集合的概念课件
合集下载
集合的概念ppt课件
反之,如果X是一个奇数,那么X除以2的余数为1,它能表示为 X=2k+1(k∈Z)的形式。所以,X=2k+1(k∈Z)是所有奇 数的一个共同特征,于是奇数集可以表为 {X∈Z|X=2k+1, k∈Z}.
再如,实数集,有限小数和无限循环小数都具有q╱p(p, q∈Z,p≠0)的形式,这些数组成有理数集,我们将它表示为 Q={X∈R|X=q╱p,p,q∈Z,p≠0}. 其中,X=q╱p(p,q∈Z,p≠0)就是所有有理数具有的共同 特征。
例如,
不等式X-7<3的解是X<10,因为满足X<10的实数有无数个, 所以X-7<3的解集无法用列举法表示。但是我们可以利用解集中 元素的共同特征,即:X是实数,且X<10,把解集表示为 {X∈R|X<10}.
又如,整数集Z可以分为奇数集和偶数集。对于每一个X∈Z,如 果它能表示为X=2k+1(k∈Z)的形式,那么X除以2的余数为1, 它是一个奇数;
(1)小于10的所有自然数组成的集合
解:设小于10的所有自然数组成的集合为A,那么A={0,1,2,3, 4,5,6,7,8,9}.
注,由于元素完全相同的两个集合相等,而与列举的顺序无关,因 此一个集合可以有不同的列举方法,故以上例题的集合还可以写成 A={9,8,7,6,5,4,3,2,1,0}.
集合E={X∈Z|X=2k+1,k∈Z}也可表示为E={X| X=2k+1,k∈Z}.
练习
1.判断下列元素的全体是否组成集合,并说明理由: (1)A,B是平面α内的定点,在平面α内与A,B等距离的点; (2)高中学生中的游泳能手. 2.用符号“∈”或“∉”填空: 0_N; -3_N; 0.5_Z; √2_Z; 1╱3_Q; π_R.
再如,实数集,有限小数和无限循环小数都具有q╱p(p, q∈Z,p≠0)的形式,这些数组成有理数集,我们将它表示为 Q={X∈R|X=q╱p,p,q∈Z,p≠0}. 其中,X=q╱p(p,q∈Z,p≠0)就是所有有理数具有的共同 特征。
例如,
不等式X-7<3的解是X<10,因为满足X<10的实数有无数个, 所以X-7<3的解集无法用列举法表示。但是我们可以利用解集中 元素的共同特征,即:X是实数,且X<10,把解集表示为 {X∈R|X<10}.
又如,整数集Z可以分为奇数集和偶数集。对于每一个X∈Z,如 果它能表示为X=2k+1(k∈Z)的形式,那么X除以2的余数为1, 它是一个奇数;
(1)小于10的所有自然数组成的集合
解:设小于10的所有自然数组成的集合为A,那么A={0,1,2,3, 4,5,6,7,8,9}.
注,由于元素完全相同的两个集合相等,而与列举的顺序无关,因 此一个集合可以有不同的列举方法,故以上例题的集合还可以写成 A={9,8,7,6,5,4,3,2,1,0}.
集合E={X∈Z|X=2k+1,k∈Z}也可表示为E={X| X=2k+1,k∈Z}.
练习
1.判断下列元素的全体是否组成集合,并说明理由: (1)A,B是平面α内的定点,在平面α内与A,B等距离的点; (2)高中学生中的游泳能手. 2.用符号“∈”或“∉”填空: 0_N; -3_N; 0.5_Z; √2_Z; 1╱3_Q; π_R.
集合的概念ppt课件
(1) 1
N
(3) -12
Z (5) √2
R
(2) 0
N* (4) √3
Q (6) π
R
解析: (1) ∈ (3) ∈
(5) ∈
(2) ∉ (4) ∉ (6) ∈
03
集合的表示
一、合作探究
小组讨论:
1、小于5的自然数集合A,有哪些元素? 2、小于5的实数集合B,包括哪些元素?
1、集合A,包括元素:0,1,2,3,4。 集合A中的元素可以一 一列举。
③ 集合中元素的特征:确定性、无序性、互异性 ④ 集合的分类:有限集、无限集、空集 ⑤ 数集:N , N* , Z , Q , R ⑥ 集合的表示方法:列举法、描述法
06
课后作业
课后作业1
1、用符号“∈”或“∉”填空:
(1) -3
N, 0.5
N, 0.3
N
(2) 1.5
Z, -5
Z,
3
Z
(3)-0.2
第一章 集合与常用逻辑用语
1.1 集合的概念
目录
01 集合的概念
0 元素与集合 2
0 集合的表示 3
04 集合的分类
01
集合的概念
一、导入生活情景
情景1-上架商品:
如右图,“美汇”生活超市新进了一批果蔬:苹果, 葡萄,黄桃,柠檬,石榴,西瓜,土豆。茄子,西蓝 花等。
作为陈列员,你该如何分类摆放这些商品呢?
四、集合中元素的性质
集合中元素的性质
确定性
1 集合中的元素 必须是确定的
无序性
2 集合中的元素
无顺序之分 {a, b, c} = {a, c, d}
互异性
3 集合中的元素 是互不相同的
集合的概念ppt课件
例: 表示 以内所有素数构成的集合,则4 ___ ,3____ .
新课引入
概念深化
四、常用数集及其记法
非负整数集 (自然数集)
正整数集
整数集 有理数集 实数集
或
Natural number
Zahlen quotient Real number
N*或N+ N Z Q R
新课引入
应用举例
五、集合的表示方法
×√ (2)较小的数.
新课引入
牛刀小试
2022年8月底,我们踏入了心仪的校园,找到了自己的班级.下列现象能 否构成一个集合,并说明理由?
(1)你所在班级中的全体学生; (2)你所在班级中比较高的同学; (3)你所在班级中身高超过178cm的同学; (4)学习成绩比较好的同学.
能 不能 能 不能
新课引入
遍性的特点
新课引入
布置作业
•作业1: 习题1.1第2,3,4题 •作业2: 《课时练习册》第一节内容 •作业3: 元素与集合的关系有多少种?如何表示?类似的,集合与集合之间的关系又 有多少种?如何表示?请同学们通过预习课本来解答.
新课引入
结束语
谢谢观看!
元素
新课引入
概念形成
一、概念 元素:一般地,我们把研究对象统称为元素.
集合:把一些元素组成的总体叫做集合(简称为集).
我们通常用大写拉丁字母
表示集合,用小
写拉丁字母
表示集合中的元素.
康托尔(Georg Cantor,1845~ 1918) 德国数学 家, 集合论创始 人, 他于1895年 谈到“集合”一词.
1.列举法: 把集合的所有元素一一列举出来,并用花括号“{ }”括起来表示集 合的方法.
集合的概念-课件ppt
(一)集合的概念:
各种各样的事物或一些抽象的符号,都可以看作对象。
一般地,把一些能够确定的不同的对象看成一个整体,就
说这个整体是有这些对象的全体构成的集合(或集)。 构成集合的每个对象叫做这个集合的元素(或成员)
如:小于10的自然数 0,1,2,3,4,5,6,7,8,9 构成了一个集合
集合举例
3、文氏图:用一条封闭的曲线的内部来 表示一个集合.
例1:用列举法表示下列集合
(1)A {x N | 0 x 5} A {1,2,3,4,5} (2)B={2,3}
例2:用描述法表示下列集合
(1){1,1}; (2)大于3的全体偶数构成的集合;
(二)“元素”与“集合”:
1. 集合通常用大写英语字母A,B,C,…来表示,元 素通常用小写英语字母a,b,c,…来表示;
2、元素与集合的关系 (1)属于:如果a是集合A的元素,就说a属于A,记作 a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A, 记作要注意“∈”的方向,不能把a∈A颠倒过来写.
问题:正偶数的集合怎么表示, 能否使用列举法?
{x R | x能被2整除,且大于0} 或{x R | x 2n, n N}
问题解决:用集合中元素的特征性 质来描述
2、描述法: 在集合I中,属于集合A的任意元素x都 具有性质p(x),而不属于集合A的元 素都不具有性质p(x),则性质p(x)叫做 集合A的一个特征性质,于是集合A 可以表示如下:
3.空集
(1)考虑方程x+1=x+2的解的全体构成的集合.显然这 个集合不含任何元素.
(2)一般地,我们把不含任何元素的集合叫做空集, 记作Ф
知识探究
任意一组对象是否都能组成一个集合?集合中的元 素有什么特征?
人教版高中数学必修一课件:1.1《集合》 (共23张PPT)
(2)互异性:
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为
。
4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;
ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为
。
4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;
ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c
集合的概念和表示法-PPT课件
2019/3/28
首页
上页
返回
下页
结束
铃
7
离散数学 3.1 集合的概念及表示法
二、集合的表示法
2、描述集合中元素的方法
1) 列举法 b、部分列举法:
列举集合的部分元素,其他元素可从列举的元
素 归纳出来 , 用省略号代替。 例如A表示“全体小写英文字母”的集合, 则 A={a, b, … , y, z} 注: 列举法仅适用于描述元素个数有限的集合 或 元素具有明显排列规律的集合。
2019/3/28
首页
上页
返回
下页
结束
铃
6
离散数学 3.1 集合的概念及表示法
二、集合的表示法
2、描述集合中元素的方法
1) 列举法 a、全部列举法: 以任意顺序写出集合的所有元素, 元素间用逗号 并将其放在花括号内。 隔开, 例如“所有小于5的正整数”, 这个集合的元素为 1, 2, 3, 4, 再没有别的元素了。 如果把这个集合命名为A, 就可记为 A={1, 2, 3, 4}
2019/3/28
首页
上页
返回
下页
结束
铃
3
离散数学 3.1 集合的概念及表示法
一、集合的基本概念
3、集合的分类
1) 有限集合 集合的元素个数是有限的。
2) 无限集合 集合的元素个数是无限的。
2019/3/28
首页
上页
返回
下页
结束
铃
4
离散数学 3.1 集合的概念及表示法
二、集合的表示法
1、符号表示法
2019/3/28
首页
上页
返回
下页
结束
铃
12
首页
上页
返回
下页
结束
铃
7
离散数学 3.1 集合的概念及表示法
二、集合的表示法
2、描述集合中元素的方法
1) 列举法 b、部分列举法:
列举集合的部分元素,其他元素可从列举的元
素 归纳出来 , 用省略号代替。 例如A表示“全体小写英文字母”的集合, 则 A={a, b, … , y, z} 注: 列举法仅适用于描述元素个数有限的集合 或 元素具有明显排列规律的集合。
2019/3/28
首页
上页
返回
下页
结束
铃
6
离散数学 3.1 集合的概念及表示法
二、集合的表示法
2、描述集合中元素的方法
1) 列举法 a、全部列举法: 以任意顺序写出集合的所有元素, 元素间用逗号 并将其放在花括号内。 隔开, 例如“所有小于5的正整数”, 这个集合的元素为 1, 2, 3, 4, 再没有别的元素了。 如果把这个集合命名为A, 就可记为 A={1, 2, 3, 4}
2019/3/28
首页
上页
返回
下页
结束
铃
3
离散数学 3.1 集合的概念及表示法
一、集合的基本概念
3、集合的分类
1) 有限集合 集合的元素个数是有限的。
2) 无限集合 集合的元素个数是无限的。
2019/3/28
首页
上页
返回
下页
结束
铃
4
离散数学 3.1 集合的概念及表示法
二、集合的表示法
1、符号表示法
2019/3/28
首页
上页
返回
下页
结束
铃
12
集合的概念ppt课件
04
差集的应用举例:在数据筛选中,可以使用差集运算找出满足某一条 件但不满足另一条件的记录。
补集及其运算
补集的定义:对于全集U 和它的一个子集A,由全 集U中所有不属于A的元 素组成的集合称为A的补 集,记作∁UA或~A。
补集的运算性质:满足德 摩根定律,即 ∁U(A∩B)=(∁UA)∪(∁UB) , ∁U(A∪B)=(∁UA)∩(∁UB) 。
集合的包含关系
01
集合包含的定义
对于两个集合A和B,如果集合A的每一个元素都是集合B的元素,则称
集合B包含集合A。
02
集合包含的性质
如果集合B包含集合A,则A是B的子集,即A⊆B。
03
集合包含的符号表示
B⊇A表示集合B包含集合A。
04
集合的应用
集合在数学中的应用
01
02
03
描述数学对象
集合论是数学的基础,用 于描述各种数学对象及其 性质,如数、点、线、面 等。
偏序集的概念
偏序集的定义
偏序集是一种具有部分顺序关系的集合,其中元素之间的比较不是完全的,而是部分的。 偏序关系通常表示为≤。
偏序集的性质
偏序集具有一些重要的性质,如自反性、反对称性和传递性。此外,偏序集还可以有最大 元、最小元、上界和下界等概念。
偏序集的应用
偏序集在数学、计算机科学、经济学等领域有着广泛的应用,如用于描述数据结构中的排 序问题、经济学中的偏好关系等。
THANKS FOR WATCHING
感谢您的观看
似,但要考虑隶属度的影响。
幂集的概念
幂集的定义
给定集合A,由A的所有 子集(包括空集和A本 身)组成的集合称为A 的幂集,记作P(A)。
幂集的性质
差集的应用举例:在数据筛选中,可以使用差集运算找出满足某一条 件但不满足另一条件的记录。
补集及其运算
补集的定义:对于全集U 和它的一个子集A,由全 集U中所有不属于A的元 素组成的集合称为A的补 集,记作∁UA或~A。
补集的运算性质:满足德 摩根定律,即 ∁U(A∩B)=(∁UA)∪(∁UB) , ∁U(A∪B)=(∁UA)∩(∁UB) 。
集合的包含关系
01
集合包含的定义
对于两个集合A和B,如果集合A的每一个元素都是集合B的元素,则称
集合B包含集合A。
02
集合包含的性质
如果集合B包含集合A,则A是B的子集,即A⊆B。
03
集合包含的符号表示
B⊇A表示集合B包含集合A。
04
集合的应用
集合在数学中的应用
01
02
03
描述数学对象
集合论是数学的基础,用 于描述各种数学对象及其 性质,如数、点、线、面 等。
偏序集的概念
偏序集的定义
偏序集是一种具有部分顺序关系的集合,其中元素之间的比较不是完全的,而是部分的。 偏序关系通常表示为≤。
偏序集的性质
偏序集具有一些重要的性质,如自反性、反对称性和传递性。此外,偏序集还可以有最大 元、最小元、上界和下界等概念。
偏序集的应用
偏序集在数学、计算机科学、经济学等领域有着广泛的应用,如用于描述数据结构中的排 序问题、经济学中的偏好关系等。
THANKS FOR WATCHING
感谢您的观看
似,但要考虑隶属度的影响。
幂集的概念
幂集的定义
给定集合A,由A的所有 子集(包括空集和A本 身)组成的集合称为A 的幂集,记作P(A)。
幂集的性质
集合的概念与表示方法ppt课件
③互异性,即同一集合中的元素是互不相同的.
能够确定的不同的对象所构成的整体叫做集合(简称集)。
练习1
1、下列说法中,正确的有______.(填序号)
2
①单词 book 的所有字母组成的集合的元素共有 4 个;
②集合 M 中有 3 个元素 a,b,c,其中 a,b,c 是△ABC 的三
边长,则△ABC不可能是等腰三角形;
5
∉
A
集合与元素的关系
集合与元素的关系:
①属于,如果 a 是集合 A 的元素,就说 a 属于集合 A,记作a∈A
;
②不属于,如果 a 不是集合 A 中的元素,就说 a 不属于集合 A,记
作 a∉A.
0
∉
Ф
集合的三大特性
集合三要素:
①确定性,即同一集合中的元素必须是确定的;
②无序性,即同一集合中的元素之间不考虑顺序;
4
6
习题:
能正确表示集合 M={x∈R|0≤x≤2}和集合 N={x∈R|x2-x=0}
关系的Venn 图是(B)。
总结
集合
THANK YOU
习题:
1、被 3 除余 2 的正整数集合;
解:(1)
{x|x=3n+2,n∈N}
2、平面直角坐标系中坐标轴上的点组成的集合.
(2)
{(x,y)|xy=0}
三、韦恩图:用平面上封闭曲线的内部代表集合,这种图称
为韦恩图,一般画成椭圆或矩形.
问题3 使用韦恩图表示中0-10之间的偶数集合。
0
10
2
8ቤተ መጻሕፍቲ ባይዱ
集合
集合的概念与表示方法
你眼中的
集合
你眼中的
集合
人教 高中数学必修第一册第一章《1.1集合的概念》课件(共17张ppt)
如:(1)小于5的答自案然:数{1组,成-的1}集合可表示为____. (2)方程x2-1=0的解集可表示为_{_x_∈__R_|_x_2-.1=0}
(4). Venn图
我们常常画一条封闭的曲线,用 它的内部表示一个集合.
例如,图1-1表示一个集合AA 图1-1
元素,称为空集,记为;
(4) 两个集合的元素若一样,则称它们相等。
4.几个常用数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
5.集合的几种表示法
(1).自然语言法
(2).列举法:适用对象:有限、有规律
取值范围.a≠-2 (互异性应用)
知识点2 元素与集合的关系
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2)
Q
(3) 0 N+ (4) (-2)0 N+ (5) 2 3 Q (6) 2 3 R
书本P5:1
温馨提示:分类讨论+检验
3.已知x2∈{1, 0,x},求实数x的值.
(3)无序性:集合中的元素是无
先后顺序的.
3.集合与元素的关系:
(1) 如果a是集合A的元素,就说a属于集 合A,记作a ∈ A;
如果a不是集合A的元素,就说a不属
于集合A,记作a A.
(2) 集合中的元素可以是数,点,式, 图,人,物……;
(3) 集合中的元素个数如果有限,称为有 限集;如果个数无限,称为无限集;如果没有
(5)小于10的所有自然数组成的集合; (6)1~20以内的所有素数组成的集合;
2、用描述法表示下列集合: (1)正偶数集; (2)被3除余2的正整数集合; (3)直角坐标平面内坐标轴上的点集.
(4). Venn图
我们常常画一条封闭的曲线,用 它的内部表示一个集合.
例如,图1-1表示一个集合AA 图1-1
元素,称为空集,记为;
(4) 两个集合的元素若一样,则称它们相等。
4.几个常用数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
5.集合的几种表示法
(1).自然语言法
(2).列举法:适用对象:有限、有规律
取值范围.a≠-2 (互异性应用)
知识点2 元素与集合的关系
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2)
Q
(3) 0 N+ (4) (-2)0 N+ (5) 2 3 Q (6) 2 3 R
书本P5:1
温馨提示:分类讨论+检验
3.已知x2∈{1, 0,x},求实数x的值.
(3)无序性:集合中的元素是无
先后顺序的.
3.集合与元素的关系:
(1) 如果a是集合A的元素,就说a属于集 合A,记作a ∈ A;
如果a不是集合A的元素,就说a不属
于集合A,记作a A.
(2) 集合中的元素可以是数,点,式, 图,人,物……;
(3) 集合中的元素个数如果有限,称为有 限集;如果个数无限,称为无限集;如果没有
(5)小于10的所有自然数组成的集合; (6)1~20以内的所有素数组成的集合;
2、用描述法表示下列集合: (1)正偶数集; (2)被3除余2的正整数集合; (3)直角坐标平面内坐标轴上的点集.
集合的概念精品PPT课件
Thank You
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
• 集合中的各个对象叫做这个集合的元素.
符号及关系表示
• 集合:A,B,C… • 集合的元素:a,b,c…
读作“a属于A”
• 若a是集合A的元素,记作 a A. 读作“a不属于A”
• 若a不是集合A的元素,记作 a A.
集合的元素的性质:
• 确定性:组成集合的元素,必须是能确定的, 不能模棱两可;
• 互异性:集合中的元素是互异的,不能重复出 现;
• 无序性:集合中的ຫໍສະໝຸດ 素没有一定的顺序(通常 用正常的顺序写出).
集合的分类:
• 按元素个数:
– 有限集:含有有限个元素的; – 无限集:含有无限个元素的集合; – 空集:不含任何元素的集合,记作 .
常用集合:
• 实数集R
– (正实数集R+ 、负实数集R- )
第一章 集 合
1.1.1 集合的概念
观察归纳 形成概念
(1)某职业学校电子电器专业全体学生构成的整体 (2)硬盘上存放在一个文件夹里的照片构成的整体 (3)所有能被2整除的数构成的整体 (4)平面直角坐标系中纵坐标为0的点构成的整体
归纳总结 概括定义
• 把能够确指的一些对象看作一个整体,这 个整体就叫做集合,简称集.
作
教材
P4 第3、4题
业
P9 习题1.1第1、2题
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则实数 a为( c )
(A) 2 (B)0或3 (C) 3 (D)0,2,3均可
(3)下列四个集合中,不同于另外三个的是:
A.﹛y︱y=2﹜
B. ﹛x=2﹜
C. ﹛2﹜
D. ﹛x︱x2-4x+4=0﹜
(4) 由实数x, -x, x2 , |x|, 3 x3 所组成的集合 中,最
多含有的元素的个数为( )
解析:判断一个元素是否在某个集合中,关键在于 弄清这个集合由哪些元素组成的.
集合的表示方法
问题 (1) 如何表示“地球上的四大洋”组成的集合?
(2) 如何表示“方程(x-1)(x+2)=0的所有实数根”组成的集 合? {太平洋,大西洋,印度洋,北冰洋} {1,-2}
把集合中的元素一一列举出来,并用花括号{}括起来表示
A.2 B.3 C.4
D.5
3.填空
x y 2 (1)方程组 x y 5 的解集用列举法表示
为_______;用描述法表示为 .
(2)集合{(x, y) | x y 6, x N, y N}
用列举法表示为
.
能力提高题
1. 用描述法表示下列集合 ①{1,4,7,10,13} ②{1/3,1/2,3/5,2/3,5/7}.
解: ①{x|x=3n-2, n ∈ N*且n≤5}
②
{x|x=
n
n
2
, n ∈ N*且n≤5}
2.用列举法表示下列集合:
(1)A=﹛x∈N︱1
6
x∈Z﹜
(2)
B=﹛1
6
x∈N
︱
x∈Z
﹜
3. 求集合{3 ,x , x2-2x}中,元素x应满足的条件。 4. 若-3 ∈ {a-3, 2a+1, a2+1},求实数a的值.
1.确定性 2.互异性 3.无序性
集合的表示方法
(1) 您能用自然语言描述集合{2,4,6,8}吗? 小于10的正偶数的集合
(2) 您能用列举法表示不等式x-7<3的解集吗? 不能一一列举
(请阅读课本P4例2前的内容)
{x R | x 10}
{x | x2 2 0}
﹨{ x | 10 x 20}
他的著作有:《G.康托尔全集》1卷及《康托尔-戴德金通信集》等。
康托尔是德国数学家,集合论的创始者。1845年3月3日生于圣彼得堡,1918年1 月6日病逝于哈雷。
康托尔11岁时移居德国,在德国读中学。1862年17岁时入瑞士苏黎世大学,翌年 入柏林大学,主修数学,1866年曾去格丁根学习一学期。1867年以数论方面的论文获 博士学位。1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教 授,1879年任教授。
1867年在库默尔指导下以数论方面的论文获博士学位。1869年在哈雷大学通过讲 师资格考试,后即在该大学任讲师,1872年任副教授,1879年任教授。
大学期间康托尔主修数论,但受外尔斯特拉斯的影响,对数学推导的严格性和 数学分析感兴趣。哈雷大学教授H.E.海涅鼓励他研究函数论。他于1870、1871 、1872年发表三篇关于三角级数的论文。在1872年的论文中提出了以基本序列 (即柯西序列)定义无理数的实数理论,并初步提出以高阶导出集的性质作为 对无穷集合的分类准则。函数论研究引起他进一步探索无穷集和超穷序数的兴 趣和要求。
在1891年发表的《集合论的一个根本问题》里,他证明了一集合的幂集的基数 较原集合的基数大,由此可知,没有包含一切集合的集合。他在1878年论文中曾将 连续统假设作为一个估计提出,其后在1883年论文里说即将有一严格证明,但他始 终未能给出。
19世纪70年代许多数学家只承认,有穷事物的发展过程是无穷尽的,无穷只是潜在的, 是就发展说的。他们不承认已经完成的、客观存在着的无穷整体,例如集合论里的各 种超穷集合。康托尔集合论肯定了作为完成整体的实无穷,从而遭到了一些数学家和 哲学家的批评与攻击,特别是克罗内克。康托尔曾在1883年的论文和以后的哲学论文 里对于无穷问题作了详尽的讨论。另一方面,康托尔创建集合论的工作开始时就得到 戴德金、外尔斯特拉斯和D.希尔伯特的鼓励和赞扬。20世纪以来集合论不断发展,已 成为数学的基础理论。
康托尔在1878年这篇论文里已明确提出“势”的概念(又称为基数)并且用“与自身 的真子集有一一对应”作为无穷集的特征。
康托尔认为,建立集合论重要的是把数的概念从有穷数扩充到无穷数。他在 1879~1884年发表的题为《关于无穷线性点集》论文6篇,其中5篇的内容大部分 为点集论,而第5篇很长,此篇论述序关系,提出了良序集、序数及数类的概念。 他定义了一个比一个大的超穷序数和超穷基数的无穷序列,并对无穷问题作了不少 的哲学讨论。在此文中他还提出了良序定理(每一集合都能被良序),但未给出证 明。
确定性:给定的集合,它的元素必须是确定
的,也就是说给定一个集合,那么任何一个元素在 不在这个集合中就确定了
互异性:一个给定的集合中的元素是互不相 同的,即集合中的元素不能相同。
无序性:集合中的元素是无先后顺序的,即
集合里的任何两个元素可以交换位置
这些性质都是从概念中得到的,概念是知识的生长点,思维的发源地.
集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的 兴趣。康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较 完善的集合理论,为现代数学的发展打下了坚实的基础。
在整数和实数两个不同的无穷集合之外,是否还有更大的无穷?从1874年初起, 康托尔开始考虑面上的点集和线上的点集有无一一对应。经过三年多的探索,1877
说,“我见到了,但我不相信。”这似乎抹煞了维数的区别。论文于1878年发 表后引起了很大的怀疑。P.D.G.杜布瓦-雷蒙和克罗内克都反对,而戴德金早在 1877年7月就看到,不同维数空间的点可以建立不连续的一一对应关系,而不能有连 续的一一对应。此问题直到1910年才由L.E.J.布劳威尔给出证明。
第一课时完
(第二课时)
2009.9.25
集合的表示方法
练习 (1) 用列举法表示下列集合 ① A { x N | 0 x 5} ② B { x | x2 5x 6 0}
(2) 用描述法表示下列集合 ① {1,-1} ② 大于3的全体偶数构成的集合.
自然语言主要用文字语言表述,而列举法和描述法是用符号语言表述. 列举法主要针对集合中元素个数较少的情况,而描述法主要适用于集合中的 元素个数无限或不宜一一列举的情况.
集合的方法叫做列举法.
(注意:元素与元素之间用逗号隔开)
例1 用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程 x2 x 的所有实数根组成的集合;
(3)由1~20以内的所有素数组成的集合.
一个集合中的元素 的书写一般不考虑 顺序(集合中元素 的无序性).
ห้องสมุดไป่ตู้
解:(1)A={0,1,2,3,4,5,6,7,8,9}. (2)B={0,1}. (3)C={2,3,5,7,11,13,17,19}.
其实,生活中有很多东西能构成集合,比如新华 字典里所有的汉字可以构成一个集合等等。大家 能不能再举一些生活中的实际例子呢?
集合的概念
一般地,我们把研究对象统称为元素,把一些 元素组成的总体叫做集合(简称为集).
思考:
(1)世界上最高的山能不能构成集合? (2)世界上的高山能不能构成集合? (3)由实数1、2、3、1组成的集合有几个元素? (4)由实数1、2、3、1组成的集合记为A,由实数3、 1、2、组成的集合记为B,这两个集合相等吗?
1872年康托尔在瑞士结识了J.W.R.戴德金,此后时常往来并通信讨论。 1873年他估计,虽然全体正有理数可以和正整数建立一一对应,但全体正实数 似乎不能。他在1874年的论文《关于一切实代数数的一个性质》中证明了他的 估计,并且指出一切实代数数和正整数可以建立一一对应,这就证明了超越数 是存在的而且有无穷多。在这篇论文中,他用一一对应关系作为对无穷集合分 类的准则。
判断以下元素的全体是否组成集合,并说明理由:
(1) 大于3小于11的偶数;
(2) 我国的小河流.
问题
如果用A表示高一(3)班学生组成的集合,a表示高 一(3)班的一位同学,b表示高一(4)班的一位同 学,那么a、b与集合A分别有什么关系?由此看出元 素与集合之间有什么关系?
元素与集合的关系
由于集合是一些确定对象的集体,因此可以看成 整体,通常用大写字母A,B,C等表示集合.而用 小写字母a,b,c等表示集合中的元素.
初中学习了哪些集合的实例
数集 自然数的集合,有理数的集合,不等式x-7<3 的解的集合…
点集 圆(到一个定点的距离等于定长的点的集合) 线段的垂直平分线(到一条线段的两个端点的距离 相等的点的集合),等等.
“请我们班所有的女生起立!”,咱们班所有的 女生能不能构成一个集合?
“请我们班身高在1.70米的男生起立!”,他们 能不能构成一个集合?
练习 P5 练习第2题
基础练习
1.填空题
⑴现有:①不大于 3 的正有理数.②我校高一年级 所有高个子的同学.③全部长方形.④全体无实根 的一元二次方程.四个条件中所指对象不能组 成集合的_②__.
⑵设集合A={-2,-1,0,1,2},B={x A时代数
式 x2 1 的值}.则B中的元素是_{3_,0_,-1_} _
(第一课时)
2009.9.25
集合的含义与表示
德国数学家,集合论的 创始者。1845年3月3 日生于圣彼得堡(今苏 联列宁格勒),1918 年1月6日病逝于哈雷。
了解康托尔
学习目标
1.了解集合的含义以及集合中元素的确定性、互异性与无序性. 2.掌握元素与集合之间的属于关系并能用用符号表示. 3.掌握常用数集及其专用符号,学会使用集合语言叙述数学问 题. 4.掌握集合的表示方法:自然语言、集合语言(列举法、描述 法),并能相互转换.能选择适当的方法表示集合.
(A) 2 (B)0或3 (C) 3 (D)0,2,3均可
(3)下列四个集合中,不同于另外三个的是:
A.﹛y︱y=2﹜
B. ﹛x=2﹜
C. ﹛2﹜
D. ﹛x︱x2-4x+4=0﹜
(4) 由实数x, -x, x2 , |x|, 3 x3 所组成的集合 中,最
多含有的元素的个数为( )
解析:判断一个元素是否在某个集合中,关键在于 弄清这个集合由哪些元素组成的.
集合的表示方法
问题 (1) 如何表示“地球上的四大洋”组成的集合?
(2) 如何表示“方程(x-1)(x+2)=0的所有实数根”组成的集 合? {太平洋,大西洋,印度洋,北冰洋} {1,-2}
把集合中的元素一一列举出来,并用花括号{}括起来表示
A.2 B.3 C.4
D.5
3.填空
x y 2 (1)方程组 x y 5 的解集用列举法表示
为_______;用描述法表示为 .
(2)集合{(x, y) | x y 6, x N, y N}
用列举法表示为
.
能力提高题
1. 用描述法表示下列集合 ①{1,4,7,10,13} ②{1/3,1/2,3/5,2/3,5/7}.
解: ①{x|x=3n-2, n ∈ N*且n≤5}
②
{x|x=
n
n
2
, n ∈ N*且n≤5}
2.用列举法表示下列集合:
(1)A=﹛x∈N︱1
6
x∈Z﹜
(2)
B=﹛1
6
x∈N
︱
x∈Z
﹜
3. 求集合{3 ,x , x2-2x}中,元素x应满足的条件。 4. 若-3 ∈ {a-3, 2a+1, a2+1},求实数a的值.
1.确定性 2.互异性 3.无序性
集合的表示方法
(1) 您能用自然语言描述集合{2,4,6,8}吗? 小于10的正偶数的集合
(2) 您能用列举法表示不等式x-7<3的解集吗? 不能一一列举
(请阅读课本P4例2前的内容)
{x R | x 10}
{x | x2 2 0}
﹨{ x | 10 x 20}
他的著作有:《G.康托尔全集》1卷及《康托尔-戴德金通信集》等。
康托尔是德国数学家,集合论的创始者。1845年3月3日生于圣彼得堡,1918年1 月6日病逝于哈雷。
康托尔11岁时移居德国,在德国读中学。1862年17岁时入瑞士苏黎世大学,翌年 入柏林大学,主修数学,1866年曾去格丁根学习一学期。1867年以数论方面的论文获 博士学位。1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教 授,1879年任教授。
1867年在库默尔指导下以数论方面的论文获博士学位。1869年在哈雷大学通过讲 师资格考试,后即在该大学任讲师,1872年任副教授,1879年任教授。
大学期间康托尔主修数论,但受外尔斯特拉斯的影响,对数学推导的严格性和 数学分析感兴趣。哈雷大学教授H.E.海涅鼓励他研究函数论。他于1870、1871 、1872年发表三篇关于三角级数的论文。在1872年的论文中提出了以基本序列 (即柯西序列)定义无理数的实数理论,并初步提出以高阶导出集的性质作为 对无穷集合的分类准则。函数论研究引起他进一步探索无穷集和超穷序数的兴 趣和要求。
在1891年发表的《集合论的一个根本问题》里,他证明了一集合的幂集的基数 较原集合的基数大,由此可知,没有包含一切集合的集合。他在1878年论文中曾将 连续统假设作为一个估计提出,其后在1883年论文里说即将有一严格证明,但他始 终未能给出。
19世纪70年代许多数学家只承认,有穷事物的发展过程是无穷尽的,无穷只是潜在的, 是就发展说的。他们不承认已经完成的、客观存在着的无穷整体,例如集合论里的各 种超穷集合。康托尔集合论肯定了作为完成整体的实无穷,从而遭到了一些数学家和 哲学家的批评与攻击,特别是克罗内克。康托尔曾在1883年的论文和以后的哲学论文 里对于无穷问题作了详尽的讨论。另一方面,康托尔创建集合论的工作开始时就得到 戴德金、外尔斯特拉斯和D.希尔伯特的鼓励和赞扬。20世纪以来集合论不断发展,已 成为数学的基础理论。
康托尔在1878年这篇论文里已明确提出“势”的概念(又称为基数)并且用“与自身 的真子集有一一对应”作为无穷集的特征。
康托尔认为,建立集合论重要的是把数的概念从有穷数扩充到无穷数。他在 1879~1884年发表的题为《关于无穷线性点集》论文6篇,其中5篇的内容大部分 为点集论,而第5篇很长,此篇论述序关系,提出了良序集、序数及数类的概念。 他定义了一个比一个大的超穷序数和超穷基数的无穷序列,并对无穷问题作了不少 的哲学讨论。在此文中他还提出了良序定理(每一集合都能被良序),但未给出证 明。
确定性:给定的集合,它的元素必须是确定
的,也就是说给定一个集合,那么任何一个元素在 不在这个集合中就确定了
互异性:一个给定的集合中的元素是互不相 同的,即集合中的元素不能相同。
无序性:集合中的元素是无先后顺序的,即
集合里的任何两个元素可以交换位置
这些性质都是从概念中得到的,概念是知识的生长点,思维的发源地.
集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的 兴趣。康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较 完善的集合理论,为现代数学的发展打下了坚实的基础。
在整数和实数两个不同的无穷集合之外,是否还有更大的无穷?从1874年初起, 康托尔开始考虑面上的点集和线上的点集有无一一对应。经过三年多的探索,1877
说,“我见到了,但我不相信。”这似乎抹煞了维数的区别。论文于1878年发 表后引起了很大的怀疑。P.D.G.杜布瓦-雷蒙和克罗内克都反对,而戴德金早在 1877年7月就看到,不同维数空间的点可以建立不连续的一一对应关系,而不能有连 续的一一对应。此问题直到1910年才由L.E.J.布劳威尔给出证明。
第一课时完
(第二课时)
2009.9.25
集合的表示方法
练习 (1) 用列举法表示下列集合 ① A { x N | 0 x 5} ② B { x | x2 5x 6 0}
(2) 用描述法表示下列集合 ① {1,-1} ② 大于3的全体偶数构成的集合.
自然语言主要用文字语言表述,而列举法和描述法是用符号语言表述. 列举法主要针对集合中元素个数较少的情况,而描述法主要适用于集合中的 元素个数无限或不宜一一列举的情况.
集合的方法叫做列举法.
(注意:元素与元素之间用逗号隔开)
例1 用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程 x2 x 的所有实数根组成的集合;
(3)由1~20以内的所有素数组成的集合.
一个集合中的元素 的书写一般不考虑 顺序(集合中元素 的无序性).
ห้องสมุดไป่ตู้
解:(1)A={0,1,2,3,4,5,6,7,8,9}. (2)B={0,1}. (3)C={2,3,5,7,11,13,17,19}.
其实,生活中有很多东西能构成集合,比如新华 字典里所有的汉字可以构成一个集合等等。大家 能不能再举一些生活中的实际例子呢?
集合的概念
一般地,我们把研究对象统称为元素,把一些 元素组成的总体叫做集合(简称为集).
思考:
(1)世界上最高的山能不能构成集合? (2)世界上的高山能不能构成集合? (3)由实数1、2、3、1组成的集合有几个元素? (4)由实数1、2、3、1组成的集合记为A,由实数3、 1、2、组成的集合记为B,这两个集合相等吗?
1872年康托尔在瑞士结识了J.W.R.戴德金,此后时常往来并通信讨论。 1873年他估计,虽然全体正有理数可以和正整数建立一一对应,但全体正实数 似乎不能。他在1874年的论文《关于一切实代数数的一个性质》中证明了他的 估计,并且指出一切实代数数和正整数可以建立一一对应,这就证明了超越数 是存在的而且有无穷多。在这篇论文中,他用一一对应关系作为对无穷集合分 类的准则。
判断以下元素的全体是否组成集合,并说明理由:
(1) 大于3小于11的偶数;
(2) 我国的小河流.
问题
如果用A表示高一(3)班学生组成的集合,a表示高 一(3)班的一位同学,b表示高一(4)班的一位同 学,那么a、b与集合A分别有什么关系?由此看出元 素与集合之间有什么关系?
元素与集合的关系
由于集合是一些确定对象的集体,因此可以看成 整体,通常用大写字母A,B,C等表示集合.而用 小写字母a,b,c等表示集合中的元素.
初中学习了哪些集合的实例
数集 自然数的集合,有理数的集合,不等式x-7<3 的解的集合…
点集 圆(到一个定点的距离等于定长的点的集合) 线段的垂直平分线(到一条线段的两个端点的距离 相等的点的集合),等等.
“请我们班所有的女生起立!”,咱们班所有的 女生能不能构成一个集合?
“请我们班身高在1.70米的男生起立!”,他们 能不能构成一个集合?
练习 P5 练习第2题
基础练习
1.填空题
⑴现有:①不大于 3 的正有理数.②我校高一年级 所有高个子的同学.③全部长方形.④全体无实根 的一元二次方程.四个条件中所指对象不能组 成集合的_②__.
⑵设集合A={-2,-1,0,1,2},B={x A时代数
式 x2 1 的值}.则B中的元素是_{3_,0_,-1_} _
(第一课时)
2009.9.25
集合的含义与表示
德国数学家,集合论的 创始者。1845年3月3 日生于圣彼得堡(今苏 联列宁格勒),1918 年1月6日病逝于哈雷。
了解康托尔
学习目标
1.了解集合的含义以及集合中元素的确定性、互异性与无序性. 2.掌握元素与集合之间的属于关系并能用用符号表示. 3.掌握常用数集及其专用符号,学会使用集合语言叙述数学问 题. 4.掌握集合的表示方法:自然语言、集合语言(列举法、描述 法),并能相互转换.能选择适当的方法表示集合.