数学实验-实验2 插值与拟合

合集下载

实验2插值与拟合

实验2插值与拟合

数值分析实验报告实验2 插值与拟合2.1 实验目的掌握牛顿插值法的基本思路和步骤;掌握最小二乘法的基本思路和拟合步骤。

培养编程与上机调试能力。

2.2 算法描述2.2.1 牛顿插值法基本思路给定插值点序列())(,i i x f x ,,,1,0,n i =构造牛顿插值多项式)(u N n 。

输入要计算的函数点,x 并计算)(x N n 的值,利用牛顿插值公式,当增加一个节点时,只需在后面多计算一项,而前面的计算仍有用;另一方面)(x N n 的各项系数恰好又是各阶差商,而各阶差商可用差商公式来计算。

2.2.2 牛顿插值法计算步骤1. 输入n 值及())(,i i x f x ,,,1,0,n i =;要计算的函数点x 。

2. 对给定的,x 由[][][]00010101201101()()(),()(),,()()(),,n n n N x f x x x f x x x x x x f x x x x x x x x x f x x x -=+-+--++--- 计算()n N x 的值。

3. 输出()n N x 。

2.2.3 最小二乘法基本思路已知数据对()(),1,2,,j j x y j n = ,求多项式0()()m ii i p x a x m n ==<∑使得20110(,,,)n m in i j j j i a a a a x y ==⎛⎫Φ=- ⎪⎝⎭∑∑ 为最小,这就是一个最小二乘问题。

2.2.4 最小二乘法计算步骤用线性函数()p x a bx =+为例,拟合给定数据(),,1,2,,i i x y i m = 。

算法描述:步骤1:输入m 值,及(),,1,2,,i i x y i m = 。

步骤2:建立法方程组TA AX AY =。

步骤3:解法方程组。

步骤4:输出()p x a bx =+。

2.3 实验内容1. 给定sin110.190809,sin120.207912,sin130.22491,o o o ===构造牛顿插值函数计算'sin1130o 。

插值与拟合

插值与拟合

实验2 插 值 与 拟 合一、 概念的引入1. 插值与拟合在现实生活中的应用● 机械制造:汽车外观设计● 采样数据的重新建构:电脑游戏中场景的显示,地质勘探,医学领域(CT ) 2. 概念的定义● 插值: 基于[a,b]区间上的n 个互异点,给定函数f(x),寻找某个函数去逼近f(x)。

若要求φ(x)在xi 处与f(xi)相等,这类的函数逼近问题称为插值问题,xi 即是插值点● 逼近: 当取值点过多时,构造通过所有点的难度非常大。

此时选择一个次数较低的函数最佳逼近这些点,一般采用最小二乘法● 光顾: 曲线的拐点不能太多,条件:①二阶几何连续②不存在多余拐点③曲率变化较小● 拟合:曲线设计过程中用插值或通过逼近方法是生成的曲线光滑(切变量连续)光顾二、 插值理论设函数y=f(x)在区间[a,b]上连续,在[a,b]上有互异点x 0,x 1,…,x n 处取值y 0,y 1,…,y n 。

如果函数φ(x)在点x i 上满足φ(x i )=y i (i=0,1,2,…,n),则称φ(x)是函数y=f(x)的插值函数,x 0,x 1,…,x n 是插值节点。

若此时φ(x)是代数多项式P(x),则称P(x)为插值多项式。

显然 f(x)≈φ(x),x ∈[a,b]1. 拉格朗日插值构造n 次多项式P n (x)= y k l k (x)=y 0l 0 (x)+y 1l 1 (x)+…+y n l n (x),这是不超过n 次的多项式,其中基函数l k (x)=)...()()...()(()...()()...()(()1110)1110n k k k k k k k n k k x x x x x x x x x x x x x x x x x x x x ----------+-+-显然l k (x)满足l k (x i )=⎩⎨⎧≠=)(0)(1k i k i此时 P n (x)≈f(x),误差R n (x)=f(x)-P n (x)=(x ))!1()(1)1(+++n n n f ωξ 其中ξ∈(a,b)且依赖于x ,(x)1+n ω=(x-x 0)(x-x 1)…(x -x n )很显然,当n=1、插值节点只有两个x k ,x k+1时P 1(x)=y k l k (x)+y k+1l k+1(x)其中基函数l k (x)=11++--k k k x x x x l k+1(x)= kk kx x x x --+12. 牛顿插值构造n 次多项式N n (x)=f(x 0)+f(x 0,x 1)(x-x 0)+f(x 0,x 1,x 2)(x-x 0)(x-x 1)+…+f(x 0,x 1,x 2,…,x n )(x-x 0)(x-x 1)…(x -x n )称为牛顿插值多项式,其中101010)()(),(x x x f x f x x f --=(二个节点,一阶差商)202110210),(),(),,(x x x x f x x f x x x f --=(三个节点,二阶差商)nn n n x x x x x f x x x f x x x f --=-02111010),...,,(),...,,(),...,,( (n+1个节点,n 阶差商)注意:由于插值多项式的唯一性,有时为了避免拉格朗日余项R n (x)中n+1阶导数的运算,用牛顿插值公式R n (x)=f(x)-N n (x)=f(x,x 0,…,x n )ωn+1(x), 其中ωn+1(x)=(x-x 0)(x-x 1)…(x -x n )3. 分段插值------子区间内,避免函数在某些区间失真 1) 线性插值已知n+1个不同节点x 0,x 1,…,x n ,构造分段一次线性多项式P(x),使之满足 ● P(x)在[a,b]上连续 ● P(x k )=y k● P(x)在[x i ,x i+1]上是线性函数,P(x)=∑=ni i i x l y 0)(2) 两点带导数插值---避免尖点、一阶连续区间[a,b]上两个互异节点x i ,x i+1,已知实数y i ,y i+1,m i ,m i+1,为了构造次数不大于3的多项式)(x i ϕ满足条件⎩⎨⎧==i i i i i i m x y x )()('ϕϕ ⎩⎨⎧==++++1111)()('i i i i i i m x y x ϕϕ 引入)(x u i ,)(x v i 使之满足⎪⎪⎩⎪⎪⎨⎧====++0)(0)()()(11''i i i i i i i i i i x u x u m x u y x u ⎪⎪⎩⎪⎪⎨⎧====++++1111)()(0)(0)('i i i i i i i i i i m x v y x v x v x v可以求出⎪⎪⎩⎪⎪⎨⎧---+=--++=+++++2111121))]()(2([)())]()(2([)(i i i i i i i i ii i i i i i i h x x x x y h m y x v h x x x x y h m y x u此时)(x i ϕ=)(x u i +)(x v i ,其中i i i x x h -=+14. 三次样条插值------二阶可导对于给定n+1个不同节点x 0,x 1,…,x n 及函数值y 0,y 1,…,y n ,其中a=x 0<x 1<…<x n =b 。

实验二:插值与拟合

实验二:插值与拟合

实验二:插值与拟合
实验目的:
1. 掌握用MATLAB 计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。

2. 掌握用MATLAB 作线性最小二乘的方法。

3. 通过实例学习如何用插值方法与拟合方法解决实际问题,注意两者的联系与区别。

实验要求:
1. 编制计算拉格朗日插值的m 文件。

2. 练习interp1与interp2使用方法。

3. 通过实例,对三种插值结果进行比较。

4. 最小二乘拟合进行参数估计,并作图进行比较。

实验内容:
1. 选择一些函数,在n 个节点上(n 不要太大,如,5-11)用拉格朗日、分段线性、三次样条三种插值方法,计算m 个插值点的函数值(m 要适中,如50-100),通过数值和图形输出,将三种插值结果与精确值进行比较,通过增加n ,再作比较,由此作初步分析。

(1)π20,sin ≤≤=x x y (2)11,)1(2
1
2≤≤--=x x y (3)22,cos 10≤≤-=x x y (4)22),exp(2≤≤--=x x y
2. 用给定的多项式,如35623-+-=x x x y ,产生一组数据(x i ,y i ,
i=1,2,…,n),再在y i上添加随机干扰(可用rand产生),然后用x i 和添加了随机干扰的y i作3次多项式拟合,与原系数比较,如果作2或4次多项式拟合,结果如何?
3.在化工生产中,常常需要知道丙烷在各种温度T和压力P下的导
热系数K,下面是实验得到的一组数据:
试求T=99和P=10.3下的K。

数值分析实验报告--实验2--插值法

数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。

显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。

我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。

龙格(Runge )给出一个例子是极著名并富有启发性的。

设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。

实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。

(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。

(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。

1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。

1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。

Matlab 脚本文件为Experiment2_1_1fx.m 。

可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。

清华大学_计算方法(数学实验)实验2插值与拟合

清华大学_计算方法(数学实验)实验2插值与拟合

实验 2 插值与拟合系班姓名学号【实验目的】1、掌握用MATLAB计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。

2、掌握用MATLAB作线性最小二乘的方法。

3、通过实例学习如何用插值方法与拟合方法解决实际问题,注意二者的联系和区别。

【实验内容】预备:编制计算拉格朗日插值的M文件:以下是拉格朗日插值的名为y_lagrl的M文件:function y=y_lagr1(x0,y0,x)n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;end第1题(d)选择函数y=exp(-x2) (-2≤x≤2),在n个节点上(n不要太大,如5~11)用拉格朗日、分段线性、三次样条三种插值方法,计算m个插值点的函数值(m要适中,如50~100)。

通过数值和图形输出,将三种插值结果与精确值进行比较。

适当增加n,在作比较,由此作初步分析。

运行如下程序:n=7;m=61;x=-2:4/(m-1):2;y=exp(-x.^2);z=0*x;x0=-2:4/(n-1):2;y0=exp(-x0.^2);y1=y_lagr1(x0,y0,x);y2=interp1(x0,y0,x);y3=interp1(x0,y0,x,'spline');[x'y'y1'y2'y3']plot(x,z,'w',x,y,'r--',x,y1,'b:',x,y2,'m',x,y3,'b') gtext('y=exp(-x^2)'),gtext('Lagr.'),gtext('Piece.-linear.'),gtext ('Spline'),将三种插值结果y1,y2,y3与精确值y 项比较,显然y1在节点处不光滑,拉格朗日插值出现较大的振荡,样条插值得结果是最好的.增加n 值(使n=11),再运行以上程序,得到的图形如右图所示,比较这两个图可发现,节点增加后,三种插值方法结果的准确度均有所提高,因此可近似地认为:增加节点个数可以提高插值结果的准确程度。

插值法和拟合实验报告

插值法和拟合实验报告

插值法和拟合实验报告一、实验目的1.通过实验了解插值法和拟合法在数值计算中的应用;2.掌握拉格朗日插值法、牛顿插值法和分段线性插值法的原理和使用方法;3.学会使用最小二乘法进行数据拟合。

二、实验仪器和材料1.一台计算机;2. Matlab或其他适合的计算软件。

三、实验原理1.插值法插值法是一种在给定的数据点之间“插值”的方法,即根据已知的数据点,求一些点的函数值。

常用的插值法有拉格朗日插值法、牛顿插值法和分段线性插值法。

-拉格朗日插值法:通过一个n次多项式,将给定的n+1个数据点连起来,构造出一个插值函数。

-牛顿插值法:通过递推公式,将给定的n+1个数据点连起来,构造出一个插值函数。

-分段线性插值法:通过将给定的n+1个数据点的连线延长,将整个区间分为多个小区间,在每个小区间上进行线性插值,构造出一个插值函数。

2.拟合法拟合法是一种通过一个函数,逼近已知的数据点的方法。

常用的拟合法有最小二乘法。

-最小二乘法:通过最小化实际观测值与拟合函数的差距,找到最优的参数,使得拟合函数与数据点尽可能接近。

四、实验步骤1.插值法的实验步骤:-根据实验提供的数据点,利用拉格朗日插值法、牛顿插值法、分段线性插值法,分别求出要插值的点的函数值;-比较三种插值法的插值结果,评价其精度和适用性。

2.拟合法的实验步骤:-根据实验提供的数据点,利用最小二乘法,拟合出一个合适的函数;-比较拟合函数与实际数据点的差距,评价拟合效果。

五、实验结果与分析1.插值法的结果分析:-比较三种插值法的插值结果,评价其精度和适用性。

根据实验数据和插值函数的图形,可以判断插值函数是否能较好地逼近实际的曲线。

-比较不同插值方法的计算时间和计算复杂度,评价其使用的效率和适用范围。

2.拟合法的结果分析:-比较拟合函数与实际数据点的差距,评价拟合效果。

可以使用均方根误差(RMSE)等指标来进行评价。

-根据实际数据点和拟合函数的图形,可以判断拟合函数是否能较好地描述实际的数据趋势。

插值与拟合问题

插值与拟合问题

插值与拟合问题插值与拟合是数学和计算机科学领域中常见的问题,涉及到通过已知数据点来估计未知点的值或者通过一组数据点来逼近一个函数的过程。

在现实生活中,这两个问题经常用于数据分析、图像处理、物理模拟等领域。

本文将介绍插值与拟合的基本概念、方法和应用。

一、插值问题插值是通过已知的数据点来推断出未知点的值。

在插值问题中,我们假设已知数据点是来自于一个未知函数的取值,在这个函数的定义域内,我们需要找到一个函数或者曲线,使得它经过已知的数据点,并且可以通过这个函数或者曲线来估计未知点的值。

常见的插值方法包括线性插值、拉格朗日插值和牛顿插值。

线性插值是通过已知的两个数据点之间的直线来估计未知点的值,它简单而直观。

拉格朗日插值则通过构造一个关于已知数据点的多项式来估计未知点的值,这个多项式经过每一个已知数据点。

牛顿插值和拉格朗日插值类似,也是通过构造一个多项式来估计未知点的值,但是它使用了差商的概念,能够更高效地处理数据点的添加和删除。

不仅仅局限于一维数据点的插值问题,对于二维或者更高维的数据点,我们也可以使用类似的插值方法。

例如,对于二维数据点,我们可以使用双线性插值来估计未知点的值,它利用了四个已知数据点之间的线性关系。

插值问题在实际应用中非常常见。

一个例子是天气预报中的气温插值问题,根据已知的气温观测站的数据点,我们可以估计出其他地点的气温。

另一个例子是图像处理中的像素插值问题,当我们对图像进行放大或者缩小操作时,需要通过已知像素点来估计未知像素点的值。

二、拟合问题拟合是通过一组数据点来逼近一个函数的过程。

在拟合问题中,我们假设已知的数据点是来自于一个未知函数的取值,我们需要找到一个函数或者曲线,使得它能够与已知的数据点尽可能地接近。

常见的拟合方法包括多项式拟合、最小二乘拟合和样条拟合。

多项式拟合是通过一个多项式函数来逼近已知的数据点,它的优点是简单易用,但是对于复杂的函数形态拟合效果可能不好。

最小二乘拟合则是寻找一个函数,使得它与已知数据点之间的误差最小,这个方法在实际应用中非常广泛。

数学建模实验报告2 插值与拟合

数学建模实验报告2 插值与拟合

淮阴工学学院数理学院数学建模与实验课程实验报告实验名称二、插值与拟合实验地点26#114 日期2014-10-14姓名班级学号成绩通过实例学习如何用插值和拟合方法解决实际问题,从而提高探索和解决问题的能力。

通过撰写实验报告,促使自己提炼思想,按逻辑顺序进行整理,并以他人能领会的方式表达自己思想形成的过程和理由。

【实验内容】A组题1、有1个不规则的钢管经过测量经过如下坐标点,该钢管的线密度为7.85g/cm。

求该钢管质量。

X(cm) 0 1 2 3 4 5 6 7 8 9Y(cm) 1 -1.97 -8.79 -18.08 -27.56 -32.27 -29.41 -16.86+m 4+m 45+m其中m为你的学号后两位乘以0.1.2、下表给出我国人口从1995年到2004年的人口总数(单位:万人),我们考虑用Logistic 模型预测我国人口2030年总量。

表1 1995年到2004年的我国人口总数(单位:万人)请拟合出Malthus人口模型和Logistic人口模型中的参量,并且分别用这两个型预测2005年到2010年我国人口总量,并且与真实值比较,填写下表2:相对误差 = | 预测值 - 真实值 |/真实值(即绝对误差所占真实值的百分比)B组血管的三维重建假设某些血管可视为一类特殊的管道,该管道的表面是由球心沿着某一曲线(称为中轴线)的球滚动包络而成。

例如圆柱就是这样一种管道,其中轴线为直线,由半径固定的球滚动包络形成。

现有某管道的相继100张平行切片图象,记录了管道与切片的交。

图象文件名依次为0.bmp、1.bmp、…、99.bmp,格式均为BMP,宽、高均为512个象素(pixel)。

为简化起见,假设:管道中轴线与每张切片有且只有一个交点;球半径固定;切片间距以及图象象素的尺寸均为1。

运用计算机可重建组织、器官等准确的三维形态。

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告一、实验目的1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性;2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理;3.利用matlab 编程,学会matlab 命令;4.掌握拉格朗日插值法;5.掌握多项式拟合的特点和方法。

二、实验题目1.、插值法实验将区间[-5,5]10等分,对下列函数分别计算插值节点kx 的值,进行不同类型的插值,作出插值函数的图形并与)(x f y =的图形进行比较:;11)(2x x f += ;arctan )(x x f = .1)(42x x x f +=(1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值.2、拟合实验给定数据点如下表所示:分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数),(i i y x 和拟合函数的图形。

三、实验原理1.、插值法实验∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--==-===-=-=----==++==ji j ji i i i i ni i n nji j jnji j ji i nji j jn i i i ni i n nn o i ni i n x x x x x y x l x L x x c ni x x c x x x cx x x x x x x x c y x l x L y x l y x l y x l x L ,00,0,0,0110000)(l )()()(1,1,0,1)()(l )()())(()()()()()()()(,故,得再由,设2、拟合实验四、实验内容1.、插值法实验1.1实验步骤:打开matlab软件,新建一个名为chazhi.m的M文件,编写程序(见1.2实验程序),运行程序,记录结果。

1.2实验程序:x=-5:1:5;xx=-5:0.05:5;y1=1./(1+x.^2);L=malagr(x,y1,xx);L1=interp1(x,y1,x,'linear');S=maspline(x,y1,0.0148,-0.0148,xx);hold on;plot(x,y1,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y2=atan(x);L=malagr(x,y2,xx);L1=interp1(x,y2,x,'linear');S=maspline(x,y2,0.0385,0.0385,xx);hold on;plot(x,y2,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y3=x.^2./(1+x.^4);L=malagr(x,y3,xx);L1=interp1(x,y3,x,'linear');S=maspline(x,y3,0.0159,-0.0159,xx);hold on;plot(x,y3,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');1.3实验设备:matlab软件。

试验二 插值法与数据拟合

试验二 插值法与数据拟合

试验二 插值法一、实验目的(1) 学会Lagrange 插值和牛顿插值等基本插值方法; (2) 讨论插值的Runge 现象,掌握分段线性插值方法(3) 学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。

二、实验要求(1) 按照题目要求完成实验内容; (2) 写出相应的Matlab 程序;(3) 给出实验结果(可以用表格展示实验结果); (4) 分析和讨论实验结果并提出可能的优化实验。

(5) 写出实验报告。

三、实验步骤1、用编好的Lagrange 插值法程序计算书本P66 的例1、用牛顿插值法计算P77的例1。

2、已知函数在下列各点的值为:试用4次牛顿插值多项式4()P x 对数据进行插值,根据{(,),0.20.08,0,1,2,,10i i i x y x i i =+=L },画出图形。

3、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数21(),(11)125f x x x =-≤≤+作多项式插值,对不同n 值,分别画出插值函数及()f x 的图形。

4、下列数据点的插值可以得到平方根函数的近似,在区间[0,64]上作图。

(1) 用这9个点作8次多项式插值8()L x 。

5、在区间[0,10]画出sin()y x =的曲线,取插值节点,0,1,,10k x k k ==L 和节点处的函数值sin()k k y x =,作分段线性插值,并画出相应的折线图,将两图形绘在一张图上。

6、搜索Matlab 提供的三个数据拟合函数polyfit()、lsqcurvefit()、nlinfit()的使用方法。

列出它们的典型应用例子。

一、实验目的1、学会Lagrange 插值、牛顿插值和 分段线性插值等基本插值方法;2、讨论插值的Runge 现象,掌握分段线性插值方法3、学会Matlab 提供的插值函数、数据拟合函数的使用方法,并用这些函数解决实际问题。

二、实验原理1、拉格朗日插值多项式2、牛顿插值多项式3、分段线性插值三、实验步骤1、用MA TLAB 编写独立的拉格朗日插值多项式函数2、用MA TLAB 编写独立的牛顿插值多项式函数3、利用编写好的函数计算本章P66例1、P77例1的结果并比较。

数据插值与拟合

数据插值与拟合

数据插值与拟合《数学模型与实验(三) 》实验报告实验二模型二数据插值和数据拟合实验报告人:学号:姓名:一、实验目的1.了解数据插值和数据拟合在实际问题中的应用; 2.掌握用MATLAB 求解数据插值和数据拟合问题二、实验内容1、一维插值问题在化学工程中经常会遇到计算高温状态下蒸汽压力和温度的问题,但是考虑到测量设备等的限制,我们希望利用低温状态下的压力等有关数据进行外推。

表1给出了氨蒸汽的一组温度和压力数据。

请用三次样条插值方法从所列的数据中计算75OC 氨蒸汽的压力并画出0到100度的曲线图?表1氨蒸汽的压力和温度温度(C ) 20 25 30 35 40 45 50 55 60 压力(kN/m2) 805 985 1170 1365 1570 1790 2030 2300 26102、二维插值问题山区地貌图在某山区(平面区域(0,2800)x (0,2400)内,单位:米) 测得一些地点的高程(单位:米)如表4.12所示,试作出该山区的地貌图和等高线图.O要求:使用数据插值方法作出该山区的地貌图和等高线图3、曲线拟合问题用电压V =14伏的电池给电容器充电,电容器上t 时刻的电压满足:v (t ) =V -(V -V 0) e-tτ,其中,使用下列数据用最小二乘法拟合确定V 0和τ,V 0是电容器的初始电压,τ是充电常数,并画出曲线图。

表2 t时刻电容器的电压v (t )4、薄膜渗透率的测定某种医用薄膜有允许一种物质的分子穿透它,从高浓度的溶液向低浓度的溶液扩散的功能,在试制时,需要测定薄膜被这种分子穿透的能力。

测定方法如下:用面积S 的薄膜将容器分成体积分别为V A ,V B 的两部分,在两部分中分别注满该物质的两种不同浓度的溶液。

此时该物质分子就会从高浓度溶液穿过薄膜向低浓度溶液中扩散。

通过单位面积膜分子扩散的速度与膜两侧溶液的浓度差成正比,比例系数K 表示薄膜被该物质分子穿透的能力,称为渗透率。

数值分析实验插值与拟合

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合一、实验目的1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性;2. 编写MATLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象;3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理;4. 编写MATLAB 程序实现最小二乘多项式曲线拟合。

二、实验内容1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。

2. 设]5,5[,11)(2-∈+=x xx f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。

不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。

(2) 编写MATLAB 程序绘制出曲线拟合图。

三、实验步骤1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件:⎩⎨⎧≠===ji j i x l ij j i ,0,,1)(δ的一组基函数{}ni i x l 0)(=,l i (x )的表达式为∏≠==--=nij j ji j i n i x x x x x l ,0),,1,0()(有了基函数{}ni i x l 0)(=,n 次插值多项式就可表示为∑==ni i i n x l y x L 0)()((2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为1102110],,,[],,,[],,,[x x x x x f x x x f x x x f n n n n --=-则n 次多项式)())(](,,[))(](,,[)](,[)()(11010102100100----++--+-+=n n n x x x x x x x x x f x x x x x x x f x x x x f x f x N差商表的构造过程:x i f (x i ) 一阶差商 二阶差商三阶差商 四阶差商x 0 f (x 0) x 1 f (x 1) f [x 0, x 1]x 2 f (x 2) f [x 1, x 2] f [x 0, x 1,x 2]x 3 f (x 3) f [x 2, x 3] f [x 1, x 2,x 3] f [x 0, x 1,x 2,x 3]x 4 f (x 4)f [x 3, x 4]f [x 2, x 3,x 4]f [x 1, x 2,x 3,x 4]f [x 0, x 1,x 2,x 3,x 4]试验结果:2. MATLAB程序实现:试验结果:3. 多项式拟合的一般方法可归纳为以下几步:(1)由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n ; (2)列表计算)2,,1,0(0n j xmi ji=∑=和∑==mi i j i n j y x 0),,1,0( ;(3)写出正规方程组,求出),,1,0(n k a k =; (4)写出拟合多项式∑==nk kk n xa x p 0)(。

数值分析实验插值与拟合

数值分析实验插值与拟合

数值分析实验插值与拟合插值是指根据已知的数据点,通过其中一种数学方法来构造一个函数,使得该函数在已知的数据点上与被插值函数相等。

插值方法可以分为两类:基于多项式的插值和非多项式插值。

基于多项式的插值方法中,最常用的是拉格朗日插值和牛顿插值。

拉格朗日插值方法通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的所有点。

牛顿插值方法则通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的前m+1个点。

非多项式插值方法中,最常用的是分段线性插值和样条插值。

分段线性插值方法将插值区间划分为多个小段,在每一段内使用线性函数来逼近被插值函数。

样条插值方法则使用分段低阶多项式来逼近被插值函数,保证了插值函数和原函数在插值区间内的连续性、光滑性。

拟合是指在给定的离散数据点集合上,通过选取一个函数,使得该函数与数据点之间的误差最小化。

拟合方法可以分为两类:线性拟合和非线性拟合。

线性拟合方法中,最简单的是最小二乘法。

最小二乘法拟合是通过最小化观测数据与拟合函数的残差平方和来选择最佳函数参数。

在实验中,最小二乘法常用于线性回归问题,例如估计一个直线或者平面来拟合数据。

非线性拟合方法中,最常用的是非线性最小二乘法和局部加权回归。

非线性最小二乘法通过将非线性拟合问题转化为线性问题,使用最小二乘法来寻找最佳参数。

局部加权回归方法则通过给予不同数据点不同的权重,以更好地逼近数据点。

在数值分析实验中,插值与拟合可以应用于各种实际问题。

例如,在地理信息系统中,通过已知的地理坐标点来插值出未知点的地理信息。

在气象学中,通过已知的气象数据点来插值出未知点的气象信息。

在工程学中,通过已知的测量数据点来拟合出一个最佳的拟合函数来预测未来的测量值。

需要注意的是,插值和拟合的精度在很大程度上取决于数据的分布和拟合函数的选择。

如果数据点过于稀疏或者数据点中存在异常值,可能导致插值和拟合结果不准确。

因此,在进行插值和拟合之前,需要对数据进行预处理,例如去除异常值、平滑数据等。

插值与拟合实验

插值与拟合实验

实验目的实验内容MATLAB2、掌握用Matlab 作线性最小二乘的方法.实验软件1、掌握用Matlab 计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。

.1、插值.2、拟合.3、数学建模实例3、通过实例学习如何使用插值方法与拟合方法解决实际问题,注意二者的区别和联系插值(一)插值问题的提法(二)解决插值问题的基本方法数学建模实例1、船在该海域会搁浅吗2、薄膜渗透率的测定拉格朗日多项式插值从理论和计算角度看,多项式是最简单的函数,设f(x) 是n 次多项式,记作0111)(a x a xa x a x L n n n n n ++++=-- (1) 对于节点),(j j y x 应有n j y x L j j n ,,1,0)( == (2)为了确定插值多项式)(x L n 中的系数01,,,a a a n n -, 将(1)代入(2),有⎪⎩⎪⎨⎧=++++=++++----0011100011010)3(y a x a x a x a y a x a x a x a n n n n n n n n n n n记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--111100 n n n n n n x x x x X ,,),...,,(01T n n a a a A -=T n y y y Y ),...,,(10=方程组(3)简写作Y XA = (4)其中detX 是V andermonde 行列式,利用行列式性质可得)(det 0j n k j k x x X -∏=≤≤因j x 互不相同,故0det ≠X ,于是方程(4)中有唯一解,即根据n+1个节点可以确定唯一得n 次插值多项式。

注:)(x I n 有良好的收敛性,即对于],[b a x ∈有)()(lim x g x I n n =∞→。

用)(x I n 计算x 点的插值时,只用到x 左右的两个节点,计算量与节点个数n 无关。

实验报告—拟合与插值

实验报告—拟合与插值

实验报告七拟合与插值一、曲线拟合1、多项式拟合【示例】以下步骤可对二维数据作多项式拟合。

已知:数据横坐标:a=[1 2 5 7 11 12];数据纵坐标:b=[ 32.78 32.65 27.25 25.55 19.24 14.65];【解】先将数据绘制成散点图:a=[1 2 5 7 11 12]; b=[ 32.78 32.65 27.25 25.55 19.24 14.65];plot(a,b, '-o') % 绘图,线型为实线,点型为空心圆点,颜色为默认的蓝色。

观察绘制出来的图形,大致在一条直线上,所以用一次多项式(直线)拟合:p= polyfit(a,b,1); y1=p (1)*a+p (2); % 线性拟合。

polyfit命令中的数字“1”表示用一次多项式。

% p是向量,各分量表示多项式从高到低的各个系数;y1是用这些系数构造的多项式的值。

hold on; plot(a,y1,'r') % 绘制图形,观察拟合效果。

颜色为红色。

也可以试着用三次多项式来拟合:q= polyfit(a,b,3); y2= q(1)*a.^3+q(2)*a.^2+q(3)*a+ q(4); % 3次多项式拟合hold on; plot(a,y2,'k') % 绘制曲线,观察拟合效果。

颜色为黑色。

【要求】执行以上命令,并仿照示例,对下列数据作多项式拟合,写出拟合多项式:数据横坐标:x=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20];数据纵坐标:y= [70.2 41.6 -9.1 -52 -100 -67.4 -112 -166 -104 -168 -103 -128 -90.5 -52.1 -10.4 60.6 85.9 153 199 301];024681012141618202、一般的最小二乘拟合【示例1】已知数据横、纵坐标分别为x =1:0.5:10; y=[0.84 2.24 3.64 3.74 1.2701 -4.29 -12.11 -19.79 -23.97 -21.34 -10.06 9.09 32.19 52.76 63.32 57.69 33.38 -6.78 -54.40];并已知该组数据满足 12sin()ay x a x =,其中12,a a 为待定系数。

数值分析实验报告插值与拟合

数值分析实验报告插值与拟合
解:(1)
结果分析:高次插值稳定性差,而低次插值对于较大区间逼近精度又不够,而且,随着节点的加密,采用高次插值,插值函数两端会发生激烈震荡。解决这一矛盾的有效方法就是采用分段低次代数插值。
(2)
通过采用分段线性插值得到以下结果:
结果分析:通过采用分段线性插值,发现随着插值节点增多,插值计算结果的误差越来越小,而且分段线性插值的优点是计算简单,曲线连续和一致收敛,但是不具有光滑性。
拟合是指通过观察或测量得到一组离散数据序列 ,i=1,2,…,m,构造插值函数 逼近客观存在的函数 ,使得向量 与 的误差或距离最小。
可知当基函数的选择不同时,拟合函数的误差也会不同,所以在对数据进行拟合时应选择适合的基函数。
三、练习思考
整体插值有何局限性?如何避免?
答:整体插值的过程中,若有无效数据则整体插值后插值曲线的平方误差会比较大,即在该数据附近插值曲线的震动幅度较大。在插值处理前,应对原始数据进行一定的筛选,剔除无效数据。
②相同点:通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律目的
四、本次实验的重点难点分析
答:加强了对插值和拟合的认识,了解了其算法思想,并使用matlab将其实现。学会了观察插值拟合后的图形,并分析其问题。
画图进行比较:
通过观察图像,经比较可知两结果是很接近的。
2.区间 作等距划分: ,以 ( )为节点对函数 进行插值逼近。(分别取 )
(1)用多项式插值对 进行逼近,并在同一坐标系下作出函数的图形,进行比较。写出插值函数对 的逼近程度与节点个数的关系,并分析原因。
(2)试用分段插值(任意选取)对 进行逼近,在同一坐标下画出图形,观察分段插值函数对 的逼近程度与节点个数的关系。

数值分析插值与拟合实验

数值分析插值与拟合实验

数值分析插值与拟合实验数值分析是一门研究利用数字计算方法解决数学问题的学科。

插值与拟合是数值分析的重要内容之一,可以用于数据分析、信号处理以及数学建模等领域。

本实验将使用MATLAB软件进行插值与拟合的实验,主要包括插值多项式与拟合曲线的构造,以及评价拟合效果的方法。

实验一:插值多项式的构造1. Lagrange插值Lagrange插值是一种构造多项式来拟合已知数据点的方法。

给定n 个数据点(xi, yi),其中xi不相等,Lagrange插值多项式可以写成:P(x) = ∑(i=0 to n) yi * l_i(x)其中l_i(x)是Lagrange基函数,定义为:l_i(x) = ∏(j=0 to n,j!=i) (x-xj)/(xi-xj)通过计算l_i(x),然后将其乘以相应的数据点yi,最后相加就可以得到插值多项式P(x)。

2. Newton插值Newton插值使用差商的概念来构造插值多项式。

首先定义差商F[x0,x1,...,xn]如下:F[x0]=f(x0)F[x0,x1]=(f(x1)-f(x0))/(x1-x0)F[x0,x1,x2]=(F[x1,x2]-F[x0,x1])/(x2-x0)...F[x0,x1,...,xn] = (F[x1,x2,...,xn] - F[x0,x1,...,xn-1])/(xn-x0)其中f(x)是已知数据点的函数。

然后,利用差商来构造插值多项式:P(x) = ∑(i=0 to n) F[x0,x1,...,xi] * ∏(j=0 to i-1) (x-xj)通过计算差商F[x0,x1,...,xi]和对应的乘积∏(x-xj),最后相加得到插值多项式P(x)。

实验二:拟合曲线的构造1.多项式拟合多项式拟合是通过构造一个多项式函数来拟合已知数据点的方法。

假设给定n个数据点(xi, yi),可以使用多项式函数来表示拟合曲线:P(x) = a0 + a1*x + a2*x^2 + ... + an*x^n其中a0, a1, ..., an是待确定的系数。

实验二(插值与拟合)

实验二(插值与拟合)

1).做出散点图(用MATLAB编程如下):
>>n=[0 34 67 101 135 202 259 336 404 471]; y=[15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75]; plot(n,y,'r:',n,y,'*') xlabel('氮肥的使用量 n') ylabel('土豆的产量 y') title('土豆产量与氮肥使用量的关系')
七.结论及建议
综上所述,可知最佳方案为第一个方案 (327.77,245,465).
根据农作物的生长原理,氮磷钾3种肥料缺一不可,但又 是一个有机整体,因此,要得到农作物的产量与3种肥料之 间的使用量的关系,必须考虑3种肥料间的交互影响的数据, 也就是说在设计实验时应当采取正交实验,或均匀设计的 方法,利用这样实验得到的数据建立的农作物与3种肥料之 间的多元函数关系,才能准确地找到最佳施肥方案.
Байду номын сангаас
四.问题分析
1.引如如下记号
2.根据假设2,当一个营养素的施肥量变化时,总将另两个 营养素的施肥量保持在第7个水平上,因此,我们只需考虑 某一个营养素的变化与作物产量之间的关系,即利用给出 的数据,找出产量与各种营养素之间函数关系.下面,我们 只给出土豆产量与施肥量的关系.
我们先来研究氮肥与产量的关系,从数据上可以发现: 当氮肥增加时产量逐步增加,但当增加到一定时候产量反 而减少,这就是农业生产中氮肥的过量使用会造成烧苗的 原因.从磷肥与产量的数据可以发现:磷肥的作用很小,当 磷肥量为0时,产量为33.46(t/h),而施用(24kg/h)产量反 而减少,继续增加施肥量,产量有增有减;最大产量为 42.73(t/h),此时的施肥量为342(kg/h),施肥的平均效率 为(42.73-33.46)/342=0.0271.钾肥与产量的关系与上述 两种肥料有所不同,当施肥量增加到一定的时候,产量增加 趋于定值.根据以上分析,我们用曲线回归方法建立土豆产 量与施肥量的关系,具体步骤为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广州大学学生实验报告
开课学院及实验室: 2014年 月 日
学院
数学与信息科学学院
年级、专业、班
姓名
学号
实验课程名称 数学实验 成绩 实验项目名称
实验2 插值与拟合
指导老师
一、实验目的
1、掌握用MATLAB 计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。

2、掌握用MATLAB 作线性最小二乘拟合的方法。

3、通过实例学习如何用插值方法与拟合方法解决实际问题,注意二者的联系和区别。

二、实验设备
电脑、MATLAB
三、实验要求
1..选择一些函数,在n 个节点上(n )不要太大,如5~11)用拉格朗日,分段线性,三次样条三种插值方法,,计算m 各插值点的函数值(m 要适中,如50~100).通过数值和图形的输出,将三种插值结果与精确值进行比较.适当增加n ,再作比较,由此作初步分析.下列函数供选择参考: a. y=sin x ,0≦x ≦2π;
2.用
1
2
y x
=在x=0,1,4,9,16产生5个节点15,...,P P .用不同的节点构造插值公式来计算x=5处的插值(如用
15,...,P P ;14,...,P P ;24,...,P P 等)与精确值比较进行分析。

5.对于实验1中的录像机计数器,自己实测一组数据(或利用给出的数据),确定模型2
t an bn =+中的系数a,b.
6.用电压V=10伏的电池给电容器充电,电容器上t 时刻的电压为
0()()t
v t V V V e

=--,其中
0V 是电容器的初始
电压,τ是充电常数。

试由下面一组t ,V 数据确定0V 和τ.
t/s 0.5 1 2 3 4 5 7 9 V/V 6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63
8. 弹簧在力F 的作用下伸长x ,一定范围内服从胡克定律:F 与x 成正比,即F=kx,k 为弹性系数.现在得到下面一组x ,F 数据,并在(x,F )坐标下作图(图13).可以看出,当F大到一定数值(如x=9以后)后,就不服从这个定律了。

试由数据拟合直线F=kx,并给出不服从胡克定律时的近似公式(曲线)。

1)要求直线与曲线在x=9处相连接。

2)要求直线与曲线在x=9处光滑连接.
四、实验程序
预备:
function y=lagr1(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k
p=p*(z-x0(j))/(x0(k)-x0(j)); end end
s=s+p*y0(k); end y(i)=s; end
五、实验操作过程
当n=5时 clear; n=5;
%在n 个节点上进行插值 m=75;
%产生m 个插值点,计算函数在插值点处的精确值,将来进行对比
x=0:4/(m-1):2*pi; y=sin(x); z=0*x;
x0=0:4/(n-1):2*pi; y0=sin(x0); y1=lagr1(x0,y0,x); % y1为拉格朗日插值 y2=interp1(x0,y0,x); % y2为分段线性插值 y3=spline(x0,y0,x); % y3为三次样条插值 [x' y' y1' y2' y3']
plot(x,z,'k',x,y,'r:',x,y1,'g-.',x,y2,'b',x,y3,'y--') gtext('Lagr.'), gtext('Pieces. linear'), gtext('Spline'), gtext('y=sin(x)') hold off;
%比较插值所得结果与函数在插值点处的精确值 s = ' x y y1 y2 y3' [x' y' y1' y2' y3']
结果
ans = 0 0 0 0 0 0.0541 0.0540 0.0495 0.0455 0.0611 0.1081 0.1079 0.0999 0.0910 0.1207 0.1622 0.1615 0.1510 0.1365 0.1787 0.2162 0.2145 0.2025 0.1819 0.2350 0.2703 0.2670 0.2541 0.2274 0.2896 0.3243 0.3187 0.3054 0.2729 0.3425 0.3784 0.3694 0.3563 0.3184 0.3936 0.4324 0.4191 0.4066 0.3639 0.4429 0.4865 0.4675 0.4559 0.4094 0.4904 0.5405 0.5146 0.5040 0.4548 0.5359 0.5946 0.5602 0.5508 0.5003 0.5796 0.6486 0.6041 0.5961 0.5458 0.6212 0.7027 0.6463 0.6396 0.5913 0.6609 0.7568 0.6866 0.6812 0.6368 0.6985 0.8108 0.7248 0.7208 0.6823 0.7341 0.8649 0.7610 0.7583 0.7278 0.7675
2.
x0=[0 1 4 9 16];y0=sqrt(x0);x=5;y=sqrt(5)
y1=lagr(x0,y0,x)
x0(1)=[];y0=sqrt(x0);y2=lagr(x0,y0,x)
x0(4)=[];y0=sqrt(x0);y3=lagr(x0,y0,x)
x0(1)=[];y0=sqrt(x0);y4=lagr(x0,y0,x)
结果
y = 2.2361
y1 = 2.0794
y2 = 2.2540
y3 = 2.2667
y4 = 2.2000
5.
n=[0000 1153 2045 2800 3466 4068 4621 5135 5619 6152]; t=[0 20 40 60 80 100 120 140 160 183.5];
aa=polyfit(n,t,2)
a=aa(1)
b=aa(2)
c=aa(3)
y=polyval(aa,n);
plot(n,t,'*',n,y,'m')
xlabel('n')
ylabel('t')
结果
aa =0.0000 0.0144 0.0498
a =2.5083e-006
b =0.0144
c =0.0498 6.
t=[0.5 1 2 3 4 5 7 9];
v1=[6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63]; y=log(10- v1);
f=polyfit(t,y,1)
t0=-1/f(1)
v0=10-exp(f(2))
v2=10-(10-v0)*exp(-t/t0);
plot(t,v1,'rx',t,v2,'k:')
grid on
xlabel('时间t(s)'),ylabel('充电电压(V)');
title('电容器充电电压与时间t的曲线');
结果
f =-0.2835 1.4766
t0 =3.5269
v0 =5.6221
8.
x0=[1 2 4 7 9];
y0=[1.5 3.9 6.6 11.7 15.6];
k=y0/x0
x1=[9 12 13 15 17];
y1=[15.6 18.8 19.6 20.6 21.1];
aa=polyfit(x1,y1,2);
a=aa(1);
b=aa(2);
c=aa(3);
ans=[a b c]
结果
k =1.7086
a1 =-0.0839 2.8922 -3.8459
024681012141618
5
10
15
20
25。

相关文档
最新文档