b b x 。

2、一元二次方程)0(02≠=++a c bx ax 根的判别式为:ac b 42-=∆(1)当b 2-4ac>0时,一元二次方程ax 2+bx+c=0(a ≠0)•有两个不相等实数根即x 1=242b b aca-+-,x 2=242b b ac a---.(2)当b-4ac=0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等实数根即x 1=x 2=2b a-. (3)当b 2-4ac<0时,一元二次方程ax 2+bx+c=0(a ≠0)没有实数根.反之:方程有两个不相等的实数根,则 ;方程有两个相等的实数根,则 ;方程没有实数根,则 。

[韦达定理相关知识]如果方程)0(02≠=++a c bx ax 的两个实数根是21,x x ,那么a b x x -=+21,acx x =21.➢ 韦达定理的逆定理:如果实数21,x x 满足acx x a b x x =-=+2121,,那么21,x x 是一元二次方程02=++c bx ax 的两个根.利用韦达定理的逆定理,可以比较简捷地检验解一元二次方程所得结果是否正确. ➢ 韦达定理的两个重要推论:推论1:如果方程02=++q px x 的两个根是21,x x ,那么p x x -=+21,q x x =21. 推论2:以两个数21,x x 为根的一元二次方程(二次项系数为1)是0)(21212=++-x x x x x x .知识重难点梳理韦达定理及一元二次方程的应用➢ 一元二次方程的根与系数的关系的应用:(1)验根,不解方程,利用韦达定理可以检验两个数是不是一元二次方程的两个根. (2)由已知方程的一个根,求出另一个根及未知系数.(3)不解方程,可以利用韦达定理求关于21,x x 的对称式的值,如,2221x x +,1121x x +221212,x x x x +2112121211,,x x x x x x x x ---等等.说明:如果把含21,x x 的代数式中21,x x 互换,代数式不变,那么,我们就称这类代数式为关于21,x x 的对称式.(4)已知方程的两根,求作这个一元二次方程. (5)已知两数的和与积,求这两个数.(6)已知方程两个根满足某种关系,确定方程中字母系数的值. (7)证明方程系数之间的特殊关系.(8)解决其它问题,如讨论根的范围,判定三角形的形状等.根的符号的讨论:利用韦达定理,还可进一步讨论根的符号,设一元二次方程02=++c bx ax )0(≠a 的两根为21,x x ,则:(1)当0,021>≥∆x x 且时,两根同号.①当0,0,02121>+>≥∆x x x x 且时,两根同为正数; ②当0,0,02121<+>≥∆x x x x 且时,两根同为负数. (2)当0,021<>∆x x 且时,两根异号.①当0,0,02121>+<>∆x x x x 且时,两根异号且正根的绝对值较大; ②当0,0,02121<+<>∆x x x x 且时,两根异号且负根的绝对值较大.题型一:由已知方程的一个根,求出另一个根及未知系数. 1、已知方程5x 2+kx-6=0 有一个根为2,求另一个根和k 的值变式训练1.已知方程02)1(32=+--x k x 的一个根是1,则另一个根是 ,=k 。

中考数学复习韦达定理应用复习[人教版]

中考数学复习韦达定理应用复习[人教版]
韦达定理及 其应用(一)
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a

如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
以x1、x2为根的一元二次方程 (二次项系数为1)是
x2-( x1+x2 )x+ x1·x2 =0.
; / 淘宝优惠券去哪里领 ;
刚好听见这番话,把斗笠解下挂在墙上,“陆陆是少君朋友,她有事,少华作为大哥の当然要关照.听说她最喜欢跟人打官非索赔,你说话谨慎些.”村里の每个人各有原则,不了解便妄下定论容易犯事.佟灵雁也瞅了好友一眼,“可不是,我还听说她认识热点追踪の名记,被她盯上不死也得招来一 身臊.你呀,口无遮拦の早晚惹事.”“嗤,什么名记,一群狗仔嘚瑟什么?被人宰了一个又一个还不懂得收敛反省,迟早要完.”伍雪青不以为然地拈起一颗葡萄吃了,转移话题,“对了,华华,明晚荷塘夜宴怎么去?几个人去?”“年轻人撑筏坐小木船都行,中老年人坐艇.”“哟,”伍雪青来兴 趣了,“又是休闲居买の?”“休闲居和养生馆各一条,怎么,你想坐?”“不,我想开.”康荣荣洗了几只梨搁水果盘里端过来,顺手搬张竹凳坐下,“出于安全考虑,小艇除了他们两家负责人之外别の人不许开,你恐怕得失望了.”“不会吧?”伍雪青大感失望,真没劲,“那你告诉余岚她们了 吗?”“哦,因为去年死了人,所以村里所有节目不请外村人,以免出了问题吃官非.”康荣荣把休闲居の意思告诉大家,“你们也别到处宣传,否则出事得自己负责,村里没有负责人管这些.”“啊?!”伍雪青一脸の晦气.太没劲了!如果余家姐妹也来肯定很热闹,因为那陆陆...噗,仇家忒多, 算

中考数学复习韦达定理应用复习[人教版]

中考数学复习韦达定理应用复习[人教版]
在该病房楼内的燃油锅炉、柴油发电机,其储油间的油箱应密闭,且应设置通向室外的通气管,通气管应设置带阻火器的呼吸阀。油箱的下部应设置防止油品流散的设施。()A.正确B.错误 [单选,A2型题,A1/A2型题]下列疾病中由于DNA合成障碍导致的贫血是()。A.溶血性贫血B.海洋性贫血C.缺铁性贫血D.再生障碍性贫血E.巨幼细胞性贫血 [单选]佝偻病临床表现主要是() [单选]检测客户现金收支或款项划转情况,对符合大额交易标准的,在该大额交易发生后()个工作日内,向中国反洗钱监测分析中心报告。A.3B.5C.10D.15 [单选]当接触铅作业人员处于急性铅中毒期时,主要应该提供的膳食是()A.多钙少磷的成碱性膳食B.少钙多磷的成酸性膳食C.正常膳食D.高钙高磷膳食E.成酸性膳食和成碱性膳食交替使用 [单选]当用冲击钻机造孔时,导墙间距一般应大于设计墙厚()mm。A.40~80;B.60~100;C.80~100;D.100~150。 [判断题]国家以协议方式将国有土地使用权在一定年限内出让给土地使用者,土地使用者必须向国家支付土地使用权出让金。()A.正确B.错误 [单选]通过观察他人在一定情境的行为,能够有效地促进学习活动的发生。这是()的观点。A.社会学习理论B.行为主义学习理论C.建构主义理论D.情境认知理论 [单选]身发高热,持续不退,并有满面通红,口渴饮冷,大汗出,此属A.表热证B.表寒证C.里实热证D.半表半里证E.里虚热证 [单选,A2型题,A1/A2型题]神经病理性疼痛临床表现不包括()A.有明确的损伤史B.无损伤区可出现疼痛C.疼痛伴随感觉缺失,阵发或自发性疼痛D.疼痛累加,反复刺激可使疼痛强度增强E.痛觉过敏,表现为非疼痛刺激引起的疼痛,疼痛刺激反而无疼痛 [单选]铁路平面无线调车A型号调车长台,调车长按下绿键(2s),信令显示()。A.一个绿灯B.绿灯闪数次后熄灭C.黄灯闪后绿灯长亮D.546Hz音频呼叫区长 [单选]某设计单位承担了某体育场的设计任务,则其应承担的质量责任,表述错误的是()。A.应当根据勘察成果文件进行设计,并注明工程合理使用年限B.对有特殊要求的电视转播设备,可以在设计文件中标明生产厂家C.正在送审的排水管网图纸不得进行设计交底D.对跑道地面材料质量导致的质 [单选]法兰密封件截面尺寸小,质量轻,消耗材料少,且使用简单,安装、拆卸方便,特别是具有良好的密封性能,使用压力可达高压范围,此种密封面形式为()。A.凹凸面型B.榫槽面型C.O型面型D.环连接面型 [单选,A1型题]全口义齿个别托盘的制作下列错误的是()A.功能性印模时,个别托盘边缘线应比基托边缘线短2~3mmB.个别托盘覆盖范围尽可能大C.个别托盘与黏膜之间可预留间隙也可不预留间隙D.骨隆突处应做缓冲E.个别托盘最后应打磨抛光送回临床 [单选,A1型题]一般婴儿添加辅食的时间是()A.出生后4~6个月B.出生后3~4个月C.出生6个月以后D.只要母乳不足,随时可以添加E.以上都不对 [单选,A1型题]患者饮食过量、脘腹胀满疼痛,最宜选用的是()A.山楂B.麦芽C.莱菔子D.谷芽E.神曲 [单选]下列结构设施中可用于路基挖方边坡支撑的有()。A.护肩B.护面墙C.支垛护脚D.护坝 [单选]先张法预应力筋的张拉过程中,应抽查预应力筋的预应力值,其偏差的绝对值不得超过()。A.按一个构件全部力筋预应力总值的5%B.按全体构件预应力筋平均值的5%C.按一个构件单根预应力值的5%D.按全体构件预应力筋最大值的5% [单选]以下关于建设工程合同特征说法不正确的是()。A.建设工程合同的标的具有特殊性B.建设工程合同的当事人具有特定性C.建设工程合同是要式合同D.建设工程合同是单务合同 [判断题]出口电池在报检时必须提供《进出口电池产品备案书》。()A.正确B.错误 [单选]下列选项中哪项不是小肠运动的基本形式?()A、钟摆运动B、集团蠕动C、蠕动和逆蠕动D、分节运动 [多选]以下几种机关之间,因工作需要往来公文,可以使用函的有()。A.省财政厅与省经贸委B.&times;&times;大学与市劳动局C.省教委与省人民政府D.县公安局与乡人民政府 [判断题]准贷记卡可以在银行规定的信用额度内透支,但透支即时计息,不设免息还款期。A.正确B.错误 [单选]以下不属于冲动形成异常的心律失常是哪个()A.房室传导阻滞B.窦性心动过缓C.房性早搏D.室性早搏E.心房颤动 [单选]放射性制剂的放射化学纯度要求()A.放化纯度控制在85%以上B.放化纯度控制在99%以上C.放化纯度控制在95%以上D.放化纯度控制在80%以上E.放化纯度控制在70%以上 [问答题,简答题]加氢气密的基本要求有哪些? [单选]关于WHO推荐的葡萄糖耐量试验,正确的是()A.口服葡萄糖100克B.糖耐量减低即可诊断糖尿病C.口服糖耐量试验前3日,每日碳水化合物摄入量应少于250克D.空腹血糖小于7mmol/L,不必做此检查E.同步查尿糖,可大致判断肾糖阈 [问答题,简答题]建立抄表段时需确定哪些信息? [单选,A1型题]一般说来,温性药物的主要作用是()A.清热B.凉血C.解毒D.通络E.泻火 [单选,A1型题]臌胀患者,腹水严重,以下治疗原则说法恰当的是()A.缓则治本B.急则治标C.标本兼治D.通因通用E.塞因塞用 [单选]印刷的要素不包括()。A.原稿B.承印物C.图文载体D.校样 [单选]充分利用原材料,做到物尽其用,这是职业道德中()的要求A、讲究公德B、发对浪费C、钻研业务D、尽职尽责 [单选]关于胰岛素代谢作用的叙述,不正确的是()A.高浓度胰岛素刺激糖原分解B.胰岛素加速葡萄糖越过肌细胞膜的运转C.胰岛素增加某些氨基酸越过肌细胞膜的转运D.胰岛素促进蛋白质的合成E.高浓度胰岛素促进脂肪的合成 [单选]海图底质注记中,缩写“M.S.”表示()。A.分层底质,上层为沙,下层为泥B.分层底质,上层为泥,下层为沙C.沙的成分多于泥的成分的混合底质D.泥的成分多于沙的成分的混合底质 [单选]关节脱位治疗以手法复位为主,最好在伤后几周内进行()A.1B.2C.3D.4E.5 [单选]平行的两根载流导体,在通过同方向的电流时,两导体将()。A.互相吸引B.互相排斥C.没反应D.无法判断 [单选]性格在一定程度上会掩盖或改造人的()特征A.情绪B.意志C.气质D.理智 [单选]大脑中动脉深穿支闭塞的最常见表现是()A.四肢瘫痪,双侧面瘫,不能言语,不能进食,只有眼球上下运动B.眼球震颤,同侧Homner征,交叉性感觉障碍,同侧小脑性共济失调C.对侧偏瘫,无感觉障碍及偏盲,优势侧伴失语D.对侧偏瘫,偏身感觉障碍,同向偏盲E.对侧偏瘫,深感觉障碍 [单选,A1型题]有关隔离的描述,错误的是()A.是控制传染病流行的重要措施B.便于管理传染源C.可防止病原体向外扩散给他人D.根据传染病的平均传染期来确定隔离期限E.某些传染病患者解除隔离后尚应进行追踪观察 [单选,A1型题]放射性药品使用许可证的有效期为()A.1年B.2年C.3年D.5年E.7年

初中数学韦达定理习题及答案

初中数学韦达定理习题及答案

初中数学韦达定理习题及答案初中数学韦达定理习题及答案法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。

求实数k,使得方程kx^2+(k+1)x+(k-1)=0的根都是整数.解:若k=0,得x=1,即k=0符合要求.若k≠0,设二次方程的两个整数根为x1、x2,且X1≤X2,由韦达定理得∴x1x2-X1-x2=2,(x1-1)( x2-1)=3.因为x1-1、x2-1均为整数,所以X1=2,X2=4;X1=—2,X2=0.所以k=1,或k=-1/7韦达定理在方程论中有着广泛的应用,在考试中也不例外。

因式分解同步练习(解答题)关于因式分解同步练习知识学习,下面的题目需要同学们认真完成哦。

因式分解同步练习(解答题)解答题9.把下列各式分解因式:①a2+10a+25 ②m2-12mn+36n2③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y210.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.答案:9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

因式分解同步练习(填空题)同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。

因式分解同步练习(填空题)填空题5.已知9x2-6xy+k是完全平方式,则k的值是________.6.9a2+(________)+25b2=(3a-5b)27.-4x2+4xy+(_______)=-(_______).8.已知a2+14a+49=25,则a的值是_________.答案:5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

中考数学复习韦达定理应用复习[人教版]

中考数学复习韦达定理应用复习[人教版]
规定,人民法院判决被告重新作出具体行政行为的,被告不得以同一事实和理由作出与原具体行政行为基本相同的具体行政行为。下列()内容属该条规定的例外情况。A.人民法院以具体行政行为主要证据不足为由判决撤销的B.人民法院以具体行政行为适用法律,法 [判断题]有效接地系统的电力设备的接地电阻在预防性试验前或每3年以及必要时验算一次经接地网流入地中的短路电流,并校验设备接地引下线的热稳定。A.正确B.错误 [单选,A2型题,A1/A2型题]下列肾功能监测的指标中,临床很少应用的是()A.肾小球滤过率(GFR)B.血尿素氮(BUN)C.血肌酐(Cr)D.肾血流量测定E.肾小管功能测定 [填空题]混凝土运输、浇筑及间歇的全部时间不应超过混凝土的()时间。 [问答题,案例分析题]背景材料: [单选]A企业购建一条新的生产线,该生产线预计可以使用5年,估计每年年末的现金净流量为25万元。假设年利率为12%,则该生产线未来现金净流量的现值为()万元。[已知(P/F,12%,5)=0.5674,(P/A,12%,5)=3.6048]A.14.19B.90.12C.92D.100 [单选]再热裂纹的特性之一是()A、沿晶断裂B、穿晶断裂C、沿晶+穿晶断裂D、混晶断裂 [单选]当用冲击钻机造孔时,导墙间距一般应大于设计墙厚()mm。A.40~80;B.60~100;C.80~100;D.100~150。 [填空题]就相对密度而论,轻质原油的相对密度<()。 [单选,A1型题]上唇部疖或痈的主要危险()。A.颈部蜂窝织炎B.大脑脓肿C.眼球感染D.上颌骨骨髓炎E.海绵窦静脉炎 [单选]所钻井的()是指该井在地球表面的经度和纬度。A.构造位置B.地理位置C.测线位置D.坐标位置 [问答题,简答题]电力机车牵引缓冲装置的主要作用是什么? [填空题]商标设计的要求和心理策略有:()、简明、美感、()。 [单选]下列有关窦房结的描述,不正确的是().A.是心脏正常窦性心律的起搏点B.位于上腔静脉人口与右心房后壁的交界处C.长10~20mm,宽2~3mmD.冲动在P细胞形成后,通过T细胞传导至窦房结以外的心房组织E.窦房结动脉起源于右冠状动脉者占40%,起源于左冠状动脉回旋支者占60% [单选,A1型题]不属于医学心理学基本观点的是()。A.心身统一B.被动调节C.情绪作用D.个性特征E.认知评价 [单选,A2型题,A1/A2型题]软组织急性化脓性感染,在出现波动前需早期切开引流的是()A.转移性脓肿B.痈C.脓性指头炎侧面纵切开D.急性蜂窝织炎E.面部疖肿 [单选]关机及不可及转移的编码操作方式是()?A.**21*DN#发送键;B.**62*DN#发送键;C.**67*DN#发送键;D.**61*DN#发送键。 [单选]关于恶性骨肿瘤的临床表现,下列描述错误的是()A.无痛性肿块B.局部可有压痛C.血沉增快D.碱性磷酸酶增高E.一般有骨膜反应 [单选]大型集团的子公司、分公司、事业部一般都是独立的法人,享有投资决策权和较充分的经营权,这些责任中心大多属于()。A.成本中心B.利润中心C.投资中心D.费用中心 [单选,A2型题,A1/A2型题]伴环形铁粒幼红细胞增多的难治性贫血,其环形铁粒幼红细胞至少占有核红细胞的()A.15%B.20%C.25%D.30%E.35% [单选]以下()协议能够为语音、图像、数据等多种需要实时传输的数据提供端到端的传输功能。A.TCPB.RTPC.UDPD.RTCP [填空题]焦炉煤气中有毒的气体为()()。 [单选]某石油库,储存油品闪点为58℃,4个地上立式储罐,每个3000立方米,储油量共12000平方米,油罐直径为20米,均为固定顶储罐。该石油库内储罐之间的距离最小应为()米。A.10B.12C.14D.16 [单选]下列调速方法中,使直流电动机机械特性明显变化的是()。A、改变电枢回路电阻B、改变励磁回路电阻C、改变端电压D、改变励磁回路电流 [问答题,简答题]如何检测土方路基的弯沉值? [多选]控制网优化设计的三个主要质量控制标准是()A.精度B.可靠性C.费用D.时间 [问答题,简答题]简述生物工程设备清洁程度的确认方式。 [单选]冰区航行,主要的定位手段为()。A.无线电导航仪器定位B.天文定位C.陆标定位D.移线定位 [单选]中国药典制剂通则包括在下列哪一项中A、凡例B、正文C、附录D、前言E、具体品种的标准中 [名词解释]单体速冻法 [问答题,简答题]简述培训评估的层级体系的特点和评估标准。 [单选,A2型题,A1/A2型题]关于骨髓外造血的描述,不正确的是()A.多发生于严重感染之后B.多发生于青春期C.肝、脾、淋巴结肿大D.外周血中出现有核红细胞和幼稚中性粒细胞E.病因去除后,恢复正常骨髓造血 [单选]下列()不属于渠道滑坡的处理措施。A、渠道采用混凝土衬砌B、坡脚及边坡砌筑挡土墙支挡C、明渠改暗涵D、削坡减载 [单选,A1型题]关于放射性核素显像,以下描述不正确的是()。A.放射性药物能选择性地分布于特定的器官或病变组织B.放射性药物能均匀性地分布于特定的器官或病变组织C.放射性药物需引入患者体内D.体外描记放射性药物在体内分布图E.属于放射性核素示踪方法 [单选,A2型题,A1/A2型题]李某,女,47岁,16岁初潮,45岁绝经,月经周期为30~32天,经期3天,以下正确的表达方式是()ABCDE [单选,A2型题,A1/A2型题]管理过程中,在计划实施前采取预防措施防止问题的发生,而不是在实施中出现问题后的补救,这种控制类型称为()A.过程控制B.同期控制C.反馈控制D.前馈控制E.要素质量控制 [填空题]水准仪的操作步骤为粗平、()、精平、读数。 [单选,A1型题]按照药品说明书和标签管理的规定,药品的最小销售单元系指直接供上市药品的()A.外包装B.内包装C.大包装D.小包装E.所有包装 [单选,A1型题]下列哪项不符合周围性瘫痪()A.肌张力增高B.病理反射阴性C.无明显感觉障碍D.腱反射减弱或消失E.肌萎缩较多见 [单选]关于补体以下正确的是()A.是一组具有酶促反应活性的脂类物质B.具有溶解细胞、促进吞噬的作用,但无炎症介质效应C.无毒素中和作用D.对热稳定E.经活化后具有酶活性的一组球蛋白

中考数学复习韦达定理应用复习[人教版]

中考数学复习韦达定理应用复习[人教版]
服务器租用ww所不具备的作用是()A.促进T细胞表达特异性抗原受体B.降解抗原为小分子肽段C.使MHC分子与抗原肽结合D.将抗原肽:MHC复合物递呈给T细胞E.为T细胞活化提供第二信号 [单选]串联通风必须在进入被串联工作面的风流中装设(),且瓦斯和二氧化碳浓度都不得超过0.5%。A.便携仪B.甲烷断电仪C.风速传感器 [判断题]《进出口电池产品备案书》的有效期为一年。A.正确B.错误 [填空题]()认为,人与动物的根本区别在于(),并认为人类的进化过程中,经过了三个依次递进的阶段,即攀树的猿群,正在形成中的人和完全形成的人. [问答题,简答题]投资帐户是什么? [单选]直线定向采用盘左、盘右两次投点取中是为了消除()。A.度盘偏心差B.度盘分划误差C.视准轴不垂直于横轴误差 [单选]应当在海上打桩活动开始之目的()天前向所涉及海区的主管机关递交发布海上航行警告、航行通告的书面申请。A.3B.7C.15D.30 [单选]给水泵跳闸后,如果出口止回阀故障不能关闭,将会引起给水泵倒转。发现给水泵倒转,应立即()。A.关闭给水泵进口门,防止除氧器满水;B.检查辅助油泵运行情况,防止缺油烧瓦,同时要尽快关闭给水泵出口门;C.立即强合一次给水泵,防止锅炉缺水;D.通知锅炉关闭给水调节门。 [问答题,案例分析题]阅读下列说明,回答问题1至问题3【说明】某学校见到其他学校都陆续建立了多媒体网站作为学校的一个窗口,也想自己建立一个,就请一个计算机公司帮助建立。在公司人员和学校负责人讨论需求时,学校负责人并不能清晰表达,只能简要表达要满足学校教学和办公需求 [问答题,简答题]什么是投资连结保险? [单选]()兼管信用管理后,企业往往会出现销售保守,业务量下降,客户减少等现象。A.财务部门B.销售部门C.人事部门D.独立的信用管理部门 [单选,A2型题,A1/A2型题]下列因素中,与肝细胞癌的发生无关的是()A.食物中黄曲霉素污染B.病毒性肝炎C.肝硬化D.食物中亚硝酸盐污染E.炎性肠道疾病 [单选,A4型题,A3/A4型题]29岁女性,7年前和3年前分别足月顺产一女孩和一男孩,1年前有一次宫外孕手术史,经咨询指导选择使用复方长效口服药避孕。关于复方长效口服避孕药,下列各项正确的是()A.复方长效口服避孕药是由炔雌醇和人工合成的长效孕激素组成的B.复方长效口服避孕药通 [单选]超声心动图检查以下哪项可确诊感染性心内膜炎()A.二尖瓣瓣叶有增生粘连B.左房、左室扩大C.瓣膜上可探测到赘生物D.二尖瓣有反流E.主动脉根部扩张 [单选]下列不属于分娩期保健“五防”内容的是()。A.防滞产B.防感染C.防新生儿窒息D.防产后出血E.以上都不对 [单选]产后胎盘附着部位子宫内膜全部修复约需().A.2周B.3周C.4周D.5周E.6周 [单选,A型题]关于剂型的分类,下列叙述错误的是A、溶胶剂为液体剂型B、软膏剂为半固体剂型B.C、栓剂为半固体剂型D、气雾剂为气体分散型C.E、气雾剂、吸入粉雾剂为经呼吸道给药剂型 [单选,A1型题]驰张热型伴寒战常见于()A.伤寒B.传染性单核细胞增多症C.败血症D.支原体肺炎E.系统性红斑狼疮 [单选,A2型题,A1/A2型题]治疗花粉症最有效的方法是()。A.鼻腔应用糖皮质激素B.翼管神经切断等手术C.免疫疗法D.避免与变应原接触E.免疫源的检测 [单选]下列关于保证担保的说法,正确的是()。A.保证人须向债权人证明其有代为清偿能力B.保证方式没有约定的,保证人承担一般保证责任C.保证人可能是主合同的当事人D.保证期间债权人转让债权的,须取得保证人书面同意 [填空题]人类最早使用的工具是石器.考古学家根据石器的制造技术的发展和演进情况,将石器时代分为(),中石器,()三个时代. [单选]在利率和计息期相同的条件下,以下公式中,正确的是()。A.普通年金终值系数&times;普通年金现值系数=1B.普通年金终值系数&times;偿债基金系数=1C.普通年金终值系数&times;投资回收系数=1D.普通年金终值系数&times;预付年金现值系数=1 [单选]齿轮箱结合面紧固,定位孔和定位销接触面积在()以上。A、80%B、60%C、50%D、40% [单选]根据营业税法律制度的规定,下列各项中,按“服务业”税目征税的是()。A.旅游公司从事景区内索道运输业务B.金融企业从事融资租赁业务C.邮政局从事传递函件业务D.文化公司从事字画展览业务 [单选,A1型题]冠内附着体基牙牙体预备时,窝洞空间大小与选择的附着体尺寸有关,一般窝洞的颊舌面与邻面洞壁与放置附着体轴壁之间应保留多大间隙,有利于附着体部件放置时调整就位道()A.0.5mmB.1.0mmC.1.5mmD.2.0mmE.2.5mm [单选,A型题]患者男性,30岁,阵发性心悸1年。心电图如图3-16-3所示,应诊断为()。A.完全性左束支阻滞B.心肌缺血C.下壁心肌梗死D.左心室肥大E.预激综合征 [单选]诊断慢性胃炎最可靠的依据是()A.慢性上腹痛或不适B.上腹痛伴恶性贫血C.自身抗体检测D.胃液分析E.以上都不是 [单选]在中医学中最先论述营卫气血概念的书是:().A.《伤寒杂病论》B.《温疫论》C.《温热论》D.以上均不是 [单选]人食用患疯牛病的牛肉可导致下列哪种疾病()A.库鲁病B.克-雅病C.致死性家族性失眠症D.新变异型克-雅病E.杰茨曼-斯脱司勒-史茵克综合征 [单选]男性,60岁,因神经源性膀胱继发感染,尿培养为大肠杆菌,依药敏使用庆大霉素治疗,每日静脉滴注24万单位,连续14d后出现多尿,尿量每日达4000ml以上,引起电解质紊乱和相应症状,血肌酐从原先的120μmol/L升达450μmol/L。此时最可能的诊断应为:()。A.急性肾功能衰竭 [单选,A1型题]球部尿道损伤7天后出现严重尿外渗,局部处理方法应是()A.局部穿刺抽吸外渗的尿和血液B.局部热敷促进尿外渗吸收C.延长留置导尿时间,防止尿外渗感染在局部形成瘢痕导致尿道狭窄D.尿外渗部位多处切开引流,并行耻骨上膀胱造瘘术E.广谱抗生素预防感染即可 [单选]下列关于校对在出版工作中的作用和地位的表述正确的是()。A.校对工作是编辑工作的重要先决条件B.为提高效率,校对工作也可由作者负责C.校对不包括从事校对工作的专业人员D.校对工作是出版物内在质量的把关环节之一 [单选]高血压病患者,伴劳力型心绞痛,选择的最佳降压药物是().A.利尿剂B.&beta;受体阻滞剂C.ACEID.ai受体阻滞剂E.钙拮抗剂 [单选,A1型题]引起胰岛素抵抗性的诱因,哪项错误()。A.严重创伤B.酮症酸中毒C.并发感染D.手术E.暴饮暴食 [问答题,简答题]死神的作者是谁? [单选,A1型题]"虚则补之,实则泻之"属于()A.反治法B.正治法C.治标法D.标本兼顾法E.治本 [单选]工程造价的确定要根据不同的建设阶段,分次进行。这种计价特点被称为()。A.单件性计价B.分部组合计价C.多次性计价D.按构成计价 [单选,A型题]原发性非典型性肺炎的病原体是()A.肺炎链球菌B.肺炎支原体C.结核杆菌D.肺炎衣原体E.白假丝酵母菌 [单选]下列胎儿脑积水超声的表现,哪一项不正确A.胎儿双顶径较同孕周胎儿增大B.胎儿头围明显大于腹围C.胎儿头颅绝大部分显示为无回声区D.彩色多普勒检查侧脑室无回声区内见丰富血流E.大脑镰呈"飘带状" [单选]铁路电话交换网有些号码用于特殊业务,如113表示人工记录台,()故障申告电话。A.110B.117C.116D.112
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

判别式与韦达定理
〖知识点〗
一元二次方程根的判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理 〖大纲要求〗
1.掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况.对含有字母系数的由一元二次方程,会根据字母的取值范围判断根的情况,也会根据根的情况确定字母的取值范围;
2.掌握韦达定理及其简单的应用;
3.会在实数范围内把二次三项式分解因式;
4.会应用一元二次方程的根的判别式和韦达定理分析解决一些简单的综合性问题. 内容分析
1.一元二次方程的根的判别式
一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac
当△>0时,方程有两个不相等的实数根;
当△=0时,方程有两个相等的实数根,
当△<0时,方程没有实数根.
2.一元二次方程的根与系数的关系
(1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么a b x x -=+21,a
c x x =21
(2)如果方程x 2
+px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P,
x 1x 2=q
(3)以x 1,x 2为根的一元二次方程(二次项系数为1)是
x 2-(x 1+x 2)x+x 1x 2=0.
3.二次三项式的因式分解(公式法)
在分解二次三项式ax 2+bx+c 的因式时,如果可用公式求出方程ax 2+bx+c=0的两个根
是x 1,x 2,那么ax 2+bx+c=a(x-x 1)(x-x 2).
〖考查重点与常见题型〗
1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如:
关于x 的方程ax 2-2x +1=0中,如果a<0,那么梗的情况是( )
(A )有两个相等的实数根 (B )有两个不相等的实数根
(C )没有实数根 (D )不能确定
2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如:
设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( )
(A )15 (B )12 (C )6 (D )3
3.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题.在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力.
考查题型
1.关于x 的方程ax 2-2x +1=0中,如果a<0,那么根的情况是( )
(A )有两个相等的实数根 (B )有两个不相等的实数根
(C )没有实数根 (D )不能确定
2.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( )
(A )15 (B )12 (C )6 (D )3
3.下列方程中,有两个相等的实数根的是( )
(A ) 2y 2+5=6y (B )x 2+5=2 5 x (C ) 3 x 2- 2 x+2=0(D )3x 2
-2 6 x+1=0
4.以方程x 2+2x -3=0的两个根的和与积为两根的一元二次方程是( )
(A ) y 2+5y -6=0 (B )y 2+5y +6=0 (C )y 2-5y +6=0 (D )y 2-5y -6=0
5.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1,
那么x 1·x 2等于( )
(A )2 (B )-2 (C )1 (D )-1
6.如果一元二次方程x 2+4x +k 2=0有两个相等的实数根,那么k =
7.如果关于x 的方程2x 2-(4k+1)x +2 k 2-1=0有两个不相等的实数根,那么k 的取值范围

8.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)2=
9.若关于x 的方程(m 2-2)x 2-(m -2)x +1=0的两个根互为倒数,则m =
二、考点训练:
1、 不解方程,判别下列方程根的情况:
(1)x 2-x=5 (2)9x 2-6 2 +2=0 (3)x 2-x+2=0
2、 当m= 时,方程x 2+mx+4=0有两个相等的实数根;
当m= 时,方程mx 2+4x+1=0有两个不相等的实数根;
3、 已知关于x 的方程10x 2-(m+3)x+m -7=0,若有一个根为0,则m= ,这时方程的另一
个根是 ;若两根之和为-35
,则m= ,这时方程的两个根为 . 4、 已知3- 2 是方程x 2+mx+7=0的一个根,求另一个根及m 的值.
5、 求证:方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根.
6、 求作一个一元二次方程使它的两根分别是1- 5 和1+ 5 .
7、 设x 1,x 2是方程2x 2+4x -3=0的两根,利用根与系数关系求下列各式的值:
(1) (x 1+1)(x 2+1) (2)x 2x 1 + x 1x 2
(3)x 12+ x 1x 2+2 x 1 解题指导
1、 如果x 2-2(m+1)x+m 2+5是一个完全平方式,则m= ;
2、 方程2x(mx -4)=x 2-6没有实数根,则最小的整数m= ;
3、 已知方程2(x -1)(x -3m)=x(m -4)两根的和与两根的积相等,则m= ;
4、 设关于x 的方程x 2-6x+k=0的两根是m 和n,且3m+2n=20,则k 值为 ;
5、 设方程4x 2-7x+3=0的两根为x 1,x 2,不解方程,求下列各式的值:
(1) x 12+x 22 (2)x 1-x 2 (3)x1 +x2 *(4)x 1x 22+12
x 1 *6.实数s、t分别满足方程19s2+99s+1=0和且19+99t+t2=0求代数式
st+4s+1t
的值. 7.已知a 是实数,且方程x 2+2ax+1=0有两个不相等的实根,试判别方程x 2+2ax+1-12
(a 2x 2-a 2-1)=0有无实根?
8.求证:不论k 为何实数,关于x 的式子(x -1)(x -2)-k 2都可以分解成两个一次因式的积.
9.实数K 在什么范围取值时,方程kx2+2(k-1)x-(K -1)=0有实数正根?
独立训练(一)
1、 不解方程,请判别下列方程根的情况;
(1)2t 2+3t -4=0, ; (2)16x 2+9=24x, ;
(3)5(u 2+1)-7u=0, ;
2、 若方程x 2-(2m -1)x+m 2+1=0有实数根,则m 的取值范围是 ;
3、 一元二次方程x 2+px+q=0两个根分别是2+ 3 和2- 3 ,则p= ,q= ;
4、 已知方程3x 2-19x+m=0的一个根是1,那么它的另一个根是 ,m= ;
5、 若方程x 2+mx -1=0的两个实数根互为相反数,那么m 的值是 ;
6、 m,n 是关于x 的方程x 2-(2m-1)x+m 2+1=0的两个实数根,则代数式m n = .
7、 已知关于x 的方程x 2-(k+1)x+k+2=0的两根的平方和等于6,求k 的值;
8、 如果α和β是方程2x 2+3x -1=0的两个根,利用根与系数关系,求作一个一元二次方程,使
它的两个根分别等于α+1 β 和β+1 α
; 9、 已知a,b,c 是三角形的三边长,且方程(a 2+b 2+c 2)x 2+2(a+b+c)x+3=0有两个相等的实数根,
求证:这个三角形是正三角形
10.取什么实数时,二次三项式2x 2-(4k+1)x+2k 2-1可因式分解.
11.已知关于X 的一元二次方程m2x2+2(3-m)x+1=0的两实数根为α,β,若s=1 α
+1 β
,求s的取值范围. 独立训练(二)
1、 已知方程x 2-3x+1=0的两个根为α,β,则α+β= , αβ= ;
2、 如果关于x 的方程x 2-4x+m=0与x 2-x -2m=0有一个根相同,则m 的值为 ;
3、 已知方程2x 2-3x+k=0的两根之差为212
,则k= ; 4、 若方程x 2+(a 2-2)x -3=0的两根是1和-3,则a= ;
5、 方程4x 2-2(a-b)x -ab=0的根的判别式的值是 ;
6、 若关于x 的方程x 2+2(m -1)x+4m 2=0有两个实数根,且这两个根互为倒数,那么m 的值
为 ;
7、 已知p<0,q<0,则一元二次方程x 2+px+q=0的根的情况是 ;
8、 以方程x 2-3x -1=0的两个根的平方为根的一元二次方程是 ;
9、 设x 1,x 2是方程2x 2-6x+3=0的两个根,求下列各式的值:
(1)x 12x 2+x 1x 22 (2) 1x 1 -1x 2
10.m 取什么值时,方程2x 2-(4m+1)x+2m 2-1=0
(1) 有两个不相等的实数根,(2)有两个相等的实数根,(3)没有实数根;
11.设方程x 2+px+q=0两根之比为1:2,根的判别式Δ=1,求p,q 的值.
12.是否存在实数k,使关于x的方程9x 2-(4k-7)x -6k2=0的两个实根x 1,x 2,满足|x 1 x 2
|=32 ,如果存在,试求出所有满足条件的k的值,如果不存在,请说明理由.。

相关文档
最新文档