医学统计学(方差分析).ppt

合集下载

医学统计学 -第08章 方差分析

医学统计学  -第08章  方差分析

第一节 方差分析的基本思想
看一个例子
例8-1 为研究钙离子对体重的影响作用,某研究者将36 只肥胖模型大白鼠随机分为三组,每组12只,分别给 予高脂正常剂量钙(0.5%)、高脂高剂量钙(1.0%)和高 脂高剂量钙(1.5%)三种不同的饲料,喂养9周,测其 喂养前后体重的差值。问三组不同喂养方式下大白鼠 体重改变是否不同?
• 三种喂养方式体重改变的平均值各不相同,这种变异 称为组间变异

是组内均值
X
与总均值
i
X
之差的平方和
360
340
组间变异反映了:
320
三种喂养方式的差异(影响), 300
同时也包含了随机误差。
280
260
240
k ni
220
SS组间
(Xi X )2
200
i1 j
180
X甲
X
X乙
X丙



3、组内变异(SS组内,variation within groups)
0.05
2、根据公式计算SS、MS及F值,列于方差分析表内(计 算过程省略)
变异来源 总变异 组间 组内(误差)
完全随机设计的方差分析表
平方和 SS 自由度
均方MS
47758.32
35
31291.67
2
15645.83
16466.65
33
498.99
F值
31.36
3、确定P值,作出判断
分子自由度=k-1=2,分母自由度=n-k=33,查F 界值表(方差分析用)
表 8-1 三种不同喂养方式下大白鼠体重喂养前后差值(g)
正常钙(0.5%) 高剂量钙(1.0%) 高剂量钙(1.5%)

图文《医学统计学》PPT课件

图文《医学统计学》PPT课件
步骤
提出假设、构造检验统计量、确定拒绝域、计算p值、做出决策。
t检验和方差分析
t检验
用于比较两组均数是否有差别,包括单样本t检验、配对样本t检验和独立样本t检验。
方差分析
用于比较多组均数是否有差别,包括单因素方差分析和多因素方差分析。
卡方检验和秩和检验
卡方检验
用于推断两个或多个总体率或构成比之 间有无差别,多用于分类资料的统计分 析。
特点
以医学为背景,以数据为基础, 运用统计学方法揭示医学现象的 数量特征和规律。
发展历程及现状
发展历程
医学统计学经历了从描述性统计到推 断性统计,再到现代多元统计分析的 发展历程。
现状
随着计算机技术的发展和大数据时代 的到来,医学统计学在医学研究和实 践中发挥着越来越重要的作用。
研究对象与任务
研究对象
样本量
样本中所包含的个体数目 。
随机抽样与非随机抽样
随机抽样
按照随机原则从总体中抽取样本的方法,保证每个个体被抽 中的机会相等。
非随机抽样
根据研究者的主观意愿或方便性选择样本的方法,可能导致 选择偏倚。
变量与数据类型
变量
研究中观察或测量的特征或属性。
数据类型
根据变量的性质可分为定量数据和定性数据。定量数据包括连续型数据和离散型 数据,定性数据包括分类数据和顺序数据。
医学统计学的研究对象包括生物医学数据、临床医学数据、公共卫生数据等。
任务
医学统计学的任务包括描述医学数据的分布特征、比较不同组别间的差异、分 析影响医学现象的因素、预测医学现象的发展趋势等。
02
医学统计学基本概念
总体与样本
01
02
03
总体

医学统计学课件单因素方差分析-SPSS

医学统计学课件单因素方差分析-SPSS

局限性
对数据前提假设的依赖
单因素方差分析的结果受数据前提假设的影响较大,如果数据不满足 前提假设,分析结果可能会出现偏差。
无法处理非参数数据
单因素方差分析主要适用于参数数据,对于非参数数据,可能需要采 用其他统计方法进行处理。
对极端值和离群点的敏感性
单因素方差分析对极端值和离群点的敏感性较高,可能会影响到结果 的稳定性。
详细描述
选取一定数量的高血压患者,等量随机分为四组,分别给予四种不同的药物治疗。在一定时间后,比较各组患者 血压的变化情况,利用单因素方差分析比较各组之间的差异。
实例二:不同运动方式对血脂水平的影响
总结词
研究不同运动方式对血脂水平的影响,有助于指导人们选择合适的运动方式来降低血脂水平,预防心 血管疾病。
F检验
F检验用于检验组间方差是否显著,如 果F检验的P值小于0.05,则说明各组 之间的方差存在显著差异。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
单因素方差分析的应用 实例
实例一:不同药物治疗高血压的效果比较
总结词
通过比较不同药物治疗高血压的效果,可以评估各种药物对血压的控制程度,为临床医生制定治疗方案提供依据。
详细描述
选取一定数量的志愿者,等量随机分为四组,分别进行四种不同的运动方式。在一定时间后,检测各 组志愿者血脂水平的变化情况,利用单因素方差分析比较各组之间的差异。
实例三:不同产地茶叶中营养成分的含量比较
总结词
比较不同产地茶叶中营养成分的含量,有助于了解不同产地茶叶的特点和品质,为消费 者提供参考。
REPORT
CATALOG
DAARY

医学统计学(课件)方差分析

医学统计学(课件)方差分析

要点二
原理
通过将因变量和协变量之间的关系线 性化,进行线性回归分析,并控制其 他因素的影响。
要点三
应用
医学研究中用于研究疾病与基因型、 环境因素之间的关系,社会科学中用 于研究收入和教育水平的关系等。
多重比较方法
01
定义
多重比较方法是方差分析的一种补充 方法,用于比较多个组之间的差异。
02
原理
通过比较每个组与对照组或其他组之 间的差异,推断各组之间的差异是否 具有统计学显著性。
重复测量方差分析
定义
重复测量方差分析是方差分析的另一种拓展,用于比较多次测量或重复观测的差异。
原理
通过将多次测量视为不同的观察对象,对测量误差进行控制和调整。
应用
医学研究中常用于比较不同治疗方案的效果,以及社会科学中研究时间序列数据的变化等。
协方差分析
要点一
定义
协方差分析是方差分析与其他统计方 法的结合,通过控制一个或多个协变 量对因变量的影响。
偏度检验
检查数据分布的偏斜程度。
峰度检验
检查数据分布的峰态。
正态性检验
通过图形和统计量判断数据是否符合正态分布。
方差齐性检验
• 方差齐性检验:通过Levene's Test或Bartlett's Test检验各组方差是否相等。
主效应检验
将数据按照分组变量进行分组,并 对每个分组变量的平均值进行计算 。
方差分析还可以与其他统计方法结合 使用,例如与回归分析结合可进行协 方差分析和混合线性模型分析等。
02
方差分析基本原理
数学模型
数学模型的假设
假定每个总体均数之间有差异,且每个总体均数与模型中其他变量的关系已知。

医学统计学PPT课件

医学统计学PPT课件

验结果,每次都有如此好的吻合. 的概率约10万分之4。 6
绪论 Introduction
讲授内容:
一、医学统计学的意义
二、统计学中的几个基本概念
三、统计资料的类型
四、医学统计工作的基本步骤
五、学习医学统计学应注意的问题
.
7
一、医学统计学的意义
• 1.统计学(statistics):应用数学的原理与 方法,研究数据的搜集、整理与分析的科 学,对不确定性数据作出科学的推断。
例如:某药治疗高血压患者30名
样本含量(n)为30
.
21
二、统计学中的几个基本概念
• 4、参数(parameter)和统计量(statistic)
• (1)参数(parameter):根据总体个体 值统 计计算出来的描述总体的特征量。
• 一般用希腊字母表示
• (2)、统计量(statistic):根据样本个体值统 计计算出来的描述样本的特征量。
(120.2cm,118.6cm,121.8cm,…)
研究某人群性别构成 变量值:男、女。
.
15
二、统计学中的几个基本概念
• 2、同质(homogeneity)和变异 (variation)
• (1)、同质(homogeneity):根据研究 目的给研究单位确定的相同性质。
• 研究长沙市2004年7岁 男孩身高的正常值范围?
.
27
二、统计学中的几个基本概念
• (3)、抽样误差(sampling error):由 于抽样所造成的样本统计量与总体参数 的差别。
• 例如:=120.0cm
n=100

N=5万 → X =118.6cm
• 特点:1)不可避免性

研究生医学统计学-单向方差分析课件

研究生医学统计学-单向方差分析课件
模型构建
在单向方差分析中,我们将数据分为k个组别,每个组别有 n个观测值,通过构建线性模型来描述组间和组内的变异。
模型公式
线性模型的一般形式为 Y=Xβ+ε,其中Y是观测向量,X是 设计矩阵,β是未知参数向量,ε是随机误差向量。
方差分析的统计推断
参数估计
通过最小二乘法对方差分析模 型进行参数估计,得到未知参
其他软件工具
Stata
Stata是一款功能强大的统计软件,可以进行单向方 差分析等统计分析。
SAS
SAS是一款商业统计软件,也支持单向方差分析等统 计分析。
R语言
R语言是一款开源的统计软件,可以通过安装相关包 来进行单向方差分析等统计分析。
感谢您的观看
THANKS
04
单向方差分析的注意事项与 局限性
注意事项
确保数据正态分布
在进行单向方差分析之前,需 要检验数据是否符合正态分布
,以避免统计结果的偏倚。
考虑样本量大小
样本量的大小会影响单向方差 分析的准确性,应确保有足够 的样本量以获得可靠的统计结 果。
控制混杂因素
在实验设计阶段,应尽量控制 混杂因素对实验结果的影响, 以提高单向方差分析的可靠性 。
数β的估计值。
假设检验
利用统计量进行假设检验, 判断各组之间是否存在显著
差异。
统计量计算
常用的统计量包括F统计量和 T统计量,F统计量用于检验 组间效应是否存在显著差异 ,T统计量用于检验各组均值 是否存在显著差异。
方差分析的假设检验
1 2
假设内容
方差分析的假设包括总体正态性、方差齐性和独 立性。
各组数据应符合正态分布,即 数据应呈现常态分布;
总结词单向方差分析的前提假设括 数据独立性、正态分布和方差 齐性。

第章方差分析(页)PPT课件

第章方差分析(页)PPT课件

1. 进行两个或两个以上样本均数的比较; 2. 可以同时分析一个、两个或多个因素对试验
结果的作用和影响;
3. 分析多个因素的独立作用及多个因素之间的 交互作用;
4. 进行两个或多个样本的方差齐性检验等。 5. 应用条件:方差分析对分析数据的要求及条
件比较严格,即要求各样本为随机样本,各 样本来自正态总体,各样本所代表的总体方 差齐性或相等。
简历
返回总目录 返回章目录 .
第2页
结束
《医学统计学》目录
第1章 绪论 第2章 定量资料的统计描述 第3章 总体均数的区间估计和假设检验 第4章 方差分析 第5章 定性资料的统计描述 第6章 总体率的区间估计和假设检验 第7章 二项分布与Poisson分布 第8章 秩和检验 第9章 直线相关与回归 第10章 实验设计 第11章 调查设计 第12章 统计表与统计图
简历
返回总目录 返回章目录 .
第16页
结束
2. 计算各部分变异 :
(1)单因素方差分析中,可以分出组间变异 (SS组间)和组内变异(SS组内)两大部分;
(2)双因素方差分析中,可以分出处理组变 异(SS处理),区组变异(SS区组)或称为 配伍组变异(SS配伍)及误差变异(SS误差) 三大部分。
简历
简历
返回总目录 返回章目录 .
第10页
结束
单因素方差分析模式表
简历
返回总目录 返回章目录 .
第11页
结束
6. 各种变异除以相应的自由度,称为均方,用MS 表示,也就是方差。当H0为真时,组间均方与组 内均方相差不大,两者比值F值约接近于1。 即 F=组间均方/组内均方≈1。
7. 间当均H方0不增成大立,时此,时处,理F因>素>产1,生当了大作于用等,于使F得临组界 值数时 不, 全则 相等P≤。0.05。可认为H0不成立,各样本均

医学统计学(方差分析)

医学统计学(方差分析)

评估经济政策的 效果
研究设计:用于 设计实验和研究 方法
数据分析:用于 分析实验数据和 结果
假设检验:用于 检验假设和结论
结果解释:用于 解释实验结果和 结论
PRT FIVE
可以检验多个自变量对因变 量的影响
适用于多个样本均值比较
可以控制其他自变量的影响
可以检验自变量与因变量之 间的关系是否显著
确定研究目的和假设
选择合适的统计方法
收集数据并进行预处 理
对数据进行分组和分 类
计算方差和标准差
进行方差分析并解释 结果
添加标题 添加标题 添加标题 添加标题 添加标题 添加标题
确定研究设计:选择合适的方差分析类型如单因素方差分析、双因素方差分析或多因素方差分析 收集数据:收集实验或调查数据包括自变量和因变量 计算均值和方差:计算每个组的均值和方差以及总体均值和总体方差 计算F值:使用F分布表计算F值用于检验假设 确定P值:计算P值用于判断假设是否成立 得出结论:根据P值和F值得出结论如假设成立或不成立以及各组之间的差异是否显著。
异常值:需要检 查数据中是否存 在异常值如果存 在需要处理或剔 除
样本量:样本量 需要足够大否则 方差分析的结果 可能不准确
样本量:应足够大 以保证统计结果的 可靠性
分组数:应适中过 多或过少都会影响 结果的准确性
样本量与分组数的 关系:应根据研究 目的和实际情况进 行选择
样本量与分组数的 选择原则:应遵循 统计学原理和研究 设计要求
识别异常值:通过统计方法或经验判断识别异常值 处理方法:删除、替换或保留异常值根据实际情况选择合适的处理方法 影响因素:异常值可能受到样本量、测量误差等因素的影响
结果解释:异常值对分析结果的影响需要谨慎对待避免过度解读或忽视其存在

医学统计学第十二章重复测量设计资料的方差分析PPT课件

医学统计学第十二章重复测量设计资料的方差分析PPT课件

医学统计学
8
表11-7 A,B两药联合运用的镇痛时间(min)
A 药物 剂量
1.0 mg
B 药物剂量
5g
1 5g
3g0
105
115
75
80
105
95
65
80
85
75
2.5 mg
115
80
125
135
130
120
90
150
5.0 mg
10.08.2020
85 120 125
医学统计学
65 120 100
前后测量设计不能同期观察试验结果,虽
然可以在前后测量之间安排处理,但本质上比
较的是前后差别,推论处理是否有效是有条件
的,即假定测量时间对观察结果没有影响。
10.08.2020
医学统计学
18
2. 配对 t 检验要求同一对子的两个实 验单位的观察结果分别与差值相互独立, 差值服从正态分布。
18 6983.333 387.963
10.08.2020
医学统计学
10
第十二章
重复测量设计的方差分析
ANOVA of Repeated Measurement Data
10.08.2020
医学统计学
11
Content
• Data characteristic • Analysis of two factors and two levels • Analysis of two factors and several levels • Familiar errors
16 14 10 12 20 18 18 16 18 18 1 6 .0 3 .1 316

医学统计学:04 方差分析

医学统计学:04 方差分析

1.4 f( F)
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0
1
F 分布曲线
1 1, 2 5
1 5, 2 5
1 10,2 10
2F
3
4
F 界值表
附表4 F界值表(方差分析用,单侧界值) 上行:P=0.05 下行:P=0.01
分母自由度
υ2
1
161 1
4052
18.51 2
98.49
4.21 27
• 随机区组设计又称随机单位组设计、配伍组设计,也叫双因 素方差分析(two--way ANOVA)。是配对设计的扩展。
具体做法:
① 将受试对象按性质(如性别、年龄、病情等) (这些性质是
非处理因素,可能影响试验结果)相同或相近者组成m个单位 组(配伍组),每个单位组中有k个受试对象,分别随机地分 配到k个处理组。
2
7
33.4
18
2
8
38.3
19
2
9
38.4
20
2
10
39.8
21
3
1
32.9
22
3
2
37.9
23
3
3
30.5
24
3
4
31.1
25
3
5
34.7
26
3
6
37.6
27
3
7
40.2
28
3
8
38.1
29
3
9
32.4
30
3
10
35.6
35.51667
(Xij X )2

【医学统计学】方差分析(ANOVA)PPT

【医学统计学】方差分析(ANOVA)PPT

P
总 组间 组内(误差)
54.4522 58 8.6054 2 4.30275.2555 0.0081
45.8468 56 0.8187
F 分布
➢方差比的分布
F

MSBetween MSWithin
~ F(1 , 2 )
F 分布
1.0
1=1, 2=10
0.8
0.6
1=5, 2=10
0.4
SStotal
2
X ij X
total= N-1
59
2
SST Xij 1.334 54.4522
j1
组间变异—— SS组间
▪ Sum of squares between groups
X1
X2
X3
X
n1( X1 X )2 n2( X2 X )2 n3( X3 X )2
➢ 随机的含义:机会均等 不可预测
❖因素 (factor)
所要检验的对象:治疗方案
❖ 水平(level)
因素的具体表现:方案A、方案B、方案C
❖ 试验(Trial)
单因素三水平的试验
基本步骤
➢建立检验假设,确定检验水准 ➢计算检验统计量(列方差分析表) ➢计算 P 值 ➢结论
建立假设,确定检验水准
多重比较(multiple comparison)
▪ 多组间的两两比较为什么不能用 t 检验?
进行一次假设检验,犯第一类类错误的概率:
进行多次(k)假设检验,至少犯一次第一类错误的概 率:
1-(1-)k
组数为3, k=3, 1-(1-0.05)k=0.1426 组数为4, k=6, 1-(1-0.05)k=0.2649 组数为5, k=10, 1-(1-0.05)k=0.4013

【医学统计学PPT】 多因素试验资料的方差分析析因设计的方差分析

【医学统计学PPT】 多因素试验资料的方差分析析因设计的方差分析
多因素试验资料的方差分析 析因设计的方差分析
多因素实验资料的方差分析
• 多因素实验:安排2个及以上处理因素的实验 • 处理因素:研究者根据研究目的施加于受试对象,
在实验中需要观察并阐明其效应的因素。如比较三 种抗癌药物对小白鼠肉瘤的抑瘤效果,处理因素是 抗癌药物,能控制的非处理因素可能是小鼠体重。
12 20.25
用甲药
不用乙药
用乙药
20
46
12
52
10
39
9
47
2
44
17
38
14
46
15
33
12.38
43.13
2×2析因设计因素和水平的组合
乙药
不用 用
甲药
不用 8.25
用 12.38
20.25 43.13
甲药 单独效应
4.13 22.88
乙 药 12.00 单独效应
30.75
甲药的主效应=(22.88+4.13)/2=13.51 乙药的主效应=(30.75+12.00)/2=21.37 交互作用=(22.88-4.13)/2=(30.75-12.00)/2=9.37
Des criptive Statis tics
Dependent Var iable: 通 过 率
缝合法 外 膜 缝合
束 膜 缝合
Total
时间 1个 月 2个 月 Total 1个 月 2个 月 Total 1个 月 2个 月 Total
Mean 24.00 44.00 34.00 28.00 52.00 40.00 26.00 48.00 37.00
9
21
20
46
11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常取0.05,区分大小概率事件的标准。 计算统计量F:根据资料的性质选择不同的统计方
法。注意都是在H0成立的条件下进行计算。 计算概率值P:P的含义。 做出推论:统计学结论和专业结论。
四组不同摄入方式人的血浆游离吗啡水平
静脉点滴 肌肉注射 皮下注射 口服
12
12
10
16
7
15
8
9
SNK-q检验法)
误差
检验统计量
q检验界值表见附表10,它有两个自由度,一个 是m(k),m指将方差分析中的几组样本均数按 从小到大顺序排列后要比较的A、B两组所包含的 组数(包含A、B两组本身);另一个是ν=νe。 常用于多个样本均数间每两个均数的比较。
例(续例3)对三个人群的载脂蛋白作两两比较。
参数? ( 、、)
随机抽样
统计量 (x、s、p)
总体
(一锅)
样本
(一勺)
统计推断
参数估计 假设检验
第6章
均方分析,变异数分 析,F 检验(由英国著名
统计学家R.A.Fisher推导
出来的),是对变异的 来源及大小进行分析 的一种统计方法。
教学目的与要求
掌握:
1、方差分析的基本思想 2、方差分析前提条件 3、多重比较 4、重复测量资料方差分析
单因素方差分析
结合上题理解:方差分析的基本思想
将全部观察值总的离均差平方和( SS总)及自
由度( 总)分解为两个或多个部分
除随机误差外,其余每个部分的变异可由某个 因素的作用加以解释
通过比较不同来源变异的均方(MS),借助F 分布做出统计推断,从而了解该因素对观察指 标有无影响。
存在问题
方差分析结果提供了各组均数间差别的总的信 息,但尚未提供各组间差别的具体信息,即尚 未指出哪几个组均数间的差别具有或不具有统 计学意义。
(3)列出两两均数比较的q检验计算表
从p值一栏中可以推断出结论,即IGT异常(1)与正常人 (3)的载脂蛋白有差别, 糖尿病患者(2)与正常人(3)的载 脂蛋白有差别。
二、LSD- t 检验
由Fisher提出,称为最小显著性差异法。 在H0:μi=μj假设下,t统计量检验μi与μj是否相同。
为了得到这方面的信息,可进行多个样本间的 两两比较。
第二节 多个样本均数间的两两比较 (又称多重比较)
多重比较即多个样本均数间的两两比较,由 于涉及的对比组数大于2,若仍用t 检验作每两个 对比组比较的结论,会使犯第一类错误的概率α 增大,即可能把本来无差别的两个总体均数判为 有差别。
4个样本均数间的比较
(3)查方差分析F界值表8确定P值: F 0.05(2,30) =3.32 ; F 0.01(2,30) =5.39
组间 组内
(4) 作出推断结论 按α=0.05水平拒绝H0,接受H1,认为三种人载脂 蛋白的总体均数不同。
完整书写方差分析的过程
建立假设,确定显著性水平: H0 :3种载脂蛋白的总体均数相等 1 = 2 = 3 H1 :3种载脂蛋白的总体均数不相等或不全相等 H1与H0相反,如果H0被否决,则H1成立。
根据资料的性质选择不同的统计方法。注意都是在H0成 立的条件下进行计算。
计算概率值P:P的含义。
做出推论:统计学结论和专业结论。
单因素方差分析
方差分析表 (练习,完成该表。例题,写在黑板上)
变异来源 SS
MS
F
P
总变异 148
19-1
组间变异 57
4-1
组内变异
19-4
F0.05(3,15)=3.29 F与它所对应的P值成反比
SS总 总 MS总
SS组内 组内 MS组内
三者之间的关系:
SS总= SS组内+ SS组间 总= 组内+ 组间
SS组间 组间 MS组间
统计量F 的计算及其意义
F=MS组间/MS组内 自由度: 组间=组数-1
组内=N-组数
通过这个公式计算出统计量F,查表求
出对应的P值,与进行比较,以确定是否
为小概率事件。
了解:
1、两因素方差分析
教学内容提要
重点讲解:
方差分析的基本思想 完全随机设计的单因素方差分析 多个样本均数间的多重比较
介绍:方差分析的原理与条件
与前面讲过的假设检验相同的是:
不同的是:方差分析用于多个均数的比较。
t检验是用 t值进行假设检验,方差分析则用 F值进行假设检验
方差分析的任务:统计量F的计算 F=MS1/MS2
SS总=
及N来反映,总自由度 νT=N-1。
2个组各组内部血磷值也不等,这种变异称为 组内变异,其大小可用2组组内离均差平方和
k nj
SS组内=
(xij xi )2 =
(ni 1)si2
i 1 j 1
及各组例数ni来反映,自由度ν组内=N-k(k是 组数),它反映了随机误差。
2组样本均数也不等,这种变异称为组间变异, 反映了克山病对血磷值的影响和随机误差
问题:1、分析问题,选择合适的统计方法 2、如何整理资料、输入计算机
列举存在的变异及意义
全部的30个实验数据之间大小不等,存在变异, 总变异。
各个组间存在变异:反映处理因素之间的作用, 以及随机误差。
各个组内个体间数据不同:反映了观察值的随 机误差。
各种变异的表示方法
各种变异的表示方法
组间变异(between groups variation):
k
SS组间=
ni (xi x总)2
i 1
v组间=k-1
三者关系
x SS总
( x)2
ij
ij
SS总=SS组间+SS组内 v总=ν组间+ν组内
直观意义
SS组间
检验统计量
F
MS组间 MS组内
(k 1) SS组内
(N k)
F统计量具2个自由度: v1, v2
对不满足正态性和方差齐性的资料:①可通过数据变换, 使满足方差分析的应用条件。②可用非参数检验法,如 秩和检验。③可采用近似检验,如Tamhane's T2, Dunnett's T3,Games-Howell,Dunnett's C等方法。
一、q检验(又称Student-Newman-Keuls法,简称
各种符号的意义
xij第i 个组的第j 个观察值 i=1,2,…k j=1,2,…ni ni第i 个处理组的例数 ∑ni=N xi = x=
(Σx)2
(1)建立假设和确定检验水准 H0: 三种人载脂蛋白的总体均数相等, μ1=μ2=μ3 H1: 三组总体均数不相等或不全等 α=0.05 (2)计算
t
Xi X j
,(df=dfe) (6-9)
S
2 e
(1
/
ni
1/
nj
)
可查统计附表7确定概率P的大小。 常用于多个样本均数间每两个均数的比较。
三、 Dunnett-t检验
实验组 对照组
可查统计附表9确定概率P的大小。 常用于多个实验组与一个对照组均数
间的两两比较。
四、Bonferroni-t检验 调整检验水准法

Bonferron t=
S
2 e
Xi (1 /
ni
Xj 1
/
n
j
(6-12)
)
假设比较次数为m,则=b/m作为每
次比较的水平。
例题
对小白鼠喂以A、B、C三种不同的营养素,了 解不同营养素的增重效果。以窝别作为区组特 征,以消除遗传因素对体重增长的影响。现将 同系同体重的24只小白鼠分为8个区组,每组 3只。3周后测量增重结果,结果如下表,
方差分析的基本概念
方差分析的几个概念和符号
什么是方差? 离均差 离均差之和 离均差平方和(SS) 方差(2 S2 )也叫均方(MS) 标准差:S 自由度: 关系: MS= SS/
方差分析的基本概念
7
方差分析的几个符号
xij表示第i组第j个观察值
xi.表示第i组的均数(=
1
) xij ni j
(1-0.05)3=0.857
四均数比较作6次 (1-0.05)6=0.735 五均数比较作10次 (1-0.05)10=0.599 六均数比较作15次 (1-0.05)15=0.463 鉴于以上的原因,对多组均数的比较问题
我们采用方差分析
二、单因素方差分析的基本思想
例1 某克山病区测得11例克山病患者与13名健康 人的血磷值(mmol/L)如下,问该地急性克 山病患者与健康人的血磷值是否不同?
患者x1:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11
健康人x2:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87
24名患者与健康人的血磷值大小不等,称这种 变异为总变异。可以用总离均差平方和
① 不受比较的组数限制。 ② 可同时分析多个因素的作用。 ③ 可分析因素间的交互作用。
四、方差分析的应用条件
① 各样本是相互独立的随机样本 ② 各样本来自正态总体 ③ 各组总体方差相等,即方差齐
【例题1】
某社区随机抽取糖尿病患者、IGT异常和正 常人共30人进行载脂蛋白测定,结果如下, 问3种人的载脂蛋白有无差别?
F
MS组间 MS组内
=11
H
成立时
0
H1成立时
如果两组样本来自同一总体,即克山病患者与 健康人血磷值相同,则理论上F应等于1,因为 两种变异都只反映随机误差。由于抽样误差的 影响,F值未必是1,但应在1附近。若F较小, 我们断定2组均数相同,或者说来自同一总体, F较大,推断不是来自同一总体。
相关文档
最新文档