数值分析实验插值与拟合

合集下载

数值计算方法插值与拟合

数值计算方法插值与拟合

数值计算方法插值与拟合数值计算方法在科学计算和工程应用中起着重要的作用,其中插值和拟合是其中两个常用的技术。

插值是指通过已知的离散数据点来构造出连续函数或曲线的过程,拟合则是找到逼近已知数据的函数或曲线。

本文将介绍插值和拟合的基本概念和常见的方法。

一、插值和拟合的基本概念插值和拟合都是通过已知数据点来近似表达未知数据的方法,主要区别在于插值要求通过已知数据点的函数必须经过这些数据点,而拟合则只要求逼近这些数据点。

插值更加精确,但是可能会导致过度拟合;拟合则更加灵活,能够通过调整参数来平衡拟合精度和模型复杂度。

二、插值方法1. 线性插值线性插值是一种简单的插值方法,通过已知数据点构造出线段,然后根据插值点在线段上进行线性插值得到插值结果。

2. 拉格朗日插值拉格朗日插值是一种基于多项式插值的方法,通过已知数据点构造出一个多项式,并根据插值点求解插值多项式来得到插值结果。

3. 分段线性插值分段线性插值是一种更加灵活的插值方法,通过将插值区间分成若干小段,然后在每个小段上进行线性插值。

三、拟合方法1. 最小二乘法拟合最小二乘法是一种常用的拟合方法,通过最小化实际观测点和拟合函数之间的残差平方和来确定拟合函数的参数。

2. 多项式拟合多项式拟合是一种基于多项式函数的拟合方法,通过选择合适的多项式次数来逼近已知数据点。

3. 曲线拟合曲线拟合是一种更加灵活的方法,通过选择合适的曲线函数来逼近已知数据点,常见的曲线包括指数曲线、对数曲线和正弦曲线等。

四、插值与拟合的应用场景插值和拟合在实际应用中具有广泛的应用场景,比如图像处理中的图像重建、信号处理中的滤波器设计、金融中的风险评估等。

五、插值与拟合的性能评价插值和拟合的性能可以通过多种指标进行评价,常见的评价指标包括均方根误差、相关系数和拟合优度等。

六、总结插值和拟合是数值计算方法中常用的技术,通过已知数据点来近似表达未知数据。

插值通过已知数据点构造出连续函数或曲线,拟合则找到逼近已知数据的函数或曲线。

交大硕士研究生必修基础数学-数值分析-插值与拟合方法

交大硕士研究生必修基础数学-数值分析-插值与拟合方法

第5章 插值与拟合方法插值与拟合方法是用有限个函数值(),(0,1,,)i f x i n =⋅⋅⋅去推断或表示函数()f x 的方法,它在理论数学中提到的不多。

本章主要介绍有关解决这类问题的理论和方法,涉及的内容有多项式插值,分段插值及曲线拟合等。

对应的方法有Lagrange 插值,Newton 插值,Hermite 插值,分段多项式插值和线性最小二乘拟合。

1 实际案例2 问题的描述与基本概念先获得函数(已知或未知)()=在有y f x由表中数据构造一个函数P(x)作为f(x) 的近似函数,去参与有关f (x)的运算。

科学计算中,解决不易求出的未知函数的问题主要采用插值和拟合两种方法。

1)插值问题的描述已知函数()y f x =在[a,b ]上的n +1个互异点nx x x ⋅⋅⋅,,10处的函数值()i i y f x =,求f (x ) 的一个近似函数P (x ),满足()()(0,1,,)i i P x f x i n ==⋅⋅⋅ (5.1)● P (x ) 称为f (x )的一个插值函数; ● f (x ) 称为被插函数;点i x 为插值节点; ● ()()(0,1,,)i i P x f x i n ==⋅⋅⋅称为插值条件; ● ()()()R x f x P x =-称为插值余项。

当插值函数P (x )是多项式时称为代数插值(或多项式插值)。

一个代数插值函数P (x )可写为0()()()mkm k k k P x P x a x a R ===∈∑若它满足插值条件(5.1),则有线性方程组20102000201121112012m m m m m n n m n na a x a x a x y a a x a x a x y a a x a x a x y ⎧+++⋅⋅⋅=⎪+++⋅⋅⋅=⎪⎨⎪⎪+++⋅⋅⋅=⎩ (5.2)当m=n ,它的系数行列式为范德蒙行列式)(1110212110200j i ni j n nnnn nx x x x x x x x x x x D -∏==≤≤≤因为插值节点互异,0D ≠,故线性方程组(5.2)有唯一解,于是有定理 5.1 当插值节点互异时,存在一个满足插值条件()()(0,1,,)i i P x f x i n ==⋅⋅⋅的n 次插值多项式。

数值分析实验插值与拟合

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合一、实验目的1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性;2. 编写MATLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象;3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理;4. 编写MATLAB 程序实现最小二乘多项式曲线拟合。

二、实验内容1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。

2. 设]5,5[,11)(2-∈+=x xx f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。

不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。

(2) 编写MATLAB 程序绘制出曲线拟合图。

三、实验步骤1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件:⎩⎨⎧≠===ji j i x l ij j i ,0,,1)(δ的一组基函数{}ni i x l 0)(=,l i (x )的表达式为∏≠==--=nij j ji j i n i x x x x x l ,0),,1,0()(有了基函数{}ni i x l 0)(=,n 次插值多项式就可表示为∑==ni i i n x l y x L 0)()((2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为1102110],,,[],,,[],,,[x x x x x f x x x f x x x f n n n n --=-则n 次多项式)())(](,,[))(](,,[)](,[)()(11010102100100----++--+-+=n n n x x x x x x x x x f x x x x x x x f x x x x f x f x N差商表的构造过程:x i f (x i ) 一阶差商 二阶差商三阶差商 四阶差商x 0 f (x 0) x 1 f (x 1) f [x 0, x 1]x 2 f (x 2) f [x 1, x 2] f [x 0, x 1,x 2]x 3 f (x 3) f [x 2, x 3] f [x 1, x 2,x 3] f [x 0, x 1,x 2,x 3]x 4 f (x 4)f [x 3, x 4]f [x 2, x 3,x 4]f [x 1, x 2,x 3,x 4]f [x 0, x 1,x 2,x 3,x 4]试验结果:2. MATLAB程序实现:试验结果:3. 多项式拟合的一般方法可归纳为以下几步:(1)由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n ; (2)列表计算)2,,1,0(0n j xmi ji=∑=和∑==mi i j i n j y x 0),,1,0( ;(3)写出正规方程组,求出),,1,0(n k a k =; (4)写出拟合多项式∑==nk kk n xa x p 0)(。

第七讲 插值与拟合实验

第七讲 插值与拟合实验

y i = f ( xi ) 。插值函数一般是已知函数的线性组合或称为加权平均。用代数多项式作为插
值函数的插值法称为多项式插值,相应的多项式称为插值多项式。 插值和拟合是函数逼近的简单但又十分重要的方法。 插值法可以导出数值微分、 数值积 分和微分方程数值解等多方面的计算方法, 是数值分析的基本课题。 同时插值和拟合在工程 实践和科学实验中有着非常广泛而又十分重要的应用。 本实验将主要研究几种基本的插值方法(如 Lagrange 插值、分段线性插值、三次样条 插值等)和数据的最小二乘拟合方法。要求学会 Mathematica 提供的插值函数和拟合函数的 使用方法,会用这些函数解决实际问题。
基函数。容易证明
⎧1 li ( x j ) = δ ij = ⎨ ⎩0
i= j , i, j = 0,1& Ln ( xi ) = y i , i = 0,1, " , n 。 还可以从其他角度出发,构造出插值多项式,如牛顿(Newton)插值公式。 Lagrange 插值法最大的优点是函数具有很好的解析性质(无穷次可微) ,但是它也存在 固有的缺点:可能出现严重的振荡现象,并且多项式函数的系数依赖于观测数据。 例 1 考虑函数
3、 三次样条插值 在工程设计和机械加工等实际问题中,要求插值函数有较高的光滑度。在数学上,光滑 程度的定量描述是:函数(曲线)的 k 阶导数存在且连续,则称该曲线具有 k 阶光滑性。自 然,光滑性阶数越高其曲线光滑程度就越好。而上面介绍的分段线性插值,只具有零阶光滑 性,也就是不光滑的。虽然,提高分段函数如多项式函数的次数,可以提高整体曲线的光滑 程度, 但是, 是否存在较低次多项式达到较高光滑性的方法?三次样条插值就是一个很好的 例子。 样条曲线本身就来源于飞机、船舶等外形曲线设计问题。在工程实际中,要求此类曲线 应该具有连续的曲率,即连续的二阶导数。人们普遍使用的样条曲线是分段三次多项式。 定义 设 在 区 间 [a,b] 上 给 定 一 组 节 点 a = x 0 < x1 < " < x n = b 上 的 函 数 值

数值计算插值法与拟合实验

数值计算插值法与拟合实验
plot(xx,yy,'+')
dy0=-10.*(1-5.^4)./(1+5.^4).^2;dyn=10.*(1-5.^4)./(1+5.^4).^2;
m=maspline(x1,y1,dy0,dyn,xx);
plot(xx,m,'ok')
2、
程序:
x=[-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5]';
plot(xx,m,'ok')
第二个方程
程序
x=-5:0.2:5;
y=atan(x);
plot(x,y,'r');
hold on
x1=-5:1:5;
y1=atan(x1);
xx=-4.5:0.5:4.5;
yy=malagr(x1,y1,xx);
plot(xx,yy,'+')
dy0=1./(1+25);dyn=1./(1+25);
实验报告三
一、实验目的
通过本实验的学习,各种插值法的效果,如多项式插值法,牛顿插值法,样条插值法,最小二乘法拟合(即拟合插值),了解它们各自的优缺点及插值。
二、实验题目
1、插值效果比较
实验题目:将区间 10等份,对下列函数分别计算插值节点 的值,进行不同类型的插值,作出插值函数的图形并与 的图形进行比较:
y=[-4.45 -0.45 0.55 0.05 -0.44 0.54 4.55]';
plot(x,y,'or');hold on
%三.2:1.5;
y1=p1(1)*x1.^3+p1(2)*x1.^2+p1(3)*x1+p1(4);

什么是数值分析,它们在哪些领域有应用?

什么是数值分析,它们在哪些领域有应用?

什么是数值分析,它们在哪些领域有应用?数值分析是一种利用数学工具和计算机算法对数值数据进行分析和计算的方法。

它在科学、工程等领域中有广泛的应用,可以用来模拟和优化各种自然现象和工程问题。

下面我们将会介绍数值分析的相关知识和它在不同领域的应用。

1. 数值分析有哪些基本方法和原理?(1)插值和拟合插值和拟合是一种利用已知数据构建数学模型的方法。

插值可以用来求解出函数的一些未知点的值,而拟合则可以用来获取数据分布的一些特征。

(2)微分方程数值解法微分方程数值解法是一种利用计算机通过数值计算逼近微分方程数值解的方法。

这种方法在物理、化学、生物等各种领域中都有广泛的应用。

(3)数值积分数值积分是一种用数值计算逼近函数积分值的方法,可以用来解析无法直接求解的积分,广泛应用于各种工程和计算问题中。

2. 数值分析在哪些领域有应用?(1)流体力学流体力学是研究流体运动原理的学科,并且在飞行、液压机械、化学工艺等领域有广泛的应用。

数值分析在流体力学中可用于建立数学模型和计算流体介质中的物理量。

(2)地球物理学地球物理学是一门研究地球内部构造、物理和化学现象的学科。

数值分析在地球物理学中可用于计算地球上的重力场、磁场、潮汐等相关物理量,并且为天然气、石油和水资源探测提供了重要的支持。

(3)金融学金融数值分析是一种在金融领域中对金融工具、市场价格、投资组合和风险进行分析的方法。

它主要在风险管理、衍生品估价和投资组合优化等方面发挥着重要作用。

(4)计算机视觉计算机视觉是人工智能领域的一个分支,通过计算机模拟人类视觉系统处理图像视频数据。

数值分析在计算机视觉中可用于数据处理、特征提取和对象识别,以及图像/视频的增强和其他图像算法的研究。

(5)机器学习机器学习是一种通过计算机算法自动提取数据特征和规律的方法。

数值分析可用于机器学习中的数据预处理、特征提取和模型训练等环节。

另外,在自动化驾驶、医疗诊断等领域,机器学习也包含了大规模数据分析、处理以及护理路径的优化等内容。

数值计算3-插值和曲线拟合

数值计算3-插值和曲线拟合

数值计算...........3.-.插值和曲线拟合插值法是实用的数值方法,是函数逼近的重要方法。

在生产和科学实验中,自变量x与因变量y的函数y = f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。

当要求知道观测点之外的函数值时,需要估计函数值在该点的值。

如何根据观测点的值,构造一个比较简单的函数y=φ(x),使函数在观测点的值等于已知的数值或导数值。

用简单函数y=φ(x)在点x处的值来估计未知函数y=f(x)在x点的值。

寻找这样的函数φ(x),办法是很多的。

φ(x)可以是一个代数多项式,或是三角多项式,也可以是有理分式;φ(x)可以是任意光滑(任意阶导数连续)的函数或是分段函数。

函数类的不同,自然地有不同的逼近效果。

在许多应用中,通常要用一个解析函数(一、二元函数)来描述观测数据。

根据测量数据的类型:1.测量值是准确的,没有误差。

2.测量值与真实值有误差。

这时对应地有两种处理观测数据方法:1.插值或曲线拟合。

2.回归分析(假定数据测量是精确时,一般用插值法,否则用曲线拟合)。

MATLAB中提供了众多的数据处理命令。

有插值命令,有拟合命令,有查表命令。

一维插值插值定义为对数据点之间函数的估值方法,这些数据点是由某些集合给定。

当人们不能很快地求出所需中间点的函数值时,插值是一个有价值的工具。

例如,当数据点是某些实验测量的结果或是过长的计算过程时,就有这种情况。

interp1(x,y,xi,method)x和y为既有数据的向量,其长度必须相同。

xi为要插值的数据点向量。

method插值方法,‘nearest’/‘linear’/‘cubic’/‘spline’之一,分别为最近点插值/线性插值/分段三次Hermite插值/三次样条插值。

例x=[1.0 2.0 3.0 4.0 5.0]; %输入变量数据xy=[11.2 16.5 20.4 26.3 30.5]; %输入变量数据yx1=2.55; %输入待插值点xy11=interp1(x,y,x1,'nearest') %最近点插值方法的插值结果y12=interp1(x,y,x1,'linear') %线性插值方法的插值结果y13=interp1(x,y,x1,'cubic') %三次Hermite插值方法的插值结果y14=interp1(x,y,x1,'spline') %样条插值方法的插值结果y11 =20.4000y12 =18.6450y13 =18.6028y14 =18.4874plot(x,y)或许最简单插值的例子是MATLAB的作图。

数值分析中的插值和拟合

数值分析中的插值和拟合

数值分析中的插值和拟合数值分析是一门运用数学方法和计算机技术来解决实际问题的学科,其中的插值和拟合是其中的两个重要概念。

一、插值在数值分析中,插值是指在已知数据点的情况下,利用一定的数学方法来估计在此数据范围之外任意一点的函数值。

常用的插值方法有拉格朗日插值、牛顿插值和分段线性插值等。

以拉格朗日插值为例,假设已知数据点(x0, y0), (x1, y1), …, (xn, yn) ,其中 xi 不相同,Lagrange 插值问题就是要找到一个函数p(x),使得:p(xi) = yi (0 <= i <= n)并且 p(x) 在区间 [x0, xn] 上为连续函数。

然后,根据拉格朗日插值多项式的定义,拉格朗日插值多项式Lk(x) 可以定义为:$$ L_k(x) = \prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i}$$然后,定义插值多项式 p(x) 为:$$ p(x) = \sum_{k=0}^n y_k L_k(x) $$这样,我们就可以通过计算插值多项式来估计任意一点 x 的函数值了。

二、拟合拟合是在给定一组离散数据点的情况下,通过一定的数学方法来找到一个函数 f(x),使得该函数可以较好地描述这些数据点之间的关系。

拟合方法主要包括最小二乘法和非线性拟合等。

以最小二乘法为例,假设有 m 个数据点(x1, y1), (x2, y2), …, (xm, ym) ,要找到一个函数 f(x),使得该函数与这些数据点的误差平方和最小,即:$$ S = \sum_{i=1}^m (y_i - f(x_i))^2 $$最小二乘法就是要找到一个函数 f(x),使得 S 最小。

假设这个函数为:$$ f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n $$则 S 可以表示为:$$ S = \sum_{i=1}^m (y_i - a_0 - a_1 x_i - a_2 x_i^2 - ... - a_nx_i^n)^2 $$接下来,我们需要求解系数a0, a1, …, an,在满足式子 (2) 的情况下,使得 S 最小。

插值与拟合问题

插值与拟合问题

插值与拟合问题插值与拟合是数学和计算机科学领域中常见的问题,涉及到通过已知数据点来估计未知点的值或者通过一组数据点来逼近一个函数的过程。

在现实生活中,这两个问题经常用于数据分析、图像处理、物理模拟等领域。

本文将介绍插值与拟合的基本概念、方法和应用。

一、插值问题插值是通过已知的数据点来推断出未知点的值。

在插值问题中,我们假设已知数据点是来自于一个未知函数的取值,在这个函数的定义域内,我们需要找到一个函数或者曲线,使得它经过已知的数据点,并且可以通过这个函数或者曲线来估计未知点的值。

常见的插值方法包括线性插值、拉格朗日插值和牛顿插值。

线性插值是通过已知的两个数据点之间的直线来估计未知点的值,它简单而直观。

拉格朗日插值则通过构造一个关于已知数据点的多项式来估计未知点的值,这个多项式经过每一个已知数据点。

牛顿插值和拉格朗日插值类似,也是通过构造一个多项式来估计未知点的值,但是它使用了差商的概念,能够更高效地处理数据点的添加和删除。

不仅仅局限于一维数据点的插值问题,对于二维或者更高维的数据点,我们也可以使用类似的插值方法。

例如,对于二维数据点,我们可以使用双线性插值来估计未知点的值,它利用了四个已知数据点之间的线性关系。

插值问题在实际应用中非常常见。

一个例子是天气预报中的气温插值问题,根据已知的气温观测站的数据点,我们可以估计出其他地点的气温。

另一个例子是图像处理中的像素插值问题,当我们对图像进行放大或者缩小操作时,需要通过已知像素点来估计未知像素点的值。

二、拟合问题拟合是通过一组数据点来逼近一个函数的过程。

在拟合问题中,我们假设已知的数据点是来自于一个未知函数的取值,我们需要找到一个函数或者曲线,使得它能够与已知的数据点尽可能地接近。

常见的拟合方法包括多项式拟合、最小二乘拟合和样条拟合。

多项式拟合是通过一个多项式函数来逼近已知的数据点,它的优点是简单易用,但是对于复杂的函数形态拟合效果可能不好。

最小二乘拟合则是寻找一个函数,使得它与已知数据点之间的误差最小,这个方法在实际应用中非常广泛。

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告一、实验目的1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性;2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理;3.利用matlab 编程,学会matlab 命令;4.掌握拉格朗日插值法;5.掌握多项式拟合的特点和方法。

二、实验题目1.、插值法实验将区间[-5,5]10等分,对下列函数分别计算插值节点kx 的值,进行不同类型的插值,作出插值函数的图形并与)(x f y =的图形进行比较:;11)(2x x f += ;arctan )(x x f = .1)(42x x x f +=(1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值.2、拟合实验给定数据点如下表所示:分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数),(i i y x 和拟合函数的图形。

三、实验原理1.、插值法实验∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--==-===-=-=----==++==ji j ji i i i i ni i n nji j jnji j ji i nji j jn i i i ni i n nn o i ni i n x x x x x y x l x L x x c ni x x c x x x cx x x x x x x x c y x l x L y x l y x l y x l x L ,00,0,0,0110000)(l )()()(1,1,0,1)()(l )()())(()()()()()()()(,故,得再由,设2、拟合实验四、实验内容1.、插值法实验1.1实验步骤:打开matlab软件,新建一个名为chazhi.m的M文件,编写程序(见1.2实验程序),运行程序,记录结果。

1.2实验程序:x=-5:1:5;xx=-5:0.05:5;y1=1./(1+x.^2);L=malagr(x,y1,xx);L1=interp1(x,y1,x,'linear');S=maspline(x,y1,0.0148,-0.0148,xx);hold on;plot(x,y1,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y2=atan(x);L=malagr(x,y2,xx);L1=interp1(x,y2,x,'linear');S=maspline(x,y2,0.0385,0.0385,xx);hold on;plot(x,y2,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y3=x.^2./(1+x.^4);L=malagr(x,y3,xx);L1=interp1(x,y3,x,'linear');S=maspline(x,y3,0.0159,-0.0159,xx);hold on;plot(x,y3,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');1.3实验设备:matlab软件。

插值和拟合(学术参考)

插值和拟合(学术参考)

插值和拟合都是函数逼近或者数值逼近的重要组成部分他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律的目的,即通过"窥几斑"来达到"知全豹"。

简单的讲,所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的差别(最小二乘意义)最小。

如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。

表达式也可以是分段函数,这种情况下叫作样条拟合。

而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。

插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。

如果约束条件中只有函数值的约束,叫作Lagrange插值,否则叫作Hermite插值。

从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。

一、概念的引入1. 插值与拟合在现实生活中的应用l 机械制造:汽车外观设计l 采样数据的重新建构:电脑游戏中场景的显示,地质勘探,医学领域(CT)2.概念的定义l 插值:基于[a,b]区间上的n个互异点,给定函数f(x),寻找某个函数去逼近f(x)。

若要求φ(x)在xi处与f(xi)相等,这类的函数逼近问题称为插值问题,xi即是插值点l 逼近:当取值点过多时,构造通过所有点的难度非常大。

此时选择一个次数较低的函数最佳逼近这些点,一般采用最小二乘法l 光顾:曲线的拐点不能太多,条件:①二阶几何连续②不存在多余拐点③曲率变化较小l 拟合:曲线设计过程中用插值或通过逼近方法是生成的曲线光滑(切变量连续)光顾二、插值理论设函数y=f(x)在区间[a,b]上连续,在[a,b]上有互异点x0,x1,…,xn处取值y 0,y1,…,yn。

插值与拟合原理范文

插值与拟合原理范文

插值与拟合原理范文一、插值的原理插值是指根据已知数据的取值,在给定的数据区间内推测未知数据的取值。

插值的原理是基于一个假设,即在给定的区间内,数据的取值变化是连续而平滑的。

常见的插值方法包括线性插值、多项式插值和样条插值。

其中,线性插值是最简单的一种方法。

线性插值假设给定的两个点(x1,y1)和(x2,y2),两个点之间段的取值变化是线性的,可以通过直线的方程来计算中间点的值。

例如,在区间[1,3]上已知两个点(1,2)和(3,4),可以通过线性插值方法计算出点(2,?)的值。

根据线性插值的原理,点(2,?)的值应该等于直线y=2x的值,在这个例子中,点(2,?)的值为2×2=4多项式插值是一种更精确的插值方法。

多项式插值的原理是基于一个假设,即给定的n个点(x1, y1), (x2, y2), ..., (xn, yn)可以被一个n-1次多项式唯一地表示。

通过这个假设,可以根据已知数据点构造一个多项式函数,并通过求解多项式的系数来计算任意点的取值。

例如,在区间[1,3]上已知两个点(1,2)和(3,4),可以通过多项式插值方法构造一个二次多项式函数y=ax^2+bx+c,并通过求解a, b, c的值来计算任意点的值。

样条插值是一种更加平滑的插值方法。

样条插值的原理是将插值区间划分为若干小的子区间,在每个子区间内通过一个较低次数的多项式来拟合数据。

通过连接每个子区间内的多项式函数,可以获得整个插值区间内的光滑曲线。

通过样条插值方法,可以更好地拟合非线性数据,提高插值结果的准确性。

二、拟合的原理拟合是指根据已知的数据样本,确定一个数学模型来描述数据的变化趋势。

拟合的原理是基于一个假设,即给定的数据点可以通过选定的数学模型进行近似表示。

常见的拟合方法包括线性回归、多项式拟合和非线性拟合。

其中,线性回归是最简单的一种拟合方法。

线性回归的原理是假设给定的数据点符合一个线性函数模型y=ax+b,通过最小化实际数据点与拟合直线之间的距离,可以求解出最优的拟合直线的斜率a和截距b。

第九讲 数据插值与拟合

第九讲 数据插值与拟合

最常用的确定待定系数的方法是,曲线拟合的最小二乘法
二、 插值与拟合
1、插值方法 (1)分段线性插值 分段线性插值的提法如下:
(2)分段三次埃尔米特插值
在插值问题中,如果除了插值节点的函数值给定外,还 要求在节点的导数值为给定值,即插值问题变为
相当于在每一小段上应满足四个条件(方程),可以确 定四个待定参数.三次多项式正好有四个系数,所以可 以考虑用三次多项式函数作为插值函数,这就是分段三 次埃尔米特插值,它与分段线性插值一起都称为分段多 项式插值
x,y,z是已知样本点的坐标,可以是任意分布的。
X0,y0是期望的插值位置,即被插值节点, 可以是单点, 向量或者网格型矩阵
插值方法,除了上面的 方法外,还有一个是4.0版本提供 的一个插值方法,选项为’v4’
四、曲线拟合的matlab实现
1、已知函数原型的 (1)多项式拟合
y a1 x n a n x a n1 假设已知函数原型为
(2)、一般二维分布的数据插值
在实际应用问题中,大部分的数据以实测的多组 (xi,yi,zi)给出,所以不能直接使用interp2()函数。 Matlab中提供了另一个函数griddata( ),用来专 门解决这类问题。其调用格式如下
Z=griddata(x,y,z,x0,y0,’method’)
(3)一般的曲线拟合
假设已知函数原型是一般的函数,可以是多项式,可以 是线性,也可以是非线性的,一般情况下用这个来求解 非线性情况 Matlab在优化工具箱中提供的求解一般的曲线拟合函 数lsqcurvefit(),其调用格式如下 p=lsqcurvefit(‘Fun’,p0,xdata,ydata)
其中Fun表示函数Fun(p,data)的M函数文件,p0表示 函数的初值.。

数值分析实验插值与拟合

数值分析实验插值与拟合

数值分析实验插值与拟合插值是指根据已知的数据点,通过其中一种数学方法来构造一个函数,使得该函数在已知的数据点上与被插值函数相等。

插值方法可以分为两类:基于多项式的插值和非多项式插值。

基于多项式的插值方法中,最常用的是拉格朗日插值和牛顿插值。

拉格朗日插值方法通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的所有点。

牛顿插值方法则通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的前m+1个点。

非多项式插值方法中,最常用的是分段线性插值和样条插值。

分段线性插值方法将插值区间划分为多个小段,在每一段内使用线性函数来逼近被插值函数。

样条插值方法则使用分段低阶多项式来逼近被插值函数,保证了插值函数和原函数在插值区间内的连续性、光滑性。

拟合是指在给定的离散数据点集合上,通过选取一个函数,使得该函数与数据点之间的误差最小化。

拟合方法可以分为两类:线性拟合和非线性拟合。

线性拟合方法中,最简单的是最小二乘法。

最小二乘法拟合是通过最小化观测数据与拟合函数的残差平方和来选择最佳函数参数。

在实验中,最小二乘法常用于线性回归问题,例如估计一个直线或者平面来拟合数据。

非线性拟合方法中,最常用的是非线性最小二乘法和局部加权回归。

非线性最小二乘法通过将非线性拟合问题转化为线性问题,使用最小二乘法来寻找最佳参数。

局部加权回归方法则通过给予不同数据点不同的权重,以更好地逼近数据点。

在数值分析实验中,插值与拟合可以应用于各种实际问题。

例如,在地理信息系统中,通过已知的地理坐标点来插值出未知点的地理信息。

在气象学中,通过已知的气象数据点来插值出未知点的气象信息。

在工程学中,通过已知的测量数据点来拟合出一个最佳的拟合函数来预测未来的测量值。

需要注意的是,插值和拟合的精度在很大程度上取决于数据的分布和拟合函数的选择。

如果数据点过于稀疏或者数据点中存在异常值,可能导致插值和拟合结果不准确。

因此,在进行插值和拟合之前,需要对数据进行预处理,例如去除异常值、平滑数据等。

数值分析插值法与拟合实验

数值分析插值法与拟合实验

实验报告
一、实验目的
感受插值效果的比较以及拟合多项式效果的比较。

二、实验题目
1.插值效果的比较
将区间[-5,5]5等分和10等分,对下列函数分别计算插值节点错误!未找到引用源。

的值,进行不同类型的插值,做出插值函数的图形并与错误!未找到引用源。

的图形进行比较:
做拉格朗日插值。

2.拟合多项式实验
分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数错误!未找到引用源。

和拟合函数的图形。

三、实验原理
拉格朗日插值和多项拟合插值的通用程序
四、实验内容及结果
五、实验结果分析
(1)实验1中通过图象,可以很明显的辨别出拉格朗日插值并不是插值点越多图象就一定越精确,会有高阶插值的振荡现象。

(2)通过三个图象的对比,发现基本都是重合在一起的。

.三次多项式五次多项式拟合的平方误差分别为1.8571e-004和4.7727e-005,可知五次多项式拟合比三次多项式拟合更加准确。

但是后面去计算一下拟合所需要的时间,会发现拟合次数越大,时间越长,所以也不一定是次数越大越好,需要把时间也考虑进去。

数值分析中的插值与拟合

数值分析中的插值与拟合

数值分析中的插值与拟合插值和拟合是数值分析中常用的技术,用于估计或预测数据集中缺失或未知部分的数值。

在本文中,我们将讨论插值和拟合的概念、方法和应用。

一、插值插值是通过已知数据点之间的连续函数来估计中间数据点的数值。

插值方法可以根据不同的数据和需求选择合适的插值函数,常用的插值方法包括拉格朗日插值、牛顿插值和埃尔米特插值。

1.1 拉格朗日插值拉格朗日插值是一种基于多项式的插值方法。

通过已知的n个数据点,可以构建一个n-1次的插值多项式。

这个多项式通过已知数据点上的函数值来准确地经过每一个点。

1.2 牛顿插值牛顿插值方法也是一种多项式插值方法,通过差商的概念来构建插值多项式。

差商是一个递归定义的系数,通过已知数据点的函数值计算得出。

牛顿插值可以通过递推的方式计算出插值多项式。

1.3 埃尔米特插值埃尔米特插值是一种插值方法,适用于已知数据点和导数值的情况。

它基于拉格朗日插值的思想,通过引入导数信息来逼近数据的真实分布。

埃尔米特插值可以更准确地估计数据点之间的值,并且可以保持导数的连续性。

二、拟合拟合是通过一个模型函数来逼近已知数据点的数值。

拟合方法旨在找到最适合数据集的函数形式,并通过最小化误差来确定函数的参数。

常见的拟合方法包括最小二乘法、多项式拟合和曲线拟合。

2.1 最小二乘法最小二乘法是一种常用的拟合方法,通过最小化数据点到拟合函数的误差平方和来确定最佳拟合曲线或曲面。

最小二乘法适用于线性和非线性拟合问题,可以用于拟合各种类型的非线性函数。

2.2 多项式拟合多项式拟合是一种基于多项式函数的拟合方法。

通过多项式的线性组合来近似已知数据集的数值。

多项式拟合可以通过最小二乘法或其他优化算法来确定拟合函数的系数。

2.3 曲线拟合曲线拟合是一种用曲线函数来逼近已知数据点的拟合方法。

曲线函数可以是非线性的,并且可以根据数据的特点进行选择。

曲线拟合可以通过优化算法来确定拟合函数的参数。

三、应用插值和拟合在数值分析中有广泛的应用。

数值分析实验报告插值与拟合

数值分析实验报告插值与拟合
解:(1)
结果分析:高次插值稳定性差,而低次插值对于较大区间逼近精度又不够,而且,随着节点的加密,采用高次插值,插值函数两端会发生激烈震荡。解决这一矛盾的有效方法就是采用分段低次代数插值。
(2)
通过采用分段线性插值得到以下结果:
结果分析:通过采用分段线性插值,发现随着插值节点增多,插值计算结果的误差越来越小,而且分段线性插值的优点是计算简单,曲线连续和一致收敛,但是不具有光滑性。
拟合是指通过观察或测量得到一组离散数据序列 ,i=1,2,…,m,构造插值函数 逼近客观存在的函数 ,使得向量 与 的误差或距离最小。
可知当基函数的选择不同时,拟合函数的误差也会不同,所以在对数据进行拟合时应选择适合的基函数。
三、练习思考
整体插值有何局限性?如何避免?
答:整体插值的过程中,若有无效数据则整体插值后插值曲线的平方误差会比较大,即在该数据附近插值曲线的震动幅度较大。在插值处理前,应对原始数据进行一定的筛选,剔除无效数据。
②相同点:通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律目的
四、本次实验的重点难点分析
答:加强了对插值和拟合的认识,了解了其算法思想,并使用matlab将其实现。学会了观察插值拟合后的图形,并分析其问题。
画图进行比较:
通过观察图像,经比较可知两结果是很接近的。
2.区间 作等距划分: ,以 ( )为节点对函数 进行插值逼近。(分别取 )
(1)用多项式插值对 进行逼近,并在同一坐标系下作出函数的图形,进行比较。写出插值函数对 的逼近程度与节点个数的关系,并分析原因。
(2)试用分段插值(任意选取)对 进行逼近,在同一坐标下画出图形,观察分段插值函数对 的逼近程度与节点个数的关系。

数值拟合与插值

数值拟合与插值

数值拟合与插值在科学与工程领域,数值拟合与插值是一种常用的数值计算方法,用于处理实验数据或连续函数的逼近与近似。

数值拟合与插值的目的是通过一组已知数据点,找到一个函数或曲线,使得该函数或曲线能够最好地描述这些数据点,并且能够在数据点之间进行合理的预测或计算。

数值拟合是指通过一组离散的数据点,找到一个函数或曲线,使得该函数或曲线能够最好地拟合这些数据点。

拟合的目标是找到一个简单的表达形式,并且能够很好地描述数据的变化规律。

常见的数值拟合方法包括最小二乘法、最小二乘多项式拟合、最小二乘曲线拟合等。

最小二乘法是一种常用且有效的数值拟合方法,其原理是通过最小化实际观测值和拟合值之间的误差平方和来确定最佳拟合曲线或函数。

最小二乘法适用于线性和非线性拟合,可以有效处理多变量拟合和高阶拟合等复杂情况。

另一方面,数值插值是指通过已知数据点之间的数值,构造一个通过这些数据点的连续函数。

插值的目标是尽可能地保持数据点之间的变化规律,使得插值函数在数据点处能够完全符合已知数据。

常见的数值插值方法包括拉格朗日插值、牛顿插值、分段线性插值等。

拉格朗日插值是一种常用的插值方法,其原理是通过构造一个满足通过所有数据点的多项式函数来进行插值。

拉格朗日插值具有简单易用的特点,适用于较小规模的数据点插值,但容易受到龙格现象的影响,需要注意插值多项式的阶数选择。

在实际应用中,数值拟合与插值方法经常用于数据处理、信号处理、图像处理等领域。

比如在实验数据处理中,通过数值拟合可以找到数据之间的潜在规律,从而推断未知数据的数值;在图像处理中,通过插值可以对像素点进行平滑处理,增强图像的清晰度和视觉效果。

总的来说,数值拟合与插值是一种基础且常用的数值计算方法,可以有效地处理实验数据的分析与处理。

通过合理选择拟合和插值方法,并结合实际问题的需求,可以得到准确、可靠的数值模型,为科学研究与工程实践提供有力的支持。

数值分析插值与拟合实验

数值分析插值与拟合实验

数值分析插值与拟合实验数值分析是一门研究利用数字计算方法解决数学问题的学科。

插值与拟合是数值分析的重要内容之一,可以用于数据分析、信号处理以及数学建模等领域。

本实验将使用MATLAB软件进行插值与拟合的实验,主要包括插值多项式与拟合曲线的构造,以及评价拟合效果的方法。

实验一:插值多项式的构造1. Lagrange插值Lagrange插值是一种构造多项式来拟合已知数据点的方法。

给定n 个数据点(xi, yi),其中xi不相等,Lagrange插值多项式可以写成:P(x) = ∑(i=0 to n) yi * l_i(x)其中l_i(x)是Lagrange基函数,定义为:l_i(x) = ∏(j=0 to n,j!=i) (x-xj)/(xi-xj)通过计算l_i(x),然后将其乘以相应的数据点yi,最后相加就可以得到插值多项式P(x)。

2. Newton插值Newton插值使用差商的概念来构造插值多项式。

首先定义差商F[x0,x1,...,xn]如下:F[x0]=f(x0)F[x0,x1]=(f(x1)-f(x0))/(x1-x0)F[x0,x1,x2]=(F[x1,x2]-F[x0,x1])/(x2-x0)...F[x0,x1,...,xn] = (F[x1,x2,...,xn] - F[x0,x1,...,xn-1])/(xn-x0)其中f(x)是已知数据点的函数。

然后,利用差商来构造插值多项式:P(x) = ∑(i=0 to n) F[x0,x1,...,xi] * ∏(j=0 to i-1) (x-xj)通过计算差商F[x0,x1,...,xi]和对应的乘积∏(x-xj),最后相加得到插值多项式P(x)。

实验二:拟合曲线的构造1.多项式拟合多项式拟合是通过构造一个多项式函数来拟合已知数据点的方法。

假设给定n个数据点(xi, yi),可以使用多项式函数来表示拟合曲线:P(x) = a0 + a1*x + a2*x^2 + ... + an*x^n其中a0, a1, ..., an是待确定的系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数值分析》课程实验一:插值与拟合
一、实验目的
1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性;
2. 编写MA TLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象;
3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理;
4. 编写MA TLAB 程序实现最小二乘多项式曲线拟合。

二、实验内容
1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。

2. 设
]5,5[,11
)(2
-∈+=
x x
x f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。

不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。

(2) 编写MA TLAB 程序绘制出曲线拟合图。

三、实验步骤
1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件:
⎩⎨
⎧≠===j
i j i x l ij j i ,
0,,
1)(δ
的一组基函数{}n
i i x l 0)(=,l i (x )的表达式为

≠==--=
n
i
j j j
i j i n i x x x x x l ,0),,1,0()(
有了基函数{}n
i i x l 0)(=,n 次插值多项式就可表示为
∑==n
i i i n x l y x L 0
)()(
(2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为
1102110]
,,,[],,,[],,,[x x x x x f x x x f x x x f n n n n --=
-
则n 次多项式
)
())(](,,[)
)(](,,[)](,[)()(11010102100100----++--+-+=n n n x x x x x x x x x f x x x x x x x f x x x x f x f x N
差商表的构造过程:
MATLAB 程序实现:
试验结果:
2. MATLAB程序实现:
试验结果:
3. 多项式拟合的一般方法可归纳为以下几步:
(1)由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n ; (2)列表计算
)2,,1,0(0
n j x
m
i j
i
=∑=和∑==m
i i j i n j y x 0
),,1,0( ;
(3)写出正规方程组,求出),,1,0(n k a k =; (4)写出拟合多项式∑==n
k k
k n x
a x p 0
)(。

MATLAB 程序实现:
. 试验结果:。

相关文档
最新文档