高一数学基础知识点总结

合集下载

高一数学知识点总结(15篇)

高一数学知识点总结(15篇)

高一数学知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。

总结怎么写才不会流于形式呢?以下是小编精心整理的高一数学知识点总结,希望能够帮助到大家。

高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。

主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

如果对于任意∈A,都有,则称y=f(x)为奇函数。

2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M 上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

高一数学必修一知识点总结全

高一数学必修一知识点总结全

高一数学必修一知识点总结全1. 直线与坐标1.1 直线的斜率直线的斜率是指直线上一点到另一点的纵坐标之差与横坐标之差的比值。

1.2 直线的截距直线在坐标系上与y轴的交点称为直线的截距。

1.3 直线的方程直线的方程可以用斜截式、两点式或点斜式来表示。

2. 二次函数与函数的图像2.1 二次函数的定义二次函数是形如y=ax^2+bx+c的函数,其中a、b、c为常数。

2.2 二次函数的图像特征二次函数的图像是一条抛物线,其开口方向由二次项系数a的正负决定,开口向上为正,开口向下为负。

2.3 二次函数的平移与伸缩二次函数可以通过平移和伸缩变换图像的位置和形状。

3. 平面向量与坐标3.1 平面向量的定义平面向量是具有大小和方向的量,在坐标系中可以表示为有序数对。

3.2 平面向量的运算平面向量可以进行加法、减法、数乘和向量乘法运算。

3.3 平面向量的坐标表示平面向量的坐标表示可以用分量表示法或单位向量表示法。

4. 三角函数4.1 三角函数的定义三角函数是角的函数,包括正弦、余弦和正切等。

4.2 三角函数的基本关系式三角函数之间存在一些基本关系式,如正弦定理和余弦定理等。

4.3 三角函数的图像特征三角函数的图像具有周期性和对称性,可以通过坐标系表示。

5. 函数与方程5.1 函数的定义与性质函数是一种特殊的关系,具有输入与输出的对应关系。

5.2 方程的解与解集方程是含有未知数的等式,解是使方程成立的未知数的值。

5.3 一次函数与一次方程一次函数是函数的一种特殊形式,一次方程是一次函数的等式形式。

以上是高一数学必修一的一些重要知识点总结,这些知识点对于建立高中数学基础知识非常重要。

希望这份总结对你有所帮助!。

高一数学知识点全部总结

高一数学知识点全部总结

高一数学知识点全部总结一、代数1.1 一元二次方程一元二次方程是高一数学的重点内容之一,一元二次方程的定义是形式为ax^2+bx+c=0的方程,其中a≠0。

解一元二次方程的方法有因式分解、配方法、公式法等。

1.2 不等式高一数学的不等式内容主要包括一元一次不等式、一元二次不等式以及一元三次不等式的求解方法,包括图像法、取值范围法、代数法等。

1.3 二次函数二次函数是高一数学代数部分的重点内容,涉及了函数的定义、性质、图像、极值、单调性、解析式等多个方面的内容。

1.4 基本初等函数高一数学还包括了基本初等函数的概念和性质,包括幂函数、指数函数、对数函数、三角函数等的定义、性质及其在实际问题中的应用。

1.5 绝对值函数绝对值函数也是高一数学中的一个重要内容,主要包括了绝对值函数的性质、图像及其在实际问题中的应用。

1.6 平面直角坐标系中的直线和圆平面直角坐标系中的直线和圆也是高一数学的重要内容,主要包括了直线的方程、性质、圆的方程、性质及其在实际问题中的应用。

1.7 数列数列也是高一数学的一个重要内容,包括等差数列、等比数列、递推数列等的概念、性质、求和公式及其在实际问题中的应用。

1.8 集合与函数高一数学的内容还包括了集合的基本概念、基本运算、集合的关系和函数的概念、性质、运算、基本初等函数的图像等内容。

1.9 二项式定理二项式定理是高一数学中的一个重要概念,包括二项式的展开式、二项式系数、二项式定理的应用等方面的内容。

1.10 逻辑与命题关系逻辑与命题关系也是高一数学的一个知识点,主要包括了命题、充分必要条件、等价命题、逻辑联结词、命题公式等内容。

二、几何2.1 几何图形的性质高一数学的几何内容主要包括了基本的几何图形的性质,包括直线、角、三角形、四边形、圆等的基本性质、判定方法和应用题。

2.2 相似三角形相似三角形是高一数学中的重点内容,主要包括了相似三角形的性质、判定方法及其在实际问题中的应用。

高一数学必背重点知识点

高一数学必背重点知识点

高一数学必背重点知识点一、直线和平面几何1. 直线的性质直线的定义:无限延伸只有一个方向的点的集合。

直线的特点:无宽度、无厚度、无端点、无曲率。

直线的表示方法:用一个大写字母表示,如直线AB用符号∠AB表示。

2. 平面的性质平面的定义:无限延伸、无厚度的点的集合。

平面的特点:无厚度、无弯曲,过直线外一点可以作无数个平面。

3. 垂直与平行关系垂直关系:两条线段、两条直线或两个面相互正交为垂直关系。

平行关系:两条线段、两条直线或两个面永远不会相交。

4. 三角形的性质三角形的定义:由三条边和三个顶点组成的平面图形。

三角形的分类:按边长分类(等边三角形、等腰三角形、普通三角形)和按角度分类(锐角三角形、直角三角形、钝角三角形)。

5. 相似三角形相似三角形的定义:具有相同形状但大小不同的三角形。

判定相似三角形的条件:AAA相似、AA相似、SAS相似。

6. 平行四边形和矩形平行四边形的性质:对边平行、对角线互相平分、相对角相等。

矩形的性质:四个顶点的角都是直角的平行四边形。

7. 圆的性质圆的定义:由平面上距离一个固定点(圆心)相等的点组成的集合。

圆的要素:圆心、半径、直径。

圆的公式:周长公式C=2πr,面积公式S=πr^2。

二、函数与方程1. 一次函数一次函数的定义:f(x) = ax + b (其中a、b为常数,并且a≠0)。

一次函数的图像:直线,斜率为a、纵截距为b。

2. 二次函数二次函数的定义:f(x) = ax^2 + bx + c (其中a、b、c为常数,并且a≠0)。

二次函数的图像:抛物线,开口方向由a的正负决定,顶点坐标为(-b/2a, f(-b/2a))。

3. 指数函数与对数函数指数函数的定义:f(x) = a^x (其中a为正实数且不等于1)。

指数函数的性质:递增函数、图像经过点(0,1)。

对数函数的定义:f(x) = loga x (其中a为正实数且不等于1)。

对数函数的性质:递增函数、图像经过点(1,0)。

高一数学知识点总结(精选7篇)

高一数学知识点总结(精选7篇)

高一数学知识点总结高一数学知识点总结(精选7篇)在平平淡淡的学习中,是不是听到知识点,就立刻清醒了?知识点有时候特指教科书上或考试的知识。

为了帮助大家掌握重要知识点,下面是小编为大家整理的高一数学知识点总结,希望能够帮助到大家。

高一数学知识点总结篇1立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱台、四棱台、五棱台等。

表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高一数学基础知识点要点总结

高一数学基础知识点要点总结

高一数学基础知识点要点总结
高一数学基础知识点要点总结如下:
1. 几何:点、直线、平面的定义和性质,平行线与垂直线的判定,图形的相似性与全
等性质,三角形的三边关系和角的性质,圆的性质和常见定理,多边形的性质和常见
定理。

2. 代数:集合与命题的基本概念,集合的运算与关系,函数的定义,函数的基本性质
和常见函数,等式与不等式的性质,方程与不等式的解法,多项式的基本概念和运算,一次函数、二次函数和反比例函数的性质。

3. 数列:数列的定义,等差数列与等比数列的性质和通项公式,数列求和的方法与定理,数列的极限和收敛性。

4. 概率:样本空间、事件及其关系,概率的定义、性质和计算方法,条件概率和独立
事件的概念及其计算,排列组合的基本概念和计算方法,二项式定理和组合数的性质。

5. 函数:函数的定义和性质,函数的图像和性质,函数的运算和复合函数,反函数的
概念和性质,一次函数、二次函数、指数函数、对数函数和三角函数的性质和图像。

6. 解析几何:坐标系的概念和性质,点、线、圆的方程和性质,直线与圆的交点问题,两点距离和中点坐标的计算。

7. 导数与微分:导数的定义和性质,函数的极值与最值的判定,微分的概念和性质,
微分与导数的关系和计算方法,常见函数的导数公式。

这些是高一数学基础知识点的要点总结,掌握了这些知识点,可以为后续的高数学习
打下坚实的基础。

高一数学必修一知识点归纳总结

高一数学必修一知识点归纳总结

高一数学必修一知识点归纳总结
一、平面解析几何
1. 平面直角坐标系
- 坐标轴及坐标点的表示方法
- 点的坐标与距离公式的应用
2. 直线的方程
- 斜率的概念和计算方法
- 截距的概念和计算方法
- 一般式和标准式的相互转换
- 平行、垂直直线的关系及判定方法
3. 圆的方程
- 圆的定义及相关概念
- 圆的标准方程及一般方程
- 圆与直线的位置关系
- 相交弦和切线的性质
4. 配对法
- 二次曲线的配对法及示意图
- 配对法解题步骤与技巧
二、函数及立体几何
1. 函数的概念与性质
- 定义域和值域的计算方法- 函数的奇偶性判断
- 函数的单调性判断
- 函数图象与函数值的关系2. 一次函数和二次函数
- 一次函数的表示和性质
- 一次函数的图象和变换
- 二次函数的表示和性质
- 二次函数的图象和变换
3. 立体几何基础知识
- 空间几何体的定义及性质- 线段的长度和空间角的计算- 平行线与平面的关系
三、概率与统计
1. 随机事件与概率
- 随机事件的概念和表示方法- 概率的定义和性质
- 事件的联合、互斥与对立关系
2. 组合与样本空间
- 组合的概念和计算方法
- 样本空间的定义和计算方法
- 事件的排列组合与计数方法
3. 统计与抽样
- 总体、样本和样本均值的概念
- 随机抽样的方法和步骤
- 样本统计量的计算及应用
以上为高一数学必修一的知识点归纳总结,对于复复数学知识有一定的帮助。

需要注意理解概念和掌握计算方法,搞清楚基本原理,灵活运用到实际问题的解题中。

高一数学知识点总结归纳5篇精选

高一数学知识点总结归纳5篇精选

高一数学知识点总结归纳5篇精选高一是高中学习生涯中打好基础的一年,而高中数学也是比较难的一门学科。

那么,如何学好高一数学呢?高一数学知识点总结1考点要求:1.几何体的展开图、几何体的三视图仍是高考的热点.2.三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势.3.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.4.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.知识结构:1.多面体的结构特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.3.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x0x=0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

高一数学要背的知识点总结

高一数学要背的知识点总结

高一数学要背的知识点总结高一数学是学生们接触到的一门重要学科,不仅是后续高中学习的基础,也是以后各种理工科学习的基础。

对于高一学生来说,掌握数学的基础知识点非常重要,下面将对高一数学要背的知识点进行总结。

一、代数与函数1. 一次函数:一次函数的一般形式为y = kx + b,其中k代表斜率,b代表截距。

2. 二次函数:二次函数的一般形式为y = ax² + bx + c,其中a、b、c 为常数。

3. 指数函数与对数函数:指数函数的一般形式为y = aˣ,其中a为常数;对数函数的一般形式为y = logₐ(x),其中a为底数,x为自变量。

4. 幂函数与反比例函数:幂函数的一般形式为y = xᵃ,其中a为常数;反比例函数的一般形式为y = k/x,其中k为常数。

5. 复合函数与函数的图像变换:了解复合函数的概念及性质,以及函数的平移、翻转、伸缩等图像变换。

二、三角函数与解三角形1. 三角函数的定义与性质:熟悉正弦、余弦、正切等三角函数的定义和主要性质。

2. 三角函数的图像与单调性:掌握三角函数的图像特点、单调性及其变换规律。

3. 角度制与弧度制的转换:了解角度制和弧度制的定义及互相转换的公式。

4. 解三角形:掌握解三角形的常用方法,包括正弦定理、余弦定理和正弦余弦公式等。

三、平面向量与立体几何1. 平面向量的定义与运算:了解平面向量的定义及其加法、减法、数量乘法等运算法则。

2. 平面向量的共线与共面问题:了解平面向量的共线、共面与线性相关的概念。

3. 立体几何的基本概念与性质:熟悉立体几何的基本概念,包括点、线、面、体的定义及其性质。

4. 空间直线与平面的位置关系:了解空间直线与平面的位置关系,包括相交、平行、垂直等情况。

四、数列与数列的求和1. 等差数列与等比数列:了解等差数列与等比数列的定义及其性质,能根据通项公式计算数列的任意一项。

2. 数列的前n项和与通项和:掌握等差数列与等比数列的前n项和公式,能计算数列的和。

高一数学知识点大全电子版

高一数学知识点大全电子版

高一数学知识点大全电子版一、函数与方程1. 函数的定义与性质函数的概念、函数的定义域和值域、函数的图像及性质等。

2. 一次函数一次函数的概念、一次函数的图像、一次函数的性质与应用。

3. 二次函数二次函数的定义、二次函数的图像、二次函数的性质与应用。

4. 指数函数与对数函数指数函数的概念、指数函数的图像、指数函数的性质与应用。

对数函数的概念、对数函数的图像、对数函数的性质与应用。

5. 幂函数与反比例函数幂函数的概念、幂函数的图像、幂函数的性质与应用。

反比例函数的概念、反比例函数的图像、反比例函数的性质与应用。

6. 复合函数与反函数复合函数的概念、复合函数的性质与应用。

反函数的概念、反函数的性质与应用。

7. 解方程与不等式一元一次方程与一元一次不等式的解法与应用。

一元二次方程与一元二次不等式的解法与应用。

8. 线性方程组与矩阵线性方程组的解法与应用。

矩阵的概念、矩阵的运算、矩阵方程与矩阵的应用。

二、几何与向量1. 平面几何基础点、线、面等基本概念与性质。

相交、平行、垂直、共面等关系与判定方法。

2. 三角形与相似三角形的性质与分类。

三角形的相似与全等。

三角形的内角与外角性质。

3. 圆与圆周角圆的基本概念与性质。

弧长、扇形面积与圆心角。

4. 向量与向量运算向量的概念、向量的运算。

向量的共线、垂直、平行性质与判定方法。

5. 平面向量的应用向量的数量积与夹角。

向量的投影与点乘。

6. 平面与空间几何平面的方程与判定方法。

直线的方程与判定方法。

空间中直线与平面的位置关系与判定方法。

7. 三视图与投影三视图的概念与应用。

正交投影的概念与应用。

斜投影的概念与应用。

三、概率与统计1. 随机事件与概率随机事件的概念与性质。

概率的定义、计算与应用。

2. 随机变量与概率分布随机变量的概念与性质。

离散型随机变量与连续型随机变量的概率分布。

3. 统计与样本调查统计的基本概念与性质。

样本调查的方法与误差分析。

4. 参数估计与假设检验总体与样本的概念与关系。

高一数学基础知识点归纳总结

高一数学基础知识点归纳总结

高一数学基础知识点总结1.集合2.函数3.基本初等函数4.立体几何初步5.平面解析几何初步6.基本初等函数7.平面向量8.三角恒等变换9.解三角形10.数列11.不等式1集合一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。

如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母集合的分类:并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A 并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A 交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)注:空集包含于任何集合,但不能说“空集属于任何集合注:空集属于任何集合,但它不属于任何元素.空集属于任何集合吗?你这句话是错误的,空集也是集合,而集合跟集合之间的关系只能是包含和被包含的关系.只有集合里的元素与集合间的关系才是属于关系但是如果你把“属于”改成“包含于”就对了.也就是“空集包含于任何集合”.空集真包含于任何非空集合也是对的.某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。

集合的性质:确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。

互异性:集合中任意两个元素都是不同的对象。

不能写成{1,1,2},应写成{1,2}。

无序性:{a,b,c}{c,b,a}是同一个集合集合有以下性质:若A包含于B,则A∩B=A,A∪B=B常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N(2)非负整数集内排除0的集,也称正整数集,记作N+(或N*)(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q(5)全体实数的集合通常简称实数集,级做R集合的运算:1.交换律A∩B=B∩AA∪B=B∪A2.结合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)3.分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)例题已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},且A∩B={-3},求实数a的值.∵A∩B={-3}∴-3∈B.①若a-3=-3,则a=0,则A={0,1,-3},B={-3,-1,1}∴A∩B={-3,1}与∩B={-3}矛盾,所以a-3≠-3.②若2a-1=-3,则a=-1,则A={1,0,-3},B={-4,-3,2}此时A∩B={-3}符合题意,所以a=-1.2函数函数的单调性:设函数f(x)的定义域为I.如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1<x2时:(1)若总有f(x1)<f(x2),则称函数y=f(x)在这个区间上是增函数;(2)若总有f(x1)>f(x2),则称函数y=f(x)在这个区间上是减函数。

高一数学基础知识点总结

高一数学基础知识点总结

高一数学基础知识点总结1.集合2.函数3.基本初等函数4.立体几何初步5.平面解析几何初步6.基本初等函数7.平面向量8.三角恒等变换9.解三角形10。

数列11.不等式1集合一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。

如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母集合的分类:并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A 并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A"),即A∩B={x|x∈A,且x∈B}差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)注:空集包含于任何集合,但不能说“空集属于任何集合注:空集属于任何集合,但它不属于任何元素.空集属于任何集合吗?你这句话是错误的,空集也是集合,而集合跟集合之间的关系只能是包含和被包含的关系.只有集合里的元素与集合间的关系才是属于关系但是如果你把“属于”改成“包含于”就对了。

也就是“空集包含于任何集合”。

空集真包含于任何非空集合也是对的。

某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。

集合的性质:确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学"“很小的数”都不能构成集合。

互异性:集合中任意两个元素都是不同的对象。

不能写成{1,1,2},应写成{1,2}.无序性:{a,b,c}{c,b,a}是同一个集合集合有以下性质:若A包含于B,则A∩B=A,A∪B=B常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N(2)非负整数集内排除0的集,也称正整数集,记作N+(或N*)(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q(5)全体实数的集合通常简称实数集,级做R集合的运算:1。

高一数学基础知识点全总结

高一数学基础知识点全总结

高一数学基础知识点全总结高一是学习数学的关键时期,同时也是建立数学基础知识的重要阶段。

在这一年里,学生将接触到许多数学的基本概念和原理。

为了帮助同学们更好地掌握这些知识,本文将全面总结高一数学的基础知识点。

以下是高一数学基础知识点的详细总结:1. 数集1.1. 数集概念:空集、单元素集、有限集、无限集等。

1.2. 数集的表示方法:列举法、描述法、区间表示法等。

1.3. 常见的数集:自然数集、整数集、有理数集、实数集等。

1.4. 数集的运算:并集、交集、差集等。

2. 函数2.1. 函数的定义:自变量、因变量、定义域、值域等基本概念。

2.2. 常见函数的图像:线性函数、二次函数、指数函数、对数函数等。

2.3. 函数的性质:奇偶性、单调性、周期性等。

3. 直线与坐标3.1. 直线的方程:一般式、斜截式、点斜式、截距式等。

3.2. 直线的性质:两直线关系(平行、垂直等)、直线与圆的关系等。

3.3. 坐标系:直角坐标系、极坐标系等。

4. 平面几何4.1. 平面图形:点、直线、射线、线段、角、多边形、圆等。

4.2. 平面图形的性质与判定:面积、周长、内角和、外角和等。

5. 相似与全等5.1. 相似三角形:相似的判定条件、相似比等基本概念。

5.2. 全等三角形:全等的判定条件、全等的基本性质。

6. 数列与数列的通项公式6.1. 数列概念:等差数列、等比数列的定义和性质。

6.2. 数列的通项公式:等差数列的通项、等比数列的通项等。

7. 平面向量7.1. 向量的定义:向量的模、方向、共线、平行等基本概念。

7.2. 向量的运算:向量的加法、减法、数量积、向量积等基本运算规则。

8. 不等式8.1. 不等式的基本性质:等式与不等式的关系、不等式的性质等。

8.2. 一元一次不等式:解不等式的基本步骤和方法。

8.3. 二次不等式:解二次不等式的基本步骤和方法。

通过学习以上的基础知识点,同学们将能够夯实数学基础,为后续的数学学习打下坚实的基础。

高一数学知识点所有最全版

高一数学知识点所有最全版

高一数学知识点所有最全版一、函数与方程函数的概念及其性质一次函数二次函数的概念与性质二次函数的图像与性质二次函数的应用指数函数与对数函数幂函数与分式函数三角函数及其应用不等式及其解法方程与不等式的应用问题二、解析几何平面直角坐标系向量及其运算平面向量的数量积和向量积平面直线与圆的方程三、三角函数与立体几何三角函数的概念三角函数的基本关系与公式三角函数的图像与性质三角函数的应用立体几何基础概念平面与直线的位置关系圆与球的位置关系平行线与平面的位置关系四、数列与数学归纳法数列的概念及其性质等差数列与等比数列递推数列与通项公式数列的应用数学归纳法及其应用五、概率论与统计事件与概率条件概率与乘法公式全概率公式与贝叶斯定理随机变量与概率分布常见离散概率分布常见连续概率分布统计与抽样六、导数与微分导数的概念与性质导数运算法则与求导公式驻点与极值问题微分与近似计算函数的递增递减与凹凸性函数的图像与渐近线七、积分与定积分不定积分及其基本性质定积分及其性质换元法与分部积分法定积分的应用以上是高一阶段数学的知识点的概述,涵盖了函数与方程、解析几何、三角函数与立体几何、数列与数学归纳法、概率论与统计、导数与微分、积分与定积分等内容。

对于每一个知识点,我们都可以详细地进行讲解,包括其概念、性质、公式以及应用等方面的内容。

在学习这些数学知识点时,我们需要关注以下几个方面:1. 确定基本概念:对于每一个知识点,我们要确保自己理解了其中的基本概念,比如函数的定义、三角函数的周期性等。

2. 学会掌握基本性质:了解各种数学对象的基本性质对于深入理解和应用知识点非常重要,比如函数的奇偶性、导数的几何意义等。

3. 掌握基本公式和定理:熟练掌握各个知识点中的基本公式和定理是解题的关键,比如三角函数的基本关系公式、导数的运算法则等。

4. 多做题,多练习:通过大量的练习题来提高对知识点的理解和应用能力,同时也可以巩固记忆和提高解题的速度。

高一数学知识点归纳总结

高一数学知识点归纳总结

高一数学知识点归纳总结高一数学知识点归纳总结(一)一、函数1.函数的定义:对于每一个自变量,函数都给出唯一的因变量值。

2.函数的表示:y=f(x),x为自变量,y为因变量,f(x)为函数。

3.函数的性质:定义域、值域、单调性、奇偶性、周期性、对称性。

4.常见数学函数:指数函数、对数函数、三角函数、反三角函数、幂函数、根式函数。

5.函数的图像:函数的图像是函数在平面直角坐标系上的表示,反映了函数自变量和因变量之间的函数关系。

6.函数的运算:加减、乘除、复合运算。

7.函数的极限:当自变量接近某一特定值时,函数趋于一个确定的极限。

8.导数与微分:导数是函数变化率的极限值,微分是函数的一个微小变化量。

9.应用:求函数的最值、拐点、渐近线、曲率等,还可以用于物理、经济、工程学等领域中的问题求解。

二、集合与命题1.集合的概念:由若干个元素构成的整体。

2.基本集合运算:并集、交集、差集、补集。

3.集合的性质:子集、相等、空集、全集、互斥、互补。

4.命题:是可以用真假判断的陈述句,并且只有真假两种可能。

5.命题的逻辑运算:否定、合取、析取、蕴含。

6.命题的等价关系与充分必要条件。

7.谓词与量词:谓词是具有“真假”性质的函数,量词包括全称量词和存在量词,它们用于指定谓词中的变量范围。

三、平面与立体几何1.欧氏几何:以欧氏公理为基础的几何学,研究点、线、面的性质以及它们之间的关系。

2.平面几何:研究平面上点、线、面及其相互关系的几何学。

3.直线和圆的性质:如平行线公理、垂线定理、相交线夹角定理、圆的周长、面积等。

4.三角形和四边形的性质:如勾股定理、海伦公式、三角形周长公式、正方形、矩形、平行四边形、菱形的周长、面积等。

5.立体几何:研究空间中点、线、面、体及其相互关系的几何学。

6.球的性质:如球的体积、表面积等。

7.多面体的性质:如正四面体、正六面体、正八面体等体积、表面积等。

四、数列与数学归纳法1.数列的概念:按一定顺序排列的一列数。

高一数学知识点总结归纳5篇

高一数学知识点总结归纳5篇

高一数学知识点总结归纳5篇首先,我们来总结一下高一数学的一些基础知识点,包括初中阶段已经学过的知识点以及高一新学的知识点。

以下将从五个方面进行总结,分别是代数、函数、几何、概率与统计、微积分。

一、代数1. 定义域与值域,例如定义域为实数集,值域为非负实数集的函数。

2. 多项式,包括多项式的加减乘除、因式分解与多项式恒等原理等。

3. 不等式,包括一元不等式与二元不等式的解法、绝对值不等式、三角函数不等式等。

举例:1)函数f(x) = sqrt(2x+3),它的定义域为[-3/2, +∞),值域为[0, +∞)。

2)多项式f(x) = 2x^3 + x^2 + 3x + 1,可以进行因式分解为f(x) = (2x+1)(x^2+x+1)。

3)不等式|x-3| < 5的解为-2 < x < 8。

二、函数1. 函数的基本概念,包括定义域、值域、单调性、奇偶性、周期性等。

2. 函数的图像与性质,包括拐点、极值、尺规作图等。

3. 高中新学的函数,包括指数函数、对数函数、三角函数等。

举例:1)函数f(x) = 1/(x-2)的定义域为R-{2},值域为R-{0}。

2)函数y = x^3 - 3x^2 - 9x + 15的拐点为(2,7),极值为(-1,19)和(3,-3)。

3)三角函数sin(x)的周期为2π,cos(x)的图像在x轴上具有对称性。

三、几何1. 几何基础知识,包括平面几何、立体几何、欧氏几何等知识。

2. 三角形、四边形、圆等图形的性质,包括周长、面积、角度等。

3. 空间几何,包括向量、坐标系、空间位置关系等知识。

举例:1)证明:对于所有直角三角形,它的三边满足勾股定理。

2)一个等腰梯形,上底为8,下底为16,高为6,它的面积为(8+16)×6÷2 = 72。

3)在空间直角坐标系中,点A(1,2,3)与点B(-2,1,4)的距离为√(14)。

四、概率与统计1. 概率基础知识,包括样本空间、事件、概率、条件概率等。

高一数学所有知识点归纳框架

高一数学所有知识点归纳框架

高一数学所有知识点归纳框架一、函数与方程A. 函数的概念及表示方法1. 自变量和因变量的关系2. 数学函数的定义和符号表示3. 函数的图像、定义域和值域B. 一元一次方程与一元一次不等式1. 一元一次方程的解法及应用2. 一元一次不等式的解法及应用3. 抽象化解题与实际问题的联系C. 二元一次方程组与不等式组1. 二元一次方程组的解法及应用2. 二元一次不等式组的解法及应用3. 图像解析法在解题中的应用二、平面向量与解析几何A. 平面向量的定义与运算1. 平面向量的表示方法2. 平面向量的加法、减法和数乘3. 向量的数量积和向量积B. 线段与向量的关系1. 向量的模与方向角2. 向量的共线与垂直关系3. 平面向量的坐标表示C. 平面几何中的应用1. 三角形的面积与向量2. 四边形的内角和与向量3. 直线与平面的性质与判定三、三角函数与解三角形A. 三角函数的定义与性质1. 正弦、余弦、正切的定义及其关系2. 倍角、半角等三角函数恒等式3. 三角函数图像的性质与应用B. 解三角形的方法1. 平面内任意三角形的边与角关系2. 三角形的面积与边与角的关系3. 三角形的解法应用举例四、概率与统计A. 随机事件与概率1. 随机事件及其概念2. 概率的定义与性质3. 必然事件与不可能事件的概率B. 统计与统计图表1. 数据的收集与整理2. 统计图表的绘制与分析3. 数据的均值、中位数及众数五、导数与微分A. 函数的导数与微分1. 导数的定义2. 基本导数公式与求导法则3. 微分的概念及应用B. 导数与函数的关系1. 导函数与原函数的关系2. 函数的增减性与极值点3. 函数曲线的拐点与凹凸性C. 高阶导数与微分应用1. 高阶导数的定义与性质2. 高阶导数在函数图像分析中的应用3. 微分的局部线性化与近似计算六、数列与数学归纳法A. 等差数列与等比数列1. 等差数列的通项与求和公式2. 等比数列的通项与求和公式3. 数列应用实际问题的解决B. 数学归纳法1. 数学归纳法的基本原理2. 利用归纳法求证数学结论3. 数列问题与数学归纳法的联系七、解析几何与立体几何A. 空间直角坐标系与坐标表示1. 空间直角坐标系的建立2. 点、线、面的坐标表示3. 空间几何问题的解决B. 空间几何图形的相交与平面的位置关系1. 直线与平面的相交关系2. 平面与平面的相交关系3. 空间几何问题的实际应用总结:高一数学涵盖了函数与方程、平面向量与解析几何、三角函数与解三角形、概率与统计、导数与微分、数列与数学归纳法、解析几何与立体几何等多个知识点。

高一数学总知识点

高一数学总知识点

高一数学总知识点一、集合1. 集合的定义和基本运算2. 集合间的关系和运算法则3. 集合的表示方法和常用符号4. 集合的分类和特殊集合二、函数与方程1. 函数的定义和表示方法2. 函数的性质和分类3. 函数的运算和图像4. 一元一次方程和一元一次不等式5. 二次函数和二次方程三、数列与数学归纳法1. 数列的概念和常见类型2. 数列的通项公式和递推公式3. 数列的性质和运算规律4. 数学归纳法的基本思想和应用四、平面几何1. 点、线、面的基本概念2. 点和线的位置关系3. 垂直与平行的判定定理和运用4. 三角形的性质和分类5. 三角形的面积和周长计算6. 圆的基本性质和相关公式7. 圆和直线的位置关系五、空间几何1. 空间中的点、直线和平面2. 空间几何体的名称和性质3. 空间几何体的表面积和体积计算4. 空间几何体的切割和投影六、概率与统计1. 随机事件和概率的基本概念2. 概率的计算和性质3. 统计图表的制作和分析4. 数据的描述和分布特征七、解析几何1. 坐标系和平面直角坐标系2. 点和向量的表示和运算3. 直线和曲线的方程和性质八、导数与微分1. 导数的定义和基本公式2. 导数的几何意义和应用3. 函数的增减性和极值问题4. 微分的定义和计算九、指数与对数1. 指数和对数的基本概念2. 指数和对数的性质和运算规律3. 指数函数和对数函数的图像和性质4. 指数方程和对数方程的求解以上是高一数学的总知识点,通过系统学习和掌握这些知识,将能够打好数学基础,顺利应对高中数学学习的挑战。

希望同学们能够认真学习,不断提高自己的数学水平。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学基础知识点总结(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高一数学基础知识点总结1.集合2.函数3.基本初等函数4.立体几何初步5.平面解析几何初步6.基本初等函数7.平面向量8.三角恒等变换9.解三角形10.数列11.不等式1集合一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。

如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母集合的分类:并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A 并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)注:空集包含于任何集合,但不能说“空集属于任何集合注:空集属于任何集合,但它不属于任何元素.空集属于任何集合吗?你这句话是错误的,空集也是集合,而集合跟集合之间的关系只能是包含和被包含的关系.只有集合里的元素与集合间的关系才是属于关系但是如果你把“属于”改成“包含于”就对了.也就是“空集包含于任何集合”.空集真包含于任何非空集合也是对的.某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。

集合的性质:确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。

互异性:集合中任意两个元素都是不同的对象。

不能写成{1,1,2},应写成{1,2}。

无序性:{a,b,c}{c,b,a}是同一个集合集合有以下性质:若A包含于B,则A∩B=A,A∪B=B常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N (2)非负整数集内排除0的集,也称正整数集,记作N+(或N*)(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q(5)全体实数的集合通常简称实数集,级做R集合的运算:1.交换律A∩B=B∩AA∪B=B∪A2.结合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)3.分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)例题已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},且A∩B={-3},求实数a的值.∵A∩B={-3}∴-3∈B.①若a-3=-3,则a=0,则A={0,1,-3},B={-3,-1,1}∴A∩B={-3,1}与∩B={-3}矛盾,所以a-3≠-3.②若2a-1=-3,则a=-1,则A={1,0,-3},B={-4,-3,2}此时A∩B={-3}符合题意,所以a=-1.2函数函数的单调性:设函数f(x)的定义域为I. 如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1<x2时:(1)若总有f(x1)<f(x2),则称函数y=f(x)在这个区间上是增函数;(2)若总有f(x1)>f(x2),则称函数y=f(x)在这个区间上是减函数。

如果函数y=f(x)在某个区间上是增函数或减函数,则称函数y=f(x)在这一区间上具有严格的单调性,这一区间叫做函数y=f(x)的单调区间。

函数的奇偶性:在函数y=f(x)中,如果对于函数定义域内的任意一个x. (1)若都有f(-x)=-f(x),则称函数f(x)为奇函数;(2)若都有f(-x)=f(x),则称函数f(x)为偶函数。

如果函数y=f(x)在某个区间上是奇函数或者偶函数,那么称函数y=f(x)在该区间上具有奇偶性。

1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与x轴交点的坐标总是(0,b)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k >0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。

当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)例证明函数在上是增函数.1.分析解决问题针对学生可能出现的问题,组织学生讨论、交流.证明:任取, 设元求差变形,断号∴∴即∴函数在上是增函数.定论3基本初等函数指数函数的一般形式为y=a^x(a>0且不=1) ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。

在函数y=a^x中可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,同时a等于0一般也不考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点(8)显然指数函数无界。

(9)指数函数既不是奇函数也不是偶函数。

例1:下列函数在R上是增函数还是减函数?⑴y=4^x因为4>1,所以y=4^x在R上是增函数;⑵y=(1/4)^x因为0<1/4<1,所以y=(1/4)^x在R上是减函数对数函数一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,其中a叫做对数的底数,N叫做真数。

真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。

但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立(比如,log(-2) 4^(-2) 就不等于(-2)*log(-2) 4;一个等于1/16,另一个等于-1/16)对数函数的一般形式为,它实际上就是指数函数的反函数,可表示为x=a^y。

因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4) a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

对数函数的运算性质:如果a〉0,且a不等于1,M>0,N>0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N);(3)log(a)(M^n)=nlog(a)(M) (n 属于R)4立体几何初步• 1.1.1 构成空间几何体的基本元素柱• 1.1.2 棱、棱锥和棱台的结构特征• 1.1.3 圆柱、圆锥和圆台的结构特征• 1.1.4 投影与直观图• 1.1.5 三视图• 1.1.6 棱柱、棱锥和棱台的表面积• 1.1.7 柱、锥和台的体积棱柱表面积A=L*H+2*S,体积V=S*H (L--底面周长,H--柱高,S--底面面积) 圆柱表面积A=L*H+2*S=2π*R*H+2π*R^2,体积V=S*H=π*R^2*H (L--底面周长,H--柱高,S--底面面积,R--底面圆半径) 球体表面积A=4π*R^2,体积V=4/3π*R^3 (R-球体半径) 圆锥表面积A=1/2*s*L+π*R^2,体积V=1/3*S*H=1/3π*R^2*H (s--圆锥母线长,L--底面周长,R--底面圆半径,H--圆锥高) 棱锥表面积A=1/2*s*L+S,体积V=1/3*S*H (s--侧面三角形的高,L--底面周长,S--底面面积,H--棱锥高)长方形的周长=(长+宽)×2 正方形 a—边长 C=4aS=a2 长方形 a和b-边长 C=2(a+b)S=ab 三角形 a,b,c-三边长 h-a边上的高s-周长的一半 A,B,C-内角其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2a2sinBsinC/(2sinA) 四边形 d,D-对角线长α-对角线夹角 S=dD/2·sinα平行四边形 a,b-边长 h-a边的高α-两边夹角 S=ah =absinα菱形 a-边长α-夹角 D-长对角线长 d-短对角线长 S=Dd/2=a2sinα 梯形 a和b-上、下底长 h-高m-中位线长 S=(a+b)h/2 =mh d-直径 C=πd=2πrS=πr2 =πd2/4 扇形 r—扇形半径正方形的周长=边长×4 长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高÷2 平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积 =长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 b-弦长 h-矢高 r-半径α-圆心角的度数 S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] -(r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ≈2bh/3 圆环 R-外圆半径 r-内圆半径 D-外圆直径 d-内圆直径 S=π(R2-r2) =π(D2-d2)/4 椭圆 D-长轴 d-短轴 S=πDd/4 立方图形名称符号面积S和体积V 正方体 a-边长 S=6a2 V=a3 长方体 a-长 b-宽 c-高 S=2(ab+ac+bc) V=abc 棱柱 S-底面积 h-高 V=Sh 棱锥 S-底面积 h-高 V =Sh/3 棱台 S1和S2-上、下底面积 h-高 V=h[S1+S2+(S1S1)1/2]/3拟柱体 S1-上底面积 S2-下底面积 S0-中截面积 h-高 V=h(S1+S2+4S0)/6 圆柱 r-底半径 h-高C—底面周长 S底—底面积 S侧—侧面积 S表—表面积 C=2πr S底=πr2 S侧=Ch S表=Ch+2S底 V =S底h =πr2h 空心圆柱 R-外圆半径 r-内圆半径 h-高 V=πh(R2-r2) 直圆锥 r-底半径 h-高 V=πr2h/3 圆台 r-上底半径 R-下底半径 h-高 V=πh(R2+Rr+r2)/3 球 r-半径 d-直径 V=4/3πr3=πd2/6 球缺 h-球缺高 r-球半径 a-球缺底半径 V=πh(3a2+h2)/6 =πh2(3r-h)/3 a2=h(2r-h) 球台 r1和r2-球台上、下底半径 h-高 V=πh[3(r12+r22)+h2]/6 圆环体 R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径 V=2π2Rr2 =π2Dd2/4 桶状体 D-桶腹直径 d-桶底直径 h-桶高 V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形)三视图的投影规则是:主视、俯视长对正主视、左视高平齐左视、俯视宽相等点线面位置关系公理一:如果一条线上的两个点在平面上则该线在平面上公理二:如果两个平面有一个公共点则它们有一条公共直线且所有的公共点都在这条直线上公理三:三个不共线的点确定一个平面推论一:直线及直线外一点确定一个平面推论二:两相交直线确定一个平面推论三:两平行直线确定一个平面公理四:和同一条直线平行的直线平行异面直线定义:不平行也不相交的两条直线判定定理:经过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线。

相关文档
最新文档