数学必修一第四章知识点总结

合集下载

数学必修一第四章总结

数学必修一第四章总结

数学必修一第四章总结数学必修一第四章主要介绍了二次函数的相关知识,包括二次函数的定义、图像和性质、二次函数的最值问题以及二次函数与一次函数的关系等内容。

通过学习本章内容,我们能够更深入地了解二次函数的特点和应用,为进一步学习数学打下坚实的基础。

第一节是二次函数的定义。

二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c为常数且a≠0。

二次函数的图像为抛物线,开口方向由a的正负决定,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

二次函数的图像关于直线x=-b/2a对称,这条直线称为二次函数的对称轴。

第二节是二次函数的图像和性质。

二次函数的图像一般由顶点和与x轴的交点确定。

顶点的横坐标为-x/2a,纵坐标为f(-x/2a)。

当a>0时,顶点为最小值点,当a<0时,顶点为最大值点。

根据抛物线的对称性,我们可以很容易地确定其余的图像点。

二次函数的增减性和最值问题也是我们需要重点掌握的内容。

第三节是二次函数的最值问题。

对于一般的二次函数y=ax^2+bx+c,要确定其最值点,我们可以通过求解二次函数的导数来找到极值点。

当导数为0时,函数取得极值,且极值点的横坐标为x=-b/2a。

通过求解二次函数的导数,我们可以进一步探讨二次函数的单调性。

第四节是二次函数与一次函数的关系。

二次函数与一次函数的关系主要体现在二次函数的图像与一次函数的图像的交点。

通过求解二次函数与一次函数的交点,我们可以得到二次函数与一次函数的关系。

当二次函数与一次函数有两个交点时,两个函数有两个实根;当二次函数与一次函数有一个交点时,两个函数有一个实根;当二次函数与一次函数没有交点时,两个函数无实根。

通过学习本章内容,我们不仅能够掌握二次函数的基本定义和性质,还能够解决二次函数的最值问题以及二次函数与一次函数的关系问题。

这些知识在实际生活和工作中有着广泛的应用,例如在物理学中,通过二次函数可以描述物体的运动轨迹;在经济学中,通过二次函数可以分析企业的成本和收益关系。

全国通用2023高中数学必修一第四章指数函数与对数函数基础知识点归纳总结

全国通用2023高中数学必修一第四章指数函数与对数函数基础知识点归纳总结

全国通用2023高中数学必修一第四章指数函数与对数函数基础知识点归纳总结单选题1、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( )A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解.因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增,所以f(x)在R 上单调递增,所以lgx >2,解得x >100.故选:D.2、已知0<a <1,b <−1,则函数y =a x +b 的图像必定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:根据指数函数的图象结合图象的平移可得正确的选项.因为0<a <1,故y =a x 的图象经过第一象限和第二象限,且当x 越来越大时,图象与x 轴无限接近.因为b <−1,故y =a x 的图象向下平移超过一个单位,故y =a x +b 的图象不过第一象限.故选:A .3、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h 与其采摘后时间t (天)满足的函数关系式为ℎ=m ⋅a t .若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知lg2≈0.3,结果取整数)( )A .23天B .33天C .43天D .50天答案:B分析:根据题设条件先求出m 、a ,从而得到ℎ=120⋅2110t ,据此可求失去50%新鲜度对应的时间. {10%=m ⋅a 1020%=m ⋅a 20⇒{a 10=2,m =120,故a =2110,故ℎ=120⋅2110t , 令ℎ=12,∴2t 10=10,∴t 10lg2=1,故t =100.3≈33,故选:B.4、已知函数f(x)=9+x 2x ,g(x)=log 2x +a ,若存在x 1∈[3,4],对任意x 2∈[4,8],使得f(x 1)≥g(x 2),则实数a 的取值范围是( )A .(−∞,134]B .(134,+∞)C .(0,134)D .(1,4)答案:A分析:将问题化为在对应定义域内f(x 1)max ≥g(x 2)max ,结合对勾函数和对数函数性质求它们的最值,即可求参数范围.由题意知:f(x)在[3,4]上的最大值大于或等于g(x)在[4,8]上的最大值即可.当x ∈[3,4]时,f(x)=9x +x ,由对勾函数的性质得:f(x)在[3,4]上单调递增,故f(x)max =f(4)=94+4=254.当x ∈[4,8]时,g(x)=log 2x +a 单调递增,则g(x)max =g(8)=log 28+a =3+a ,所以254≥3+a ,可得a ≤134.故选:A5、已知函f (x )=log 2(√1+4x 2+2x)+3,且f (m )=−5,则f (−m )=( )A .−1B .−5C .11D .13答案:C分析:令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,则先判断函数g (−x )+g (x )=0,进而可得f (−x )+f (x )=6,即f (m )+f (−m )=6,结合已知条件即可求f (−m )的值.令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,因为g (x )+g (−x )=log 2(√1+4x 2+2x)+log 2(√1+4x 2−2x)=log 2(1+4x 2−4x 2)=0,所以f (−x )+f (x )=g (−x )+3+g (x )+3=6,则f (m )+f (−m )=6,又因为f (m )=−5,则f (−m )=11,故选:C.6、设函数f (x )=ln |2x +1|﹣ln |2x ﹣1|,则f (x )( )A .是偶函数,且在 (12,+∞)单调递增B .是奇函数,且在 (−12,12)单调递增C .是偶函数,且在(−∞,−12)单调递增D .是奇函数,且在 (−∞,−12)单调递增答案:B分析:先求出f (x )的定义域结合奇偶函数的定义判断f (x )的奇偶性,设t =|2x+12x−1|,则y =ln t ,由复合函数的单调性判断f (x )的单调性,即可求出答案.解:由{2x +1≠02x −1≠0 ,得x ≠±12. 又f (﹣x )=ln |﹣2x +1|﹣ln |﹣2x ﹣1|=﹣(ln |2x +1|﹣ln |2x ﹣1|)=﹣f (x ),∴f (x )为奇函数,由f (x )=ln |2x +1|﹣ln |2x ﹣1|=ln |2x+12x−1|, ∵2x+12x−1=1+22x−1=1+1x−12.可得内层函数t =|2x+12x−1|的图象如图,在(﹣∞,−12),(12,+∞)上单调递减,在(−12,12)上单调递增, 又对数式y =lnt 是定义域内的增函数,由复合函数的单调性可得,f (x )在(−12,12)上单调递增,在(﹣∞,−12),(12,+∞)上单调递减.故选:B .7、已知y 1=(13)x,y 2=3x ,y 3=10−x ,y 4=10x ,则在同一平面直角坐标系内,它们的图象大致为()A .B .C .D .答案:A分析:根据指数函数的单调性及图像特征进行比较,即可判断.y 2=3x 与y 4=10x 是增函数,y 1=(13)x与y 3=10−x =(110)x 是减函数,在第一象限内作直线x =1,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A .故选:A8、化简√a 3b 2√ab 23(a 14b 12)4⋅√b a 3 (a >0,b >0)的结果是( )A .b aB .a bC .a 2bD .b 2a 答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可.√a 3b 2√ab 23(a 14b 12)4⋅√a 3=a 32b⋅a 16b 13(a 14b 12)4⋅a −13⋅b 13 =a 32+16−1+13b 1+13−2−13=ab −1=a b 故选:B 9、函数f (x )=√3−x +log 13(x +1)的定义域是( ) A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3]答案:C分析:由题可得{3−x ≥0x +1>0,即得. 由题意得{3−x ≥0x +1>0, 解得−1<x ≤3,即函数的定义域是(−1,3].故选:C.10、若函数y =(m 2−m −1)⋅m x 是指数函数,则m 等于( )A .−1或2B .−1C .2D .12答案:C分析:根据题意可得出关于实数m 的等式与不等式,即可解得实数m 的值.由题意可得{m 2−m −1=1m >0m ≠1,解得m =2. 故选:C.填空题11、方程lg (x 2−x −2)=lg (6−x −x 2)的解为 __________ .答案:x =−2分析:由题意知lg (x 2−x −2)=lg (6−x −x 2),可求出x 的值,再结合真数大于零进行检验,从而可求出最终的解.由lg (x 2−x −2)=lg (6−x −x 2),得x 2−x −2=6−x −x 2,所以x =±2,又因为x 2−x −2>0且6−x −x 2>0,所以x =−2;所以答案是:x =−2.12、已知函数f (x )的定义域是[-1,1],则函数f (log 2x )的定义域为____.答案:[12,2]分析:根据给定条件列出使函数f (log 2x )有意义的不等式组,再求出其解集即可.因函数f (x )的定义域是[-1,1],则在f (log 2x )中,必有−1≤log 2x ≤1,解不等式可得:{12≤x ≤2x >0,即12≤x ≤2, 所以函数f (log 2x )的定义域为[12,2].所以答案是:[12,2]13、函数f(x)=4+log a (x −1)(a >0且a ≠1)的图象恒过定点_________答案:(2,4)分析:令对数的真数为1,即可求出定点的横坐标,再代入求值即可;解:因为函数f(x)=4+log a(x−1)(a>0且a≠1),令x−1=1,解得x=2,所以f(2)=4+log a1=4,即函数f(x)恒过点(2,4);所以答案是:(2,4)解答题14、对于函数f(x),若其定义域内存在实数x满足f(−x)=−f(x),则称f(x)为“伪奇函数”.(1)已知函数f(x)=x−2x+1,试问f(x)是否为“伪奇函数”?说明理由;(2)若幂函数g(x)=(n−1)x3−n(n∈R)使得f(x)=2g(x)+m为定义在[−1,1]上的“伪奇函数”,试求实数m的取值范围;(3)是否存在实数m,使得f(x)=4x−m⋅2x+1+m2−3是定义在R上的“伪奇函数”,若存在,试求实数m的取值范围;若不存在,请说明理由.答案:(1)不是;(2)[−54,−1];(3)[1−√3,2√2].分析:(1)先假设f(x)为“伪奇函数”,然后推出矛盾即可说明;(2)先根据幂函数确定出g(x)的解析式,然后将问题转化为“2m=−(2x+2−x)在[−1,1]上有解”,根据指数函数的值域以及对勾函数的单调性求解出m的取值范围;(3)将问题转化为“2m2−6=−(4x+4−x)+2m(2x+2−x)在R上有解”,通过换元法结合二次函数的零点分布求解出m的取值范围.(1)假设f(x)为“伪奇函数”,∴存在x满足f(−x)=−f(x),∴−x−2−x+1=−x−2x+1有解,化为x2+2=0,无解,∴f(x)不是“伪奇函数”;(2)∵g(x)=(n−1)x3−n(n∈R)为幂函数,∴n=2,∴g(x)=x,∴f(x)=2x+m,∵f(x)=2x+m为定义在[−1,1]的“伪奇函数”,∴2−x+m=−2x−m在[−1,1]上有解,∴2m=−(2x+2−x)在[−1,1]上有解,令2x=t∈[12,2],∴2m=−(t+1t)在t∈[12,2]上有解,又对勾函数y=t+1t 在[12,1)上单调递减,在(1,2]上单调递增,且t=12时,y=52,t=2时,y=52,∴y min=1+1=2,y max=52,∴y=t+1t的值域为[2,52],∴2m∈[−52,−2],∴m∈[−54,−1];(3)设存在m满足,即f(−x)=−f(x)在R上有解,∴4−x−m⋅2−x+1+m2−3=−(4x−m⋅2x+1+m2−3)在R上有解,∴2m2−6=−(4x+4−x)+2m(2x+2−x)在R上有解,令2x+2−x=t∈[2,+∞),取等号时x=0,∴2m2−6=−(t2−2)+2mt在[2,+∞)上有解,∴t2−2mt+2m2−8=0在[2,+∞)上有解(*),∵Δ=4m2−4(2m2−8)≥0,解得m∈[−2√2,2√2],记ℎ(t)=t2−2mt+2m2−8,且对称轴t=m,当m∈[−2√2,2]时,ℎ(t)在[2,+∞)上递增,若(*)有解,则ℎ(2)=22−2mt+2m2−8≤0,∴m∈[1−√3,2],当m∈(2,2√2]时,ℎ(t)在[2,m)上递减,在(m,+∞)上递增,若(*)有解,则ℎ(m)=m2−2m2+2m2−8=m2−8≤0,即m2−8≤0,此式恒成立,∴m∈(2,2√2],综上可知,m∈[1−√3,2√2].小提示:关键点点睛:解答本题(2)(3)问题的关键在于转化思想的运用,通过理解“伪奇函数”的定义,将问题转化为方程有解的问题,利用换元的思想简化运算并完成计算.15、吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x万盒,需投入成本ℎ(x)万元,当产量小于或等于50万盒时ℎ(x)=180x+100;当产量大于50万盒时ℎ(x)=x2+60x+3500,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y(万元)关于产量x(万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?答案:(1)y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N(2)70万盒分析:(1)根据题意分0≤x≤50和x>50两种情况求解即可;(2)根据分段函数中一次与二次函数的最值求解即可.(1)当产量小于或等于50万盒时,y=200x−200−180x−100=20x−300,当产量大于50万盒时,y=200x−200−x2−60x−3500=−x2+140x−3700,故销售利润y(万元)关于产量x(万盒)的函数关系式为y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N (2)当0≤x≤50时,y≤20×50−300=700;当x>50时,y=−x2+140x−3700,当x=1402=70时,y=−x2+140x−3700取到最大值,为1200.因为700<1200,所以当产量为70万盒时,该企业所获利润最大.。

四川省部分中学2023高中数学必修一第四章指数函数与对数函数考点大全笔记

四川省部分中学2023高中数学必修一第四章指数函数与对数函数考点大全笔记

四川省部分中学2023高中数学必修一第四章指数函数与对数函数考点大全笔记单选题1、函数y =|lg(x +1)|的图像是( )A .B .C .D .答案:A 分析:由函数y =lgx 的图象与x 轴的交点是(1,0)结合函数的平移变换得函数y =|lg(x +1)|的图象与x 轴的公共点是(0,0),即可求解.由于函数y =lg(x +1)的图象可由函数y =lgx 的图象左移一个单位而得到,函数y =lgx 的图象与x 轴的交点是(1,0),故函数y =lg(x +1)的图象与x 轴的交点是(0,0),即函数y =|lg(x +1)|的图象与x 轴的公共点是(0,0),显然四个选项只有A 选项满足.故选:A.2、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( ) A .[1,5]B .[32,5)C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数, 所以{6−a >1a >1log a 1+3≥(6−a)−a,解得32≤a <5, 故选:B3、已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =14,x =12与y =x a ,y =x b 的图象分别交于A 、B 、C 、D 四点,且|AB|=|CD|,则12a +12b =( )A .12B .1C .√2D .2 答案:B分析:把|AB |=|CD |用函数值表示后变形可得.由|AB |=|CD |得(14)a −(14)b =(12)a −(12)b ,即[(12)a −(12)b ][(12)a +(12)b ]=(12)a −(12)b≠0, 所以(12)a +(12)b =1, 故选:B .4、近几个月某地区的口罩的月消耗量逐月增加,若第1月的口罩月消耗量增长率为r 1,第2月的口罩月消耗量增长率为r 2,这两个月口罩月消耗量的月平均增长率为r ,则以下关系正确的是( )A .r 2=r 1r 2B .r 2≤r 1r 2C .2r =r 1+r 2D .2r ≤r 1+r 2答案:D分析:求出r 1,r 2,r 的关系,再根据基本不等式判断.由题意(1+r 1)(1+r 2)=(1+r)2,r 2+2r =r 1r 2+r 1+r 2,r 1=r 2时,r 2=r 1r 2,2r =r 1+r 2,r 1≠r 2时,r 1+r 2>2√r 1r 2,1+r =√(1+r 1)(1+r 2)<1+r 1+1+r 22,2r <r 1+r 2,因此r 2>r 1r 2,综上2r ≤r 1+r 2,r 2≥r 1r 2.故选:D .5、已知函数f (x )是奇函数,当x >0时,f (x )=2x +x 2,则f (2)+f (−1)=( )A .11B .5C .−8D .−5答案:B分析:利用奇函数的定义直接计算作答.奇函数f (x ),当x >0时,f (x )=2x +x 2,所以f (2)+f (−1)=f(2)−f(1)=22+22−(21+12)=5.故选:B6、设log 74=a,log 73=b ,则log 4936=( )A .12a −bB .12b +aC .12a +bD .12b −a答案:C分析:根据对数的运算性质计算即可.解:log 4936=log 7262=log 76=log 72+log 73=12log 74+log 73=12a +b .故选:C.7、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( )A .[0,34]B .(0,34) C .[0,916]D .(0,916)答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则函数f (x )的图像与直线y =12x +m 有三个交点, 若直线y =12x +m 经过原点时,m =0, 若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916.故m ∈(0,916). 故选:D .8、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则a 的取值范围是( ) A .a ∈(0,1)B .a ∈[34,1)C .a ∈(0,13]D .a ∈[34,2)答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,∴{0<a <1a −2<0(a −2)×0+3a ≤a 0,解得0<a ≤13,∴a 的取值范围是(0,13].故选:C .9、我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y (单位:万元)与处理量x (单位:吨)(x ∈[120,500])之间的函数关系可近似表示为y ={13x 3−80x 2+5040x,x ∈[120,144)12x 2−200x +80000,x ∈[144,500] ,当处理量x 等于多少吨时,每吨的平均处理成本最少( )A .120B .200C .240D .400答案:D分析:先根据题意求出每吨的平均处理成本与处理量之间的函数关系,然后分x ∈[120,144)和x ∈[144,500]分析讨论求出其最小值即可由题意得二氧化碳每吨的平均处理成本为S ={13x 2−80x +5040,x[120,144)12x −200+80000x ,x ∈[144,500] , 当x ∈[120,144)时,S =13x 2−80x +5040=13(x −120)2+240,当x =120时,S 取得最小值240,当x ∈[144,500] 时,S =12x +80000x −200≥2√12x ⋅80000x −200=200, 当且仅当12x =80000x ,即x =400时取等号,此时S 取得最小值200,综上,当每月得理量为400吨时,每吨的平均处理成本最低为200元,故选:D10、镜片的厚度是由镜片的折射率决定,镜片的折射率越高,镜片越薄,同时镜片越轻,也就会带来更为舒适的佩戴体验.某次社会实践活动中,甲、乙、丙三位同学分别制作了三种不同的树脂镜片,折射率分别为√55,√33,√2.则这三种镜片中,制作出最薄镜片和最厚镜片的同学分别为( )A .甲同学和乙同学B .丙同学和乙同学C .乙同学和甲同学D .丙同学和甲同学答案:C分析:判断出√55,√33,√2的大小关系即可得出答案.(√55)10=52=25,(√2)10=25=32.∵25<32.∴√55<√2.又∵(√33)6=33=9,(√2)6=23=8,∴√33>√2.∴有√55<√2<√33.又因为镜片折射率越高,镜片越薄,故甲同学创作的镜片最厚,乙同学创作的镜片最薄.故选:C.填空题11、函数f (x )=log 12(x 2−5x +6)的单调递减区间为___________. 答案:(3,+∞)分析:利用对数型复合函数性质求解即可.由题知:x 2−5x +6>0,解得x >3或x <2.令t =x 2−5x +6,则y =log 12t 为减函数. 所以t ∈(−∞,2),t =x 2−5x +6为减函数,f (x )=log 12(x 2−5x +6)为增函数, t ∈(3,+∞),t =x 2−5x +6为增函数,f (x )=log 12(x 2−5x +6)为减函数. 所以函数f (x )=log 12(x 2−5x +6)的单调递减区间为(3,+∞). 所以答案是:(3,+∞)12、设函数f (x )=(x+1)2+2021x −2021−x x 2+1在区间[−2022,2022]上的最大值和最小值分别为M 、m ,则M +m =___________.答案:2分析:f (x )=(x+1)2+2021x −2021−xx 2+1 =1+2x+2021x −2021−xx 2+1,令g (x )=2x+2021x −2021−xx 2+1,x ∈[−2022,2022],易得函数g (x )为奇函数,则g (x )max =−g (x )min ,从而可得出答案.解:f (x )=(x+1)2+2021x −2021−xx 2+1=x 2+2x +1+2021x −2021−xx 2+1=1+2x+2021x −2021−xx 2+1,令g (x )=2x+2021x −2021−x x 2+1,x ∈[−2022,2022],因为g (−x )=−2x+2021−x −2021x x 2+1=−g (x ),所以函数g (x )为奇函数,所以g (x )max =−g (x )min ,即g (x )max +g (x )min =0,所以f (x )max +f (x )min =1+g (x )max +1+g (x )min =2,即M +m =2.所以答案是:2.13、若alog 43=12,则3a +9a =___________; 答案:6分析:首先利用换底公式表示a =log 32,再代入3a +9a 求值.由条件得a =12log 34=log 32,所以3a +9a =3log 32+9log 32=3log 32+3log 34=2+4=6. 所以答案是:6解答题14、证明:函数f (x )=log 3(1+x )的图象与g (x )=log 2x 的图象有且仅有一个公共点.答案:证明见解析分析:把要证两函数的图象有且仅有一个公共点转化为证明方程log 3(1+x )=log 2x 有且仅有一个实根.易观察出x =2为其一根,再假设(x 0,y 0)(x 0≠2)是函数图象的另一个公共点,然后得出矛盾即可.要证明两函数f (x )和g (x )的图象有且仅有一个公共点,只需证明方程log 3(1+x )=log 2x 有且仅有一个实根,观察上述方程,显然有f (2)=g (2),则两函数的图象必有交点(2,1).设(x 0,y 0)(x 0≠2)是函数图象的另一个公共点.则log 3(1+x 0)=log 2x 0,1+x 0=3y 0,x 0=2y 0,∴1+2y 0=3y 0,即(13)y 0+(23)y 0=1, 令M (x )=(13)x +(23)x ,易知函数M (x )=(13)x +(23)x 为指数型函数.显然M (x )在(−∞,+∞)内是减函数,且M (1)=1,故方程(13)y 0+(23)y 0=1有唯一解y 0=1,从而x 0=2,与x 0≠2矛盾,从而知两函数图象仅有一个公共点.15、已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+mx ,函数f (x )在y 轴左侧的图象如图所示.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )−a =0有4个不相等的实数根,求实数a 的取值范围.答案:(1)f (x )={x 2+2x,x ≤0x 2−2x,x >0(2)(−1,0)分析:(1)利用f (−2)=0可求x ≤0时f (x )的解析式,当x >0时,利用奇偶性f (x )=f (−x )可求得x >0时的f (x )的解析式,由此可得结果;(2)作出f (x )图象,将问题转化为f (x )与y =a 有4个交点,数形结合可得结果.(1)由图象知:f (−2)=0,即4−2m =0,解得:m =2,∴当x ≤0时,f (x )=x 2+2x ;当x >0时,−x <0,∴f (−x )=(−x )2−2x =x 2−2x ,∵f (x )为R 上的偶函数,∴当x >0时,f (x )=f (−x )=x 2−2x ;综上所述:f (x )={x 2+2x,x ≤0x 2−2x,x >0; (2)∵f (x )为偶函数,∴f (x )图象关于y 轴对称,可得f (x )图象如下图所示,f (x )−a =0有4个不相等的实数根,等价于f (x )与y =a 有4个不同的交点,由图象可知:−1<a <0,即实数a 的取值范围为(−1,0).。

高中数学必修一新教材第四章指数函数与对数函数

高中数学必修一新教材第四章指数函数与对数函数

第四章指数函数与对数函数4.1指数第1课时根式1.根式及相关概念(1)a的n次方根定义如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.(2)a的n次方根的表示式子na叫做根式,这里n叫做根指数,a叫做被开方数.2.根式的性质(n>1,且n∈N*)(1)n为奇数时,na n=a.(2)n为偶数时,na n=|a|=⎩⎨⎧a,a≥0,-a,a<0.(3)n0=0.(4)负数没有偶次方根.思考:(na )n 中实数a 的取值范围是任意实数吗? 提示:不一定,当n 为大于1的奇数时,a ∈R ; 当n 为大于1的偶数时,a ≥0.1.481的运算结果是( )A .3B .-3C .±3D .±32.m 是实数,则下列式子中可能没有意义的是( ) A.4m 2 B.5m C.6m D.5-m 3.下列说法正确的个数是( )①16的4次方根是2;②416的运算结果是±2;③当n 为大于1的奇数时,na 对任意a ∈R 都有意义;④当n 为大于1的偶数时,na 只有当a ≥0时才有意义.A .1B .2C .3D .4 4.若x 3=-5,则x =________. n 次方根的概念问题【例1】 (1)27的立方根是________.(2)已知x 6=2 019,则x =________. (3)若4x +3有意义,则实数x 的取值范围为________.n 次方根的个数及符号的确定(1)n 的奇偶性决定了n 次方根的个数; (2)n 为奇数时,a 的正负决定着n 次方根的符号.1.已知a ∈R ,n ∈N *,给出下列4个式子:①6(-3)2n ;②5a 2;③6(-5)2n +1;④9-a 2,其中无意义的有( ) A .1个 B .2个 C .3个 D .0个利用根式的性质化简求值【例2】 化简下列各式:(1)5(-2)5+(5(-2))5;(2)6(-2)6+(62)6;(3)4(x +2)4.正确区分n a n 与(na )n(1)(n a )n 已暗含了na 有意义,据n 的奇偶性可知a 的范围; (2)n a n 中的a 可以是全体实数,na n 的值取决于n 的奇偶性.2.若9a 2-6a +1=3a -1,求a 的取值范围. 有限制条件的根式的运算[探究问题]1.当a >b 时,(a -b )2等于多少? 提示:当a >b 时,(a -b )2=a -b . 2.绝对值|a |的代数意义是什么? 提示:|a |=⎩⎨⎧a ,a ≥0,-a ,a <0.【例3】 (1)若x <0,则x +|x |+x 2x =________. (2)若-3<x <3,求x 2-2x +1-x 2+6x +9的值. [思路点拨] (1)由x <0,先计算|x |及x 2,再化简. (2)结合-3<x <3,开方、化简,再求值.带条件根式的化简(1)有条件根式的化简问题,是指被开方数或被开方的表达式可以通过配方、拆分等方式进行化简.(2)有条件根式的化简经常用到配方的方法.当根指数为偶数时,在利用公式化简时,要考虑被开方数或被开方的表达式的正负.1.注意n a n 同(na )n 的区别.前者求解时,要分n 为奇数还是偶数,同时要注意实数a 的正负,而后者(n a )n =a 是恒等式,只要(na )n 有意义,其值恒等于a .2.一个数到底有没有n 次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n 为奇数或偶数这两种情况.1.思考辨析(1)实数a 的奇次方根只有一个.( )(2)当n ∈N *时,(n-2)n =-2.( ) (3)(π-4)2=π-4.( ) 2.已知m 10=2,则m 等于( ) A.102 B .-102 C.210 D .±1023.(π-4)2+3(π-3)3=________.4.已知-1<x <2,求x 2-4x +4-x 2+2x +1的值.第2课时 指数幂及运算1.分数指数幂的意义思考:在分数指数幂与根式的互化公式a m n=na m中,为什么必须规定a>0?提示:①若a=0,0的正分数指数幂恒等于0,即na m=a m n=0,无研究价值.②若a<0,a m n=na m不一定成立,如(-2)32=2(-2)3无意义,故为了避免上述情况规定了a>0.2.有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q).(2)(a r)s=a rs(a>0,r,s∈Q).(3)(ab)r=a r b r(a>0,b>0,r∈Q).3.无理数指数幂一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.1.下列运算结果中,正确的是()A.a2a3=a5B.(-a2)3=(-a3)2 C.(a-1)0=1 D.(-a2)3=a62.425等于()A .25 B.516 C.415 D.543.已知a >0,则a -23等于( ) A.a 3 B.13a 2C.1a 3D .-3a 24.(m 12)4+(-1)0=________.根式与分数指数幂的互化【例1】 将下列根式化成分数指数幂的形式:(1)a a (a >0);(2)13x (5x 2)2;(3)⎝ ⎛⎭⎪⎫4b-23-23(b >0).根式与分数指数幂互化的规律 (1)根指数分数指数的分母,被开方数(式)的指数分数指数的分子.(2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.1.将下列根式与分数指数幂进行互化: (1)a 3·3a 2;(2)a -4b23ab 2(a >0,b >0).利用分数指数幂的运算性质化简求解【例2】 化简求值:指数幂运算的常用技巧(1)有括号先算括号里的,无括号先进行指数运算. (2)负指数幂化为正指数幂的倒数.(3)底数是小数,先要化成分数;底数是带分数,要先化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.提醒:化简的结果不能同时含有根式和分数指数,也不能既含有分母又含有负指数.2.(1)计算:⎝ ⎛⎭⎪⎫2350+2-2×⎝ ⎛⎭⎪⎫214-12-(0.01)0.5;(2)化简:3a 72a -3÷3a -8·3a 15÷3a -3·a -1(a >0).指数幂运算中的条件求值[探究问题]1.⎝ ⎛⎭⎪⎫a +1a 2和⎝ ⎛⎭⎪⎫a -1a 2存在怎样的等量关系? 提示:⎝ ⎛⎭⎪⎫a +1a 2=⎝ ⎛⎭⎪⎫a -1a 2+4.2.已知a +1a 的值,如何求a +1a 的值?反之呢?提示:设a +1a=m ,则两边平方得a +1a =m 2-2;反之若设a +1a =n ,则n =m 2-2,∴m =n +2.即a +1a=n +2. 【例3】 已知a 12+a -12=4,求下列各式的值: (1)a +a -1;(2)a 2+a -2. [思路点拨]a 12+a -12=4――――→两边平方得a +a -1的值――――→两边平方得a 2+a -2的值1.在本例条件不变的条件下,求解决条件求值的思路(1)在利用条件等式求值时,往往先将所求式子进行有目的的变形,或先对条件式加以变形,沟通所求式子与条件等式的联系,以便用整体代入法求值.(2)在利用整体代入的方法求值时,要注意完全平方公式的应用.1.对根式进行运算时,一般先将根式化成分数指数幂,这样可以方便使用同底数幂的运算律.2.解决较复杂的条件求值问题时,“整体思想”是简化求解的“利器”.1.思考辨析(1)0的任何指数幂都等于0.()(2)523=53.()(3)分数指数幂与根式可以相互转化,如4a2=a12.()(4)a m n可以理解为mn个a.()2.把根式a a化成分数指数幂是() A.(-a)32B.-(-a)32C.-a32D.a323.已知x12+x-12=5,则x2+1x的值为()A.5 B.23 C.25 D.274.2指数函数第1课时指数函数的概念、图象与性质1.指数函数的概念一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R.2.指数函数的图象和性质思考1:指数函数y =a x (a >0且a ≠1)的图象“升”“降”主要取决于什么? 提示:指数函数y =a x (a >0且a ≠1)的图象“升”“降”主要取决于字母a .当a >1时,图象具有上升趋势;当0<a <1时,图象具有下降趋势.思考2::指数函数值随自变量有怎样的变化规律? 提示:指数函数值随自变量的变化规律.1.下列函数一定是指数函数的是( ) A .y =2x +1 B .y =x 3 C .y =3·2x D .y =3-x 2.函数y =3-x 的图象是( )A B C D3.若指数函数f (x )的图象过点(3,8),则f (x )的解析式为( ) A .f (x )=x 3B .f (x )=2xC .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=x 134.函数y =a x (a >0且a ≠1)在R 上是增函数,则a 的取值范围是________. 指数函数的概念【例1】 (1)下列函数中,是指数函数的个数是( ) ①y =(-8)x;②y =2x 2-1;③y =a x ;④y =2·3x .A .1B .2C .3D .0(2)已知函数f (x )为指数函数,且f ⎝ ⎛⎭⎪⎫-32=39,则f (-2)=________.1.判断一个函数是否为指数函数,要牢牢抓住三点: (1)底数是大于0且不等于1的常数;(2)指数函数的自变量必须位于指数的位置上;(3)a x的系数必须为1.2.求指数函数的解析式常用待定系数法.1.已知函数f(x)=(2a-1)x是指数函数,则实数a的取值范围是________.指数函数的图象的应用【例2】(1)函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1,b<0 B.a>1,b>0 C.0<a<1,b>0 D.0<a<1,b<0(2)函数y=a x-3+3(a>0,且a≠1)的图象过定点________.指数函数图象问题的处理技巧(1)抓住图象上的特殊点,如指数函数的图象过定点.(2)利用图象变换,如函数图象的平移变换(左右平移、上下平移).(3)利用函数的奇偶性与单调性.奇偶性确定函数的对称情况,单调性决定函数图象的走势.2.已知f(x)=2x的图象,指出下列函数的图象是由y=f(x)的图象通过怎样的变化得到:(1)y=2x+1;(2)y=2x-1;(3)y=2x+1;(4)y=2-x;(5)y=2|x|.指数函数的定义域、值域问题[探究问题]1.函数y=2x2+1的定义域与f(x)=x2+1的定义域什么关系?提示:定义域相同.2.如何求y =2x 2+1的值域?提示:可先令t =x 2+1,则易求得t 的取值范围为[1,+∞),又y =2t 在[1,+∞)上是单调递增函数,故2t ≥2,所以y =2x 2+1的值域为[2,+∞).【例3】 求下列函数的定义域和值域: (1)y =1-3x ;(2)y =⎝ ⎛⎭⎪⎫12x 2-2x -3;(3)y =4x +2x +1+2.[思路点拨] 函数式有意义―→原函数的定义域 ――→指数函数的值域原函数的值域1.若本例(1)的函数换为“y =⎝ ⎛⎭⎪⎫13x-1”,求其定义域. 2.若本例(3)的函数增加条件“0≤x ≤2”,再求函数的值域.1.函数y =a f (x )的定义域与y =f (x )的定义域相同. 2.函数y =a f (x )的值域的求解方法如下: (1)换元,令t =f (x ); (2)求t =f (x )的定义域x ∈D ; (3)求t =f (x )的值域t ∈M ;(4)利用y =a t 的单调性求y =a t ,t ∈M 的值域.3.形如y =f (a x )的值域,要先求出u =a x 的值域,再结合y =f (u )确定出y =f (a x )的值域.1.判断一个函数是否为指数函数只需判定其解析式是否符合y =a x (a >0且a ≠1)这一结构形式.2.指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系:在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小,即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.3.由于指数函数y =a x (a >0且a ≠1)的定义域为R ,所以函数y =a f (x )(a >0且a ≠1)与函数f (x )的定义域相同,求与指数函数有关的函数的值域时,要考虑并利用指数函数本身的要求,并利用好指数函数的单调性.1.思考辨析(1)y =x 2是指数函数.( ) (2)函数y =2-x 不是指数函数.( ) (3)指数函数的图象一定在x 轴的上方.( )2.如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是()A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c3.函数y =1-⎝ ⎛⎭⎪⎫12x的定义域是________.4.设f (x )=3x,g (x )=⎝ ⎛⎭⎪⎫13x.(1)在同一坐标系中作出f (x ),g (x )的图象;(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论?第2课时 指数函数的性质的应用利用指数函数的单调性比较大小【例1】 比较下列各组数的大小:(1)1.52.5和1.53.2;(2)0.6-1.2和0.6-1.5;(3)1.70.2和0.92.1;(4)a 1.1与a 0.3(a >0且a ≠1).比较幂的大小的方法(1)同底数幂比较大小时构造指数函数,根据其单调性比较.(2)指数相同底数不同时分别画出以两幂底数为底数的指数函数图象,当x 取相同幂指数时可观察出函数值的大小.(3)底数、指数都不相同时,取与其中一底数相同与另一指数相同的幂与两数比较,或借助“1”与两数比较.(4)当底数含参数时,要按底数a >1和0<a <1两种情况分类讨论.1.比较下列各值的大小:⎝ ⎛⎭⎪⎫4313,223,⎝⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫3412.利用指数函数的单调性解不等式【例2】 (1)解不等式⎝ ⎛⎭⎪⎫123x -1≤2;(2)已知ax 2-3x +1<a x +6(a >0,a ≠1),求x 的取值范围.1.利用指数型函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式.2.解不等式a f (x )>a g (x )(a >0,a ≠1)的依据是指数型函数的单调性,要养成判断底数取值范围的习惯,若底数不确定,就需进行分类讨论,即a f (x )>a g (x )⇔⎩⎨⎧f (x )>g (x ),a >1,f (x )<g (x ),0<a <1.2.若ax +1>⎝ ⎛⎭⎪⎫1a 5-3x(a >0且a ≠1),求x 的取值范围. 指数型函数单调性的综合应用[探究问题]1.试结合图象,分析y =2-x ,y =2|x |,y =⎝ ⎛⎭⎪⎫12x +1的单调性,并写出相应单调区间.提示:减区间为(-∞,+∞)增区间为(0,+∞)减区间为(-∞,0)减区间为(-∞,+∞)2.结合探究1,分析函数y =2|x |与函数y =|x |的单调性是否一致? 提示:y =2|x |的单调性与y =|x |的单调性一致.3.函数y =a -x 2(a >0,且a ≠1)的单调性与y =-x 2的单调性存在怎样的关系? 提示:分两类:(1)当a >1时,函数y =a -x 2的单调性与y =-x 2的单调性一致;(2)当0<a <1时,函数y =a -x 2的单调性与y =-x 2的单调性相反. 【例3】 判断f (x )=⎝ ⎛⎭⎪⎫13x 2-2x的单调性,并求其值域.[思路点拨] 令u =x 2-2x ―→函数u (x )的单调性 ―→函数y =⎝ ⎛⎭⎪⎫13u 的单调性――→同增异减函数f (x )的单调性把本例的函数改为“f (x )=2-x 2+2x ”,求其单调区间.函数y=a f(x)(a>0,a≠1)的单调性的处理技巧(1)关于指数型函数y=a f(x)(a>0,且a≠1)的单调性由两点决定,一是底数a>1还是0<a<1;二是f(x)的单调性,它由两个函数y=a u,u=f(x)复合而成.(2)求复合函数的单调区间,首先求出函数的定义域,然后把函数分解成y=f(u),u=φ(x),通过考查f(u)和φ(x)的单调性,求出y=f(φ(x))的单调性.1.比较两个指数式值的大小的主要方法(1)比较形如a m与a n的大小,可运用指数函数y=a x的单调性.(2)比较形如a m与b n的大小,一般找一个“中间值c”,若a m<c且c<b n,则a m<b n;若a m>c且c>b n,则a m>b n.2.解简单指数不等式问题的注意点(1)形如a x>a y的不等式,可借助y=a x的单调性求解.如果a的值不确定,需分0<a<1和a>1两种情况进行讨论.(2)形如a x>b的不等式,注意将b化为以a为底的指数幂的形式,再借助y=a x的单调性求解.(3)形如a x>b x的不等式,可借助图象求解.3.(1)研究y=a f(x)型单调区间时,要注意a>1还是0<a<1.当a>1时,y=a f(x)与f(x)单调性相同.当0<a<1时,y=a f(x)与f(x)单调性相反.(2)研究y=f(a x)型单调区间时,要注意a x属于f(u)的增区间还是减区间.1.思考辨析(1)y=21-x是R上的增函数.()(2)若0.1a>0.1b,则a>b.()(3)a,b均大于0且不等于1,若a x=b x,则x=0.()(4)由于y=a x(a>0且a≠1)既非奇函数,也非偶函数,所以指数函数与其他函数也组不成具有奇偶性的函数.()2.若2x +1<1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1) 3.下列判断正确的是( )A .1.72.5>1.73B .0.82<0.83C .π2<π 2D .0.90.3>0.90.5 4.已知函数f (x )=a x(a >0且a ≠1)的图象经过点⎝ ⎛⎭⎪⎫2,19. (1)比较f (2)与f (b 2+2)的大小; (2)求函数g (x )=ax 2-2x (x ≥0)的值域.4.3 对数 4.3.1 对数的概念1.对数(1)指数式与对数式的互化及有关概念:(2)底数a 的范围是a >0,且a ≠1.2.常用对数与自然对数3.对数的基本性质(1)负数和零没有对数.(2)log a 1=0(a>0,且a≠1).(3)log a a=1(a>0,且a≠1).思考:为什么零和负数没有对数?提示:由对数的定义:a x=N(a>0且a≠1),则总有N>0,所以转化为对数式x =log a N时,不存在N≤0的情况.1.若a2=M(a>0且a≠1),则有()A.log2M=a B.log a M=2 C.log22=M D.log2a=M2.若log3x=3,则x=()A.1 B.3 C.9 D.273.在b=log a(5-a)中,实数a的取值范围是()A.a>5或a<0 B.0<a<1或1<a<5 C.0<a<1 D.1<a<54.ln 1=________,lg 10=________.指数式与对数式的互化【例1】将下列对数形式化为指数形式或将指数形式化为对数形式:(1)2-7=1128;(2)log1232=-5;(3)lg 1 000=3;(4)ln x=2.指数式与对数式互化的方法(1)将指数式化为对数式,只需要将幂作为真数,指数当成对数值,底数不变,写出对数式;(2)将对数式化为指数式,只需将真数作为幂,对数作为指数,底数不变,写出指数式.1.将下列指数式化为对数式,对数式化为指数式:(1)3-2=19;(2)⎝⎛⎭⎪⎫14-2=16;(3)log1327=-3; (4)log x64=-6.利用指数式与对数式的关系求值【例2】求下列各式中的x的值:(1)log64x=-23;(2)log x 8=6;(3)lg 100=x; (4)-ln e2=x.求对数式log a N(a>0,且a≠1,N>0)的值的步骤(1)设log a N=m;(2)将log a N=m写成指数式a m=N;(3)将N写成以a为底的指数幂N=a b,则m=b,即log a N=b.2.计算:(1)log9 27;(2)log 43 81;(3)log354625.应用对数的基本性质求值[探究问题]1.你能推出对数恒等式a log a N=N(a>0且a≠1,N >0)吗?提示:因为a x=N,所以x=log a N,代入a x=N可得a log a N=N.2.若方程log a f(x)=0,则f(x)等于多少?若方程log a f(x)=1呢?(其中a>0且a≠1)提示:若log a f(x)=0,则f(x)=1;若log a f(x)=1,则f(x)=a.【例3】设5log5(2x-1)=25,则x的值等于()A.10B.13 C.100 D.±100(2)若log3(lg x)=0,则x的值等于________.[思路点拨](1)利用对数恒等式a log a N=N求解;(2)利用log a a=1,log a1=0求解.1.若本例(2)的条件改为“ln(log3x)=1”,则x的值为________.2.在本例(2)条件不变的前提下,计算x-12的值.1.利用对数性质求解的两类问题的解法(1)求多重对数式的值解题方法是由内到外,如求log a(log b c)的值,先求log b c 的值,再求log a(log b c)的值.(2)已知多重对数式的值,求变量值,应从外到内求,逐步脱去“log”后再求解.2.性质a log a N=N与log a a b=b的作用(1)a log a N=N的作用在于能把任意一个正实数转化为以a为底的指数形式.(2)log a a b=b的作用在于能把以a为底的指数转化为一个实数.1.对数的概念:a b=N⇔b=log a N(a>0且a≠1)是解决指数、对数问题的有利工具.2.指数式、对数式的互化反映了数学上的等价转化思想,在涉及到对数式求值问题时,常转化为指数幂的运算问题.3.对数恒等式a log a N=N,其成立的条件是a>0,a≠1,N>0.1.思考辨析(1)log a N是log a与N的乘积.()(2)(-2)3=-8可化为log(-2)(-8)=3.()(3)对数运算的实质是求幂指数.()(4)在b=log3(m-1)中,实数m的取值范围是(1,+∞).() 2.下列指数式与对数式互化不正确的一组是()A.100=1与lg 1=0 B.27-13=13与log2713=-13C.log39=2与912=3 D.log55=1与51=53.若log 2(log x 9)=1,则x =________. 4.求下列各式中的x 值:(1)log x 27=32; (2)log 2 x =-23 (3)x =log 2719; (4)x =log 1216.4.3.2 对数的运算1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么:(1)log a (MN )=log a M +log a N ;(2)log a MN =log a M -log a N ; (3)log a M n =n log a M (n ∈R ).思考:当M >0,N >0时,log a (M +N )=log a M +log a N ,log a (MN )=log a M ·log a N 是否成立?提示:不一定. 2.对数的换底公式若a >0且a ≠1;c >0且c ≠1;b >0,则有log a b =log c b log ca .1.计算log 84+log 82等于( ) A .log 86 B .8 C .6 D .12.计算log510-log52等于() A.log58 B.lg 5 C.1 D.2 3.log23·log32=________.对数运算性质的应用【例1】计算下列各式的值:(1)12lg3249-43lg 8+lg 245;(2)lg 52+23lg 8+lg 5·lg 20+(lg 2)2;(3)lg 2+lg 3-lg 10lg 1.8.1.利用对数性质求值的解题关键是化异为同,先使各项底数相同,再找真数间的联系.2.对于复杂的运算式,可先化简再计算.化简问题的常用方法:(1)“拆”:将积(商)的对数拆成两对数之和(差);(2)“收”:将同底对数的和(差)收成积(商)的对数.1.求下列各式的值:(1)lg25+lg 2·lg 50;(2)23lg 8+lg25+lg 2·lg 50+lg 25.对数的换底公式【例2】(1)计算:(log2125+log425+log85)·(log1258+log254+log52).(2)已知log189=a,18b=5,求log3645(用a,b表示).(变结论)在本例1.在化简带有对数的表达式时,若对数的底不同,需利用换底公式.2.常用的公式有:log a b ·log b a =1,log an b m=m n log a b ,log a b =1log ba 等.2.求值:(1)log 23·log 35·log 516;(2)(log 32+log 92)(log 43+log 83). 对数运算性质的综合应用[探究问题]1.若2a =3b ,则ab 等于多少?提示:设2a =3b =t ,则a =log 2t ,b =log 3t ,∴ab =log 23. 2.对数式log a b 与log b a 存在怎样的等量关系? 提示:log a b ·log b a =1, 即log a b =1log ba .【例3】 已知3a =5b =c ,且1a +1b =2,求c 的值.应用换底公式应注意的两个方面(1)化成同底的对数时,要注意换底公式的正用、逆用以及变形应用. (2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式.1.应用对数的运算法则,可将高一级(乘、除、乘方)的运算转化为低一级(加、减、乘)的运算.2.换底公式反映了数学上的化归思想,其实质是将不同底的对数运算问题转化为同底的对数运算.3.熟练掌握对数的运算法则,注意同指数运算法则区别记忆.1.思考辨析(1)log2x2=2log2x.()(2)log a[(-2)×(-3)]=log a(-2)+log a(-3).()(3)log a M·log a N=log a(M+N).()(4)log x2=1log2x.()2.计算log92·log43=()A.4B.2 C.12 D.143.设10a=2,lg 3=b,则log26=()A.ba B.a+ba C.ab D.a+b4.计算:(1)log535-2log573+log57-log51.8;(2)log2748+log212-12log242-1.4.4对数函数第1课时对数函数的概念、图象及性质1.对数函数的概念函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).思考1:函数y =2log 3x ,y =log 3(2x )是对数函数吗? 提示:不是,其不符合对数函数的形式. 2.对数函数的图象及性质提示:底数a 与1的关系决定了对数函数的升降.当a >1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”. 3.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数.1.函数y =log a x 的图象如图所示,则实数a 的可能取值为( ) A .5 B.15 C.1e D.122.若对数函数过点(4,2),则其解析式为________.3.函数f (x )=log 2(x +1)的定义域为________. 对数函数的概念及应用【例1】 (1)下列给出的函数:①y =log 5x +1; ②y =log a x 2(a >0,且a ≠1);③y =log (3-1)x ;④y =13log 3x ;⑤y =log x 3(x >0,且x ≠1); ⑥y =log 2πx .其中是对数函数的为( )A .③④⑤B .②④⑥C .①③⑤⑥D .③⑥(2)若函数y =log (2a -1)x +(a 2-5a +4)是对数函数,则a =________. (3)已知对数函数的图象过点(16,4),则f ⎝ ⎛⎭⎪⎫12=__________.判断一个函数是对数函数的方法1.若函数f (x )=(a 2+a -5)log a x 是对数函数,则a =________. 对数函数的定义域【例2】 求下列函数的定义域: (1)f (x )=1log 12x +1;(2)f (x )=12-x +ln(x +1);(3)f (x )=log (2x -1)(-4x +8).求对数型函数的定义域时应遵循的原则 (1)分母不能为0.(2)根指数为偶数时,被开方数非负.(3)对数的真数大于0,底数大于0且不为1.提醒:定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.2.求下列函数的定义域:(1)f(x)=lg(x-2)+1x-3;(2)f(x)=log(x+1)(16-4x).对数函数的图象问题[探究问题]1.如图,曲线C1,C2,C3,C4分别对应y=log a1x,y=log a2x,y=log a3x,y=log a4x的图象,你能指出a1,a2,a3,a4以及1的大小关系吗?提示:作直线y=1,它与各曲线C1,C2,C3,C4的交点的横坐标就是各对数的底数,由此可判断出各底数的大小必有a4>a3>1>a2>a1>0.2.函数y=a x与y=log a x(a>0且a≠1)的图象有何特点?提示:两函数的图象关于直线y=x对称.【例3】(1)当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象为()A B C D(2)已知f(x)=log a|x|,满足f(-5)=1,试画出函数f(x)的图象.1.把本例函数图象的变换规律(1)一般地,函数y =f (x ±a )+b (a ,b 为实数)的图象是由函数y =f (x )的图象沿x 轴向左或向右平移|a |个单位长度,再沿y 轴向上或向下平移|b |个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y =f (|x -a |)的图象是关于直线x =a 对称的轴对称图形;函数y =|f (x )|的图象与y =f (x )的图象在f (x )≥0的部分相同,在f (x )<0的部分关于x 轴对称.1.判断一个函数是不是对数函数关键是分析所给函数是否具有y =log a x (a >0且a ≠1)这种形式.2.在对数函数y =log a x 中,底数a 对其图象直接产生影响,学会以分类的观点认识和掌握对数函数的图象和性质.3.涉及对数函数定义域的问题,常从真数和底数两个角度分析.1.思考辨析(1)对数函数的定义域为R .( )(2)函数y =log a (x +2)恒过定点(-1,0).( ) (3)对数函数的图象一定在y 轴右侧.( ) (4)函数y =log 2x 与y =x 2互为反函数.( ) 2.下列函数是对数函数的是( )A .y =2+log 3xB .y =log a (2a )(a >0,且a ≠1)C .y =log a x 2(a >0,且a ≠1)D .y =ln x 3.函数f (x )=lg x +lg(5-3x )的定义域是( ) A.⎣⎢⎡⎭⎪⎫0,53 B.⎣⎢⎡⎦⎥⎤0,53 C.⎣⎢⎡⎭⎪⎫1,53 D.⎣⎢⎡⎦⎥⎤1,53 4.已知f (x )=log 3x . (1)作出这个函数的图象;(2)若f (a )<f (2),利用图象求a 的取值范围.第2课时 对数函数及其性质的应用比较对数值的大小【例1】 比较下列各组值的大小:(1)log 534与log 543;(2)log 132与log 152;(3)log 23与log 54.比较对数值大小的常用方法 (1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化. (3)底数和真数都不同,找中间量.提醒:比较数的大小时先利用性质比较出与零或1的大小.1.比较下列各组值的大小:(1)log 230.5,log 230.6;(2)log 1.51.6,log 1.51.4; (3)log 0.57,log 0.67;(4)log 3π,log 20.8. 解对数不等式【例2】 已知函数f (x )=log a (x -1),g (x )=log a (6-2x )(a >0,且a ≠1). (1)求函数φ(x )=f (x )+g (x )的定义域;(2)试确定不等式f(x)≤g(x)中x的取值范围.[思路点拨](1)直接由对数式的真数大于0联立不等式组求解x的取值集合.(2)分a>1和0<a<1求解不等式得答案.常见的对数不等式的三种类型(1)形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论;(2)形如log a x>b的不等式,应将b化为以a为底数的对数式的形式,再借助y=log a x的单调性求解;(3)形如log a x>log b x的不等式,可利用图象求解.2.(1)已知log a 12>1,求a的取值范围;(2)已知log0.7(2x)<log0.7(x-1),求x的取值范围.对数函数性质的综合应用[探究问题]1.类比y=a f(x)单调性的判断法,你能分析一下y=log12(2x-1)的单调性吗?提示:形如y=a f(x)的单调性满足“同增异减”的原则,由于y=log12(2x-1)由函数y=log12t及t=2x-1复合而成,且定义域为2x-1>0,即x>12,结合“同增异减”可知,y=log12(2x-1)的减区间为⎝⎛⎭⎪⎫12,+∞.2.如何求形如y=log a f(x)的值域?提示:先求y=f(x)的值域,注意f(x)>0,在此基础上,分a>1和0<a<1两种情况,借助y=log a x的单调性求函数y=log a f(x)的值域.【例3】(1)已知y=log a(2-ax)是[0,1]上的减函数,则a的取值范围为() A.(0,1)B.(1,2) C.(0,2) D.[2,+∞)(2)函数f(x)=log 12(x2+2x+3)的值域是________.1.已知对数型函数的单调性求参数的取值范围,要结合复合函数的单调性规律,注意函数的定义域求解;若是分段函数,则需注意两段函数最值的大小关系.2.求对数型函数的值域一般是先求真数的范围,然后利用对数函数的单调性求解.1.比较两个对数值的大小及解对数不等式问题,其依据是对数函数的单调性,若对数的底数是字母且范围不明确,一般要分a>1和0<a<1两类分别求解.2.解决与对数函数相关的问题时要树立“定义域优先”的原则,同时注意数形结合思想和分类讨论思想在解决问题中的应用.1.思考辨析(1)y=log2x2在[0,+∞)上为增函数.()(2)y=log 12x2在(0,+∞)上为增函数.()(3)ln x<1的解集为(-∞,e).()(4)函数y=log 12(x2+1)的值域为[0,+∞).()2.设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>b>a D.c>a>b3.函数f(x)=log2(1+2x)的单调增区间是______.4.已知a>0且满足不等式22a+1>25a-2.(1)求实数a的取值范围;(2)求不等式log a(3x+1)<log a(7-5x)的解集;(3)若函数y=log a(2x-1)在区间[1,3]上有最小值为-2,求实数a的值.第3课时不同函数增长的差异三种函数模型的性质1.已知变量y =1+2x ,当x 减少1个单位时,y 的变化情况是( ) A .y 减少1个单位 B .y 增加1个单位 C .y 减少2个单位 D .y 增加2个单位2.下列函数中随x 的增大而增大且速度最快的是( ) A .y =e x B .y =ln x C .y =2x D .y =e -x3.某工厂8年来某种产品总产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快;②前三年产量增长的速度越来越慢;③第三年后这种产品停止生产;④第三年后产量保持不变.其中说法正确的序号是________. 几类函数模型的增长差异【例1】 (1)下列函数中,增长速度最快的是( )A .y =2 019xB .y =2019C .y =log 2 019xD .y =2 019x (2)下面对函数f (x )=log 12x ,g (x )=⎝ ⎛⎭⎪⎫12x与h (x )=-2x 在区间(0,+∞)上的递减情况说法正确的是( )A .f (x )递减速度越来越慢,g (x )递减速度越来越快,h (x )递减速度越来越慢B .f (x )递减速度越来越快,g (x )递减速度越来越慢,h (x )递减速度越来越快C .f (x )递减速度越来越慢,g (x )递减速度越来越慢,h (x )递减速度不变D .f (x )递减速度越来越快,g (x )递减速度越来越快,h (x )递减速度越来越快常见的函数模型及增长特点 (1)线性函数模型线性函数模型y =kx +b (k >0)的增长特点是直线上升,其增长速度不变. (2)指数函数模型指数函数模型y =a x (a >1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y =log a x (a >1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.1.四个变量y 1,y 2,y 3,y 4随变量x 变化的数据如表:指数函数、对数函数与一次函数模型的比较【例2】 函数f (x )=2x 和g (x )=2x 的图象如图所示,设两函数的图象交于点A (x 1,y 1),B (x 2,y 2),且x 1<x 2.(1)请指出图中曲线C 1,C 2分别对应的函数;(2)结合函数图象,判断f ⎝ ⎛⎭⎪⎫32与g ⎝ ⎛⎭⎪⎫32,f (2 019)与g (2 019)的大小.由图象判断指数函数、一次函数的方法根据图象判断增长型的指数函数、一次函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数.2.函数f (x )=lg x ,g (x )=0.3x -1的图象如图所示. (1)试根据函数的增长差异指出曲线C 1,C 2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f (x ),g (x )的大小进行比较).直线上升、指数爆炸、对数增长对于直线y =kx +b (k ≥0)、指数函数y =a x (a >1)、对数函数y =log b x (b >1),当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快,并且直线上升,其增长量固定不变.。

数学必修一第四章知识点总结

数学必修一第四章知识点总结

数学必修一第四章知识点总结第四章: 二次函数1. 二次函数的定义和性质:- 二次函数的形式为 f(x) = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。

- 二次函数的图像是一个抛物线(开口向上或开口向下)。

- 抛物线的顶点坐标为 (-b/2a, f(-b/2a))。

- 当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。

- 抛物线的对称轴方程为 x = -b/2a。

2. 二次函数的图像和特征:- 开口向上的抛物线最小值是顶点的纵坐标。

- 开口向下的抛物线最大值是顶点的纵坐标。

- 当a > 0时,抛物线在对称轴的两侧单调递增;当a < 0时,抛物线在对称轴的两侧单调递减。

- 抛物线与x轴交点称为零点,可以通过解二次方程求出零点的坐标。

3. 二次函数的图像平移:- 对于二次函数 f(x) = ax² + bx + c,向右平移h个单位的函数可以表示为 f(x - h) = a(x - h)² + b(x - h) + c。

- 向右平移h个单位相当于将函数沿x轴正方向平移h个单位,反之向左平移h个单位。

- 向上平移k个单位相当于将函数沿y轴正方向平移k个单位,反之向下平移k个单位。

4. 二次函数的最值和解析式:- 当a > 0时,二次函数的最小值为顶点的纵坐标;当a < 0时,二次函数的最大值为顶点的纵坐标。

- 通过配方法(完成平方),可以将二次函数的解析式转化为顶点坐标。

5. 二次函数与一次函数的关系:- 二次函数的图像是一条抛物线,一次函数的图像是一条直线。

- 一次函数可以看作是二次函数的特殊情况,即当a = 0时,二次函数变成一次函数。

- 二次函数和一次函数的图像不相交或相切的情况下,方程 ax² + bx + c = 0 有两个解;- 二次函数和一次函数的图像相交的情况下,方程 ax² + bx + c = 0 有一个解;- 二次函数和一次函数的图像重合的情况下,方程 ax² + bx + c = 0 有一个重解。

高一必修数学第四章知识点

高一必修数学第四章知识点

高一必修数学第四章知识点第一节直线与坐标系一、点和坐标在平面直角坐标系中,一个点可以用有序数对 (x, y) 表示,其中 x 表示横坐标,y 表示纵坐标。

二、直线的斜率1. 斜率的定义设两点 A(x₁, y₁) 和 B(x₂, y₂),其斜率 k 定义为 k = (y₂ - y₁) / (x₂ - x₁)。

2. 与坐标轴平行的直线的斜率与 x 轴平行的直线的斜率为 0;与 y 轴平行的直线没有斜率,记为∞。

三、直线的方程及性质1. 一般形式的直线方程直线的一般形式方程为 Ax + By + C = 0,其中 A、B、C 为常数且 A、B 不同时为 0。

2. 点斜式的直线方程已知直线上一点 P(x₁, y₁) 和斜率 k,则直线的点斜式方程为 y - y₁ = k(x - x₁)。

3. 斜截式的直线方程已知直线与 y 轴的交点为 (0, b) 和斜率 k,则直线的斜截式方程为 y = kx + b。

第二节二次函数的图像与性质一、二次函数的定义与图像二次函数的一般形式为 f(x) = ax² + bx + c,其中 a、b、c 为常数且a ≠ 0。

二、抛物线的开口方向1. a > 0 时,抛物线向上开口;2. a < 0 时,抛物线向下开口。

三、顶点坐标和对称轴1. 顶点坐标抛物线的顶点坐标为 V(-b/2a, f(-b/2a))。

2. 对称轴抛物线的对称轴为直线 x = -b/2a。

四、二次函数的性质1. 单调性a > 0 时,二次函数单调递增;a < 0 时,二次函数单调递减。

2. 零点二次函数与 x 轴交点的横坐标为零点,可通过解方程 ax² + bx + c = 0 求得。

3. 最值a > 0 时,二次函数的最小值为 f(-b/2a);a < 0 时,二次函数的最大值为 f(-b/2a)。

第三节平面向量与数量积一、平面向量的定义平面向量是具有大小和方向的有向线段。

数学必修一第四章知识点总结

数学必修一第四章知识点总结

高中数学人教必修第一册第四章知识点讲解对数函数及其性质1.对数函数的概念(1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的特征:a x 的系数:1a x 的底数:常数,且是不等于1的正实数a x 的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点.【例1-1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________.解析:由a 2-a +1=1,解得a =0,1.又a +1>0,且a +1≠1,∴a =1.答案:1【例1-2】下列函数中是对数函数的为__________.(1)y =log(a >0,且a ≠1);(2)y =log 2x +2;(3)y =8log 2(x +1);(4)y =log x 6(x >0,且x ≠1);(5)y =log 6x .解析:答案:2.对数函数y =log a x (a >0,且a ≠1)的图象与性质(1)图象与性质a >10<a <1图象性质(1)定义域{x |x >0}(2)值域{y |y R }(3)当x =1时,y =0,即过定点(1,0)(4)当x >1时,y >0;当0<x <1时,y <0(4)当x >1时,y <0;当0<x <1时,y >0(5)在(0,+∞)上是增函数(5)在(0,+∞)上是减函数谈重点对对数函数图象与性质的理解对数函数的图象恒在y 轴右侧,其单调性取决于底数.a >1时,函数单调递增;0<a <1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.(2)指数函数与对数函数的性质比较解析式y =a x (a >0,且a ≠1)y =log a x (a >0,且a ≠1)性质定义域R (0,+∞)值域(0,+∞)R过定点(0,1)(1,0)单调性单调性一致,同为增函数或减函数奇偶性奇偶性一致,都既不是奇函数也不是偶函数(3)底数a 对对数函数的图象的影响①底数a 与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.②底数的大小决定了图象相对位置的高低:不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.点技巧对数函数图象的记忆口诀两支喇叭花手中拿,(1,0)点处把花扎,若是底数小于1,左上穿点渐右下,若是底数大于1,左下穿点渐右上,绕点旋转底变化,顺时方向底变大,可用直线y =1来切,自左到右a 变大.【例2】如图所示的曲线是对数函数y =log a x 的图象.已知a,43,35,110中取值,则相应曲线C 1,C 2,C 3,C4的a 值依次为()A 43,35,110B 43,110,35C .43,,35,110D .43110,35解析:由底数对对数函数图象的影响这一性质可知,C 4的底数<C 3的底数<C 2的底数<C 1的底数.故相应于曲线C 1,C 2,C 3,C 4,43,35,110.答案:A点技巧根据图象判断对数函数的底数大小的方法(1)方法一:利用底数对对数函数图象影响的规律:在x 轴上方“底大图右”,在x 轴下方“底大图左”;(2)方法二:作直线y =1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小.3.反函数(1)对数函数的反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.(2)互为反函数的两个函数之间的关系①原函数的定义域、值域是其反函数的值域、定义域;②互为反函数的两个函数的图象关于直线y =x 对称.(3)求已知函数的反函数,一般步骤如下:①由y =f (x )解出x ,即用y 表示出x ;②把x 替换为y ,y 替换为x ;③根据y =f (x )的值域,写出其反函数的定义域.【例3-1】若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=()A .log 2xB .12xC .12log xD .2x-2解析:因为函数y =a x (a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x .答案:A【例3-2】函数f (x )=3x (0<x ≤2)的反函数的定义域为()A .(0,+∞)B .(1,9]C .(0,1)D .[9,+∞)解析:∵0<x ≤2,∴1<3x ≤9,即函数f (x )的值域为(1,9].故函数f (x )的反函数的定义域为(1,9].答案:B【例3-3】若函数y =f (x )的反函数图象过点(1,5),则函数y =f (x )的图象必过点()A .(5,1)B .(1,5)C .(1,1)D .(5,5)解析:由于原函数与反函数的图象关于直线y =x 对称,而点(1,5)关于直线y =x 的对称点为(5,1),所以函数y =f (x )的图象必经过点(5,1).答案:A 4.利用待定系数法求对数函数的解析式及函数值对数函数的解析式y =log a x (a >0,且a ≠1)中仅含有一个常数a ,则只需要一个条件即可确定对数函数的解析式,这样的条件往往是已知f (m )=n 或图象过点(m ,n )等等.通常利用待定系数法求解,设出对数函数的解析式f (x )=log a x (a >0,且a ≠1),利用已知条件列方程求出常数a 的值.利用待定系数法求对数函数的解析式时,常常遇到解方程,比如log a m =n ,这时先把对数式log a m =n 化为指数式的形式a n =m ,把m 化为以n 为指数的指数幂形式m =k n (k >0,且k ≠1),则解得a =k >0.还可以直接写出1na m =,再利用指数幂的运算性质化简1nm .例如:解方程log a 4=-2,则a -2=4,由于2142-⎛⎫= ⎪⎝⎭,所以12a =±.又a >0,所以12a =.当然,也可以直接写出124a -=,再利用指数幂的运算性质,得11212214(2)22a ---====.【例4-1】已知f (e x )=x ,则f (5)=()A .e 5B .5eC .ln 5D .log 5e解析:(方法一)令t =e x,则x =ln t ,所以f (t )=ln t ,即f (x )=ln x .所以f (5)=ln 5.(方法二)令e x =5,则x =ln 5,所以f (5)=ln 5.答案:C【例4-2】已知对数函数f (x )的图象经过点1,29⎛⎫⎪⎝⎭,试求f (3)的值.分析:设出函数f (x )的解析式,利用待定系数法即可求出.解:设f (x )=log a x (a >0,且a ≠1),∵对数函数f (x )的图象经过点1,29⎛⎫⎪⎝⎭,∴11log 299a f ⎛⎫== ⎪⎝⎭.∴a 2=19.∴a =11222111933⎡⎤⎛⎫⎛⎫==⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.∴f (x )=13log x .∴f (3)=111331log 3log 3-⎛⎫= ⎪⎝⎭=-1.【例4-3】已知对数函数f (x )的反函数的图象过点(2,9),且f (b )=12,试求b 的值.解:设f (x )=log a x (a >0,且a ≠1),则它的反函数为y =a x (a >0,且a ≠1),由条件知a 2=9=32,从而a =3.于是f (x )=log 3x ,则f (b )=log 3b =12,解得b=123=5.对数型函数的定义域的求解(1)对数函数的定义域为(0,+∞).(2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0.(3)求函数的定义域应满足以下原则:①分式中分母不等于零;②偶次根式中被开方数大于或等于零;③指数为零的幂的底数不等于零;④对数的底数大于零且不等于1;⑤对数的真数大于零,如果在一个函数中数条并存,求交集.【例5】求下列函数的定义域.(1)y =5(2x -1)(5x -4);(3)y =.分析:利用对数函数y =log a x (a >0,且a ≠1)的定义求解.解:(1)要使函数有意义,则1-x >0,解得x <1,所以函数y =log 5(1-x )的定义域是{x |x <1}.(2)要使函数有意义,则54>0,21>0,211,x x x -⎧⎪-⎨⎪-≠⎩解得x >45且x ≠1,所以函数y =log (2x -1)(5x -4)的定义域是4,15⎛⎫⎪⎝⎭(1,+∞).(3)要使函数有意义,则0.5430,log(43)0,x x ->⎧⎨-≥⎩解得34<x ≤1,所以函数y =的定义域是3<14x x ⎧⎫≤⎨⎬⎩⎭.6.对数型函数的值域的求解(1)充分利用函数的单调性和图象是求函数值域的常用方法.(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下:①分解成y =log a u ,u =f (x )这两个函数;②求f (x )的定义域;③求u 的取值范围;④利用y =log a u 的单调性求解.(3)对于函数y =f (log a x )(a >0,且a ≠1),可利用换元法,设log a x =t ,则函数f (t )(t ∈R )的值域就是函数f (log a x )(a >0,且a ≠1)的值域.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.【例6-1】求下列函数的值域:(1)y =log 2(x 2+4);(2)y =212log (32)x x +-.解:(1)∵x 2+4≥4,∴log 2(x 2+4)≥log 24=2.∴函数y =log 2(x 2+4)的值域为[2,+∞).(2)设u =3+2x -x 2,则u =-(x -1)2+4≤4.∵u >0,∴0<u ≤4.又y =12log u 在(0,+∞)上为减函数,∴12log u ≥-2.∴函数y =212log (32)x x +-的值域为[-2,+∞).【例6-2】已知f (x )=2+log 3x ,x ∈[1,3],求y =[f (x )]2+f (x 2)的最大值及相应的x 的值.分析:先确定y =[f (x )]2+f (x 2)的定义域,然后转化成关于log 3x 的一个一元二次函数,利用一元二次函数求最值.解:∵f (x )=2+log 3x ,x ∈[1,3],∴y =[f (x )]2+f (x 2)=(log 3x )2+6log 3x +6且定义域为[1,3].令t =log 3x (x ∈[1,3]).∵t =log 3x 在区间[1,3]上是增函数,∴0≤t ≤1.从而要求y =[f (x )]2+f (x 2)在区间[1,3]上的最大值,只需求y =t 2+6t +6在区间[0,1]上的最大值即可.∵y =t 2+6t +6在[-3,+∞)上是增函数,∴当t =1,即x =3时,y max =1+6+6=13.综上可知,当x =3时,y =[f (x )]2+f (x 2)的最大值为13.7.对数函数的图象变换及定点问题(1)与对数函数有关的函数图象过定点问题对数函数y =log a x (a >0,且a ≠1)过定点(1,0),即对任意的a >0,且a ≠1都有log a 1=0.这是解决与对数函数有关的函数图象问题的关键.对于函数y =b +k log a f (x )(k ,b 均为常数,且k ≠0),令f (x )=1,解方程得x =m ,则该函数恒过定点(m ,b ).方程f (x )=0的解的个数等于该函数图象恒过定点的个数.(2)对数函数的图象变换的问题①函数y =log a x (a >0,且a ≠1)――----------------→向左(b >0)或向右(b <0)平移|b |个单位长度函数y =log a (x +b )(a >0,且a ≠1)②函数y =log a x (a >0,且a ≠1)――---------------→向上(b >0)或向下(b <0)平移|b |个单位长度函数y =log a x +b (a >0,且a ≠1)③函数y =log a x (a >0,且a ≠1)―----------------―→当x >0时,两函数图象相同当x <0时,将x >0时的图象关于y 轴对称函数y =log a |x |(a >0,且a ≠1)④函数y =log a x (a >0,且a ≠1)――----------------------------------------→保留x 轴上方的图象同时将x 轴下方的图象作关于x 轴的对称变换函数y =|log a x |(a >0,且a ≠1)【例7-1】若函数y =log a (x +b )+c (a >0,且a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为__________.解析:∵函数的图象恒过定点(3,2),∴将(3,2)代入y =log a (x +b )+c (a >0,且a ≠1),得2=log a (3+b )+c .又∵当a >0,且a ≠1时,log a 1=0恒成立,∴c =2.∴log a (3+b )=0.∴b =-2.答案:-2,2【例7-2】作出函数y =|log 2(x +1)|+2的图象.解:(第一步)作函数y =log 2x 的图象,如图①;(第二步)将函数y =log 2x 的图象沿x 轴向左平移1个单位长度,得函数y =log 2(x +1)的图象,如图②;(第三步)将函数y =log 2(x +1)在x 轴下方的图象作关于x 轴的对称变换,得函数y =|log 2(x +1)|的图象,如图③;(第四步)将函数y =|log 2(x +1)|的图象,沿y 轴方向向上平移2个单位长度,便得到所求函数的图象,如图④.8.利用对数函数的单调性比较大小两个对数式的大小比较有以下几种情况:(1)底数相同,真数不同.比较同底数(是具体的数值)的对数大小,构造对数函数,利用对数函数的单调性比较大小.要注意:明确所给的两个值是哪个对数函数的两个函数值;明确对数函数的底数与1的大小关系;最后根据对数函数的单调性判断大小.(2)底数不同,真数相同.若对数式的底数不同而真数相同时,可以利用顺时针方向底数增大画出函数的图象,再进行比较,也可以先用换底公式化为同底后,再进行比较.(3)底数不同,真数也不同.对数式的底数不同且指数也不同时,常借助中间量0,1进行比较.(4)对于多个对数式的大小比较,应先根据每个数的结构特征,以及它们与“0”和“1”的大小情况,进行分组,再比较各组内的数值的大小即可.注意:对于含有参数的两个对数值的大小比较,要注意对底数是否大于1进行分类讨论.【例8-1】比较下列各组中两个值的大小.(1)log31.9,log32;(2)log23,log0.32;(3)log aπ,log a3.141.分析:(1)构造函数y=log3x,利用其单调性比较;(2)分别比较与0的大小;(3)分类讨论底数的取值范围.解:(1)因为函数y=log3x在(0,+∞)上是增函数,所以f(1.9)<f(2).所以log31.9<log32.(2)因为log23>log21=0,log0.32<log0.31=0,所以log23>log0.32.(3)当a>1时,函数y=log a x在定义域上是增函数,则有log aπ>log a3.141;当0<a<1时,函数y=log a x在定义域上是减函数,则有log aπ<log a3.141.综上所得,当a>1时,log aπ>log a3.141;当0<a<1时,log aπ<log a3.141.【例8-2】若a2>b>a>1,试比较log a ab,log bba,log b a,log a b的大小.分析:利用对数函数的单调性或图象进行判断.解:∵b>a>1,∴0<ab<1.∴log a ab<0,log a b>log a a=1,log b1<log b a<log b b,即0<log b a<1.由于1<b a <b ,∴0<log b b a <1.由log b a -log b ba=2log b a b ,∵a 2>b >1,∴2ab>1.∴2log b a b >0,即log b a >log b b a.∴log a b >log b a >log b b a >log a ab.9.利用对数函数的单调性解对数不等式(1)根据对数函数的单调性,当a >0,且a ≠1时,有①log a f (x )=log a g (x )⇔f (x )=g (x )(f (x )>0,g (x )>0);②当a >1时,log a f (x )>log a g (x )⇔f (x )>g (x )(f (x )>0,g (x )>0);③当0<a <1时,log a f (x )>log a g (x )⇔f (x )<g (x )(f (x )>0,g (x )>0).(2)常见的对数不等式有三种类型:①形如log a f (x )>log a g (x )的不等式,借助函数y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.②形如log a f (x )>b 的不等式,应将b 化为以a 为对数的对数式的形式,再借助函数y =log a x 的单调性求解.③形如log a f (x )>log b g (x )的不等式,基本方法是将不等式两边化为同底的两个对数值,利用对数函数的单调性来脱去对数符号,同时应保证真数大于零,取交集作为不等式的解集.④形如f (log a x )>0的不等式,可用换元法(令t =log a x ),先解f (t )>0,得到t 的取值范围.然后再解x 的范围.【例9-1】解下列不等式:(1)1177log log (4)x x >-;(2)log x (2x +1)>log x (3-x ).解:(1)由已知,得>0,4>0,<4,x x x x ⎧⎪-⎨⎪-⎩解得0<x <2.所以原不等式的解集是{x |0<x <2}.(2)当x >1时,有21>3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得1<x <3;当0<x <1时,有21<3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得0<x <23.所以原不等式的解集是20<<1<<33x x x ⎧⎫⎨⎬⎩⎭或.【例9-2】若22log 3a ⎛⎫ ⎪⎝⎭<1,求a 的取值范围.解:∵22log 3a ⎛⎫ ⎪⎝⎭<1,∴-1<2log 3a <1,即12log log log 3a a a a a <<.(1)∵当a >1时,y =log a x 为增函数,∴123a a <<.∴a >32,结合a >1,可知a >32.(2)∵当0<a <1时,y =log a x 为减函数,∴12>>3a a .∴a <23,结合0<a <1,知0<a <23.∴a 的取值范围是230<<>32a a a ⎧⎫⎨⎬⎩⎭,或.10.对数型函数单调性的讨论(1)解决与对数函数有关的函数的单调性问题的关键:一是看底数是否大于1,当底数未明确给出时,则应对底数a 是否大于1进行讨论;二是运用复合法来判断其单调性;三是注意其定义域.(2)关于形如y =log a f (x )一类函数的单调性,有以下结论:函数y =log a f (x )的单调性与函数u =f (x )(f (x )>0)的单调性,当a >1时相同,当0<a <1时相反.例如:求函数y =log 2(3-2x )的单调区间.分析:首先确定函数的定义域,函数y =log 2(3-2x )是由对数函数y =log 2u 和一次函数u =3-2x 复合而成,求其单调区间或值域时,应从函数u =3-2x 的单调性、值域入手,并结合函数y =log 2u 的单调性考虑.解:由3-2x >0,解得函数y =log 2(3-2x )∞设u =3-2x ,x ∞∵u =3-2x ∞y =log 2u 在(0,+∞)上单调递增,∴函数y =log 2(3-2x )∞∴函数y =log 2(3-2x )∞【例10-1】求函数y =log a (a -a x )解:(1)若a >1,则函数y =log a t 递增,且函数t =a -a x 递减.又∵a -a x >0,即a x <a ,∴x <1.∴函数y =log a (a -a x )在(-∞,1)上递减.(2)若0<a <1,则函数y =log a t 递减,且函数t =a -a x 递增.又∵a -a x >0,即a x <a ,∴x >1.∴函数y =log a (a -a x )在(1,+∞)上递减.综上所述,函数y =log a (a -a x )在其定义域上递减.析规律判断函数y =log a f (x )的单调性的方法函数y =log a f (x )可看成是y =log a u 与u =f (x )两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.需特别注意的是,在求复合函数的单调性时,首先要考虑函数的定义域,即“定义域优先”.【例10-2】已知f (x )=12log (x 2-ax -a )在1,2⎛⎫-∞-⎪⎝⎭上是增函数,求a 的取值范围.解:1,2⎛⎫-∞-⎪⎝⎭是函数f (x )的递增区间,说明1,2⎛⎫-∞- ⎪⎝⎭是函数u =x 2-ax -a 的递减区间,由于是对数函数,还需保证真数大于0.令u (x )=x 2-ax -a ,∵f (x )=12log ()u x 在1,2⎛⎫-∞-⎪⎝⎭上是增函数,∴u (x )在1,2⎛⎫-∞-⎪⎝⎭上是减函数,且u (x )>0在1,2⎛⎫-∞- ⎪⎝⎭上恒成立.∴1,2210,2a u ⎧≥-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩即1,10.42a aa ≥-⎧⎪⎨+-≥⎪⎩∴-1≤a ≤12.∴满足条件的a 的取值范围是112a a ⎧⎫-≤≤⎨⎬⎩⎭.11.对数型函数的奇偶性问题判断与对数函数有关的函数奇偶性的步骤是:(1)求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f (-x )与f (x )或-f (x )是否相等;(2)当f (-x )=f (x )时,此函数是偶函数;当f (-x )=-f (x )时,此函数是奇函数;(3)当f (-x )=f (x )且f (-x )=-f (x )时,此函数既是奇函数又是偶函数;(4)当f (-x )≠f (x )且f (-x )例如,判断函数f (x )=log )a x (x ∈R ,a >0,且a ≠1)的奇偶性.解:∵f (-x )+f (x )==log )a x -+log )a x )=log a (x 2+1-x 2)=log a 1=0,∴f (-x )=-f (x ).∴f (x )为奇函数.【例11】已知函数f (x )=1log 1axx+-(a >0,且a ≠1).(1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性;(3)求使f (x )>0的x 的取值范围.分析:对于第(2)问,依据函数奇偶性的定义证明即可.对于第(3)问,利用函数的单调性去掉对数符号,解出不等式.解:(1)由11xx+->0,得-1<x <1,故函数f (x )的定义域为(-1,1).(2)∵f (-x )=1log 1ax x -+=1log 1a xx+--=-f (x ),又由(1)知函数f (x )的定义域关于原点对称,∴函数f (x )是奇函数.(3)当a >1时,由1log 1a x x +->0=log a 1,得11xx+->1,解得0<x <1;当0<a <1时,由1log 1ax x +->0=log a 1,得0<11xx+-<1,解得-1<x <0.故当a >1时,x 的取值范围是{x |0<x <1};当0<a <1时,x 的取值范围是{x |-1<x <0}.12.对数型函数模型的实际应用地震震级的变化规律、溶液pH 的变化规律、航天问题等,可以用对数函数模型来研究.此类题目,通常给出函数解析式模型,但是解析式中含有其他字母参数.其解决步骤是:(1)审题:弄清题意,分清条件和结论,抓住关键的词和量,理顺数量关系;(2)建模:将文字语言转化成数学语言,利用数学知识,求出函数解析式模型中参数的值;(3)求模:求解函数模型,得到数学结论;(4)还原:将用数学方法得到的结论还原为实际问题的结论.由此看,直接给定参数待定的函数模型时,利用待定系数法的思想,代入已知的数据得到相关的方程而求得待定系数.一般求出函数模型后,还利用模型来研究一些其他问题.代入法、方程思想、对数运算性质,是解答此类问题的方法精髓.【例12】我国用长征二号F 型运载火箭成功发射了“神舟”七号载人飞船,实现了中国历史上第一次的太空漫步,令中国成为世界上第三个有能力把人送上太空并进行太空漫步的国家(其中,翟志刚完全出舱,刘伯明的头部和手部部分出舱).在不考虑空气阻力的条件下,假设火箭的最大速度y (单位:km/s)关于燃料重量x (单位:吨)的函数关系式为y =k ln(m +x )-k )+4ln 2(k ≠0),其中m 是箭体、搭载的飞行器、航天员的重量和.当燃料重量为-1)m 吨时,火箭的最大速度是4km/s .(1)求y =f (x );(2)已知长征二号F 型运载火箭的起飞重量是479.8吨(箭体、搭载的飞行器、航天员、燃料),火箭的最大速度为8km/s ,求装载的燃料重量(e =2.7,精确到0.1).解:(1)由题意得当x =(-1)m 时,y =4,则4=k ln[m +-1)m ]-k ln()+4ln 2,解得k =8.所以y =8ln(m +x )-)+4ln 2,即y =8ln m xm+.(2)由于m +x =479.8,则m =479.8-x ,令479.888ln479.8x=-,解得x ≈302.1.故火箭装载的燃料重量约为302.1吨.。

高中数学必修一第四章指数函数与对数函数知识点总结全面整理(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结全面整理(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结全面整理单选题1、若函数f(x)=ln(ax+√x2+1)是奇函数,则a的值为()A.1B.-1C.±1D.0答案:C分析:根据函数奇函数的概念可得ln(−ax+√x2+1)+ln(ax+√x2+1)=0,进而结合对数的运算即可求出结果.因为f(x)=ln(ax+√x2+1)是奇函数,所以f(-x)+f(x)=0.即ln(−ax+√x2+1)+ln(ax+√x2+1)=0恒成立,所以ln[(1−a2)x2+1]=0,即(1−a2)x2=0恒成立,所以1−a2=0,即a=±1.当a=1时,f(x)=ln(x+√x2+1),定义域为R,且f(−x)+f(x)=0,故符合题意;当a=−1时,f(x)=ln(−x+√x2+1),定义域为R,且f(−x)+f(x)=0,故符合题意;故选:C.2、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I 1I 2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍. 故选:B.3、设a =log 2π,b =log 6π,则( ) A .a −b <0<ab B .ab <0<a −b C .0<ab <a −b D .0<a −b <ab 答案:D分析:根据对数函数的性质可得a −b >0,ab >0, 1b−1a <1,由此可判断得选项.解:因为a =log 2π>log 22=1,0=log 61<b =log 6π<log 66=1,所以a >1,0<b <1,所以a −b >0,ab >0,故排除A 、B 选项; 又1b −1a =a−b ab=log π6−log π2=log π3<log ππ<1,且ab >0,所以0<a −b <ab ,故选:D.4、如图所示,函数y =|2x −2|的图像是( )A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x−2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0.5、已知a=log20.6,b=log20.8,c=log21.2,则()A.c>b>a B.c>a>bC.b>c>a D.a>b>c答案:A分析:由对数函数得单调性即可得出结果.∵y=log2x在定义域上单调递增,∴log20.6<log20.8<log21.2,即c>b>a.故选:A.6、若n<m<0,则√m2+2mn+n2−√m2−2mn+n2等于()A.2m B.2n C.−2m D.−2n答案:C分析:根据根式的计算公式,结合参数范围,即可求得结果.原式=|m+n|−|m−n|,∵n<m<0,∴m+n<0,m−n>0,∴原式=−(m+n)−(m−n)=−2m.故选:C小提示:本题考查根式的化简求值,属简单题,注意参数范围即可.7、已知a=ln1,b=30.3,c=1og54,则a,b,c的大小关系是()3A.a<b<c B.b<a<c C.a<c<b D.c<a<b答案:C解析:分别将a,b,c与0,1比较大小,从而得到a,b,c的大小关系.<ln1=0,b=30.3>30=1,0=log51<c=1og54<log55=1,所以可知b>c>a 因为a=ln13故选:C8、方程log2x=log4(2x+3)的解为()C.3D.−1或3答案:C分析:根据对数运算性质化为同底的对数方程,结合对数真数大于零可求得结果.∵log2x=log4(2x+3)=12log2(2x+3)=log2√2x+3,∴{x>02x+3>0x=√2x+3,解得:x=3.故选:C.多选题9、甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,A点横坐标为12,B点坐标为(20,0),C点横坐标为128.则下面说法中正确的是()A.甲每分钟加工的零件数量是5个B.在60分钟时,甲比乙多加工了120个零件C.D点的横坐标是200D.y的最大值是216答案:ACD分析:甲每分钟加工的数量是600120=5,所以选项A正确;在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B错误;设D的坐标为(t,0),由题得△AOB∽△CBD,则有1220=128−20t−20,解可得t=200,所以选项C正确;当x=128时,y=216,所以y的最大值是216.所以选项D正确. 根据题意,甲一共加工的时间为(12−0)+(128−20)=120分钟,一共加工了600个零件,则甲每分钟加工的数量是600120=5,所以选项A 正确,设D 的坐标为(t,0),在区间(128,t)和(12,20 )上,都是乙在加工,则直线AB 和CD 的斜率相等, 则有∠ABO =∠CDB ,在区间(20,128)和(0,12)上,甲乙同时加工,同理可得∠AOB =∠CBD , 则△AOB ∽△CBD , 则有1220=128−20t−20,解可得t =200;即点D 的坐标是(200,0),所以选项C 正确; 由题得乙每分钟加工的零件数为600200=3个,所以甲每分钟比乙多加工5-3=2个,在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误; 当x =128时,y =(128−20)×2=216,所以y 的最大值是216.所以选项D 正确. 故选:ACD10、(多选题)下列各式既符合分数指数幂的定义,值又相等的是( ) A .(-1)13和(−1)26B .343和13-43C .212和414D .4−32和(12)−3答案:BC分析:根据分数指数幂的定义以及运算法则逐个验证与化简,即可判断选择.A 不符合题意,(-1)13和(−1)26不符合分数指数幂的定义,但(-1)13=√-13=-1,(-1)26=√(-1)26=1; B 符合题意,13-43=343.C 符合题意,414=√224=212;D 不符合题意,4−32和(12)−3均符合分数指数幂的定义,但4-32=1432=18,(12)−3 =23=8.故选:BC小提示:本题考查分数指数幂的定义以及运算法则,考查基本分析判断与化简能力,属基础题.11、已知a+a−1=3,则下列选项中正确的有()A.a2+a−2=7B.a3+a−3=16C.a12+a−12=±√5D.a32+a−32=2√5答案:AD分析:由a+1a =3(a>0),可得:a2+a−2=(a+1a)2−2;a3+a−3=(a+a−1)(a2+a−2−1);(a12+a−12)2=a+a−1+2;a√aa√a=(a+a−1)(a12+a−12)−(a12+a−12),即可判断出正误.解:∵a+1a=3,∴a2+a−2=(a+1a)2−2=32−2=7,因此A正确;a3+a−3=(a+a−1)(a2+a−2−1)=3×(7−1)=18,因此B不正确;∵(a12+a−12)2=a+a−1+2=3+2=5,a>0,解得a12+a−12=√5,因此C不正确;∵a√aa√a=(a+a−1)(a12+a−12)−(a12+a−12)=3√5−√5=2√5,因此D正确.故选:AD.填空题12、已知函数f(x)=ln(√1+x2−x)−1,若f(2x−1)+f(4−x2)+2>0,则实数x的取值范围为______. 答案:x<−1或x>3分析:令g(x)=f(x)+1=ln(√x2+1−x),分析出函数g(x)为R上的减函数且为奇函数,将所求不等式变形为g(x2−4)<g(2x−1),可得出关于x的不等式,解之即可.令g(x)=f(x)+1=ln(√x2+1−x),对任意的x∈R,√x2+1−x>|x|−x≥0,故函数g(x)的定义域为R,因为g(x)+g(−x)=ln(√x2+1−x)+ln(√x2+1+x)=ln(x2+1−x2)=0,则g(−x)=−g(x),所以,函数g(x)为奇函数,当x≤0时,令u=√1+x2−x,由于函数u1=√1+x2和u2=−x在(−∞,0]上均为减函数,故函数u=√1+x2−x在(−∞,0]上也为减函数,因为函数y=lnu在(0,+∞)上为增函数,故函数g(x)在(−∞,0]上为减函数,所以,函数g(x)在[0,+∞)上也为减函数,因为函数g(x)在R上连续,则g(x)在R上为减函数,由f(2x−1)+f(4−x2)+2>0可得g(2x−1)+g(4−x2)>0,即g(x2−4)<g(2x−1),所以,x2−4>2x−1,即x2−2x−3>0,解得x<−1或x>3.所以答案是:x<−1或x>3.13、若函数f(x)={2x+2,x≤1,log2(x−1),x>1在(−∞,a]上的最大值为4,则a的取值范围为________.答案:[1,17]分析:根据函数解析式画出函数图象,再根据指数函数、对数函数的性质判断函数的单调性,再求出f(x)= 4时x的值,即可得解.解:因为f(x)={2x+2,x≤1,log2(x−1),x>1,当x∈(−∞,1]时,易知f(x)=2x+2在(−∞,1]上单调递增,当x∈(1,+∞)时,f(x)=log2(x−1)在(1,+∞)上单调递增.作出f(x)的大致图象,如图所示.由图可知,f(1)=4,f(17)=log2(17−1)=4,因为f(x)在(−∞,a]上的最大值为4,所以a的取值范围为[1,17].所以答案是:[1,17]14、函数f(x)=4+log a(x−1)(a>0且a≠1)的图象恒过定点_________ 答案:(2,4)分析:令对数的真数为1,即可求出定点的横坐标,再代入求值即可;解:因为函数f(x)=4+log a(x−1)(a>0且a≠1),令x−1=1,解得x=2,所以f(2)=4+log a1=4,即函数f(x)恒过点(2,4);所以答案是:(2,4)解答题15、已知函数f(x)=ln(x+a)(a∈R)的图象过点(1,0),g(x)=x2−2e f(x).(1)求函数f(x)的解析式;(2)若函数y=f(x)+ln(2x−k)在区间(1,2)上有零点,求整数k的值;(3)设m>0,若对于任意x∈[1m,m],都有g(x)<−ln(m−1),求m的取值范围.答案:(1)f(x)=lnx;(2)k的取值为2或3;(3)(1,2).解析:(1)根据题意,得到ln(1+a)=0,求得a的值,即可求解;(2)由(1)可得y=ln(2x2−kx),得到2x2−kx−1=0,设ℎ(x)=2x2−kx−1,根据题意转化为函数y=ℎ(x)在(1,2)上有零点,列出不等式组,即可求解;(3)求得g(x)的最大值g(m),得出g(x)max<−ln(m−1),得到m2−2m<−ln(m−1),设ℎ(m)=m2−2m+ln(m−1)(m>1),结合ℎ(m)单调性和最值,即可求解.(1)函数f(x)=ln(x+a)(a∈R)的图像过点(1,0),所以ln(1+a)=0,解得a=0,所以函数f(x)的解析式为f(x)=lnx.(2)由(1)可知y=lnx+ln(2x−k)=ln(2x2−kx),x∈(1,2),令ln(2x2−kx)=0,得2x2−kx−1=0,设ℎ(x)=2x2−kx−1,则函数y=f(x)+ln(2x−k)在区间(1,2)上有零点,等价于函数y=ℎ(x)在(1,2)上有零点,所以{ℎ(1)=1−k<0ℎ(2)=7−2k>0,解得1<k<72,因为k∈Z,所以k的取值为2或3.(3)因为m>0且m>1m ,所以m>1且0<1m<1,因为g(x)=x2−2e f(x)=x2−2x=(x−1)2−1,所以g(x)的最大值可能是g(m)或g(1m),因为g(m)−g(1m )=m2−2m−(1m2−2m)=m2−1m2−(2m−2m)=(m−1m )(m+1m−2)=(m−1m)⋅(m−1)2m>0所以g(x)max=g(m)=m2−2m,只需g(x)max<−ln(m−1),即m2−2m<−ln(m−1),设ℎ(m)=m2−2m+ln(m−1)(m>1),ℎ(m)在(1,+∞)上单调递增,又ℎ(2)=0,∴m2−2m+ln(m−1)<0,即ℎ(m)<ℎ(2),所以1<m<2,所以m的取值范围是(1,2).小提示:已知函数的零点个数求解参数的取值范围问题的常用方法:1 、分离参数法:一般命题的情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f(x)中分离出参数,构造新的函数,求得新函数的最值,根据题设条件构建关于参数的不等式,从而确定参数的取值范围;2 、分类讨论法:一般命题的情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类的标准,在每个小区间内研究函数零点的个数是否符合题意,将满足题意的参数的各校范围并在一起,即为所求的范围.。

人教高中数学必修一第四章指数函数与对数函数知识点总结归纳

人教高中数学必修一第四章指数函数与对数函数知识点总结归纳

(名师选题)人教高中数学必修一第四章指数函数与对数函数知识点总结归纳单选题1、函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,√3,13,12中的一个,则a ,b ,c ,d 的值分别是( )A .54,√3,13,12B .√3,54,13,12 C .12,13,√3,54,D .13,12,54,√3,答案:C分析:根据指数函数的性质,结合函数图象判断底数的大小关系.由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而√3>54>12>13.故选:C .2、2021年10月16日,搭载神舟十三号载人飞船的长征二号F 遥十三运载火箭,在酒泉卫星发射中心成功发射升空,载人飞船精准进入预定轨道,顺利将3名宇航员送入太空,发射取得圆满成功.已知在不考虑空气阻力和地球引力的理想状态下,可以用公式v =v 0⋅ln Mm 计算火箭的最大速度v(m /s ),其中v 0(m /s )是喷流相对速度,m(kg )是火箭(除推进剂外)的质量,M(kg )是推进剂与火箭质量的总和,Mm 称为“总质比”.若某型火箭的喷流相对速度为1000m /s ,当总质比为625时,该型火箭的最大速度约为( )(附:lge ≈0.434,lg2≈0.301)A .5790m /sB .6219m /sC .6442m /sD .6689m /s 答案:C分析:根据对数的换底公式运算可得结果. v =v 0 ln M m =1000×ln625=1000×4lg5lg e=1000×4(1−lg2)lg e≈6442m/s .故选:C .3、下列函数中是偶函数且在区间(0,+∞)单调递减的函数是( ) A .f(x)=1|x |B .f(x)=(13)xC .f(x)=lg |x |D .f(x)=x −13 答案:A分析:利用幂指对函数的性质逐一分析给定四个函数的单调性和奇偶性,可得结论. 解:f(x)=1|x |是偶函数且在区间(0,+∞)上单调递减,满足条件;f(x)=(13)x是非奇非 偶函数,不满足条件;f(x)=lg |x |是偶函数,但在区间(0,+∞)上单调递增,不满足条件; f(x)=x −13是奇函数不是偶函数,不合题意. 故选:A .4、已知a =ln 13,b =30.3,c =1og 54,则a,b,c 的大小关系是( ) A .a <b <c B .b <a <c C .a <c <b D .c <a <b 答案:C解析:分别将a,b,c 与0,1比较大小,从而得到a,b,c 的大小关系.因为a =ln 13<ln1=0,b =30.3>30=1,0=log 51<c =1og 54<log 55=1,所以可知b >c >a 故选:C5、若2x −2y <3−x −3−y ,则( )A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y|>0D .ln|x −y|<0 答案:A分析:将不等式变为2x −3−x <2y −3−y ,根据f (t )=2t −3−t 的单调性知x <y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.由2x−2y<3−x−3−y得:2x−3−x<2y−3−y,令f(t)=2t−3−t,∵y=2x为R上的增函数,y=3−x为R上的减函数,∴f(t)为R上的增函数,∴x<y,∵y−x>0,∴y−x+1>1,∴ln(y−x+1)>0,则A正确,B错误;∵|x−y|与1的大小不确定,故CD无法确定.故选:A.小提示:本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到x,y的大小关系,考查了转化与化归的数学思想.6、已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=log2(x+2)+t,f(−6)=()A.−2B.2C.−4D.4答案:A分析:因f(x)是定义在R上的奇函数,所以f(0)=0,从而可求t,再由奇函数的定义即可求出f(−6)的值. 解:∵f(x)是定义在R上的奇函数,又当x≥0时,f(x)=log2(x+2)+t,∴f(0)=log2(0+2)+t=0,∴t=−1,∴当x≥0时,f(x)=log2(x+2)−1,∴f(−6)=−f(6)=−[log2(6+2)−1]=−(log223−1)=−2,故选:A.7、已知函数f(x)={2,x>mx2+4x+2,x≤m,若方程f(x)−x=0恰有三个根,那么实数m的取值范围是()A.[−1,2)B.[−1,2]C.[2,+∞)D.(−∞,−1]答案:A分析:由题意得,函数y=f(x)与函数y=x有三个不同的交点,结合图象可得出结果.解:由题意可得,直线y=x与函数f(x)=2(x>m)至多有一个交点,而直线y=x与函数f(x)=x2+4x+2(x≤m)至多两个交点,函数y=f(x)与函数y=x有三个不同的交点,则只需要满足直线y=x与函数f(x)=2(x>m)有一个交点直线y=x与函数f(x)=x2+4x+2(x≤m)有两个交点即可,如图所示,y=x与函数f(x)=x2+4x+2的图象交点为A(−2,−2),B(−1,−1),故有m≥−1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[−1,2).故选:A.8、已知函数f(x)=log a(x−b)(a>0且a≠1,a,b为常数)的图象如图,则下列结论正确的是()A.a>0,b<−1B.a>0,−1<b<0C.0<a<1,b<−1D.0<a<1,−1<b<0答案:D分析:根据函数图象及对数函数的性质可求解.因为函数f(x)=log a(x−b)为减函数,所以0<a<1又因为函数图象与x轴的交点在正半轴,所以x=1+b>0,即b>−1又因为函数图象与y轴有交点,所以b<0,所以−1<b<0,故选:D9、下列说法正确的个数是()(1)49的平方根为7;(2)√a nn=a(a≥0);(3)(ab )5=a5b15;(4)√(−3)26=(−3)13.A.1B.2C.3D.4答案:A分析:(1)结合指数运算法则判断,49平方根应有两个;(2)正确;(3)应为a5b−5;(4)符号错误49的平方根是±7,(1)错;(2)显然正确;(ab )5=a5b−5,(3)错;√(−3)26=313,(4)错,正确个数为1个,故选:A10、中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:C=Wlog2(1+SN),它表示:在受噪声干扰的信道中,最大信息传递速率C取决于信道带宽W、信道内信号的平均功率S、信道内部的高斯噪声功率N的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计,按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至5000,则C大约增加了()(附:lg2≈0.3010)A.20%B.23%C.28%D.50%答案:B分析:根据题意写出算式,再利用对数的换底公式及题中的数据可求解.将信噪比SN 从1000提升至5000时,C大约增加了Wlog2(1+5000)−Wlog2(1+1000)Wlog2(1+1000)=log25001−log21001log21001≈lg5000lg2−lg1000lg2lg1000lg2=lg53=1−lg23≈0.23=23%.故选:B. 填空题11、设x>0,y>0,若e x、e y的几何平均值为e(e是自然对数的底数),则x2、y2的算术平均值的最小值为__________.答案:1分析:利用指数的运算性质可得出x+y=2,再利用基本不等式可求得结果.由已知条件可得e x⋅e y=e x+y=e2,所以,x+y=2,因为x>0,y>0,由基本不等式可得x2+y2≥2xy,≥1,即2(x2+y2)≥x2+y2+2xy=(x+y)2=4,所以,x2+y22当且仅当x=y=1时,等号成立.因此,x2、y2的算术平均值的最小值为1.所以答案是:1.12、已知函数f(x)是指数函数,且f(2)=9,则f(1)=______.2答案:√3分析:依题意设f(x)=a x(a>0且a≠1),根据f(2)=9即可求出a的值,从而求出函数解析,再代入计算可得.解:由题意,设f(x)=a x(a>0且a≠1),因为f(2)=9,所以a2=9,又a>0,所以a=3,所以f(x)=3x,所以f(1)=√3.2所以答案是:√313、函数f(x)满足以下条件:①f(x)的定义域为R,其图像是一条连续不断的曲线;②∀x∈R,f(x)=f(−x);③当x1,x2∈(0,+∞)且x1≠x2,f(x1)−f(x2)>0;④f(x)恰有两个零点,请写出函数f(x)的一个解析x1−x2式________答案:f(x)=x2−1(答案不唯一)分析:由题意可得函数f(x)是偶函数,且在(0,+∞)上为增函数,函数图象与x轴只有2个交点,由此可得函数解析式因为∀x∈R,f(x)=f(−x),所以f(x)是偶函数,因为当x 1,x 2∈(0,+∞)且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2>0,所以f(x)在(0,+∞)上为增函数, 因为f(x)恰有两个零点,所以f(x)图象与x 轴只有2个交点,所以函数f(x)的一个解析式可以为f(x)=x 2−1, 所以答案是:f(x)=x 2−1 (答案不唯一) 14、计算:e ln2+(log 23)⋅(log 34)=________. 答案:4分析:根据换底公式,结合对数的运算性质进行求解即可. e ln2+(log 23)⋅(log 34)=2+lg3lg2×lg4lg3=2+log 24=2+2=4, 所以答案是:415、已知定义域为R 的函数f (x )=−12+12x +1则关于t 的不等式f(t 2-2t)+f(2t 2-1)<0的解集为________.答案:(−∞,−13)∪(1,+∞).分析:先判断出f (x )是奇函数且在R 上为减函数,利用单调性解不等式. 函数f (x )=−12+12x +1的定义域为R. 因为f (−x )=−12+12−x +1=−12+2x2x +1,所以f (−x )+f (x )=(−12+12−x +1)+(−12+12x +1)=−1+1=0,所以f (−x )=−f (x ), 即f (x )是奇函数.因为y =2x 为增函数,所以y =12x +1为减函数,所以f (x )=−12+12x +1在R 上为减函数. 所以f(t 2-2t)+f(2t 2-1)<0可化为f(t 2-2t)<-f(2t 2-1)=f(1-2t 2). 所以t 2-2t >1-2t 2,解得:t >1或t <-13. 所以答案是:(−∞,−13)∪(1,+∞). 解答题16、如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB的长为x米.(1)当AB的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD的面积为S平方米,当x为何值时,S有最大值,最大值是多少?答案:(1)15米;(2)当x为12.5米时,S有最大值,最大值是312.5平方米.分析:(1)设篱笆的一面AB的长为x米,则BC=(50−2x)m,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得S=x(50−2x),根据二次函数最值的求法求解即可.(1)设篱笆的一面AB的长为x米,则BC=(50−2x)m,由题意得,x(50−2x)=300,解得x1=15,x2=10,∵50−2x≤25,∴x≥12.5,∴x=15,所以,AB的长为15米时,矩形花园的面积为300平方米;(2)由题意得,S=x(50−2x)=−2x2+50x=−2(x−12.5)2+312.5,12.5≤x<25∴x=12.5时,S取得最大值,此时,S=312.5,所以,当x为12.5米时,S有最大值,最大值是312.5平方米.17、已知函数f(x)=log2(2x+1).(1)求不等式f(x)>1的解集;(2)若函数g(x)=log 2(2x −1)(x >0),若关于x 的方程g(x)=m +f(x)在[1,2]有解,求m 的取值范围. 答案:(1){x |x >0 };(2)[log 213,log 235].分析:(1)由f(x)>1可得2x +1>2,从而可求出不等式的解集,(2)由g(x)=m +f(x),得m =g (x )−f (x )=log 2(1−22x +1),再由x ∈[1,2]可得log 2(1−22x +1)的范围,从而可求出m 的取值范围(1)原不等式可化为2x +1>2,即2x >1,∴x >0, 所以原不等式的解集为{x |x >0 } (2)由g(x)=m +f(x), ∴m =g (x )−f (x )=log 2(1−22x +1),当1≤x ≤2时,25≤22x +1≤23,13≤1−22x +1≤35,m ∈[log 213,log 235]18、已知函数f (x )=log 12x +12x −172.(1)用单调性的定义证明:f (x )在定义域上是减函数; (2)证明:f (x )有零点; (3)设f (x )的零点在区间(1n+1,1n)内,求正整数n .答案:(1)证明见解析 (2)证明见解析 (3)10分析:(1)设0<x 1<x 2,则结合对数的运算法则可证得f (x 1)−f (x 2)=(log 12x 1−log 12x 2)+(12x 1−12x 2)>0,则f (x 1)>f (x 2),由此可得证.(2)结合函数的解析式有f (1)=−8<0,f (116)=72>0,且f (x )在区间(116 , 1)上连续不断,由零点存在定理可得证.(3)结合函数的解析式可得f (110)f (111)<0,由此可得答案.(1)因为f (x )的定义域为(0,+∞),设x 1,x 2是(0,+∞)内的任意两个不相等的实数,且x 1<x 2,则f (x 1)−f (x 2)=(log 12x 1−log 12x 2)+(12x 1−12x 2),因为x 2−x 1>0,x 1x 2>0, 所以log 12x 1−log 12x 2>0,12x 1−12x 2=x 2−x 12x 1x 2>0,所以f (x 1)>f (x 2),故f (x )在定义域(0,+∞)上是减函数. (2)因为f (1)=0+12−172=−8<0,f (116)=4+8−172=72>0,所以f (1)⋅f (116)<0,所以f (x )有零点. (3)f (111)=log 12111+112−172=log 211−3>log 28−3=0,f (110)=log 12110+5−172=log 210−72=log 25−52=log 2√25−log 2√32<0,所以f (110)f (111)<0,又f (x )在(0,+∞)上为减函数,所以f (x )的零点在区间(111,110)内,故n =10.。

数学必修一第四章知识点总结

数学必修一第四章知识点总结

数学必修一第四章知识点总结摘要:一、前言二、集合与元素1.集合的定义2.集合的表示方法3.元素与集合的关系三、集合的运算1.集合的并集2.集合的交集3.集合的补集4.集合的差集四、集合的子集与真子集1.子集的定义2.真子集的定义3.子集与真子集的关系五、集合的幂集1.幂集的定义2.幂集的运算六、总结与展望正文:一、前言数学必修一第四章主要介绍了集合与集合之间的关系以及集合的一些基本运算。

集合是数学中的一个基本概念,它具有广泛的应用,如在数学、物理、化学、生物等各个领域都有涉及。

因此,学好集合知识对提高数学素养具有重要意义。

二、集合与元素集合是由一些确定的、互异的元素组成的整体。

这些元素可以是数、图形、物体等。

集合的表示方法有列举法、描述法和图示法等。

元素与集合的关系有属于和不属于两种。

三、集合的运算1.集合的并集:对于两个集合A 和B,它们的并集是由所有属于A 或B 的元素组成的集合,记作A∪B。

2.集合的交集:对于两个集合A 和B,它们的交集是由既属于A 又属于B 的元素组成的集合,记作A∩B。

3.集合的补集:对于一个集合A,它的补集是由所有不属于A 的元素组成的集合,记作A"。

4.集合的差集:对于两个集合A 和B,它们的差集是由所有属于A 但不属于B 的元素组成的集合,记作A-B。

四、集合的子集与真子集1.子集的定义:对于一个集合A,如果B 是A 的元素之一,那么B 是A 的子集,记作BA。

2.真子集的定义:对于一个集合A,如果B 是A 的元素之一,且B 不等于A,那么B 是A 的真子集,记作BA。

3.子集与真子集的关系:真子集是子集的特殊情况,即如果B 是A 的真子集,那么B 一定是A 的子集。

五、集合的幂集1.幂集的定义:对于一个集合A,它的幂集是由A 的所有子集组成的集合,记作P(A)。

2.幂集的运算:幂集运算包括并集、交集和补集等。

六、总结与展望数学必修一第四章主要介绍了集合的基本概念、运算和子集等知识,这些知识为后续学习数列、函数等知识奠定了基础。

高中数学必修一第四章指数函数与对数函数知识点总结归纳(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结归纳(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结归纳单选题1、设4a =3b =36,则1a+2b =( )A .3B .1C .−1D .−3 答案:B分析:先求出a =log 436,b =log 336,再利用换底公式和对数的运算法则计算求解. 因为4a =3b =36,所以a =log 436,b =log 336, 则1a=log 364,2b=log 369,所以则1a +2b =log 364+log 369=log 3636=1. 故选:B.2、若x 1,x 2是二次函数y =x 2−5x +6的两个零点,则1x 1+1x 2的值为( )A .−12B .−13C .−16D .56 答案:D分析:解方程可得x 1=2,x 2=3,代入运算即可得解. 由题意,令x 2−5x +6=0,解得x =2或3, 不妨设x 1=2,x 2=3,代入可得1x 1+1x 2=12+13=56.故选:D.3、我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y (单位:万元)与处理量x (单位:吨)(x ∈[120,500])之间的函数关系可近似表示为y ={13x 3−80x 2+5040x,x ∈[120,144)12x 2−200x +80000,x ∈[144,500] ,当处理量x 等于多少吨时,每吨的平均处理成本最少( )A.120B.200C.240D.400答案:D分析:先根据题意求出每吨的平均处理成本与处理量之间的函数关系,然后分x∈[120,144)和x∈[144,500]分析讨论求出其最小值即可由题意得二氧化碳每吨的平均处理成本为S={13x2−80x+5040,x[120,144)1 2x−200+80000x,x∈[144,500],当x∈[120,144)时,S=13x2−80x+5040=13(x−120)2+240,当x=120时,S取得最小值240,当x∈[144,500]时,S=12x+80000x−200≥2√12x⋅80000x−200=200,当且仅当12x=80000x,即x=400时取等号,此时S取得最小值200,综上,当每月得理量为400吨时,每吨的平均处理成本最低为200元,故选:D4、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A5、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,10b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.6、设f(x)={e x−1,x<3log3(x−2),x≥3,则f(f(11))的值是()A.1B.e C.e2D.e−1答案:B分析:根据自变量的取值,代入分段函数解析式,运算即可得解.由题意得f(11)=log3(11−2)=log39=2,则f(f(11))=f(2)=e2−1=e.故选:B.小提示:本题考查了分段函数求值,考查了对数函数及指数函数求值,属于基础题.7、已知实数a,b∈(1,+∞),且log2a+log b3=log2b+log a2,则()A.a<√b<b B.√b<a<b C.b<√a<a D.√a<b<a答案:B分析:对log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,结合y=x−1x 的单调性判断b<a,同理利用换底公式得log2a−1log2a<log3b−1log3b,即log2a>log3b,再根据对数运算性质得log2a>log2√b,结合y=log2x单调性,a>√b,继而得解.由log2a+log b3=log2b+log a2,变形可知log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,由函数f(x)=x−1x在(0,+∞)上单调递增知,log2a<log2b,即a<b,排除C,D;其次,因为log2b>log3b,得log2a+log b3>log3b+log a2,即log2a−log a2>log3b−log b3,同样利用f(x)=x−1x的单调性知,log2a>log3b,又因为log3b=log√3√b>log2√b,得log2a>log2√b,即a>√b,所以√b<a<b.故选:B.8、已知f(x)=a−x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是()A.a>0B.a>1C.a<1D.0<a<1答案:D分析:把f(-2),f(-3)代入解不等式,即可求得.因为f(-2)=a2,f(-3)=a3,f(-2)>f(-3),即a2>a3,解得:0<a<1.故选:D多选题9、某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=12x2-200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.以下判断正确的是()A.该单位每月处理量为400吨时,才能使每吨的平均处理成本最低B.该单位每月最低可获利20000元C.该单位每月不获利,也不亏损D.每月需要国家至少补贴40000元才能使该单位不亏损答案:AD分析:根据题意,列出平均处理成本表达式,结合基本不等式,可得最低成本;列出利润的表达式,根据二次函数图像与性质,即可得答案.由题意可知,二氧化碳每吨的平均处理成本为yx =12x+80000x−200≥2√12x⋅80000x−200=200,当且仅当12x=80000x,即x=400时等号成立,故该单位每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元,故A正确;设该单位每月获利为S元,则S=100x−y=100x−(12x2+80000−200x)=−12x2+300x−80000=−12(x−300)2−35000,因为x∈[400,600],所以S∈[−80000,−40000].故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损,故D正确,BC错误,故选:AD小提示:本题考查基本不等式、二次函数的实际应用,难点在于根据题意,列出表达式,并结合已有知识进行求解,考查阅读理解,分析求值的能力,属中档题.10、已知函数f(x)=log2(2x+8x)−2x,以下判断正确的是()A.f(x)是增函数B.f(x)有最小值C.f(x)是奇函数D.f(x)是偶函数答案:BD分析:由题设可得f(x)=log2(12x+2x),根据复合函数的单调性判断f(x)的单调情况并确定是否存在最小值,应用奇偶性定义判断奇偶性.由f(x)=log2(2x+23x)−log222x=log2(12x+2x),令μ=2x>0为增函数;而t=1μ+μ在(0,1)上递减,在(1,+∞)上递增;所以t在x∈(−∞,0)上递减,在x∈(0,+∞)上递增;又y=log2t在定义域上递增,则y在x∈(−∞,0)上递减,在x∈(0,+∞)上递增;所以f(x)在(−∞,0)上递减,在(0,+∞)上递增,故最小值为f(0)=1,f(−x)=log2(12−x +2−x)=log2(2x+12x)=f(x),故为偶函数.故选:BD11、为了得到函数y=ln(ex)的图象,可将函数y=ln x的图象()A.纵坐标不变,横坐标伸长为原来的e倍B.纵坐标不变,横坐标缩短为原来的1eC.向上平移一个单位长度D .向下平移一个单位长度 答案:BC分析:根据函数图像变换求得结果.解:由题意函数y =lnx 的图象纵坐标不变,横坐标缩短为原来的1e , 可得到函数y =ln (ex)的图象,则A 错误,B 正确; 因为y =ln (ex)=ln x +1,则将函数y =ln x 的图象向上平移一个单位可得到函数y =ln (ex)的图象, 则C 正确,D 错误. 故选:BC. 填空题12、已知函数f(x)={x +1,x ≤0,log 2x,x >0则函数y =f [f (x )]的所有零点之和为___________.答案:12分析:利用分段函数,分类讨论,即可求出函数y =f [f (x )]的所有零点,从而得解.解:x ⩽0时,x +1=0,x =−1,由f(x)=−1,可得x +1=−1或log 2x =−1,∴x =−2或x =12;x >0时,log 2x =0,x =1,由f(x)=1,可得x +1=1或log 2x =1,∴x =0或x =2; ∴函数y =f [f (x )]的所有零点为−2,12,0,2,所以所有零点的和为−2+12+0+2=12 所以答案是:12.13、对于实数a 和b ,定义运算“∗”:a ∗b ={a 2−ab,b 2−ab, a ≤ba >b ,设f(x)=(2x −1)∗(x −1),且关于x 的方程为f(x)=m(m ∈R )恰有三个互不相等的实数根,则m 的取值范围是___________. 答案:(0,14)分析:根据代数式2x −1和x −1之间的大小关系,结合题中所给的定义,用分段函数的形式表示函数f (x )的解析式,画出函数的图象,利用数形结合求出m 的取值范围. 由2x −1≤x −1可得x ≤0,由 2x −1>x −1可得x >0,所以根据题意得f (x )={(2x −1)2−(2x −1)(x −1),x ≤0(x −1)2−(2x −1)(x −1),x >0,即 f (x )={2x 2−x ,x ≤0x −x 2,x >0,作出函数f (x )的图象如图,当x >0时,f (x )=x −x 2开口向下,对称轴为x =12, 所以当x >0时,函数的最大值为f (12)=12−(12)2=14, 函数的图象和直线y =m (m ∈R )有三个不同的交点. 可得m 的取值范围是(0,14), 所以答案是:(0,14) 14、函数f(x)=x (12x −a +12)定义域为(﹣∞,1)∪(1,+∞),则满足不等式ax ≥f (a )的实数x 的集合为______. 答案:{x |x ≥1}分析:由题意可得a =2,f(x)=x (12x −2+12),f(a)=f(2)=2,由ax ≥f (a ),结合指数函数单调性可求x 解:由函数f(x)=x (12x −a +12)定义域为(﹣∞,1)∪(1,+∞),可知a =2 ∴f(x)=x (12x −2+12),f(a)=f(2)=2由ax≥f(a)可得,2x≥2∴x≥1所以答案是:{x|x≥1}解答题15、已知集合A={log52 ,log425,2},集合B={log25,log319}.记集合A中最小元素为a,集合B中最大元素为b.(1)求A∩B及a,b的值;(2)证明:函数f(x)=x+1x 在[2,+∞)上单调递增;并用上述结论比较a+b与52的大小.答案:(1)A∩B={log25},a=log52,b=log25;(2)证明见解析,a+b>52分析:(1)根据对数的运算性质以及对数函数的单调性即可解出;(2)根据单调性的定义即可证明函数f(x)=x+1x在[2,+∞)上单调递增,再根据单调性以及对数的性质log a b=1log b a即可比较出大小.(1)因为log425=log25,所以A={log52 ,log25,2},B={log25,−2},即A∩B={log25}.因为log52<log525=2=log24<log25,所以a=log52,b=log25.(2)设x1,x2为[2,+∞)上任意两个实数,且2≤x1<x2,则x1−x2<0,x1x2>1,f(x1)−f(x2)=(x1+1x1)−(x2+1x2)=x1−x2+1x1−1x2=(x1−x2)×x1x2−1x1x2<0,即f(x1)<f(x2),所以f(x)在[2,+∞)上单调递增.所以f(x)>f(2)=52,所以log52+log25=1log25+log25=f(log25)>52.。

高中数学必修一第四章指数函数与对数函数重点归纳笔记(带答案)

高中数学必修一第四章指数函数与对数函数重点归纳笔记(带答案)

高中数学必修一第四章指数函数与对数函数重点归纳笔记单选题1、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a=5,b =log 83=13log 23,即23b=3,所以4a−3b=4a 43b=(2a )2(23b )2=5232=259.故选:C.2、设log 74=a,log 73=b ,则log 4936=( ) A .12a −b B .12b +a C .12a +b D .12b −a答案:C分析:根据对数的运算性质计算即可.解:log 4936=log 7262=log 76=log 72+log 73=12log 74+log 73=12a +b . 故选:C.3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0 若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34)C .[0,916]D .(0,916) 答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916. 故m ∈(0,916).故选:D .4、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[34,1)C .a ∈(0,13]D .a ∈[34,2) 答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,∴{0<a <1a −2<0(a −2)×0+3a ≤a 0,解得0<a ≤13, ∴a 的取值范围是(0,13].故选:C .5、已知函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,则a 的取值范围是( )A .√e )B .(−∞,√e )C .√e)D .(0,√e )答案:B分析:f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为:f(−x)=x 2+e −x −12(x >0), 函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点, 即f(−x)=g(x)有解,通过数形结合即可得解. f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为: f(−x)=x 2+e −x −12(x >0),函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,即f(−x)=g(x)有解,即x 2+e −x −12=x 2+ln(x +a),整理的:e −x −12=ln(x +a), y =e −x −12和y =ln(x +a)的图像存在交点,如图:临界值在x =0处取到(虚取),此时a =√e ,故当a <√e 时y =e −x −12和y =ln(x +a)的图像存在交点, 故选:B.6、已知函数f(x)={log 12x,x >0,a ⋅(13)x,x ≤0,若关于x 的方程f[f(x)]=0有且只有一个实数根,则实数a 的取值范围是( )A .(−∞,0)∪(0,1)B .(−∞,0)∪(1,+∞)C .(−∞,0)D .(0,1)∪(1,+∞) 答案:B分析:利用换元法设t =f (x ),则等价为f (t )=0有且只有一个实数根,分a <0,a =0,a >0 三种情况进行讨论,结合函数的图象,求出a 的取值范围. 令f(x)=t ,则方程f[f(x)]=0等价于f(t)=0,当a =0时,此时当x ≤0时,f (x )=a ⋅(13)x=0,此时函数有无数个零点,不符合题意;当a ≠0,则f(x)=a ⋅(13)x≠0,所以由f(t)=log 12t =0,得t =1,则关于x 的方程f[f(x)]=0有且只有一个实数根等价于关于x 的方程f(x)=1有且只有一个实数根,作出f(x)的图象如图:当a <0时,由图象可知直线y =1与y =f(x)的图象只有一个交点,恒满足条件; 当a >0时,要使直线y =1与y =f(x)的图象只有一个交点, 则只需要当x ≤0时,直线y =1与f(x)=a ⋅(13)x的图象没有交点, 因为x ≤0 时,f (x )=a ⋅(13)x∈[a,+∞),此时f (x ) 最小值为a , 所以a >1,综上所述,实数a 的取值范围是(−∞,0)∪(1,+∞), 故选:B.7、已知对数式log (a+1)24−a(a ∈Z )有意义,则a 的取值范围为( )A .(−1,4)B .(−1,0)∪(0,4)C .{1,2,3}D .{0,1,2,3} 答案:C分析:由对数的真数大于0,底数大于0且不等于1列出不等式组,然后求解即可. 由题意可知:{a +1>0a +1≠124−a >0 ⇔{a >−1a ≠0a <4 ,解之得:−1<a <4且a ≠0.∵a ∈Z ,∴a 的取值范围为{1,2,3}. 故选:C.8、若函数f (x )=ln(ax +√x 2+1)是奇函数,则a 的值为( ) A .1B .-1 C .±1D .0 答案:C分析:根据函数奇函数的概念可得ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0,进而结合对数的运算即可求出结果.因为f (x )=ln(ax +√x 2+1)是奇函数,所以f (-x )+f (x )=0.即ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0恒成立,所以ln [(1−a 2)x 2+1]=0,即(1−a 2)x 2=0 恒成立,所以1−a 2=0,即a =±1. 当a =1时,f (x )=ln(x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意; 当a =−1时,f (x )=ln(−x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意; 故选:C. 多选题9、如图,某池塘里的浮萍面积y (单位:m 2)与时间t (单位:月)的关系式为y =ka t (k ∈R 且k ≠0,a ≠1).则下列说法正确的是( )A.浮萍每月增加的面积都相等B.第6个月时,浮萍的面积会超过30m2C.浮萍面积从2m2蔓延到64m2只需经过5个月D.若浮萍面积蔓延到4m2,6m2,9m2所经过的时间分别为t1,t2,t3,则t1+t3=2t2答案:BCD分析:由题意结合函数图象可得{ka=1ka3=4,进而可得y=2t−1;由函数图象的类型可判断A;代入x=6可判断B;代入y=2、y=64可判断C;代入y=4、y=6、y=9,结合对数的运算法则即可得判断D;即可得解.由题意可知,函数过点(1,1)和点(3,4),则{ka=1ka3=4,解得{k=12a=2(负值舍去),∴函数关系式为y=12×2t=2t−1,对于A,由函数是曲线型函数,所以浮萍每月增加的面积不相等,故选项A错误;对于B,当x=6时,y=25=32>30,故选项B正确;对于C,令y=2得t=2;令y=64得t=7,所以浮萍面积从2m2增加到64m2需要5个月,故选项C正确;对于D,令y=4得t1=3;令y=6得t2=log212;令y=9得t3=log218;所以t1+t3=3+log212=log2144=2log212=2t2,故选项D正确.故选:BCD.小提示:本题考查了函数解析式的确定及函数模型的应用,考查了运算求解能力,合理转化条件是解题关键,属于基础题.10、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项. 依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD11、已知函数f(x)=lg(√x2−2x+2−x+1),g(x)=2x+62x+2则下列说法正确的是()A.f(x)是奇函数B.g(x)的图象关于点(1,2)对称C.若函数F(x)=f(x)+g(x)在x∈[1−m,1+m]上的最大值、最小值分别为M、N,则M+N=4D.令F(x)=f(x)+g(x),若F(a)+F(−2a+1)>4,则实数a的取值范围是(−1,+∞)答案:BCD分析:利用函数的奇偶性的定义,可判定A错误;利用图像的平移变换,可判定B正确;利用函数的图象平移和奇偶性,可得判定C正确;利用函数的单调性,可判定D正确.由题意函数f(x)=lg(√x2−2x+2−x+1)=lg(√(x−1)2+1−(x−1)),因为√(x−1)2+1−(x−1)>0恒成立,即函数f(x)的定义域为R,又因为f(0)=lg(√2+1)≠0,所以f(x)不是奇函数,所以A错误;将g (x )=2x +62x +2的图象向下平移两个单位得到y =2x +62x +2−2=2−2x 2+2x,再向左平移一个单位得到ℎ(x )=2−2x+12+2x+1=1−2x 1+2x,此时ℎ(−x )=1−2−x1+2−x =2x −12x +1=−ℎ(x ),所以ℎ(x )图象关于点(0,0)对称, 所以g (x )的图象关于(1,2)对称,所以B 正确;将函数f (x )的图象向左平移一个单位得m (x )=lg(√x 2+1−x), 因为m (−x )+m (x )=lg(√x 2+1+x)+lg(√x 2+1−x)=lg1=0, 即m(−x)=−m(x),所以函数m (x )为奇函数, 所以函数f (x )关于(1,0)点对称,所以F (x )若在1+a 处 取得最大值,则F (x )在1−a 处取得最小值,则F(1+a)+F(1−a)=f(1+a)+f(1−a)+g(1+a)+g(1−a)=0+4=4,所以C 正确; 由F(a)+F(−2a +1)>4,可得f(a)+f(1−2a)+g(a)+g(1−2a)>4, 由f (x )=lg(√(x −1)2+1−(x −1)), 设m (x )=lg(√x 2+1−x),t =√x 2+1−x , 可得t ′=√x 2+1−1<0,所以t =√x 2+1−x 为减函数,可得函数m (x )=lg(√x 2+1−x)为减函数,所以函数f (x )=lg(√(x −1)2+1−(x −1))为单调递减函数, 又由g (x )=2x +62x +2=1+42x +2为减函数,所以F (x )为减函数,因为F (x )关于点(1,2)对称,所以F (a )+F (−2a +1)>4=F(a)+F(2−a),即F(−2a +1)>F(2−a), 即−2a +1<2−a ,解得a >−1,所以D 正确. 故选:BCD.小提示:求解函数有关的不等式的方法及策略: 1 、解函数不等式的依据是函数的单调性的定义, 具体步骤:①将函数不等式转化为f(x 1)>f(x 2)的形式;②根据函数f (x )的单调性去掉对应法则“f ”转化为形如:“x 1>x 2”或“x 1<x 2”的常规不等式,从而得解. 2 、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 填空题12、若√4a 2−4a +1=√(1−2a )33,则实数a 的取值范围_________ .答案:(−∞,12]分析:由二次根式的化简求解由题设得√4a 2−4a +1=√(2a −1)2=|2a −1|,√(1−2a )33=1−2a ,所以|2a −1|=1−2a 所以1−2a ≥0,a ≤12.所以答案是:(−∞,12]13、已知10p =3,用p 表示log 310=_____. 答案:1p ##p −1分析:根据指数和对数的关系,以及换底公式,分析即得解. ∵10p =3,∴p =lg3,∴log 310=1g101g3=11g3=1p . 所以答案是:1p .14、对于任意不等于1的正数a ,函数f (x )=log a (2x +3)+4的图像都经过一个定点,这个定点的坐标是_______. 答案:(−1,4)分析:根据log a 1=0求得正确结论.依题意,当2x +3=1,即x =−1时,f (−1)=log a 1+4=4, 所以定点为(−1,4). 所以答案是:(−1,4)解答题15、已知函数f(x)=2x−12x.(1)判断f(x)在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x的不等式f(log2x)<f(1).答案:(1)f(x)在R上是增函数,证明见解析;(2)(0,2).分析:(1)由题可判断函数为奇函数且为增函数,利用定义法的步骤证明即可;(2)利用函数f(x)的单调性及对数函数的单调性即解.(1)∵f(−x)=2−x−2x=−(2x−12x)=−f(x),则函数f(x)是奇函数,则当x⩾0时,设0⩽x1<x2,则f(x1)−f(x2)=2x1−12x1−2x2+12x2=2x1−2x2+2x2−2x12x12x2=(2x1−2x2)2x12x2−12x12x2,∵0⩽x1<x2,∴1⩽2x1<2x2,即2x1−2x2<0,2x12x2>1,则f(x1)−f(x2)<0,即f(x1)<f(x2),则f(x)在[0,+∞)上是增函数,∵f(x)是R上的奇函数,∴f(x)在R上是增函数.(2)∵f(x)在R上是增函数,∴不等式f(log2x)<f(1)等价为不等式log2x<1,即0<x<2.即不等式的解集为(0,2).。

数学必修一第四章知识点总结

数学必修一第四章知识点总结

数学必修一第四章知识点总结数学必修一第四章知识点总结总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,为此我们要做好回顾,写好总结。

总结一般是怎么写的呢?下面是本店铺为大家整理的数学必修一第四章知识点总结,欢迎大家分享。

数学必修一第四章知识点总结1基本初等函数有哪些基本初等函数包括以下几种:(1)常数函数y = c( c为常数)(2)幂函数y = x^a( a为常数)(3)指数函数y = a^x(a>0, a≠1)(4)对数函数y =log(a) x(a>0, a≠1,真数x>0)(5)三角函数以及反三角函数(如正弦函数:y =sinx反正弦函数:y = arcsin x等)基本初等函数性质是什么幂函数形如y=x^a的函数,式中a为实常数。

指数函数形如y=a^x的函数,式中a为不等于1的正常数。

对数函数指数函数的反函数,记作y=loga a x,式中a为不等于1的正常数。

指数函数与对数函数之间成立关系式,loga ax=x。

三角函数即正弦函数y=sinx,余弦函数y=cosx,正切函数y=tanx,余切函数y=cotx,正割函数y=secx,余割函数y=cscx(见三角学)。

反三角函数三角函数的反函数——反正弦函数y = arc sinx,反余弦函数y=arc cosx (-1≤x≤1,初等函数0≤y≤π),反正切函数y=arc tanx,反余切函数y = arc cotx(-∞学习数学小窍门建立数学纠错本。

把平时容易出现错误的知识或推理记载下来,以防再犯。

争取做到:找错、析错、改错、防错。

达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

限时训练。

可以找一组题(比如10道选择题),争取限定一个时间完成;也可以找1道大题,限时完成。

这主要是创设一种考试情境,检验自己在紧张状态下的思维水平。

高一上数学必修一第四章《4.4幂函数》知识点梳理

高一上数学必修一第四章《4.4幂函数》知识点梳理

高一上必修二第四章《指数函数、对数函数与幂函数》知识点梳理§4.4 幂函数学习目标 1.了解幂函数的概念.2.掌握y =x α(α=-1,12,1,2,3)的图像与性质.3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.知识点一 幂函数的概念一般地,函数y =x α称为幂函数,其中x 是自变量,α是常数.提醒 幂函数中底数是自变量,而指数函数中指数为自变量.知识点二 幂函数的图像和性质1.幂函数的图像在同一平面直角坐标系中,幂函数y =x ,y =x 2,y =x 3,y =,y =x -1的图像如图.2.五个幂函数的性质y =xy =x 2y =x 3y =y =x -1定义域R R R [0,+∞){x |x ≠0}值域R [0,+∞)R [0,+∞){y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上是增函数在[0,+∞)上是增函数,在(-∞,0]上是减函数在R 上是增函数在[0,+∞)上是增函数在(0,+∞)上是减函数,在(-∞,0)上是减函数12x 12x公共点(1,1)1.y =-1x 是幂函数.( × )2.当x ∈(0,1)时,x 2>x 3.( √ )3.y =与y =定义域相同.( × )4.若y =x α在(0,+∞)上为增函数,则α>0.( √ )一、幂函数的概念例1 (1)(多选)下列函数为幂函数的是( )A .y =x 3 B .y =(12)xC .y =4x 2D .y =x答案 AD解析 B 项为指数函数,C 中的函数的系数不为1,AD 为幂函数.(2)已知y =(m 2+2m -2)+2n -3是幂函数,求m ,n 的值.解 由题意得Error!解得Error!或Error!所以m =-3或1,n =32.反思感悟 判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.跟踪训练1 已知f (x )=ax 2a +1-b +1是幂函数,则a +b 等于( )A .2 B .1 C.12 D .0答案 A解析 因为f (x )=ax 2a +1-b +1是幂函数,所以a =1,-b +1=0,即a =1,b =1,则a +b =2.32x 64x 22m x二、幂函数的图像例2 如图所示,图中的曲线是幂函数y =x n 在第一象限的图像,已知n 取±2,±12四个值,则对应于c 1,c 2,c 3,c 4的n 依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12答案 B解析 根据幂函数y =x n 的性质,故c 1的n =2,c 2的n =12,当n <0时,|n |越大,曲线越陡峭,所以曲线c 3的n =-12,曲线c 4的n =-2.反思感悟 解决幂函数图像问题应把握的两个原则(1)依据图像高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图像越靠近x 轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图像越远离x 轴(简记为指大图高).(2)依据图像确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图像(类似于y =x -1 或y =或y =x 3)来判断.跟踪训练2 函数f (x )=的大致图像是( )答案 A解析 因为-12<0,所以f (x )在(0,+∞)上单调递减,排除选项B ,C ;又f (x )的定义域为(0,+∞),故排除选项D.三、比较幂值的大小12x 12x例3 比较下列各组数中两个数的大小:(1)(25)0.5与(13)0.5;(2)(-23)-1与(-35)-1;(3)与.解 (1)∵幂函数y =x 0.5在(0,+∞)上是单调递增的,又25>13,∴(25)0.5>(13)0.5.(2)∵幂函数y =x -1在(-∞,0)上是单调递减的,又-23<-35,∴(-23)-1>(-35)-1.(3)∵函数y 1=(23)x为R 上的减函数,又34>23,∴>.又∵函数y 2=在(0,+∞)上是增函数,且34>23,∴>,∴>.反思感悟 比较幂值大小的方法跟踪训练3 比较下列各组值的大小:(1),;(2),,1.42.解 (1)∵y =为R 上的偶函数,∴=.又函数y =为[0,+∞)上的增函数,且0.31<0.35,3423⎛⎫⎪⎝⎭2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭3423⎛⎫ ⎪⎝⎭23x 2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭2334⎛⎫ ⎪⎝⎭3423⎛⎫⎪⎝⎭()650.31-650.35121.2121.465x ()650.31-650.3165x∴<,即<.(2)∵y =在[0,+∞)上是增函数,且1.2<1.4,∴<.又∵y =1.4x 为增函数,且12<2,∴<1.42,∴<<1.42.幂函数性质的应用典例 已知幂函数y =x 3m -9 (m ∈N +)的图像关于y 轴对称且在(0,+∞)上单调递减,求满足的a 的取值范围.解 因为函数y =x 3m -9在(0,+∞)上单调递减,所以3m -9<0,解得m <3.又因为m ∈N +,所以m =1,2.因为函数的图像关于y 轴对称,所以3m -9为偶数,故m =1.则原不等式可化为.因为y =在(-∞,0),(0,+∞)上单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得23<a <32或a <-1.故a 的取值范围是Error!.[素养提升] (1)幂函数y =x α中只有一个参数α,幂函数的所有性质都与α的取值有关,故可由α确定幂函数的定义域、值域、单调性、奇偶性,也可由这些性质去限制α的取值.(2)通过具体实例抽象出幂函数的概念和性质,并应用单调性求解,体现了数学中数学运算与直观想象的核心素养.650.31650.35()650.31-650.3512x 121.2121.4121.4121.2121.433(1)(32)m m a a --+<-1133(1)(32)a a --+<-13x-1.下列函数是幂函数的是( )A .y =5x B .y =x 5C .y =5x D .y =(x +1)3答案 B解析 函数y =5x 是指数函数,不是幂函数;函数y =5x 是正比例函数,不是幂函数;函数y =(x +1)3的底数不是自变量x ,不是幂函数;函数y =x 5是幂函数.2.幂函数y =x α(α∈R )的图像一定不经过( )A .第四象限 B .第三象限C .第二象限 D .第一象限答案 A解析 由幂函数的图像可知,其图像一定不经过第四象限.3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3答案 A解析 可知当α=-1,1,3时,y =x α为奇函数,又因为y =x α的定义域为R ,则α=1,3.4.已知幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),则k +α等于( )A.12 B .1 C.32 D .2答案 A解析 ∵幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),∴k =1,f(12)=(12)α=2,即α=-12,∴k +α=12.5.已知f (x )=,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f(1a )<f(1b)B .f (1a )<f(1b )<f (b )<f (a )C .f (a )<f (b )<f (1b )<f(1a )D .f (1a )<f (a )<f(1b )<f (b )12x答案 C解析 因为函数f (x )=在(0,+∞)上是增函数,又0<a <b <1<1b <1a ,故f (a )<f (b )<f(1b )<f(1a).1.知识清单:(1)幂函数的概念.(2)幂函数的图像.(3)幂函数的性质及其应用.2.方法归纳:数形结合.3.常见误区:幂函数与指数函数的区别;幂函数的奇偶性.1.幂函数f (x )=x α的图像经过点(2,4),则f (-12)等于( )A.12B.14 C .-14 D .2答案 B解析 幂函数f (x )=x α的图像经过点(2,4),则2α=4,解得α=2;∴f (x )=x 2,∴f (-12)=(-12)2=14.2.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A .y =x -2 B .y =x -1C .y =x 2 D .y =答案 A解析 所给选项都是幂函数,其中y =x -2和y =x 2是偶函数,y =x -1和y =不是偶函数,故排除选项B ,D ,又y =x 2在区间(0,+∞)上单调递增,不合题意,y =x -2在区间(0,+∞)上单调递减,符合题意.3.设a =,b =,c =,则a ,b ,c 的大小关系是( )12x 13x13x 2535⎛⎫ ⎪⎝⎭3525⎛⎫⎪⎝⎭2525⎛⎫⎪⎝⎭A .a >c >bB .a >b >cC .c >a >bD .b >c >a答案 A解析 ∵y =(x >0)为增函数,又35>25,∴a >c .∵y =(25)x (x ∈R )为减函数,又25<35,∴c >b .∴a >c >b .4.在同一坐标系内,函数y =x a (a ≠0)和y =ax -1a的图像可能是( )答案 C解析 选项A 中,幂函数的指数a <0,则y =ax -1a 应为减函数,A 错误;选项B 中,幂函数的指数a >1,则y =ax -1a 应为增函数,B 错误;选项D 中,幂函数的指数a <0,则-1a >0,直线y =ax -1a在y 轴上的截距为正,D 错误.5.若幂函数f (x )的图像过点(2,2),则函数g (x )=f (x )-3的零点是( )A.3 B .9 C .(3,0) D .(9,0)答案 B解析 ∵幂函数f (x )=x α的图像过点(2,2),∴f (2)=2α=2,解得α=12,∴f (x )=,∴函数g (x )=f (x )-3=-3,由-3=0,得x =9.∴函数g (x )=f (x )-3的零点是9.6.已知幂函数f (x )=x α的部分对应值如表:x11225x 12x 12x 12xf (x )122则f (x )的单调递增区间是________.答案 [0,+∞)解析 因为f(12)=22,所以(12)α=22,即α=12,所以f (x )=的单调递增区间是[0,+∞).7.已知幂函数f (x )=x α(α∈R )的图像经过点(8,4),则不等式f (6x +3)≤9的解集为________.答案 [-5,4]解析 由题意知8α=4,故α=log 84=23,由于f (x )==x 2为R 上的偶函数且在(0,+∞)上递增,故f (6x +3)≤9即为f (6x +3)≤f (27),所以|6x +3|≤27,解得-5≤x ≤4.8.设a =,b =,c =,则a ,b ,c 从小到大的顺序是________.答案 b <a <c解析 由a =,b =,可利用幂函数的性质,得a >b ,可由指数函数的单调性得c >a ,∴b <a <c .9.已知幂函数f (x )=x α的图像过点P (2,14),试画出f (x )的图像并指出该函数的定义域与单调区间.解 因为f (x )=x α的图像过点P (2,14),所以f (2)=14,即2α=14,得α=-2,即f (x )=x -2,f (x )的图像如图所示,定义域为(-∞,0)∪(0,+∞),单调递减区间为(0,+∞),单调递增区间为(-∞,0).10.已知幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R 上单调递增.(1)求f (x )的解析式;(2)求满足f (a +1)+f (3a -4)<0的a 的取值范围.解 (1)由幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R上单调递增,可得9-3m >0,解得m <3,m ∈N +,可得m =1,2,12x 23x 2312⎛⎫⎪⎝⎭2315⎛⎫ ⎪⎝⎭1312⎛⎫⎪⎝⎭2312⎛⎫ ⎪⎝⎭2315⎛⎫⎪⎝⎭若m =1,则f (x )=x 6的图像不关于原点对称,舍去;若m =2,则f (x )=x 3的图像关于原点对称,且在R 上单调递增,成立.则f (x )=x 3.(2)由(1)可得f (x )是奇函数,且在R 上单调递增,由f (a +1)+f (3a -4)<0,可得f (a +1)<-f (3a -4)=f (4-3a ),即为a +1<4-3a ,解得a <34.11.若函数f (x )=(m +2)x a 是幂函数,且其图像过点(2,4),则函数g (x )= log a (x +m )的单调递增区间为( )A .(-2,+∞) B .(1,+∞)C .(-1,+∞) D .(2,+∞)答案 B解析 由题意得m +2=1,解得m =-1,则f (x )=x a ,将(2,4)代入函数的解析式得,2a =4,解得a =2,故g (x )=log a (x +m )=log 2(x -1),令x -1>0,解得x >1,故g (x )在(1,+∞)上单调递增.12.函数y =-1的图像关于x 轴对称的图像大致是( )答案 B解析 y =的图像位于第一象限且为增函数,所以函数图像是上升的,函数y =-1的图像可看作由y =的图像向下平移一个单位长度得到的(如选项A 中的图所示),将y =-1的图像关于x 轴对称后即为选项B.13.为了保证信息的安全传输,有一种密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y =x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是________.答案 9解析 由题意可知加密密钥y =x α(α为常数)是一个幂函数,所以要想求得解密后得到的明文,就必须先求出α的值.由题意,得2=4α,解得α=12,则y =.由=3,得x =9,即明文是9.14.已知幂函数f (x )=,若f (a +1)<f (10-2a ),则a 的取值范围是________.12x 12x 12x 12x 12x 12x 12x 12x答案 (3,5)解析 ∵f (x )==1x(x >0),易知f (x )在(0,+∞)上为减函数,又f (a +1)<f (10-2a ),∴Error!解得Error!∴3<a <5.15.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图像三等分,即有BM =MN =NA ,那么,αβ等于________.答案 1解析 由条件,得M (13,23),N (23,13),可得13=(23)α,23=(13)β,即α=13,β=23.所以αβ=13·23=lg 13lg 23·lg 23lg 13=1.16.已知幂函数g (x )过点(2,12),且f (x )=x 2+ag (x ).(1)求g (x )的解析式;(2)讨论函数f (x )的奇偶性,并说明理由.解 (1)设幂函数的解析式g (x )=x α(α为常数).因为幂函数g (x )过点(2,12),所以2α=12,解得α=-1,所以g (x )=1x.(2)由(1)得f (x )=x 2+a x.①当a =0时,f (x )=x 2.12x 23log 13log 23log 13log由于f(-x)=(-x)2=x2=f(x),可知f(x)为偶函数.②当a≠0时,由于f(-x)=(-x)2+a-x=x2-ax≠x2+ax=f(x),且f(-x)=(-x)2+a-x=x2-ax≠-(x2+a x)=-f(x),所以f(x)是非奇非偶函数.综上,①当a=0时,f(x)为偶函数;②当a≠0时,f(x)为非奇非偶函数.。

必修一数学第四章知识点总结

必修一数学第四章知识点总结

必修一数学第四章知识点总结第一节:数列的概念和构成1.数列是由一系列按照一定顺序排列的数所组成的序列。

2. 数列的通项公式表示了数列中第n项与n的关系,通常用an表示第n项。

3.数列的构成包括确定首项和确定公差。

-首项:数列中的第一项,通常用a1表示。

-公差:数列中相邻两项之差,通常用d表示。

-等差数列:相邻两项之差相等的数列。

-等比数列:相邻两项之比相等的数列。

第二节:数列的通项公式和前n项和公式1.等差数列的通项公式:an = a1 + (n-1)d,其中an表示等差数列的第n项,a1表示首项,d表示公差。

2.等差数列的前n项和公式:Sn = (n/2)(a1 + an),其中Sn表示等差数列的前n项和。

3.等比数列的通项公式:an = a1 * r^(n-1),其中an表示等比数列的第n项,a1表示首项,r表示公比。

4.等比数列的前n项和公式:-当r≠1时,Sn=(a1*(1-r^n))/(1-r)。

- 当r = 1时,Sn = na1第三节:利用通项公式求特定项和前n项和1.已知等差数列或等比数列的通项公式,可以利用公式求解特定项或前n项和。

2.根据题目给出的条件,代入通项公式中的相关变量,解方程求得所需的特定项或前n项和。

第四节:求前n项和的特殊情况1.等差数列的前n项和:Sn = (n/2)(a1 + an),其中an表示等差数列的第n项,a1表示首项,n表示项数。

2.等比数列的前n项和:-当r≠1时,Sn=(a1*(1-r^n))/(1-r)。

- 当r = 1时,Sn = na13.按规律改变等差数列或等比数列的前n项和的结果:-若数列每个项都乘以一个常数k,则前n项和也需要乘以k。

-若数列中的每两个相邻项交换位置,即将原数列逆序排列,则前n 项和不变。

总结:数列与数列的前n项和是数学中常用的概念和计算方法。

必修一数学第四章主要介绍了数列的定义、构成以及等差数列和等比数列的通项公式和前n项和公式。

高一数学第4章知识点归纳

高一数学第4章知识点归纳

高一数学第4章知识点归纳第4章数列的概念与数列的性质数列是指按照一定规律排列的一组数。

在高一数学的学习中,数列是一个重要的概念,它涉及到很多数学问题的解法。

本章主要介绍了数列的概念、数列的性质以及数列运算等知识点。

一、数列的概念数列是由一系列按照一定顺序排列的数所组成的序列。

数列可以看作是对一般函数的简化,它只涉及到自变量为正整数的情况。

数列的一般表示形式为{an}或者(a1, a2, a3, ...),其中an表示数列的第n个数。

二、数列的性质1. 公式与通项数列可以用公式来表示,这个公式可以描述数列中的每一项与其下标之间的关系。

通项是指数列中的第n个数的一般表示形式。

通过得到数列的通项公式,我们可以方便地求出数列的任意项。

2. 递推关系数列中的每一项都与它前面的某些项有关,这种关系称为递推关系。

通过递推关系我们可以得到数列中的每一项,从而利用这些项进行数列的相关问题的求解。

3. 数列的有界性数列可以是有界的,也可以是无界的。

有界数列是指数列的所有项都在某个范围内变动的数列,无界数列则是指数列中的项无限地趋向于正无穷或负无穷。

4. 数列的单调性数列可以是单调增加的,也可以是单调减少的。

单调增加的数列是指数列的每一项都大于前一项,单调减少的数列则是指数列的每一项都小于前一项。

三、数列运算1. 数列的四则运算数列之间可以进行加减乘除运算,这与我们在初中学习的四则运算是类似的。

对于两个数列进行加减乘除运算,我们只需要对相应的项进行对应的运算即可。

2. 数列的和与积数列的和指的是数列中所有项的和,数列的积则是指数列中所有项的乘积。

求数列的和与积可以通过数列的通项公式以及数列中项的个数来计算。

四、数列的应用1. 等差数列等差数列是指数列中相邻两项之间的差值是相等的数列。

等差数列在数学中有很多应用,特别是在代数运算以及几何问题中经常会用到。

2. 等比数列等比数列是指数列中相邻两项之间的比值是相等的数列。

等比数列在数学中也有广泛的应用,特别是在比例问题和指数函数中经常会用到。

高中数学必修一第四章知识点归纳

高中数学必修一第四章知识点归纳

高中数学必修一第四章知识点归纳全文共5篇示例,供读者参考高中数学必修一第四章知识点归纳篇1指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为r.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质【函数的应用】1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.高中数学必修一第四章知识点归纳篇2(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与p1、p2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(a,b不全为0)注意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(c为常数) (二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(c为常数) (三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.高中数学必修一第四章知识点归纳篇3对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。

部编版高中数学必修一第四章指数函数与对数函数知识汇总笔记

部编版高中数学必修一第四章指数函数与对数函数知识汇总笔记

(名师选题)部编版高中数学必修一第四章指数函数与对数函数知识汇总笔记单选题1、设2a=5b=m,且1a +1b=2,则m=()A.√10B.10C.20D.100 答案:A分析:根据指数式与对数的互化和对数的换底公式,求得1a =log m2,1b=log m5,进而结合对数的运算公式,即可求解.由2a=5b=m,可得a=log2m,b=log5m,由换底公式得1a =log m2,1b=log m5,所以1a +1b=log m2+log m5=log m10=2,又因为m>0,可得m=√10.故选:A.2、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A3、函数y=|lg(x+1)|的图像是()A.B.C.D.答案:A分析:由函数y=lgx的图象与x轴的交点是(1,0)结合函数的平移变换得函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),即可求解.由于函数y=lg(x+1)的图象可由函数y=lgx的图象左移一个单位而得到,函数y=lgx的图象与x轴的交点是(1,0),故函数y=lg(x+1)的图象与x轴的交点是(0,0),即函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),显然四个选项只有A选项满足.故选:A.4、已知函数y=a x、y=b x、y=c x、y=d x的大致图象如下图所示,则下列不等式一定成立的是()A.b+d>a+c B.b+d<a+c C.a+d>b+c D.a+d<b+c答案:B分析:如图,作出直线x=1,得到c>d>1>a>b,即得解.如图,作出直线x=1,得到c>d>1>a>b,所以b+d<a+c.故选:B5、近几个月某地区的口罩的月消耗量逐月增加,若第1月的口罩月消耗量增长率为r1,第2月的口罩月消耗量增长率为r2,这两个月口罩月消耗量的月平均增长率为r,则以下关系正确的是()A.r2=r1r2B.r2≤r1r2C.2r=r1+r2D.2r≤r1+r2答案:D分析:求出r1,r2,r的关系,再根据基本不等式判断.由题意(1+r1)(1+r2)=(1+r)2,r2+2r=r1r2+r1+r2,r1=r2时,r2=r1r2,2r=r1+r2,r1≠r2时,r1+r2>2√r1r2,,2r<r1+r2,因此r2>r1r2,1+r=√(1+r1)(1+r2)<1+r1+1+r22综上2r≤r1+r2,r2≥r1r2.故选:D.6、已知函数f(x)是奇函数,当x>0时,f(x)=2x+x2,则f(2)+f(−1)=()A.11B.5C.−8D.−5答案:B分析:利用奇函数的定义直接计算作答.奇函数f (x ),当x >0时,f (x )=2x +x 2,所以f (2)+f (−1)=f(2)−f(1)=22+22−(21+12)=5.故选:B7、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( )A .[0,34]B .(0,34)C .[0,916]D .(0,916)答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0与y =12x +m 的图像,然后通过数形结合求出答案. 函数f (x )={−2x, x <0,−x 2+2x,x ≥0 的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则函数f (x )的图像与直线y =12x +m 有三个交点, 若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916.故m ∈(0,916).故选:D . 8、函数y =2x −2−x ( )A .是R 上的减函数B .是R 上的增函数C .在(−∞,0)上是减函数,在(0,+∞)上是增函数D .无法判断其单调性答案:B分析:利用指数函数的单调性结合单调性的性质可得出结论.因为指数函数f (x )=2x 为R 上的增函数,指数函数g (x )=2−x =(12)x 为R 上的减函数, 故函数y =2x −2−x 是R 上的增函数.故选:B.多选题9、下列函数中,有零点且能用二分法求零点的近似值的是( )A .y =2x −3B .y ={−x +1,x ≥0x +1,x <0C .y =x 2−3x +3D .y =|x −2|答案:AB分析:根据二分法定义,只有零点两侧函数值异号才可用二分法求近似值.对于选项A ,当x =1时,y =21−3=−1<0,当x =12时,y =212−3=1>0,所以能用二分法求零点的近似值.对于选项B ,当x =2时,y =−2+1=−1<0,当x =12时,y =−12+1=12>0,能用二分法求零点的近似值. 对于选项C ,y =x 2−3x +3=(x −32)2+34>0,故不能用二分法求零点的近似值.对于选项D ,y =|x −2|≥0,故不能用二分法求零点的近似值.故选:AB .10、若直线y =2a 与函数y =|a x −1|(a >0,且a ≠1)的图象有两个公共点,则a 的取值可以是( )A .14B .13C .12D .2答案:AB分析:对a 分类讨论,利用数形结合分析得解.(1)当a >1时,由题得0<2a <1,∴0<a <12,因为a >1,所以此种情况不存在;(2)当0<a <1时,由题得0<2a <1,∴0<a <12,因为0<a <1,所以0<a <12.故选:AB小提示:方法点睛:取值范围问题的求解,常用的方法:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法. 要根据已知条件灵活选择方法求解.11、已知函数f(x)=2x −12x +1,下面说法正确的有( )A.f(x)的图象关于y轴对称B.f(x)的图象关于原点对称C.f(x)的值域为(−1,1)D.∀x1,x2∈R,且x1≠x2,f(x1)−f(x2)x1−x2<0恒成立答案:BC解析:判断f(x)的奇偶性即可判断选项AB,求f(x)的值域可判断C,证明f(x)的单调性可判断选项D,即可得正确选项.f(x)=2x−12x+1的定义域为R关于原点对称,f(−x)=2−x−12−x+1=(2−x−1)2x(2−x+1)2x=1−2x1+2x=−f(x),所以f(x)是奇函数,图象关于原点对称,故选项A不正确,选项B正确;f(x)=2x−12x+1=2x+1−22x+1=1−22x+1,因为2x>0,所以2x+1>1,所以0<12x+1<1,−2<−22x+1<0,所以−1<1−22x+1<1,可得f(x)的值域为(−1,1),故选项C正确;设任意的x1<x2,则f(x1)−f(x2)=1−22x1+1−(1−22x2+1)=22x2+1−22x1+1=2(2x1−2x2)(2x1+1)(2x2+1),因为2x1+1>0,2x2+1>0,2x1−2x2<0,所以2(2x1−2x2)(2x1+1)(2x2+1)<0,即f(x1)−f(x2)<0,所以f(x1)−f(x2)x1−x2>0,故选项D不正确;故选:BC小提示:方法点睛:利用定义证明函数单调性的方法(1)取值:设x1,x2是该区间内的任意两个值,且x1<x2;(2)作差变形:即作差,即作差f(x1)−f(x2),并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差f(x1)−f(x2)的符号;(4)下结论:判断,根据定义作出结论.即取值---作差----变形----定号----下结论.填空题12、已知二次函数y=mx2−3x+1的图像与x轴的交点至少有一个在原点的右侧,则实数m的取值范围______.答案:(−∞,0)∪(0,94]分析:求出二次函数图像与y轴的交点,结合一元二次方程根的分布根据m取值不同分情况讨论求解即可. 由题意知,二次函数的图像与y轴的交点为(0,1),因为y=mx2−3x+1为二次函数,所以m≠0,所以当m<0时,二次函数的图像与x轴有两个交点且分别在y轴两侧,符合题意.当m>0时,设一元二次方程mx2−3x+1=0的两根分别为x1、x2,则需满足{Δ=9−4m≥0x1+x2=3m>0,解得0<m≤94.综上所述,实数m的取值范围是(−∞,0)∪(0,94].所以答案是:(−∞,0)∪(0,94].。

全国通用2023高中数学必修一第四章指数函数与对数函数知识集锦

全国通用2023高中数学必修一第四章指数函数与对数函数知识集锦

全国通用2023高中数学必修一第四章指数函数与对数函数知识集锦单选题1、指数函数y =a x 的图象经过点(3,18),则a 的值是( ) A .14B .12C .2D .4 答案:B分析:将已知点的坐标代入指数函数的表达式,求得a 的值. 因为y =a x 的图象经过点(3,18),所以a 3=18,解得a =12,故选:B.2、设m ,n 都是正整数,且n >1,若a >0,则不正确的是( ) A .a m n=√a m nB .(a 12+a −12)2=a +a −1C .a−m n =√a mnD .a 0=1答案:B解析:由指数运算公式直接计算并判断. 由m ,n 都是正整数,且n >1,a >0,、得(a 12+a −12)2=(a 12)2+2a 12⋅a −12+(a −12)2=a +a −1+2, 故B 选项错误, 故选:B.3、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg 101≈2.0043,lg 99≈1.9956) ( )天. A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x =1.01x ,即(1.010.99)x=100,∴x =log 1.010.99100=lg 100lg 1.010.99=lg 100lg 10199=2lg 101−lg 99 ≈22.0043−1.9956=20.0087≈230.故选:D .4、函数f (x )={|2x −1|,x ≤2−x +5,x >2,若函数g (x )=f (x )−t (t ∈R )有3个不同的零点a ,b ,c ,则2a +2b +2c 的取值范围是( )A .[16,32)B .[16,34)C .(18,32]D .(18,34) 答案:D分析:作出函数y =f(x)的图象和直线y =t ,它们的交点的横坐标即为g(x)的零点,利用图象得出a,b,c 的性质、范围,从而可求得结论.作出函数y =f(x)的图象和直线y =t ,它们的交点的横坐标即为g(x)的零点,如图, 则1−2a =2b −1,4<c <5,2a +2b =2,2c ∈(16,32),所以18<2a +2b +2c <34. 故选:D .小提示:关键点点睛:本题考查函数零点问题,解题关键是把函数零点转化为函数图象与直线的交点的横坐标,从而可通过作出函数图象与直线,得出零点的性质与范围.5、已知函数f(x)={a x ,x <0(a −3)x +4a,x ≥0 满足对任意x 1≠x 2,都有(x 1-x 2)[f (x 1)-f (x 2)]<0成立,则a 的取值范围为( )A .(0,14]B .(0,1)C .[14,1)D .(0,3)答案:A分析:根据给定不等式可得函数f (x )为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x 1≠x 2,都有(x 1-x 2)[f (x 1)-f (x 2)]<0成立,不妨令x 1<x 2,则f (x 1)>f (x 2),于是可得f (x )为R 上的减函数, 则函数y =a x 在(−∞,0)上是减函数,有0<a <1,函数y =(a −3)x +4a 在[0,+∞)上是减函数,有a −3<0,即a <3, 并且满足:a 0≥f(0),即4a ≤1,解和a ≤14,综上得0<a ≤14,所以a 的取值范围为(0,14]. 故选:A6、化简√−a 3·√a 6的结果为( ) A .−√a B .−√−a C .√−a D .√a 答案:A分析:结合指数幂的运算性质,可求出答案. 由题意,可知a ≥0,∴√−a 3·√a 6=(−a)13⋅a 16=−a 13⋅a 16=−a13+16=−a 12=−√a .故选:A.7、声强级L 1(单位:dB )与声强I 的函数关系式为:L 1=10lg (I10−12).若普通列车的声强级是95dB ,高速列车的声强级为45dB ,则普通列车的声强是高速列车声强的( ) A .106倍B .105倍C .104倍D .103倍 答案:B分析:设普通列车的声强为I 1,高速列车的声强为I 2,由声强级得95=10lg (I 110−12),45=10lg (I210−12),求出I 1、I 2相除可得答案.设普通列车的声强为I 1,高速列车的声强为I 2,因为普通列车的声强级是95dB ,高速列车的声强级为45dB ,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I1I2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍.故选:B.8、如图所示,函数y=|2x−2|的图像是()A.B.C.D.答案:B分析:将原函数变形为分段函数,根据x=1及x≠1时的函数值即可得解.∵y=|2x−2|={2x−2,x≥12−2x,x<1,∴x=1时,y=0,x≠1时,y>0.故选:B.9、已知函数f(x)是奇函数,当x>0时,f(x)=2x+x2,则f(2)+f(−1)=()A.11B.5C.−8D.−5答案:B分析:利用奇函数的定义直接计算作答.奇函数f(x),当x>0时,f(x)=2x+x2,所以f (2)+f (−1)=f(2)−f(1)=22+22−(21+12)=5. 故选:B10、函数f(x)=2x −1x 的零点所在的区间可能是( )A .(1,+∞)B .(12,1)C .(13,12)D .(14,13)答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0, 所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增, 所以函数f(x)的零点所在的区间是(12,1), 故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题. 填空题11、某同学设想用“高个子系数k ”来刻画成年男子的高个子的程度,他认为,成年男子身高160cm 及其以下不算高个子,其高个子系数k 应为0;身高190cm 及其以上的是理所当然的高个子,其高个子系数k 应为1,请给出一个符合该同学想法、合理的成年男子高个子系数k 关于身高x (cm )的函数关系式___________.答案:k ={0,0<x ≤160,130(x −160),160<x <190,1,x ≥190. ,(只要写出的函数满足在区间[160,190]上单调递增,且过点(160,0)和(190,1)即可.答案不唯一)分析:由题意,个数越高,系数k 越大,因此在[160,190]上的函数是增函数即可,初始值(160,0),(190,1),设出函数式代入求解.由题意函数k(x)是[160,190]上的增函数,设k(x)=ax +b(a >0),x ∈[160,190],由{160a +b =0190a +b =1 ,解得{a =130b =−163,所以k(x)=130x −163, 所以k ={0,0<x ≤160,130(x −160),160<x <190,1,x ≥190.所以答案是:k ={0,0<x ≤160,130(x −160),160<x <190,1,x ≥190.注:在[160,190]上设其他函数式也可以,只要是增函数,只有两个参数.如y=b−ax(a>0),y=ax2+b(a>0)等等.小提示:思路点睛:本题考查函数的应用,解题时注意题目的要求,只要写出的函数满足在区间[160,190]上单调递增,且过点(160,0)和(190,1)即可,因此函数模型可以很多,答案也不唯一.12、已知5a=2,5b=3,则log2594=___________(用a、b表示).答案:b−a##−a+b分析:根据对数的运算性质可得log2594=log53−log52,再由指对数关系有a=log52,b=log53,即可得答案.由log2594=log532=log53−log52,又5a=2,5b=3,∴a=log52,b=log53,故log2594=b−a.所以答案是:b−a.13、若函数f(x)=a x(a>0,a≠1)的反函数的图像经过点(4,2),则a=_______.答案:2分析:根据指数函数与对数函数的关系求出f(x)的反函数,再代入计算可得;解:因为函数f(x)=a x(a>0,a≠1)的反函数为y=log a x,(a>0,a≠1),所以log a4=2,即a2=4,所以a=2或a=−2(舍去);所以答案是:2解答题14、近年来,中美贸易摩擦不断,美国对我国华为百般刁难,并拉拢欧美一些国家抵制华为5G,然而这并没有让华为却步.今年,我国华为某企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本250万元,每生产x千部手机,需另投入成本R(x)万元,且R(x)={10x2+100x,0<x<40701x+10000x−9450,x≥40,由市场调研知,每部手机的售价为0.7万元,且全年内生产的手机当年能全部销售完.(1)求2020年的利润W(x)(万元)关于年产量x(千部)的函数关系式(利润=销售额-成本).(2)2020年产量为多少时,企业所获利润最大?最大利润是多少.答案:(1)W(x)={−10x2+600x−250,0<x<40−(x+10000x)+9200,x≥40;(2)2020年产量为100千部时,企业所获得利润最大,最大利润为9000万元.分析:(1)根据2020年的利润等于年销售量减去固定成本和另投入成本,分段求出利润W(x)关于x的解析式;(2)根据(1)求出利润W(x)的函数解析式,分别利用二次函数的性质和基本不等式求得每段的最大值,即可得到结论.(1)解:由题意可知,2020年的利润定于年销售额减去固定成本和另投入成本,当0<x<40时,W(x)=0.7×1000x−(10x2+100x)−250=−10x2+600x−250当x≥40时,W(x)=0.7×1000x−(701x+10000x −9450)−250=−(x+10000x)+9200,所以W(x)={−10x2+600x−250,0<x<40−(x+10000x)+9200,x≥40.(2)当0<x<40时,W(x)=−10x2+600x−250=−10(x−30)2+8750,此时函数W(x)开口向上的抛物线,且对称轴为x=30,所以当x=30时,W(x)max=W(30)=8750(万元);当x≥40时,W(x)=−(x+10000x)+9200,因为x+10000x ≥2√x⋅10000x=200,当且仅当x=10000x即x=100时,等号成立,即当x=100时,W(x)max=W(100)=−200+9200=9000(万元),综上可得,当x=100时,W(x)取得最大值为9000(万元),即2020年产量为100千部时,企业获利最大,最大利润为9000万元.15、某工厂以x kg/h的速度生产运输某种药剂(生产条件要求边生产边运输且3<x≤10),每小时可以获得的利润为100(2x+1+8x−2)元.(1)要使生产运输该药品3h获得的利润不低于4500元,求x的取值范围;(2)x为何值时,每小时获得的利润最小?最小利润是多少?答案:(1)[6,10];(2)当x为4kg/h时,每小时获得的利润最小,最小利润为1300元.分析:(1)由题设可得2x+1+8x−2≥15,结合3<x≤10求不等式的解集即可.(2)应用基本不等式求y =100(2x +1+8x−2)的最小值,并求出对应的x 值.(1)依题意得:3×100(2x +1+8x−2)≥4500,即2x +1+8x−2≥15,由3<x ≤10,故8x−2>0,可得x 2-9x +18≥0,即(x -3)(x -6)≥0,解得x ≤3或x ≥6, ∴x 的取值范围为[6,10]. (2)设每小时获得的利润为y .y =100(2x +1+8x−2)=100[2(x -2)+8x−2+5] ≥100[2√2(x −2)(8x−2)+5]=100(8+5)=1300,当2(x -2)=8x−2时取等号,此时x =4.于是当生产运输速度为4kg/h ,每小时获得的利润最小,最小值为1300元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学必修一第四章知识点总结
第四章主要涉及函数与方程,包括以下几个知识点:
1. 函数的概念:函数是一个元素之间的一对一对应关系,常用符号表示为 y=f(x)。

2. 函数的表示方法:可以使用函数图像、函数表、函数公式等方式表示函数。

3. 函数的性质与性质:包括定义域、值域、奇偶性、单调性、周期性等。

4. 函数的分类:常见的函数包括一次函数、二次函数、绝对值函数、指数函数、对数函数、三角函数等。

5. 函数的运算:包括函数的加减、乘法、除法、复合等运算。

6. 方程与不等式:包括一元一次方程、一元一次不等式、一元二次方程、一元二次不等式等。

7. 解方程与解不等式:包括利用等式性质、因式分解、配方法、直接开平方等方法解方程与不等式。

8. 分式方程与分式不等式:解分式方程与分式不等式需要注意约束条件和合并同类项等步骤。

这些是第四章的主要知识点总结,希望对你有帮助!。

相关文档
最新文档