高等数学讲义课件 第1节 函数
合集下载
大学高数第一章函数和极限ppt课件
16
幂函数图像(a 0时)
17
幂函数图像(a 0时)
18
指数函数基本性质
解析式: y ax (a>0,且a 1) 基本特征:定义域为实数集R,值域为(0,+∞),函数 图像必经过点(0,1)
19
对数函数基本性质
解析式: y loga x(a 0,且a 1)
基本特征:定义域为(0,+∞),值域为实数集R,图像
例如函数 y x2 在 (, 0) 上单调递减, 在 (0, ) 上单调递增
7
3.函数的奇偶性
如函数 y f (x) 的定义域 D 关于原点对称,且对于任意 xD ,均有: f (x) f (x) ,则称该函数在其定义域内是偶函数; 若是 f (x) f (x) ,则称该函数在其定义域内是奇函数;
x x0
x x0
lim | x | lim x 1,
x
x x0
x x0
左右极限不相等,所以, lim | x | 不存在. x0 x
也可以从函数的图像上明确地看出该函数的极限不存在
32
例 证明 lim | x | 0 x 0
证:因为 lim | x | lim (x) 0 ,
x0
x0
{x
|
x
2
k
,
k
Z } ,余
切函数定义域为 {x | x k , k Z} ,二者周期T均为
,值域均为(- ∞,+ ∞) ,互为倒数。
22
正切、余切函数基本图像
正切函数图像片段
23
余切函数有限次四则运算和有限 次函数复合所构成的只能用一个解析式表示的函数, 称为初等函数。 例如: y lg x 、y x tan x sin(1 ex )
幂函数图像(a 0时)
17
幂函数图像(a 0时)
18
指数函数基本性质
解析式: y ax (a>0,且a 1) 基本特征:定义域为实数集R,值域为(0,+∞),函数 图像必经过点(0,1)
19
对数函数基本性质
解析式: y loga x(a 0,且a 1)
基本特征:定义域为(0,+∞),值域为实数集R,图像
例如函数 y x2 在 (, 0) 上单调递减, 在 (0, ) 上单调递增
7
3.函数的奇偶性
如函数 y f (x) 的定义域 D 关于原点对称,且对于任意 xD ,均有: f (x) f (x) ,则称该函数在其定义域内是偶函数; 若是 f (x) f (x) ,则称该函数在其定义域内是奇函数;
x x0
x x0
lim | x | lim x 1,
x
x x0
x x0
左右极限不相等,所以, lim | x | 不存在. x0 x
也可以从函数的图像上明确地看出该函数的极限不存在
32
例 证明 lim | x | 0 x 0
证:因为 lim | x | lim (x) 0 ,
x0
x0
{x
|
x
2
k
,
k
Z } ,余
切函数定义域为 {x | x k , k Z} ,二者周期T均为
,值域均为(- ∞,+ ∞) ,互为倒数。
22
正切、余切函数基本图像
正切函数图像片段
23
余切函数有限次四则运算和有限 次函数复合所构成的只能用一个解析式表示的函数, 称为初等函数。 例如: y lg x 、y x tan x sin(1 ex )
第一章函数 《高等数学》课件
基础平台
第一部分 极限初论
机动 目录 上页 下页 返回 结束
极限初论三个内容的关系 函数 — 研究对象 极限 — 研究方法 连续 — 研究桥梁
机动 目录 上页 下页 返回 结束
第一章 函 数
机动 目录 上页 下页 返回 结束
第一章 函 数
§1.1 函数的概念 §1.2 函数的基本性质 §1.3 复合函数与反函数 §1.4 初等函数及其应用 §1.5 常用经济函数
t s
s/km 200
100
0
0
1
2
0
100
200
1
2
t/h
思考:
(1) 在描点时,是怎样确定一个点的位 置的? 哪个变量作为点的横坐标?哪 个变量作为点的纵坐标? (2) 函数的定义域是什么? (3) s 的值能大于 200 吗?能是负值吗? 为什么?函数的值域是什么? (4) 随行驶时间 t 的增大,距离 s有怎样 的变化?
函数的定义
设x和y是两个变量,D 是一个给定的非空数集. 如果对于每个数x∈D,按照一定对应法则总有唯一 确定的数值y和它对应,则称y是x的函数。
D
B
f:对应法则
x.
y.
机动 目录 上页 下页 返回 结束
记作
因变量
自变量
定义域
其中, x 称为自变量,y 称为因变量,数集 D 称
为这个函数的定义域。
在某一自然现象或社会现象中,往往 同时存在多个不断变化的量(变量),这 些变量并不是孤立变化的,而是相互联系 并遵循一定的规律。函数就是描述这种联 系的一个法则。
机动 目录 上页 下页 返回 结束
例如,在自由落体运动中,设物体下落的 时间为t,落下的距离为s。假定开始下落 的时刻为t=0,则变量s与t之间的相依关系 由数学模型
第一部分 极限初论
机动 目录 上页 下页 返回 结束
极限初论三个内容的关系 函数 — 研究对象 极限 — 研究方法 连续 — 研究桥梁
机动 目录 上页 下页 返回 结束
第一章 函 数
机动 目录 上页 下页 返回 结束
第一章 函 数
§1.1 函数的概念 §1.2 函数的基本性质 §1.3 复合函数与反函数 §1.4 初等函数及其应用 §1.5 常用经济函数
t s
s/km 200
100
0
0
1
2
0
100
200
1
2
t/h
思考:
(1) 在描点时,是怎样确定一个点的位 置的? 哪个变量作为点的横坐标?哪 个变量作为点的纵坐标? (2) 函数的定义域是什么? (3) s 的值能大于 200 吗?能是负值吗? 为什么?函数的值域是什么? (4) 随行驶时间 t 的增大,距离 s有怎样 的变化?
函数的定义
设x和y是两个变量,D 是一个给定的非空数集. 如果对于每个数x∈D,按照一定对应法则总有唯一 确定的数值y和它对应,则称y是x的函数。
D
B
f:对应法则
x.
y.
机动 目录 上页 下页 返回 结束
记作
因变量
自变量
定义域
其中, x 称为自变量,y 称为因变量,数集 D 称
为这个函数的定义域。
在某一自然现象或社会现象中,往往 同时存在多个不断变化的量(变量),这 些变量并不是孤立变化的,而是相互联系 并遵循一定的规律。函数就是描述这种联 系的一个法则。
机动 目录 上页 下页 返回 结束
例如,在自由落体运动中,设物体下落的 时间为t,落下的距离为s。假定开始下落 的时刻为t=0,则变量s与t之间的相依关系 由数学模型
《高等数学》 课件 高等数学第一章
2 函数的极限
高等数学 第一章. 第二节
第 22 页
定义1 给定一个数列xn ,如果当n无限增大时,xn 无限接近于某一
个确定常数A,则称当n趋于无穷时,数列xn 的极限为A,记作
lim
n∞
xn
A?或xn
A(n
∞).
此时也称数列xn 收敛.如果当n无限增大时,xn 无限接近的常数A不存在,
则称数列xn 发散,此时也称数列xn 的极限不存在.
称为中间变量.
1)复合函数的复合原则:前一个函数的定义域与后一个函数的值域
的交集非空,即中间变量有意义.
1 函数
高等数学 第一章. 第一节
第 16 页
例1 将y表示成x的复合函数.
(1)y eu,u sin v,v 3 x;(2)y ln u,u 2 v, 2 v sec x; (3)y arcsin u,u 2 x.2
四、基本初等函数
基本初等函数:幂函数、指数函数、对数函数、三角函数和反三角函数. 1.幂函数y x ( R)?
幂函数y x 的定义域和值域随的取值不同而不同,但是无论 取何值,幂
函数在x (0, ∞)内总有定义.常见的幂函数的图像如图所示.
1 函数
高等数学 第一章. 第一节
2.指数函数y a x (a 0,a 1)
指数函数y a( x a 0,a 1)的定义域 为(∞, ∞,) 值域为(0, ∞.) 指数函数的 图像如图所示.
第 11 页
1 函数
高等数学 第一章. 第一节
3.对数函数y loga x (a 0,a 1)
对数函数y loga x(a 0,a 1)的定义域为(0, ∞, ) 值域为(∞, ∞.) 对数函数y loga x是指数函数y ax的 反函数,其图像如图所示.
高等数学 第一章. 第二节
第 22 页
定义1 给定一个数列xn ,如果当n无限增大时,xn 无限接近于某一
个确定常数A,则称当n趋于无穷时,数列xn 的极限为A,记作
lim
n∞
xn
A?或xn
A(n
∞).
此时也称数列xn 收敛.如果当n无限增大时,xn 无限接近的常数A不存在,
则称数列xn 发散,此时也称数列xn 的极限不存在.
称为中间变量.
1)复合函数的复合原则:前一个函数的定义域与后一个函数的值域
的交集非空,即中间变量有意义.
1 函数
高等数学 第一章. 第一节
第 16 页
例1 将y表示成x的复合函数.
(1)y eu,u sin v,v 3 x;(2)y ln u,u 2 v, 2 v sec x; (3)y arcsin u,u 2 x.2
四、基本初等函数
基本初等函数:幂函数、指数函数、对数函数、三角函数和反三角函数. 1.幂函数y x ( R)?
幂函数y x 的定义域和值域随的取值不同而不同,但是无论 取何值,幂
函数在x (0, ∞)内总有定义.常见的幂函数的图像如图所示.
1 函数
高等数学 第一章. 第一节
2.指数函数y a x (a 0,a 1)
指数函数y a( x a 0,a 1)的定义域 为(∞, ∞,) 值域为(0, ∞.) 指数函数的 图像如图所示.
第 11 页
1 函数
高等数学 第一章. 第一节
3.对数函数y loga x (a 0,a 1)
对数函数y loga x(a 0,a 1)的定义域为(0, ∞, ) 值域为(∞, ∞.) 对数函数y loga x是指数函数y ax的 反函数,其图像如图所示.
《高等数学》电子课件(同济第六版)01第一章第1节函数
复合函数的实际应用
复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。
复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。
高等数学第一章1.1 函数ppt课件
22 22 2222 a b 2 a b c d c d
2 2 22 22 (| x | | y |) | x y | 2 a b c d 2 ac 2 b
为证三角不等式只须证明
2 22 2 ac bd a b c d
为证上式,又只须证明
点a叫做这邻域的中心 , 叫做这邻域的半径 .
U ( a ) { x a x a } .
a
a
0
a
x
U a ). 点 a 的去心的 邻域 , 记作 (
U ( a ) { x 0 x a } .
a a ; ab a b ; 运算性质: b b a x a ; x a ( a 0 ) x a 或 x a ; x a ( a 0 )
a , b R , 且 a b .
{ x a x b } 称为开区间,
o a b { x a x b } 称为闭区间, o
记作 ( a ,b )
x 记作 [ a ,b ] x
a
b
{ x a x b } 称为半开区间, { x a x b } 称为半开区间,
(3) 狄利克雷函数
1 当 x 是有理数时 yD (x ) 0 当 x 是无理数时
y
1
• o 无理数点 有理数点
x
(4) 取最值函数 y max{ f ( x ), g ( x )} y min{ f ( x ), g ( x )}
y
f (x)
y
f (x)
g(x)
o
x
g(x)
x y x y . 绝对值不等式: 绝对值不等式的两个变形公式:
2 2 22 22 (| x | | y |) | x y | 2 a b c d 2 ac 2 b
为证三角不等式只须证明
2 22 2 ac bd a b c d
为证上式,又只须证明
点a叫做这邻域的中心 , 叫做这邻域的半径 .
U ( a ) { x a x a } .
a
a
0
a
x
U a ). 点 a 的去心的 邻域 , 记作 (
U ( a ) { x 0 x a } .
a a ; ab a b ; 运算性质: b b a x a ; x a ( a 0 ) x a 或 x a ; x a ( a 0 )
a , b R , 且 a b .
{ x a x b } 称为开区间,
o a b { x a x b } 称为闭区间, o
记作 ( a ,b )
x 记作 [ a ,b ] x
a
b
{ x a x b } 称为半开区间, { x a x b } 称为半开区间,
(3) 狄利克雷函数
1 当 x 是有理数时 yD (x ) 0 当 x 是无理数时
y
1
• o 无理数点 有理数点
x
(4) 取最值函数 y max{ f ( x ), g ( x )} y min{ f ( x ), g ( x )}
y
f (x)
y
f (x)
g(x)
o
x
g(x)
x y x y . 绝对值不等式: 绝对值不等式的两个变形公式:
高等数学-第1章课件
x x0
三、函数极限的性质
第三节 极限的运算
一、极限的运算法则
法则1 法则2
x x0
lim[ f ( x) g ( x)] lim f ( x) lim g ( x) A B
x x0 x x0 x x0 x x0
x x0
lim[ f ( x ) g ( x )] lim f ( x ) lim g ( x ) A B
第 一 章 函 数 ︑ 极 限 与 连 续
目录
第一节 函数
第二节 极限
第三节 极限的运算 第四节 无穷小与无穷大 第五节 函数的间断性与连续点 第六节 初等函数的连续性
第一节 函数
一、集合、区间与邻域
1.集合
集合(简称集)是具有某种共同性质的事物的全 体,组成集合的单一事物称为该集合的元素。
有限集合 有限个元素构成 北京户籍人口
° a
• a •
a°Leabharlann a3.邻域设 x0, δ R, 其中δ > 0,以 x0为中心,以δ 为半径,长为 2δ的
开区间. 即
( x0 , x0 ) { x x x0 , 0}
称为点 x0 的 δ 邻域 , 记为U(x0 , δ ).
2
x0
x0
x0
集合的运算及关系
由所有属于集合A或属于集合B的元 并集 素所组成的集合,称为集合A与B的 并集 交集 差集 由属于集合A且属于集合B的所有元 素组成的集合,称为A与B的交集
由所有属于集合A 而不属于集合B 的 元素组成的集合
A∪B A∪B={x|x∈A,或 x∈B}
A∩B A-B
A∩B={x|x∈A,且 x∈B} A-B={x|x∈A,且 xB}
三、函数极限的性质
第三节 极限的运算
一、极限的运算法则
法则1 法则2
x x0
lim[ f ( x) g ( x)] lim f ( x) lim g ( x) A B
x x0 x x0 x x0 x x0
x x0
lim[ f ( x ) g ( x )] lim f ( x ) lim g ( x ) A B
第 一 章 函 数 ︑ 极 限 与 连 续
目录
第一节 函数
第二节 极限
第三节 极限的运算 第四节 无穷小与无穷大 第五节 函数的间断性与连续点 第六节 初等函数的连续性
第一节 函数
一、集合、区间与邻域
1.集合
集合(简称集)是具有某种共同性质的事物的全 体,组成集合的单一事物称为该集合的元素。
有限集合 有限个元素构成 北京户籍人口
° a
• a •
a°Leabharlann a3.邻域设 x0, δ R, 其中δ > 0,以 x0为中心,以δ 为半径,长为 2δ的
开区间. 即
( x0 , x0 ) { x x x0 , 0}
称为点 x0 的 δ 邻域 , 记为U(x0 , δ ).
2
x0
x0
x0
集合的运算及关系
由所有属于集合A或属于集合B的元 并集 素所组成的集合,称为集合A与B的 并集 交集 差集 由属于集合A且属于集合B的所有元 素组成的集合,称为A与B的交集
由所有属于集合A 而不属于集合B 的 元素组成的集合
A∪B A∪B={x|x∈A,或 x∈B}
A∩B A-B
A∩B={x|x∈A,且 x∈B} A-B={x|x∈A,且 xB}
高等数学基础PPT第一章
返回
1.1函数的概念与特性—函数
返回
1.1函数的概念与特性—函数
返回
1.1函数的概念与特性—函数
返回
1.1函数的概念与特性—函数的几种简单性态
返回
1.1函数的概念与特性—函数的几种简单性态
返回
1.1函数的概念与特性—函数的几种简单性态
返回
1.1函数的概念与特性—函数的几种简单性态
返回
1.2初等函数与建立函数关系式—初等函数
返回
1.2初等函数与建立函数关系式ห้องสมุดไป่ตู้初等函数
返回
1.2初等函数与建立函数关系式— 建立函数关系式举例
返回
1.2初等函数与建立函数关系式— 建立函数关系式举例
返回
本章结束
请选择: 重学一遍 退出
高等数学基础
第一章 函数及其图形
主讲:
函数及其图形
函数的概念与特性
集合与区间 函数 函数的几种简单性态
初等函数与建立函数关系式
初等函数 建立函数关系式举例
退出
1.1函数的概念与特性--集合与区间
返回
1.1函数的概念与特性--集合与区间
返回
1.1函数的概念与特性--集合与区间
返回
1.1函数的概念与特性--集合与区间
完整高数(一)PPT课件
y
y f (x)
f (x1)
f (x2 )
o
x
I
.
22
3.函数的奇偶性:
设D关于原点对称 , 对于x D, 有 f ( x) f ( x) 称 f ( x)为偶函数 ;
y y f (x)
f (x)
f (x)
-x o
x
x
偶函数
.
23
设D关于原点对称 , 对于x D, 有 f ( x) f ( x) 称 f ( x)为奇函数 ;
y 1 x2
定义: 设函数 y f (u)的定义域D f , 而函数 u ( x)的值域为Z, 若D f Z , 则称 函数 y f [( x)]为x 的复合函数.
x 自变量, u 中间变量, y 因变量,
.
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
或 x 0, ( x) x 2 1, 或 x 0, ( x) x 2 1 1,
综上所述
ex2,
f
[
(
x)]
x 2, e x2 1 ,
x2 1,
x 1 1 x 0
. 0 x 2
x 2
1 x 0; x 2;
.
50
三、双曲函数与反双曲函数
1.双曲函数
双曲正弦 sinh x e x ex 2
4321
-4 -3 -2 -1
o -1 1 2 3 4 5
x
-2 -3 -4
阶梯曲线
.
13
(3) 狄利克雷函数
y
D(
x)
1 0
当x是有理数时 当x是无理数时
y f (x)
f (x1)
f (x2 )
o
x
I
.
22
3.函数的奇偶性:
设D关于原点对称 , 对于x D, 有 f ( x) f ( x) 称 f ( x)为偶函数 ;
y y f (x)
f (x)
f (x)
-x o
x
x
偶函数
.
23
设D关于原点对称 , 对于x D, 有 f ( x) f ( x) 称 f ( x)为奇函数 ;
y 1 x2
定义: 设函数 y f (u)的定义域D f , 而函数 u ( x)的值域为Z, 若D f Z , 则称 函数 y f [( x)]为x 的复合函数.
x 自变量, u 中间变量, y 因变量,
.
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
或 x 0, ( x) x 2 1, 或 x 0, ( x) x 2 1 1,
综上所述
ex2,
f
[
(
x)]
x 2, e x2 1 ,
x2 1,
x 1 1 x 0
. 0 x 2
x 2
1 x 0; x 2;
.
50
三、双曲函数与反双曲函数
1.双曲函数
双曲正弦 sinh x e x ex 2
4321
-4 -3 -2 -1
o -1 1 2 3 4 5
x
-2 -3 -4
阶梯曲线
.
13
(3) 狄利克雷函数
y
D(
x)
1 0
当x是有理数时 当x是无理数时
高等数学课件1.1 函数
y
2
o 2 x
周期为 注 . : 周期函数不一定存在最小正周期 . 例如, 常量函数 f ( x) C
周期为
四
几类简单函数及其图形(图形见教材P9-11)
机动 目录 上页 下页 返回 结束
1.1.3. 反函数与复合函数
一 反函数
定义1.1.2 设函数 当 时,有
的定义域为D, 如果对任何
称为 y = f ( x ) 的反函数 . 习惯上记作
y f 1 ( x) , x f ( D)
函数
与其反函数 的图形关于直线
y yx
Q(b, a) y f ( x)
对称 .
例如 ,
指数函数 y e x , x ( , ) 对数函数 它们都单调递增, 其图形关于直线
证明
x (0, ),
则 f ( x ) sin( x ) cos( x ) 1 sin x cos x 1, 所以,该函数是非奇非偶函数. (P16,习题7 的结论)
4 周期性
x D, l 0 , 且 x l D, 若
则称 f ( x)为周期函数 , 称 l 为周期 ( 一般指最小正周期 ).
u sin x 可定义复合
u 2 sin x不能构成复合函数 .
2
三. 初等函数
(1) 基本初等函数 幂函数:
指数函数:
对数函数: 三角函数: 反三角函数:
(2) 初等函数 由常数及基本初等函数 经过有限次四则运算和复合步 骤所构成 , 并可用一个式子表示的函数 , 称为初等函数 .
闭区间 [ a , b ] x a x b
集合之间的关系及运算 定义2 . 设有集合 A , B , 若 x A 必有 x B , 则称 A 是 B 的子集 , 或称 B 包含 A , 记作 A B .
高等数学(微积分学)教学课件
三、两个重要极限
重要极限Ⅰ lim sin x 1 x0 x
它可以拓展为 lim sin[ f (x)] 1 f (x)0 f (x)
sin 2x
例:lim x 2x
1
1 cos x
lim
x0
x2
lim
x0
2 sin 2 x 2
4 x2 4
lim
1
sin
x 2
x0 2 x
2
2
1 2
判断:lim sin x 1
叫做因变量.
数集 D 称为这个函数的定义域.
全体函数值的集合称为函数的值域.
2. 函数的表示法
解析法(公式法):用解析表达式(或公式)表示函数关系.
y x 1
表格法:用列表的方法来表示函数关系.
x123456789 y 1 4 9 16 25 36 49 64 81
图示法:用平面直角坐标系 xoy 上的曲线来表示函数关系.
x
x
1 0
x
x
1
1
1 lim( x0 1
x
)
1 x
x
lim
x0
(1 (1
x) x
1
x) x
lim x0
(1 x) x
1 (1)
[1 (x)] x
e e1
e2
一类特殊极限
若f
(x)
a0 xm a1xm1 a2 xm2 b0 xn b1xn1 b2 xn2
am1x am bn1x bn
x 果对于定义区间的任意点 , 恒有 f (x) f (x) , 则称f (x)
为 D 内的偶函数;如果恒有 f (x) f (x) , 则称 f (x)为D
大学高数第一章 PPT课件
39
复合函数
代入法
设 y u, u 1 x2 ,
y 1 x2
定义: 设函数y=f(u),uU,函数u=(x), x X, 其值域 为(X)={u|u= (x), xX } U,则称函数y=f[(x)]为 x的复合函数。
x 自变量, u 中间变量, y 因变量,
所以它们不相等。
(2)f(x)=x, φ(x)=|x|;
解: f(x)与φ(x)的对应规律不同 ,所以是不同的函数。
(3)f(x)=sin2x+cos2x, φ(x)=1. 解:f(x)与φ(x)的对应规律相同 ,定义域也相同, 所以 f(x)=φ(x)。
17
二、函数的特性
1.函数的单调性:
设函数 f ( x)的定义域为D, 区间I D,
例1 在出生后 1~6个月期间内,正常婴儿的体重近似 满足以下关系:
y 3 0.6x x [1,6] 公式法
13
例2 监护仪自动记录了某患者一段时间内体温T的 变化曲线,如下图示:
T
T (t0 )
37
o
t0
t
例3 某地区统计了某年1~12月中当地流行性出血热 的发病率,见下表
t (月份) 1 2 3 4 5 6 7 8 9 10 11 12
如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时,
恒有 f ( x1 ) f ( x2 ) ( f ( x1 ) f ( x2 ) ), 则称函数 f ( x)在区间I上是单调增加(减少)的 ;
y
y f (x)
y
y f (x)
f (x2 )
f ( x1)
f ( x1)
y ax (a 1)
复合函数
代入法
设 y u, u 1 x2 ,
y 1 x2
定义: 设函数y=f(u),uU,函数u=(x), x X, 其值域 为(X)={u|u= (x), xX } U,则称函数y=f[(x)]为 x的复合函数。
x 自变量, u 中间变量, y 因变量,
所以它们不相等。
(2)f(x)=x, φ(x)=|x|;
解: f(x)与φ(x)的对应规律不同 ,所以是不同的函数。
(3)f(x)=sin2x+cos2x, φ(x)=1. 解:f(x)与φ(x)的对应规律相同 ,定义域也相同, 所以 f(x)=φ(x)。
17
二、函数的特性
1.函数的单调性:
设函数 f ( x)的定义域为D, 区间I D,
例1 在出生后 1~6个月期间内,正常婴儿的体重近似 满足以下关系:
y 3 0.6x x [1,6] 公式法
13
例2 监护仪自动记录了某患者一段时间内体温T的 变化曲线,如下图示:
T
T (t0 )
37
o
t0
t
例3 某地区统计了某年1~12月中当地流行性出血热 的发病率,见下表
t (月份) 1 2 3 4 5 6 7 8 9 10 11 12
如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时,
恒有 f ( x1 ) f ( x2 ) ( f ( x1 ) f ( x2 ) ), 则称函数 f ( x)在区间I上是单调增加(减少)的 ;
y
y f (x)
y
y f (x)
f (x2 )
f ( x1)
f ( x1)
y ax (a 1)
《高等数学》课件第1章
2
(3) y e2sin3 x2 解 (1) y是由y=sinu与u=2x (2) y是由y=u2、u=tanv及 v x
(3) 表格法.变量间的函数关系通过列表形式反映出来. 例 如,火车时刻表就是利用列表的方法,把进(出)站火车的车 次与时间的函数关系表示出来.这种表示方法使得自变量 与因变量的对应关系一目了然.
4. 某市电话局规定市话的收费标准为:当月所打电话次数 不超过30次时,只收月租费10元;超过30次时,每次加收 0.20元.则电话费y和用户当月所打电话次数x的关系可用下面 的形式给出:
有arccos(-x)=π-arccosx成立.
图 1-8
图 1-9
反正切函数y=arctanx的图形如图1-10所示,其定义域是
x∈(-∞,+∞),值域是
y
π 2
,
π 2
,该函数是单调增加
的,是奇函数,即arctan(-x)=-arctanx.
图 1-10
反余切函数y=arccotx的图形如图1-11所示,其定义域是 x∈(-∞,+∞),值域是y∈(0,π),该函数是单调减少的, 且有arccot(-x)=π-arccotx成立.
第一章 函数的极限与连续
1.1 函数及其性质 1.2 初等函数 1.3 数学模型方法概述 1.4 极限的概念 1.5 极限的运算 1.6 函数的连续性 本章小结
1.1 函数及其性质
1.1.1 函数
函数是微积分学研究的对象.虽然在中学已经学习了函数 的概念, 但是在以后的学习中我们不再是进行简单的重复, 而是要从全新的视角对函数进行描述并重新分类.
邻域是一个经常应用到的概念. 以点x0为中心的任何开 区间称为点x0的邻域,记作N(x0).
(3) y e2sin3 x2 解 (1) y是由y=sinu与u=2x (2) y是由y=u2、u=tanv及 v x
(3) 表格法.变量间的函数关系通过列表形式反映出来. 例 如,火车时刻表就是利用列表的方法,把进(出)站火车的车 次与时间的函数关系表示出来.这种表示方法使得自变量 与因变量的对应关系一目了然.
4. 某市电话局规定市话的收费标准为:当月所打电话次数 不超过30次时,只收月租费10元;超过30次时,每次加收 0.20元.则电话费y和用户当月所打电话次数x的关系可用下面 的形式给出:
有arccos(-x)=π-arccosx成立.
图 1-8
图 1-9
反正切函数y=arctanx的图形如图1-10所示,其定义域是
x∈(-∞,+∞),值域是
y
π 2
,
π 2
,该函数是单调增加
的,是奇函数,即arctan(-x)=-arctanx.
图 1-10
反余切函数y=arccotx的图形如图1-11所示,其定义域是 x∈(-∞,+∞),值域是y∈(0,π),该函数是单调减少的, 且有arccot(-x)=π-arccotx成立.
第一章 函数的极限与连续
1.1 函数及其性质 1.2 初等函数 1.3 数学模型方法概述 1.4 极限的概念 1.5 极限的运算 1.6 函数的连续性 本章小结
1.1 函数及其性质
1.1.1 函数
函数是微积分学研究的对象.虽然在中学已经学习了函数 的概念, 但是在以后的学习中我们不再是进行简单的重复, 而是要从全新的视角对函数进行描述并重新分类.
邻域是一个经常应用到的概念. 以点x0为中心的任何开 区间称为点x0的邻域,记作N(x0).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
确定的数值和它对应,则称 y 是 x 的函数,记作
y f ( x)
因变量 自变量
数集D叫做这个函数的定义域(Domain) 。
当x0 D时, 称f ( x0 )为函数在点 0处的函数值 x .
函数值全体组成的数集 W { y y f ( x ), x D } 称为函数的值域 .
函数的三因素: 定义域,值域和对应法则.
(2) 无限区间
[a ,) { x a x }
Def
o a Def ( , b) { x x b} o (,) { x x R}
Def
x
b
x
其中 为正无穷大, 为负无穷大. 只是一个记号。
3.邻域:
设x0与是两个实数 , 且 0.
数集{x x x0 }称为点x0的邻域 , 记为U (x0 , )
第一章
函数 极限 连续 第一节 函数
一、集合 区间 二、函数的定义 三、函数的基本特性 四、复合函数与反函数 五、初等函数
一、集合(set) 区间(interval)
1.几种重要集合:
(1) 常用数集 N----自然数集
Q----有理数集
Z----整数集 R----实数集
(2) 不含任何元素的集合称为空集.
几个特殊的函数举例 ①多值函数、 单值分支 如果自变量在定 义域内任取一个数值 时,对应的函数值总 是只有一个,这种函 数叫做单值函数,否 则叫做多值函数.
y
y a2 x2
o
x2+y2=a2
x
例如,x 2 y 2 a 2.
一般只讨论单值函数
②分段函数:
•绝对值函数(Absolute Function)
2. 复合函数可以由两个以上的函数经过复 合构成.
x 例如 y cot , y u , 2
x u cot v , v . 2
复合函数的复合结构。
五、初等函数
(一)、基本初等函数
1、幂函数(Power Function)
y x
( 是常数)
y
y x2
1
(1,1)
y x
y x
则称函数f ( x )在X上有界.否则称无界.
y
M y=f(x) o -M M
y
x
有界 X
x0
o -M X 无界
x
2、函数的单调性(Monotonic Function):
y
y f (x)
y
f ( x2 )
y f (x)
f ( x1 )
f ( x2 )
f ( x1 )
o
I
x
o
I
x
3.函数的奇偶性
1 x y ln arcsin x 1 x2来自如:函数的分类:
代 数 函 数 有 理 函 数 有理整函数(多项式函数) 有理分函数(分式函数)
函 数
初 等 函 数
无理函数
超越函数(指数、对数、三角、反三角) 非初等函数(部分分段函数,部分有无穷多 项等函数)
2
x 当x 0 y x x 当x 0
-2 -1
1.5
1
0.5
1
2
•符号函数(sign Function)
y 1 o x
1 当x 0 y sgn x 0 当x 0 1 当x 0
sgn( 6) 1; sgn 2
-1
x sgn x x
o
1 y x
1
x
2、指数函数(Exponential Function)
y ax
(a 0, a 1)
y ex
1 x y( ) a
y ax
(a 1)
(0,1)
3、对数函数(Logarithmic Function)
y loga x (a 0, a 1)
y ln x
f ( x ) g( x ); f ( x ) g( x ); f ( x ) g( x ).
2、反函数(Inverse Function)
y
y
函数 y f ( x )
反函数 x ( y )
W
y0
W
x
x D0
y0
o
o
x0D
x
y
反函数y f 1 ( x )
Q ( b, a )
记作
例如
{ x x R, x 2 1 0}
2.区间 (1)有限区间
a, b R, 且a b.
{ x a x b} 称为开区间,
记作 (a , b)
o
a
b
x
记作 [a , b]
{ x a x b} 称为闭区间,
o
a
b
x
{ x a x b} 称为半开半闭区间, 记作 [a , b) { x a x b} 称为半开半闭区间, 记作 (a , b]
y
y f ( x)
y
y f ( x)
f ( x)
f ( x )
-x o x
f ( x)
x
-x
o
f ( x )
x
x
Even Function
Odd Function
4.函数的周期性(Periodic Function):
3l 2
l 2
l 2
3l 2
四、反函数与复合函数
1.函数的四则运算(combinations of functions)
o
直接函数y f ( x ) P (a , b)
x
直接函数与反函数的图形关于直线 y x对称. 命题 单值单调函数的反函数仍是单值单调, 且保持直接函数的增(减)性。
3、复合函数(Composite Function)
设 y u, u 1 x 2 ,
y 1 x2
定义: 设函数y=f(u)的定义域为D1 ,如果函数
y cot x
1 正割函数 y sec x cos x
y sec x
余割函数
y csc x 1
sin x
y csc x
5、反三角函数
反正弦函数 y arcsin x
y arcsin x
反余弦函数 y arccos x
y arccos x
反正切函数 y arctan x
点x0叫做这邻域的中心 , 叫做这邻域的半径.
U (x0 , ) {x x0 x x0 } x
x x0
x0
x0
0
x0
x
点x0的去心的邻域, 记作 U ( x0 , ). 0 (x0 , x0 ) (x0 , x0 ) U ( x , ) { x 0 x x }
(
x
D
对应法则f
x0 )
自变量
(
W
y
f ( x0 )
)
因变量
函数的两要素:
定义域与对应法则.
结论:两个函数相同(等)的充要条件是定义域与
对应法则分别相同.
例1:判别下列函数是否是相同的函数?
(1) f ( x ) x , g( x ) x2 ;
x2 1 (2) f ( x ) x 1, g( x ) ; x 1 2 2 (3) f ( x ) sin x cos x , g( x ) 1; (4) f ( x ) ln x 2 , g( x ) 2 ln x;
u (x) 的值域为 W D1 ,则称 y f [ ( x )]
为由函数 y=f(u) 与 u (x) 构成的复合函数.
x 自变量, u 中间变量,
y 因变量,
Note: 1. 不是任何两个函数都可以复合成一个 复合函数的;
例如 y arcsinu, u 2 x 2 ; y arcsin( 2 x 2 )
1.
•取整函数 y=[x] (Rounding Function) [x]表示不超过x 的最大整数
-4 -3 -2 -1
y
4 3 2 1 o
阶梯曲线
1 2 3 4 5 x -1 -2 -3 -4
2.43 2;
2.43 3.
在自变量的不同变化范围中,对应法则用不同的
式子来表示的函数,称为分段函数.
y arctan x
反余切函数y=arc cot x
y arccot x
幂函数,指数函数,对数函数,三角函数和反 三角函数统称为基本初等函数.
(二)、初等函数(Elementary Function)
1. 定义 由常数和基本初等函数经过有限次四则 运算和有限次的函数复合步骤所构成并可用 一个式子表示的函数,称为初等函数.
y log a x
(1,0)
(a 1)
y log 1 x
a
4、三角函数(Trigonometric Function) 正弦函数 y sin x
y sin x
余弦函数 y cos x
y cos x
正切函数 y tan x
y tan x
余切函数 y cot x
例如,
2 x 1, f ( x) 2 x 1,
y x2 1
x0 x0
y 2x 1
注:分段函数的定义域应为各分段部分的并集.
三、函数的基本特性
1、函数的有界性(Bound):
若X D, M 0, x X , 有 f ( x ) M 成立,
y f ( x)
因变量 自变量
数集D叫做这个函数的定义域(Domain) 。
当x0 D时, 称f ( x0 )为函数在点 0处的函数值 x .
函数值全体组成的数集 W { y y f ( x ), x D } 称为函数的值域 .
函数的三因素: 定义域,值域和对应法则.
(2) 无限区间
[a ,) { x a x }
Def
o a Def ( , b) { x x b} o (,) { x x R}
Def
x
b
x
其中 为正无穷大, 为负无穷大. 只是一个记号。
3.邻域:
设x0与是两个实数 , 且 0.
数集{x x x0 }称为点x0的邻域 , 记为U (x0 , )
第一章
函数 极限 连续 第一节 函数
一、集合 区间 二、函数的定义 三、函数的基本特性 四、复合函数与反函数 五、初等函数
一、集合(set) 区间(interval)
1.几种重要集合:
(1) 常用数集 N----自然数集
Q----有理数集
Z----整数集 R----实数集
(2) 不含任何元素的集合称为空集.
几个特殊的函数举例 ①多值函数、 单值分支 如果自变量在定 义域内任取一个数值 时,对应的函数值总 是只有一个,这种函 数叫做单值函数,否 则叫做多值函数.
y
y a2 x2
o
x2+y2=a2
x
例如,x 2 y 2 a 2.
一般只讨论单值函数
②分段函数:
•绝对值函数(Absolute Function)
2. 复合函数可以由两个以上的函数经过复 合构成.
x 例如 y cot , y u , 2
x u cot v , v . 2
复合函数的复合结构。
五、初等函数
(一)、基本初等函数
1、幂函数(Power Function)
y x
( 是常数)
y
y x2
1
(1,1)
y x
y x
则称函数f ( x )在X上有界.否则称无界.
y
M y=f(x) o -M M
y
x
有界 X
x0
o -M X 无界
x
2、函数的单调性(Monotonic Function):
y
y f (x)
y
f ( x2 )
y f (x)
f ( x1 )
f ( x2 )
f ( x1 )
o
I
x
o
I
x
3.函数的奇偶性
1 x y ln arcsin x 1 x2来自如:函数的分类:
代 数 函 数 有 理 函 数 有理整函数(多项式函数) 有理分函数(分式函数)
函 数
初 等 函 数
无理函数
超越函数(指数、对数、三角、反三角) 非初等函数(部分分段函数,部分有无穷多 项等函数)
2
x 当x 0 y x x 当x 0
-2 -1
1.5
1
0.5
1
2
•符号函数(sign Function)
y 1 o x
1 当x 0 y sgn x 0 当x 0 1 当x 0
sgn( 6) 1; sgn 2
-1
x sgn x x
o
1 y x
1
x
2、指数函数(Exponential Function)
y ax
(a 0, a 1)
y ex
1 x y( ) a
y ax
(a 1)
(0,1)
3、对数函数(Logarithmic Function)
y loga x (a 0, a 1)
y ln x
f ( x ) g( x ); f ( x ) g( x ); f ( x ) g( x ).
2、反函数(Inverse Function)
y
y
函数 y f ( x )
反函数 x ( y )
W
y0
W
x
x D0
y0
o
o
x0D
x
y
反函数y f 1 ( x )
Q ( b, a )
记作
例如
{ x x R, x 2 1 0}
2.区间 (1)有限区间
a, b R, 且a b.
{ x a x b} 称为开区间,
记作 (a , b)
o
a
b
x
记作 [a , b]
{ x a x b} 称为闭区间,
o
a
b
x
{ x a x b} 称为半开半闭区间, 记作 [a , b) { x a x b} 称为半开半闭区间, 记作 (a , b]
y
y f ( x)
y
y f ( x)
f ( x)
f ( x )
-x o x
f ( x)
x
-x
o
f ( x )
x
x
Even Function
Odd Function
4.函数的周期性(Periodic Function):
3l 2
l 2
l 2
3l 2
四、反函数与复合函数
1.函数的四则运算(combinations of functions)
o
直接函数y f ( x ) P (a , b)
x
直接函数与反函数的图形关于直线 y x对称. 命题 单值单调函数的反函数仍是单值单调, 且保持直接函数的增(减)性。
3、复合函数(Composite Function)
设 y u, u 1 x 2 ,
y 1 x2
定义: 设函数y=f(u)的定义域为D1 ,如果函数
y cot x
1 正割函数 y sec x cos x
y sec x
余割函数
y csc x 1
sin x
y csc x
5、反三角函数
反正弦函数 y arcsin x
y arcsin x
反余弦函数 y arccos x
y arccos x
反正切函数 y arctan x
点x0叫做这邻域的中心 , 叫做这邻域的半径.
U (x0 , ) {x x0 x x0 } x
x x0
x0
x0
0
x0
x
点x0的去心的邻域, 记作 U ( x0 , ). 0 (x0 , x0 ) (x0 , x0 ) U ( x , ) { x 0 x x }
(
x
D
对应法则f
x0 )
自变量
(
W
y
f ( x0 )
)
因变量
函数的两要素:
定义域与对应法则.
结论:两个函数相同(等)的充要条件是定义域与
对应法则分别相同.
例1:判别下列函数是否是相同的函数?
(1) f ( x ) x , g( x ) x2 ;
x2 1 (2) f ( x ) x 1, g( x ) ; x 1 2 2 (3) f ( x ) sin x cos x , g( x ) 1; (4) f ( x ) ln x 2 , g( x ) 2 ln x;
u (x) 的值域为 W D1 ,则称 y f [ ( x )]
为由函数 y=f(u) 与 u (x) 构成的复合函数.
x 自变量, u 中间变量,
y 因变量,
Note: 1. 不是任何两个函数都可以复合成一个 复合函数的;
例如 y arcsinu, u 2 x 2 ; y arcsin( 2 x 2 )
1.
•取整函数 y=[x] (Rounding Function) [x]表示不超过x 的最大整数
-4 -3 -2 -1
y
4 3 2 1 o
阶梯曲线
1 2 3 4 5 x -1 -2 -3 -4
2.43 2;
2.43 3.
在自变量的不同变化范围中,对应法则用不同的
式子来表示的函数,称为分段函数.
y arctan x
反余切函数y=arc cot x
y arccot x
幂函数,指数函数,对数函数,三角函数和反 三角函数统称为基本初等函数.
(二)、初等函数(Elementary Function)
1. 定义 由常数和基本初等函数经过有限次四则 运算和有限次的函数复合步骤所构成并可用 一个式子表示的函数,称为初等函数.
y log a x
(1,0)
(a 1)
y log 1 x
a
4、三角函数(Trigonometric Function) 正弦函数 y sin x
y sin x
余弦函数 y cos x
y cos x
正切函数 y tan x
y tan x
余切函数 y cot x
例如,
2 x 1, f ( x) 2 x 1,
y x2 1
x0 x0
y 2x 1
注:分段函数的定义域应为各分段部分的并集.
三、函数的基本特性
1、函数的有界性(Bound):
若X D, M 0, x X , 有 f ( x ) M 成立,