大学物理 相对论

合集下载

大学物理第十四章相对论习题解答

大学物理第十四章相对论习题解答

§14.1 ~14. 314.1 狭义相对论的两条基本原理为相对性原理;光速不变原理。

14.2 s ′系相对s 系以速率v=0.8c ( c 为真空中的光速)作匀速直线运动,在S 中观测一事件发生在m x s t 8103,1×==处,在s ′系中测得该事件的时空坐标分别为t =′x 1×108 m 。

分析:洛伦兹变换公式:)t x (x v −=′γ,)x ct (t 2v −=′γ其中γ=,v =β。

14.3 两个电子沿相反方向飞离一个放射性样品,每个电子相对于样品的速度大小为0.67c , 则两个电子的相对速度大小为:【C 】(A )0.67c (B )1.34c (C )0.92c (D )c分析:设两电子分别为a 、b ,如图所示:令样品为相对静止参考系S , 则电子a 相对于S 系的速度为v a = -0.67c (注意负号)。

令电子b 的参考系为动系S '(电子b 相对于参考系S '静止),则S '系相对于S 系的速度v =0.67c 。

求两个电子的相对速度即为求S '系中观察电子a 的速度v'a 的大小。

根据洛伦兹速度变换公式可以得到:a a a v cv v 21v v −−=′,代入已知量可求v'a ,取|v'a |得答案C 。

本题主要考察两个惯性系的选取,并注意速度的方向(正负)。

本题还可选择电子a 为相对静止参考系S ,令样品为动系S '(此时,电子b 相对于参考系S '的速度为v'b = 0.67c )。

那么S '系相对于S 系的速度v =0.67c ,求两个电子的相对速度即为求S 系中观察电子b 的速度v b 的大小。

14.4 两个惯性系存在接近光速的相对运动,相对速率为u (其中u 为正值),根据狭义相对论,在相对运动方向上的坐标满足洛仑兹变换,下列不可能的是:【D 】(A )221c u/)ut x (x −−=′; (B )221cu/)ut x (x −+=′ (C )221c u /)t u x (x −′+′=; (D )ut x x +=′ 分析:既然坐标满足洛仑兹变换(接近光速的运动),则公式中必然含有2211cv −=γ,很明显答案A 、B 、C 均为洛仑兹坐标变换的公式,答案D 为伽利略变换的公式。

大学物理中的相对论与粒子物理学

大学物理中的相对论与粒子物理学

大学物理中的相对论与粒子物理学在大学物理学的学习过程中,相对论与粒子物理学是两个重要的研究领域。

相对论理论是由爱因斯坦在20世纪初提出的,它从根本上改变了我们对时间、空间、质量和能量的理解。

而粒子物理学则研究微观世界中的基本粒子及其相互作用,为我们解析物质的本质提供了新的窗口。

以下将对这两个领域进行简要介绍。

一、相对论1. 狭义相对论狭义相对论是爱因斯坦于1905年提出的,主要研究高速运动相对于静止状态的效应。

相对论的核心概念是光速不变原理和等效原理。

它揭示了时间与空间的相对性,即不同的观察者在不同的参考系中所测量的时间和空间是不同的。

相对论还导致了质量-能量等效原理,著名的麦克斯韦方程组也在相对论中得到了解释。

2. 广义相对论广义相对论是爱因斯坦于1915年提出的,是对引力的重新理解。

广义相对论揭示了物质-能量决定了时空的几何结构,进而决定了物质的运动规律。

它引入了引力场的概念,使我们能够准确地描述弯曲时空中物质的运动。

二、粒子物理学1. 基本粒子粒子物理学认为,物质是由一些基本粒子组成的。

基本粒子像是构成世界万物的“建筑砖块”,它们无法再被分解成更小的粒子。

目前已经发现的基本粒子包括了夸克、轻子、介子、玻色子等。

2. 粒子的相互作用在粒子物理学中,粒子之间的相互作用通过交换粒子进行。

例如,电磁作用是由光子的交换引起的,强相互作用是由胶子的交换引起的,弱相互作用是由高斯玻色子的交换引起的。

这些相互作用规定了基本粒子如何相互吸引和排斥,从而决定了物质的性质和行为。

3. 大型强子对撞机粒子物理学研究手段之一是利用大型强子对撞机(如LHC)进行高能粒子碰撞实验。

通过高能碰撞,研究人员可以模拟宇宙初创时期的极端条件,并产生新的粒子,进而解开物质起源和宇宙组成的谜团。

结语相对论和粒子物理学是大学物理学中的两个重要领域,它们在解释物质行为、探索宇宙奥秘方面发挥着关键作用。

相对论的发展推翻了牛顿经典物理学的观念,带来了人类对时空本质的新认识;而粒子物理学的研究则使我们对基本粒子及其内部相互作用有了更深入的理解。

大学物理相对论总结

大学物理相对论总结

大学物理相对论总结相对论是现代物理学的重要基石之一,由阿尔伯特·爱因斯坦提出,包括狭义相对论和广义相对论。

这一理论极大地改变了我们对时间、空间、物质和能量的理解。

狭义相对论主要基于两条基本原理:相对性原理和光速不变原理。

相对性原理指出,物理规律在所有惯性参考系中都是相同的。

这意味着不存在一个绝对静止的参考系,运动是相对的。

光速不变原理则表明,真空中的光速在任何惯性参考系中都是恒定不变的,与光源和观察者的相对运动无关。

时间膨胀是狭义相对论中的一个重要概念。

当一个物体以接近光速的速度运动时,相对于静止的观察者,运动物体上的时间会变慢。

这并不是一种错觉,而是真实的物理现象。

比如,一个在高速飞船上的宇航员,他经历的时间会比地球上的人慢。

长度收缩也是不可忽视的现象。

运动物体在其运动方向上的长度会缩短。

这并不是物体本身的物理长度发生了变化,而是由于观察者所处的参考系不同导致的测量结果差异。

同时性的相对性也颠覆了我们的传统观念。

在一个参考系中同时发生的两个事件,在另一个相对运动的参考系中可能不再是同时发生的。

狭义相对论还对动量和能量给出了新的表达式。

著名的质能方程E=mc²揭示了质量和能量之间的等价关系,意味着少量的质量可以转化为巨大的能量,这为核能的利用提供了理论基础。

广义相对论则是对引力的全新描述。

爱因斯坦认为,引力不是一种传统意义上的力,而是时空弯曲的表现。

物质和能量会使时空发生弯曲,而物体在弯曲的时空中沿着“测地线”运动,这种运动表现为我们所观测到的引力现象。

等效原理是广义相对论的重要基础之一。

它指出在局部范围内,引力和加速运动是等效的。

比如,一个在封闭电梯里的人无法区分电梯是在静止于引力场中还是在无引力的太空中加速上升。

广义相对论对光线的弯曲做出了成功的预言。

在太阳附近,光线会因为时空的弯曲而发生偏转。

这一现象在日食观测中得到了证实。

引力红移也是广义相对论的一个重要推论。

由于引力场的存在,光子的能量会降低,频率减小,波长变长,从而导致光谱线向红端移动。

大学物理相对论

大学物理相对论

大学物理相对论目录相对论基本概念狭义相对性原理光速不变原理质能关系030201等效原理广义协变原理引力场方程相对论与经典物理关系相对论是经典物理的延伸和发展,解决了经典物理在高速和强引力场下的困境。

相对论和经典物理在低速和弱引力场下是一致的,但在极端条件下存在显著差异。

相对论揭示了时间和空间的相对性,以及质量和能量的等价性,这些概念在经典物理中是没有的。

狭义相对论基本原理洛伦兹变换同时性相对性在一个惯性参考系中同时发生的两个事件,在另同时性相对性是狭义相对论的基本原理之一,与长度收缩和时间膨胀010203广义相对论基本原理等效原理弱等效原理强等效原理引力场与以适当加速度运动的参考系是等价的。

弯曲时空概念时空弯曲测地线爱因斯坦场方程场方程形式$R_{munu} -frac{1}{2}g_{munu}R + Lambda g_{munu} = frac{8piG}{c^4}T_{munu}$,其中$R_{munu}$ 是里奇张量,$g_{munu}$ 是度规张量,$R$ 是标量曲率,$Lambda$ 是宇宙学常数,$G$ 是万有引力常数,$c$ 是光速,$T_{munu}$ 是能量-动量张量。

场方程的物理意义描述了物质如何影响时空的几何结构,以及时空几何结构如何影响物质的运动。

狭义相对论在物理学中应用质能关系及核能计算核反应能量计算质能方程在核反应中,质量亏损对应的能量释放遵循质能方程,可计算核反应释放的能量。

核裂变与核聚变1 2 3放射性衰变粒子衰变动力学衰变产物的检测与分析粒子衰变过程分析高速运动物体观测效应长度收缩效应时间膨胀效应质速关系及质能变化广义相对论在物理学中应用宇宙微波背景辐射广义相对论预测了宇宙微波背景辐射的存在,这是宇宙大爆炸后遗留下来的热辐射,为宇宙大爆炸理论提供了有力证据。

宇宙大爆炸理论广义相对论为宇宙大爆炸理论提供了理论框架,解释了宇宙的起源、膨胀和演化。

暗物质与暗能量广义相对论在解释宇宙大尺度结构形成和宇宙加速膨胀时,提出了暗物质和暗能量的概念,这些物质和能量对于理解宇宙的演化至关重要。

大学物理-狭义相对论-相对论性动量和能量

大学物理-狭义相对论-相对论性动量和能量

我国于 1958 年建成的首座重水反应堆
我国已 建成的岭澳 核电站
我国在 建的单机容 量最大的田 湾核电站
原子弹核裂变
2 轻核聚变
氘核 氦核 质量亏损
释放能量
轻核聚变条件 温度要达到

的动能,足以克服两
力.
时,使 具 之间的库仑排斥
1967年6 月17日,中国 第一颗氢弹爆 炸成功
五 动量与能量的关系

,所以光速 C 为物体的极限速度 .


相对论动量守恒定律


常矢量

,则相对论动量守恒 经典动量守恒 .
常矢量
三 质量与能量的关系
相对论质能关系
静能
:物体静止时所具有的能量 .
质能关系预言:物质的质量就是能量的一种储藏 .
爱因斯坦认为(1905)
懒惰性
惯性 ( inertia )
活泼性
物理意义
惯性质量的增加和能量的增加相联系,质量的 大小应标志着能量的大小,这是相对论的又一极其 重要的推论 .
相对论的质能关系为开创原子能时代提供了理 论基础 , 这是一个具有划时代的意义的理论公式 .
质能关系预言:物质的质量就是能量的一种储藏.
例:
现有 100 座楼,每楼 200 套房,每套房用电功率
能量 ( energy )
物体的懒惰性就 是物体活泼性的度量 .
相对论能量和质量守恒是一个统一的物理规律.
一些微观粒子和轻核的静能量
粒子
符号
光子
电子(或正电子) e(或 +e
质子
)p
中子
n


氦( 粒子)
静能量 MeV 0 0.510

大学物理相对论

大学物理相对论

14. 相对论班级 学号 姓名 成绩一、选择题1.⑴某惯性系中一观察者,测得两事件同时刻、同地点发生, 则在其它惯性系中,它们不同时发生。

⑵在惯性系中同时刻、不同地点发生的事件,在其它惯性系中必不同时发生;⑶在某惯性系中不同时、不同地发生的两事件,在其它惯性系中必不同时,而同地发生;⑷在不同惯性系中对同一物体的长度、体积、质量、寿命的测量结果都相同;⑸某惯性系中观察者将发现,相对他静止的时钟比相对他匀速运动的时钟走得快。

正确说法是:(A) ⑴、⑶、⑷、⑸; (B) ⑴、⑵、⑶; (C) ⑵、⑸; (D) ⑴、⑶。

( C )解:根据洛伦兹坐标变换式22222/1,/1c v x c v t t c v t v x x -∆-∆='∆-∆-∆='∆, (1)当0,0=∆=∆t x 时,应有0',0'=∆=∆t x ,错误。

(2)当0,0=∆≠∆t x 时,应有0',0'≠∆≠∆t x ,正确。

(3)当0,0≠∆≠∆t x 时,应有0',0'≠∆≠∆t x ,错误。

(4)长度、体积、质量、寿命的测量结果都具有相对性,相对于不同惯性系,错误。

(5)根据运动时钟延缓效应,相对观察者静止的时钟总比相对他匀速运动的时钟走得快,正确。

2.相对地球的速度为υ的一飞船,要到离地球为5光年的星球去。

若飞船上的宇航员测得该旅程为3光年,则υ应是: (A)c 21; (B) c 53; (C) c 109; (D) c 54。

( D ) 解:原长为l 0=5光年,运动长度为l =3光年,根据运动长度收缩公式l l =解得45c υ=。

3.坐标轴相互平行的两个惯性系S 、S′,S ′相对S 沿OX 轴正方向以 υ匀速运动,在S ′中有一根静止的刚性尺,测得它与OX ˊ轴成30º角,与OX 轴成45º角,则υ应为: (A) c 32; (B) c 31; (C) c 21)32(; (D) c 31)31(。

大学物理下相对论-洛伦兹变换

大学物理下相对论-洛伦兹变换

100%
长度收缩
在相对论中,当物体以接近光速 运动时,其长度相对于静止观察 者会缩短,这种现象被称为长度 收缩。
80%
相对论的多普勒效应
当光源或观察者以接近光速运动 时,光波的频率或波长会发生改 变,这种现象被称为相对论的多 普勒效应。
相对论的速度合成法则
相对论的速度合成法则
当两个物体以接近光速相对运动时,它们的相对速度不能简单地通过矢量相加得到,而是需要使用洛伦兹变换进 行计算。
速度合成法则的应用
在高速运动和强引力场中,相对论的速度合成法则对于精确描述物体的运动状态非常重要。
相对论的质量-能量关系(E=mc^2)
质量-能量等效原理
在相对论中,物体的质量与能量是等效的,即存在一个固定的转换关系 E=mc^2。
质能方程的应用
质能方程在核能、粒子物理和宇宙学等领域有广泛的应用,如核反应释放能量、黑洞的形成和演化等 。
洛伦兹变换公式描述了不同参 考系之间的长度和时间的关系 ,是相对论中的基本公式之一 。
通过洛伦兹变换公式,可以推 导出相对论中的其他重要结论 ,如时间膨胀和长度收缩。
04
洛伦兹变换的应用
时间和空间的测量
80%
时间膨胀
在相对论中,当物体以接近光速 运动时,其内部的时间相对于静 止观察者会变慢,这种现象被称 为时间膨胀。
洛伦兹变换的性质
线性性质
洛伦兹变换是线性变换,即变换前后线性组合的结 果与单个变换的结果相同。
逆变换
如果知道从一个参考系到另一个参考系的洛伦兹变 换,则可以推导出从另一个参考系回到原参考系的 逆变换。
相对性
对于任意两个惯性参考系之间的变换,其逆变换与 原变换是等价的。
03

大学物理:第11章-相对论1-洛伦兹时空变换和速度合成

大学物理:第11章-相对论1-洛伦兹时空变换和速度合成
两个假设: 1. 力学定律在所有惯性系中形式相同 2. 质量和受力在所有惯性系中保持不变
力学定律:F ma 推论:a在所有惯性系中保持不变 数学上:伽利略变换
1 伽利略变换:
正变换
x' x ut y' y z' z t' t
逆变换
x x'ut' y y' z z'
t t'
y S y' S'
1905年,爱因斯坦发表了具有划时代意义的论文 《论动体的电动力学》,提出了爱因斯坦相对性原理 和光速不变原理,作为狭义相对论的两条基本假设。
1、伽利略变换的困难
1).电磁场方程组不服从伽利略变换 伽利略变换需要修正?
电磁学基本规律不遵从相对性原理? 修正电磁学
2). 伽利略修正导致一些实验无法观测的新现象 伽利略变换不适于光或电磁波的运动(高速运动)。
az az
在两个惯性系中
a a
2、伽利略变换与绝对时空概念
t t' 得: t t'
即:在S系和S’系中的观察者对任意两事件之间的时 间间隔进行测量,测量结果与参照系无关。
在牛顿力学中,时间是绝对的。
同一根棒在不同参考系中的长度:
L x2 x1
L' x'2 x'1
由伽利略变换得: x2 x1 x于力学定理
速度与参考系有关,相对的
狭义相对 光速, 是绝对的 论力学 时间测量 长度测量 与参考系有关,相对的 质量测量
惯性系等价适用于一切物理定理
2、洛伦兹变换:
相对论的基本原理出发,推导洛仑兹变换 为简明扼要,只考虑沿x方向有相对运动
(1) 时空均匀性,线性变换,一次方程

大学物理相对论总结

大学物理相对论总结
相对论
基本内容
1、力学相对性原理、伽利略变换;狭义相对论产生 根源、实验基础和历史条件;狭义相对论的基本原理、 洛仑兹变换。 2、狭义相对论时空观:同时的相对性、长度收缩、 时间延缓、因果律。 3、狭义相对论质速关系、相对论动力学基本方程、 相对论动能、静能总能和质能关系、能量和动量的关 系。
1
内容提要
2、长度的收缩(运动物体在运动方向上长度收缩)
在s' 系中测量
l0 x'2 x'1 l'
l l' 1 2 l0
固有长度
y y'
s
s' u
x'1
l0
x'2 x'
o
z
o'
z'
x1
x2
x 5
3、时间的延缓
t t'
1 2
固有时间 :同一地点发生的两事件的时间间隔 .
t t' t0 固有时间
解:
S ( x1, t1) (x2,t2 ) S′ ( x1, t1) ( x2 , t2 )
x2 x1 1m t1 t2
x2 x1 ?
x2
x1
x2
ut2 (x1 ut1) 1 u2 c2
1 1u2 c2
9
六、相对论质量和相对论动量
1、动1量)与相速对度论的动关量系p
m0 v
1 2
Ei mic2 (m0ic2 Eki ) 恒量
i
i
i
相对论质量守恒定律 在一个孤立系统内,所有粒子的 相对论总质量
mi 恒量
i
八、动量与能量的关系
E pc
E 2 E02 p2c2

大学物理中的相对论问题

大学物理中的相对论问题

大学物理中的相对论问题相对论是现代物理学的基石之一,涉及到了时间、空间、光速等重要概念。

在大学物理的学习过程中,相对论问题经常出现,需要我们深入理解和解决。

本文将围绕大学物理中的相对论问题展开讨论。

一、相对论的基本概念相对论是由爱因斯坦提出的,它与牛顿力学有着本质的区别。

相对论中有两个重要假设:光速不变原理和等效原理。

从而导致了时间的相对性、长度的收缩效应等许多令人称奇的现象。

大学物理中的相对论问题往往以光速和能量方面为主,需要我们通过公式推导和实际问题求解来加深对相对论的理解。

二、光速和时空变换问题相对论中的一个重要概念是光速不变原理,即光在真空中的速度是一个恒定值。

这个恒定的光速在不同参考系中都是相同的,不会受到运动的影响。

根据光速不变原理,时间和空间都会发生变换。

在大学物理中,我们通常通过洛伦兹变换来解决相关问题。

举个例子来说明光速和时空变换问题。

假设有两个静止的观察者,一个在地面上,一个在飞行的飞船上。

观察者在飞行的飞船上看来,地面上的时钟运行地比较慢,长度也有所改变。

这是因为光速在不同参考系中是恒定的,时间和空间需要做出调整来保持光速不变。

通过洛伦兹变换的计算,我们可以准确地得出不同参考系下的时间和空间关系。

三、相对论与能量相对论中对能量的定义与牛顿力学不同。

牛顿力学中的能量是由物体的质量和速度决定的,而相对论中的能量概念更广义,包括了物体的静止质量以及其运动引起的能量。

相对论中的质能关系式E=mc²描述了质量和能量之间的等价性。

在大学物理中,我们经常会遇到能量守恒的问题。

相对论中的能量守恒原理同样适用,但是由于质量与能量之间的关系不同,需要我们通过相对论的方式来进行能量计算。

例如,核反应和粒子加速器等物理现象中的能量转换问题需要用到相对论能量的计算公式。

四、狭义相对论与广义相对论相对论主要分为狭义相对论和广义相对论两个部分。

狭义相对论是对相对论最基本的描述,主要涉及到了时间、空间和速度等概念的变化。

大学物理相对论ppt课件

大学物理相对论ppt课件

比 B早接收到光
事件1、事件2 不同时发生
事件1先发生 t 0
6-3 狭义相对论的时空观——爱因斯坦火车
用洛仑兹变换式导出
t2
t2
u c2
x2
1 u2 c2
t1
t1
u c2
x1
1 u2 c2
t
t2
t1
t
u c2
1 u2
x
c2
若x 0 已知 t 0
t
u c2
x
0
同时性的相对性
在一个惯性系的不同地点同时发生的两个事件,在另一 个惯性系是不同时的。
2、 纵向效应
l l0 1 u2 c2
在两参考系内测量的纵向(与运动方向垂直)
的长度是一样的。
3、在低速下 伽利略变换
l l0 1 u2 c2
u c l l0
6-3 狭义相对论的时空观
例2、原长为10m的飞船以u=3×103m/s的速率相对于地
面匀速飞行时,从地面上测量,它的长度是多少?
t
t
u c2
x
1 u2 c2
c
5.77 109 s
u c 1 ( x )2 x
6-3 狭义相对论的时空观
二.长度的相对性
运动的棒变短
长度测量的定义
对物体两端坐标的同时测量, 两端坐标之差就是物体长度。
S S
u
l0
原长 棒相对观察者静止时测得的它的长度
(也称静长或固有长度)。
棒静止在S'系中 l0是静长
u

a火 车b
A

B
在地面参照系S中测量,火车长度要缩短。但隧道的B端 与火车b端相遇这一事件与隧道A端发生闪电的事件不是同时的, 而是B端先与b端相遇,而后A处发生闪电,当A端发生闪电时, 火车的a端已进入隧道内,所以闪电仍不能击中a端。

大学物理教程(上册)_相对论(2)

大学物理教程(上册)_相对论(2)
(和左、右的相对性类似)
同时异地事件
问题:在某一惯性系中的同步钟,在另一相对其运 动的惯性系中是否仍然是同步的?
必然不同时
在S中看来
s
o u
x
s
o
x
u 由洛仑兹变换:t t 2 x ; x 0 t t c
在 s 中看来
s
o
x
若 S 系中 在
s
t t 2 t1 0 即事件1先发生
系中时序是否变化? 时序变化 :
u t ( t 2 x ) 0 c u t 2 x c x c 2 c t u
时序不变 :
u t ( t 2 x ) 0 c u t 2 x c x c 2 t u
日常生活经验:在一个惯性系中同时发生的两个 事件,在其它惯性系中看来,也是同时发生的。 “同时”概念与参考系选择无关。
爱因斯坦认为: 同时性概念是因参考系而异的,在 一个惯性系中认为同时发生的两个事件,在另一惯性 系中看来,不一定同时发生。同时性具有相对性。
虽然彭加勒才华横溢,洛伦兹学识渊博。但他们 都不敢迈出决定性的革命的一步,去重新检验我们 的同时性概念。这个概念或许不只是从我们的父辈 那儿学来的,而简直就像经过漫长的进化过程遗传 到我们的基因中的一样。 ---杨振宁
讨论1:“对时”
在同一惯性系中的“对时”:即在同一惯性系中建立 起统一的时间坐标, 校钟操作:
在由中点o发出的光信 号抵达的瞬间,对准 A,B处钟的读数。
A
l l
O
B
y
每个惯性系中的观察者 都认为本系内各处的钟 是已经校对同步的。
z
o
x
定义“同时”概 念 A,B处事件发出的 如果由

大学物理易考知识点相对论基本概念

大学物理易考知识点相对论基本概念

大学物理易考知识点相对论基本概念相对论是物理学中的一个重要分支,包括狭义相对论和广义相对论。

它的提出彻底改变了我们对于时间、空间和质量的认识。

在大学物理的考试中,相对论是一个重要的考察内容,而相对论的基本概念是大学物理易考的知识点之一。

本文将介绍相对论的基本概念,帮助学生更好地理解和掌握这一知识点。

1. 相对论的起源相对论的起源可以追溯到19世纪末,当时经典物理学的理论框架已经比较完善,包括牛顿力学、电磁学等。

然而,科学家们在实际观测和实验中发现了一些无法用经典理论解释的现象,这促使他们提出了一种新的理论框架来解释这些现象。

爱因斯坦在1905年提出了狭义相对论,进一步推动了相对论的发展。

2. 狭义相对论的基本概念狭义相对论是相对论的基础,它主要探讨的是在惯性系中的物理规律。

以下是狭义相对论的几个基本概念:2.1 等效原理狭义相对论的等效原理认为,所有惯性系中的物理定律都具有相同的形式,即物理学的基本定律在不同的惯性系下是等效的。

2.2 光速不变原理光速不变原理是相对论的核心概念之一,它指出光速在任何惯性系中都是恒定的,与观察者的运动状态无关。

这一原理颠覆了牛顿力学中时间和空间的观念。

2.3 雷射尔变换由于光速不变原理的存在,狭义相对论引入了雷射尔变换,用于描述不同惯性系之间的时间、空间和动量等物理量的关系。

雷射尔变换运用了洛伦兹因子,涉及到时间膨胀、长度收缩和质量增加等概念。

3. 广义相对论的基本概念广义相对论在狭义相对论的基础上进一步发展,主要研究的是引力和物质在时空中的作用。

以下是广义相对论的几个基本概念:3.1 时空弯曲广义相对论认为质量和能量会使时空弯曲,形成引力场。

物体在引力场中的运动不再是沿直线运动,而是沿着弯曲的时空轨迹运动。

3.2 等效原理的推广广义相对论将等效原理推广到了非惯性系中,即在受到引力场影响的参考系中的物理定律也是等效的。

这一原理扩展了狭义相对论中的等效原理。

3.3 万有引力定律的修正广义相对论修正了牛顿的万有引力定律,在强引力场中提出了爱因斯坦场方程,描述了时空的曲率与引力场的关系。

大学物理-相对论

大学物理-相对论

t1, x1,
不 不
同 同
时 地
4.不同时不同地发生的没有关联的两事件
若t2 t1 0,x2 x1 0,
0

t2

t1


(t2

t1 ) 1

v c2
x2 t2

x1 t1

0 0
即:对于没有因果关系的两事件, 若 x2 x1 c2 ,则时序将颠倒。 t2 t1 v
x x vt y y z z t t
x x vt
y y

z

z
t t
二、速度、加速度变换
uuyx

ux uy

v
uz uz
uuyx

ux uy

v
uz uz
u u v
杆长是绝对的。
牛顿的绝对时空观
牛顿力学的相对性原理
实践已证明 , 绝对时空观是不正确的.
一、时代背景
对于不同的惯性系,电磁现象基本规律的形式 是一样的吗 ?
真空中的光速
c 1 2.998 108 m/s
00
对于两个不同的 惯性参考系 , 光速满 足伽利略变换吗 ?
y
s
s'
y'
v
c
y' P(x, y, z,t)
v * (x', y', z',t')
x'
zo
o'
z'
x
设想t t 0时,从原点发出一光信号,沿x轴正向 传播,在S及S 看来,光速都为c,则

大学物理中的相对论的基本原理

大学物理中的相对论的基本原理

大学物理中的相对论的基本原理在大学物理中,相对论是一个重要的概念和理论。

它提出了一种新的解释和理解物质和能量之间的相互关系,并对整个物理学领域产生了深远的影响。

本文将介绍相对论的基本原理,帮助读者理解其在物理学中的重要性和应用。

首先,让我们来谈论相对论的起源。

相对论是由爱因斯坦在20世纪初提出的,它是一种描述物质和能量相互作用的理论。

爱因斯坦提出了两个相对论原理:相对性原理和光速不变原理。

相对性原理指出,物理定律在所有惯性参考系中都具有相同的形式。

这就意味着无论我们处于任何匀速运动的参考系中,物理定律都应该保持不变。

这个原理颠覆了牛顿力学的绝对时间和空间观念,引起了人们对于时间和空间的新的理解。

光速不变原理是相对论的另一个基本原理。

它指出,在任何参考系中,光的速度始终是一个恒定值,即光速。

这意味着无论观察者的运动状态如何,光的速度都保持不变。

这个原理使得我们必须重新审视时间和空间的概念,因为光的速度对于我们对世界的认识有着重要的影响。

基于这两个原理,爱因斯坦提出了狭义相对论。

狭义相对论主要探讨了运动的物体和观察者之间的相互影响,特别是在高速运动情况下。

它引入了著名的洛伦兹变换,用于描述时间、空间和质量在不同参考系中的变化。

洛伦兹变换具有如下形式:$x' = \frac{(x - vt)}{\sqrt{1 - \frac{v^2}{c^2}}}$$t' = \frac{(t - \frac{vx}{c^2})}{\sqrt{1 - \frac{v^2}{c^2}}}$其中,$x$ 和 $t$ 是原始参考系中的空间和时间,$x'$ 和 $t'$ 是运动参考系中的对应值,$v$ 是运动参考系相对于原始参考系的相对速度,$c$ 是光速。

洛伦兹变换揭示了时间和空间的相对性,即在不同的参考系中,物体的长度、时间间隔和同时性都会有所不同。

这正是著名的“双生子效应”的解释,其中一个双生子在高速飞船中旅行一段时间后,与地面上的双生子相比会年轻一些。

大学物理相对论复习资料

大学物理相对论复习资料

⼤学物理相对论复习资料狭义相对论基本内容⼀、狭义相对论的基本原理1. 迈克⽿逊实验迈克⽿逊莫雷实验的⽬的是测定地球相对以太的速度,实验结果:地球相对以太的速度为零,当时的物理理论不能解释该实验结果。

2. 爱因斯坦狭义相对论的基本假设相对性原理:物理学定律在所有的惯性系中形势都是相同的,即⼀切惯性系都是等价的。

光速不变原理:在所有的惯性系中,真空中(⾃由空间)光速具有相同的量值c 。

⼆、狭义相对论时空观1. 洛仑兹变换⼀个事件在惯性系S 中的时空坐标为(x, y, z, t),在沿x 轴以速度v 匀速运动的另⼀惯性系S '中的时空坐标为()x ,y ,z ,t ''''(0t t '==时刻两惯性系原点重合且相应轴重合),则该事件的时空坐标的变换关系称为洛仑兹变换:=-===-2'('''(x x vt y y z z v t t x c或?=+=??==+??2('''('x x vt y y z z v t t x c2. 同时是相对的两个事件在⼀个惯性系中同时同地发⽣,在⼀切惯性系中该两事件必同时同地发⽣;两个事件在⼀个惯性系中不同地点同时发⽣,在其它惯性系中该两事件不⼀定同时发⽣。

3. 时钟变慢(时间变缓)在⼀个惯性系中同⼀地点先后发⽣的两事件,在该惯性系静⽌的时钟测得的时间间隔为固有时间0τ,在另⼀相对该惯性系以速度v 匀速运动的时钟测得的时间间隔为t ?,两者的关系为?γττ==0t 。

4. 尺缩短(长度收缩)观测者与尺相对静⽌时测得尺长称固有长度0L ,观测者沿尺长⽅向以速度v 匀速运动时测得尺长为L ,两者关系为=L L 观察者垂直于尺长⽅向以速度v 匀速运动时测得尺长为L ',0L L '=。

5. 狭义相对论时空观与经典时空观的⽐较当v c 时在x ≯ct 的时空范围内洛仑兹变换转化为伽利略变换,经典时空观是上述条件下狭义相对论时空观的极限。

大学物理第四章狭义相对论基础描述PPT课件

大学物理第四章狭义相对论基础描述PPT课件
20
②当 u时c,
略变换:
x x ut
y y
z z
t t
1
u c
2 2
洛 1仑兹变换可以简化为伽利
x x ut y y z z t t
即伽利略变换是洛仑兹变换在低速时的近似。
可见洛仑兹变换有更为普遍的意义。
性系都是等价的。
--伽利略相对性原理
2.力学规律在所有惯性系中相同数学表达形式。
3.时间和空间都是绝对的,无关联的。
4
二、伽利略变换 在参考系中发生的一个物理事件要用四个坐标
(x、y、z、t)来描述。
设S系和S'系都是惯性参照系,且:
S'系相对于S系沿x轴以速度u 运动,
开始时t=t' =0坐标原点O和O'重合。
二、爱因斯坦假设 1.1905年爱因斯坦在他的论文中,大胆地提出 两条假设,这就是狭义相对论的基本原理。 2.两条基本假设: (1)相对性原理
在所有惯性系里,一切物理定律都相同。 即:具有相同的数学表达式。
所有惯性系都是等价的。
这是牛顿相对性原理的推广。即在所有惯性系里 ,不但力学定律成立,而且电磁定律、光的定律 、原子物理定律和其它物理定律都同样成立。 13
揭示了时间、空间与引力的关系。
相对论严格地考察了时间、空间、物质和运动 这些物理学的基本概念,给出了科学而系统的时 空观和物质观,从而使物理学在逻辑上成为完美 的科学体系。
3
4-1 力学相对性原理 伽利略变换
一、 力学相对性原理
1.表述:描述力学现象的规律不随观察者所选的
惯性系而改变,或者说,研究力学规律时一切惯
x
1 2
1 2
18
①两坐标间的变换关系:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伽利略变换
x x ut y y z z t t
vx vx u
vy v y
vvz
vz v
u
质点受力只与质点相对位置有关
y S y' S' •P
o ut o'
x
z z'
a a
rr F F
u x'
牛顿定律对任何惯性系都具有相同的形式。
1.1.2 爱因斯坦相对性原理和光速不变原理
经典电磁学和伽利略变换的困难
S' 系中一静止的长为 l' 的横杆, S系测得其长度为 l 。
l
u
x1 l = x2 x1 x2
S 系中测的是运动杆的长度,要 求同时刻度动杆首尾端的位置。
t l
t S系 S'系
x1
x2
S' 系看来,S系同时刻度的动 u
t
作并不同时发生,杆的首端先
被刻度,杆的尾端后被刻度。 其测得的 l 比 S' 系中测得的长 度 l' 偏短。
y y
z z
t
t
u c2
x
1 u2 / c2
研究的问题:两个参照系中两事件发生的先后次序?
S' 系:光速不变,都是 c, S M'在A' B' 中点位置。
事件 1、事件 2 同时发生。
S 系:
S
A' 迎着光, B' 背着光运动,
S' u A'
M'
B'பைடு நூலகம்
x'
x
S' u A'
M' B'x' x
事件 1、事件 2不同时发生,事件1 先发生。
➢ 在某一惯性系中同时发生的两事件,在另一与之 有相对运动的惯性系中观察,可能不同时发生。
§1.1 狭义相对论的基本原理
1.1.1 绝对时空观和伽利略变换
牛顿的经典力学 ➢ 牛顿三定律:
F
ma

牛顿万有引力定律:
r f
GMm r2

➢ 牛顿的绝对时空观:事件经历的时间,物体的长 度、质量等与物体运动无关(与参照系无关), 具有绝对的意义。
牛顿的相对性原理和伽利略变换
牛顿相对性原理:对一切惯性系力学现象遵从同 样的规律。
➢ 同时性的相对性是光速不变原理的直接结果。
➢ “同时性” 只有在同一惯性系中或事件发生在空间 同一处才能进 行比较,空间上远离的事件在不同 参照系中没有统一的同时性。
同时性的相对性对时空坐标测量的影响
➢ 如何对准参照系中不同位置 S 的时钟
S' u A'
M'
B'
x' x
S' 参照系:A'、B' 接收到光时, 将 A'、B' 处的钟都拨到 2 点。 S
S' u A'
M'
B'
x'
x
S 参照系:A'先接收到光, B'后接收到光,
A' 钟先拨到 2 点,B' 钟后拨到 2点,A' 钟超前了。
S 系看,S' 系不同位置的没有对齐,运动方向 后方的钟超前。
➢ 时间测量的相对性
S 系中 P 处先后发生两事 件,S 系测得两事件的时 S 间间隔为 t,S' 系测得其 时间间隔为 t'。
0 0
➢ 当时认为电磁波 (光波) 是在以太 (Ether)(绝对参 照系)中传播,光速也是光相对于以太的速度。因 此在不同的运动参照系中应该能观测到不同的光速。
➢ 迈克尔逊-莫雷实验: “零结果”:条纹没 有发生移动。
真空中光速与参照系无关
伽利略变换不适于光的运动,牛顿相对性原理不 适于电磁理论。
➢ 爱因斯坦将相对性原理推广到电磁领域,得到了光 速不变原理,否定了“以太参照系”,同样也否定 了伽利略变换。光速不变原理被大量实验结果证实。
§1.2 洛 仑 兹 变 换
几个概念
➢ 事件:在任意参照系中有确定的时空坐标 (x, y, z, t), 在不同参照系中其时空坐标不同。
➢ 时空坐标的测量:事件在观测者所在参照系中的位
S' u A'
M' B'
x' Px
S 系时间间隔 t 是用一个 P 钟测量出来的,S' 系时间间 隔 t' 必须用先后经过 P 处的两个钟记时得到。
S' 系先经过 P 处的钟先记时,后经过 P 处的再记时。 运动方向后方的钟超前, S' 系中测得的 t' 比 S 系中测 得的 t 偏大。
➢ 长度测量的相对性
开尔文:经典物理大厦已经落成,所剩只是一些修饰 工作,但美丽而晴朗的天空却被两朵乌云所笼罩!
第一朵乌云: 迈克尔逊-莫雷实验的“零结果” 爱因斯坦 相对论
第二朵乌云: 黑体辐射中的“紫外灾难” 量子力学
第 一 章 狭义相对论力学基础
§1.1 狭义相对论的基本原理 §1.2 洛 仑 兹 变 换 §1.3 时间延缓和长度收缩 §1.4 相对论速度变换 §1.5 相对论动力学基础 §1.6 广义相对论简介
真空中麦克斯韦方程组:
rr
Ñ S E dS 0
r
r
Ñ L E
drr
S
B t
r dS
rr
Ñ S B dS 0
r
Ñ L
r B
drr
0 0 S
E t
r dS
恒定的光速是相对 于什么参照系的?
r 2E
0 0
2 t 2
r E
0
r
2 B 0 0
2 t 2
r B
0
c 1 2.98108[m / s]
爱因斯坦狭义相对论的基本假设
爱因斯坦狭义相对性原理 物理规律对所有惯性系都是一样的,不存在
一个特殊的惯性系(如绝对静止的)。
光速不变原理 在任何惯性系中,光在真空中传播速度都相
等,与光源和观察者的运动无关。
➢ 爱因斯坦认为,相对性是自然界的根本规律,这也 是狭义相对论的实质,是对牛顿相对性原理的发展。
置坐标及固定在此位置处的钟的读数。
每一个参照系中的不 同位置上都放置了彼
u
S S'
一个事件
x'
此对齐和同步的时钟。
x
➢ 事件时间坐标的测量实际上是同地同时性问题。
这列火车 2 点钟到达这里,相当于火车到站和 台上的钟敲 2 点这两个动作在站台内同时发生。
同地同时性不会因观测者所在参照系的不同 而改变。
同时性的相对性 —— 爱因斯坦思想实验 S S'
u A'
M'
B'
x'
S' :爱因斯坦火车
x
中点 M':光信号发生器
A' 、B': 位于车头、车
t t 0,M' 发出一光信号
尾的信号接收器
事件 1: A' 接收到光信号
S :地面参考系
事件 2: B' 接收到光信号
研究的问题:两个参照系中两事件发生的先后次序?
l
x1 l = x2 x1 x2
u
t
S'系
洛仑兹变换
一事件: S 系 (x, y, z, t) , S' 系 (x', y', z', t') z
S
S' u P (x,y,z,t)
y
y'
(x',y',z',t')
O
O'
x' x
z'
洛伦兹坐 标变换 (正变换)
x x ut 1 u2 / c2
相关文档
最新文档