九年级数学下册 1_2 第5课时 二次函数y=ax2+bx+c的图象与性质习题 湘教版

合集下载

2020春北师大版九年级数学下册第二章二次函数2二次函数的图像与性质练习

2020春北师大版九年级数学下册第二章二次函数2二次函数的图像与性质练习

2.2 二次函数的图象与性质第1课时二次函数y=x2和y=-x2的图象与性质1.填空:(1)y=x2的图像是;开口向;对称轴是;顶点坐标是;(2)y=-x2的图像是;开口向;对称轴是;顶点坐标是;(3)在抛物线y=x2的对称轴左侧y随x的减小而;而在对称轴的右侧是y随着x 的增大而;此时函数y=x2当x=时的值最是.(4)在抛物线y=-x2的对称轴左侧y随x的减小而;而在对称轴的右侧是y随着x 的增大而;此时函数y=x2当x=时的值最是.2.如图,⊙O的半径为2.C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是_________ .3.已知a≠0,在同一直角坐标系中,函数y=x与y=x2的图象有可能是()A.B.C.D.4.已知正方形的边长为ccm,面积为Scm2.(1)求S与c之间函数关系式;(2)画出图象;(3)根据图象,求出S =1cm 2时,正方形的边长; (4)根据图象,求出c 取何值时,S ≥4cm 2.2.2 二次函数的图象与性质第2课时 二次函数y =ax 2和y =ax 2+c 的图象与性质1.抛物线y=-3x 2+5的开口向________,对称轴是_______,顶点坐标是________,顶点是最_____点,所以函数有最________值是_____.2.抛物线y=4x 2-1与y 轴的交点坐标是_________,与x 轴的交点坐标是_____. 3.把抛物线y=x 2向上平移3个单位后,得到的抛物线的函数关系式为_______. 4.抛物线y=4x 2-3是将抛物线y=4x 2,向_____平移______个单位得到的.5.抛物线y=ax 2-1的图像经过(4,-5),则a=_________. 6.抛物线y=-3(2x 2-1)的开口方向是_____,对称轴是_____.7.在同一坐标系中,二次函数y=-21x 2,y=x 2,y=-3x 2的开口由大到小的顺序是______. 8.在同一坐标系中,抛物线y =4x 2,y =41x 2,y =-41 x 2的共同特点是( )A.关于y 轴对称,抛物线开口向上;B.关于y 轴对称,y 随x 的增大而增大 B.关于y 轴对称,y 随x 的增大而减小;D.关于y 轴对称,抛物线顶点在原点. 9.如图,函数y =ax 2与y =-ax+b 的图像可能是( ).10.求符合下列条件的抛物线y=ax 2-1的函数关系式: (1)通过点(-3,2);(2)与y=12x 2的开口大小相同,方向相反; (3)当x 的值由0增加到2时,函数值减少4.11..已知抛物线y=mx 2+n 向下平移2个单位后得到的函数图像是y=3x 2-1,求m,n 的值.2.2 二次函数的图象与性质第3课时 二次函数y =a (x -h )2的图象与性质1.把二次函数2x y =的图象向右平移3个单位长度,得到新的图象的函数表达式是( )A. 32+=x yB. 32-=x yC. 2)3(+=x yD. 2)3(-=x y2.抛物线2)3(2--=x y 的顶点坐标和对称轴分别是( ) A.3),0,3(-=-x 直线 B. 3),0,3(=x 直线 C. 3),3,0(-=-x 直线 D. 3),3,0(-=x 直线3.已知二次函数2)1(3+=x y 的图象上有三点 ),2(),,2(),,1(321y C y B y A - ,则321,,y y y 的大小关系为( )A.321y y y >>B. 312y y y >>C. 213y y y >>D. 123y y y >>4.把抛物线2)1(6+=x y 的图象平移后得到抛物线26x y =的图象,则平移的方法可以是( )A.沿y 轴向上平移1个单位长度B.沿y 轴向下平移1个单位长度C.沿x 轴向左平移1个单位长度D.沿x 轴向右平移1个单位长度5.若二次函数12+-=mx x y 的图象的顶点在x 轴上,则m 的值是( )A. 2B. 2-C.0D. 2± 6.对称轴是直线2-=x 的抛物线是( )A.22+-=x yB.22+=x y C.2)2(21+=x y D.2)2(3-=x y 7.对于函数2)2(3-=x y ,下列说法正确的是( )A. 当0>x 时,y 随x 的增大而减小B. 当0<x 时,y 随x 的增大而增大C. 当2>x 时,y 随x 的增大而增大D. 当2->x 时,y 随x 的增大而减小8.二次函数132+=x y 和2)1(3-=x y ,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y 轴,顶点坐标都是原点(0,0); ③当0>x 时,它们的函数值y 都是随着x 的增大而增大; ④它们的开口的大小是一样的. 其中正确的说法有( )A.1个B.2个C.3个D.4个9.抛物线2)1(3--=x y 的开口向 ,对称轴是 ,顶点坐标是 。

2019-2020【提分必做】九年级数学下册 第一章 1.2 二次函数的图象与性质练习 (新版)湘教版

2019-2020【提分必做】九年级数学下册 第一章 1.2 二次函数的图象与性质练习 (新版)湘教版

1.2 二次函数的图象与性质第1课时二次函数y=ax2(a>0)的图象与性质基础题知识点1 二次函数y=ax2(a>0)的图象1.下列各点在二次函数y=4x2图象上的点是(C)A.(2,2) B.(4,1)C.(1,4) D.(-1,-4)2.二次函数y=3x2的图象是(B)A BC D3.(教材P6例1变式)画二次函数y=2x2的图象.解:列表:描点、连线,图象如图所示.知识点2 二次函数y=ax2(a>0)的性质4.二次函数y=x2的图象的开口方向是(A)A.向上B.向下C .向左D .向右5.对于函数y =13x 2,下列结论正确的是(D)A .当x 取任何实数时,y 的值总是正数B .y 的值随x 的增大而增大C .y 的值随x 的增大而减小D .图象关于y 轴对称6.(教材P7练习T2变式)在同一平面直角坐标系中,作出y =x 2、y =2x 2、y =12x 2的图象,它们的共同特点是(D)A .都是关于x 轴对称,抛物线开口向上B .都是关于原点对称,顶点都是原点C .都是关于y 轴对称,抛物线开口向下D .都是关于y 轴对称,顶点都是原点7.二次函数y =25x 2的图象开口向上,对称轴是y 轴,顶点坐标是(0,0).8.(2018·广州)已知二次函数y =x 2,当x >0时,y 随x 的增大而增大.(填“增大”或“减小”) 9.画二次函数y =32x 2的图象,并回答下列问题:(1)当x =6时,函数值y 是多少? (2)当y =6时,x 的值是多少?(3)当x 取何值时,y 有最小值,最小值是多少? (4)当x>0时,y 随x 的增大怎样变化?当x<0时呢? 解:如图:(1)当x =6时,y =32×62=54.(2)当y =6时,32x 2=6,解得x =±2.(3)当x =0时,y 有最小值,最小值是0.(4)当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小.易错点求区间内最值时忽视对称轴位置10.当-1≤x≤2时,二次函数y=x2的最大值是4,最小值是0.中档题11.已知二次函数y=mx(m2+1)的图象经过第一、二象限,则m=(A)A.1 B.-1C.±1 D.212.已知点A(-3,y1),B(-1,y2),C(2,y3)在二次函数y=2x2的图象上,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y3<y113.如图所示,在同一平面直角坐标系中,作出①y=3x2;②y=23x2;③y=43x2的图象,则从里到外的二次函数的图象对应的函数依次是(B)A.①②③ B.①③②C.②③① D.②①③14.函数y=mx2的图象如图所示,则m>0;在对称轴左侧,y随x的增大而减小;在对称轴右侧,y 随x的增大而增大;顶点坐标是(0,0),是抛物线的最低点;函数在x=0时,有最小值,为0.15.已知函数y=(m+2)xm2+m-4是关于x的二次函数.(1)求满足条件的m值;(2)m为何值时,二次函数的图象有最低点?求出这个最低点,这时当x为何值时,y随x的增大而增大?解:(1)m=2或m=-3.(2)当m=2时,二次函数的图象有最低点,这个最低点为(0,0),且当x>0时,y随x的增大而增大.16.已知正方形的周长为C cm,面积为S cm2,请写出S与C之间的函数关系式,并画出这个函数的图象.解:由题意,得S=116C2(C>0).列表:描点、连线,图象如图所示.综合题17.已知点A(2,a)在二次函数y=x2的图象上.(1)求点A的坐标;(2)在x轴上是否存在点P,使△OAP是等腰三角形?若存在,写出点P坐标;若不存在,请说明理由.解:(1)∵点A(2,a)在二次函数y=x2的图象上,∴a=22=4.∴点A的坐标为(2,4).(2)分下列3种情况:①当OA=OP时,点P的坐标:P1(-25,0),P2(25,0);②当OA=AP,点P的坐标:(4,0);③当OP=AP时,如图,过点A作AE⊥x轴于点E.在△AEP′中,AE2+P′E2=AP′2,设AP′=x,则42+(x-2)2=x2.解得x=5.∴点P的坐标为(5,0).综上所述,使△OAP是等腰三角形的点P坐标为(-25,0),(25,0),(4,0),(5,0).第2课时 二次函数y =ax 2(a <0)的图象与性质基础题知识点1 二次函数y =ax 2(a <0)的图象 1.如图所示的图象对应的函数表达式可能是(B)A .y =13x 2B .y =-13x 2C .y =3xD .y =-3x2.函数y =-2x 2,当x >0时图象位于(D) A .第一象限 B .第二象限 C .第三象限D .第四象限3.(教材P9例2变式)画二次函数y =-x 2的图象. 解:列表:描点、连线,如图所示:知识点2 二次函数y =ax 2(a <0)的性质 4.抛物线y =-3x 2的顶点坐标是(D) A .(-3,0)B .(-2,0)C .(-1,0)D .(0,0)5.二次函数y =-115x 2的最大值是(D)A .x =-115B .x =0C .y =-115D .y =06.若函数y =-4x 2的函数值y 随x 的增大而减少,则自变量x 的取值范围是(A) A .x >0 B .x <0 C .x >4D .x <-47.抛物线y =-2x 2不具有的性质是(D) A .开口向下 B .对称轴是y 轴C .当x >0时,y 随x 的增大而减小D .对应的函数有最小值8.两条抛物线y =4x 2与y =-4x 2在同一平面直角坐标系中,下列说法不正确的是(D) A .顶点坐标相同 B .对称轴相同 C .开口方向相反 D .都有最小值9.二次函数y =(2m +1)x 2的图象开口向下,则m 的取值范围是m <-12.10.填写下列抛物线的开口方向、对称轴、顶点坐标以及最值.中档题11.下列说法错误的是(C)A .二次函数y =3x 2中,当x >0时,y 随x 的增大而增大 B .二次函数y =-6x 2中,当x =0时,y 有最大值0C .抛物线y =ax 2(a≠0)中,a 越大图象开口越小,a 越小图象开口越大 D .不论a 是正数还是负数,抛物线y =ax 2(a≠0)的顶点一定是坐标原点 12.抛物线y =2x 2,y =-2x 2,y =12x 2共有的性质是(B)A .开口向下B .对称轴是y 轴C .都有最低点D .y 随x 的增大而减小13.已知点A(-1,y 1),B(-2,y 2),C(-2,y 3)在函数y =-x 2的图象上,则y 1,y 2,y 3的大小关系是(A)A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 1>y 314.函数y =a x与y =ax 2(a≠0)在同一平面直角坐标系中的图象可能是(D)15.已知二次函数y =ax 2的图象经过点(1,-3). (1)求a 的值;(2)当x =3时,求y 的值; (3)说出此二次函数的三条性质.解:(1)∵抛物线y =ax 2经过点(1,-3), ∴a×1=-3.∴a=-3.(2)把x =3代入抛物线y =-3x 2,得 y =-3×32=-27.(3)抛物线的开口向下;坐标原点是抛物线的顶点;当x >0时,y 随着x 的增大而减小;抛物线有最高点,当x =0时,y 有最大值,是y =0等.16.已知抛物线y =kxk 2+k ,当x >0时,y 随x 的增大而减小. (1)求k 的值; (2)作出函数的图象.解:(1)∵抛物线y =kxk 2+k 中,当x >0时,y 随x 的增大而减小,∴⎩⎪⎨⎪⎧k <0,k 2+k =2.解得k =-2. ∴函数的表达式为y =-2x 2. (2)列表:描点、连线,画出函数图象如图所示.综合题17.已知二次函数y =ax 2(a≠0)与一次函数y =kx -2的图象相交于A ,B 两点,如图所示,其中A(-1,-1),求△OAB 的面积.解:∵点A(-1,-1)在抛物线y =ax 2(a≠0)上,也在直线y =kx -2上, ∴-1=a·(-1)2,-1=k·(-1)-2. 解得a =-1,k =-1.∴两函数的表达式分别为y =-x 2,y =-x -2.由⎩⎪⎨⎪⎧y =-x 2,y =-x -2,解得⎩⎪⎨⎪⎧x 1=-1,y 1=-1,⎩⎪⎨⎪⎧x 2=2,y 2=-4.∴点B 的坐标为(2,-4).∵y=-x -2与y 轴交于点G ,则G(0,-2). ∴S △OAB =S △OAG +S △OBG =12×(1+2)×2=3.第3课时 二次函数y =a(x -h)2(a≠0)的图象与性质基础题知识点1 二次函数y =a(x -h)2(a≠0)的图象的平移1.如果将抛物线y =x 2向右平移1个单位长度,那么所得的抛物线的表达式是(C) A .y =x 2-1B .y =x 2+1 C .y =(x -1)2D .y =(x +1)22.将抛物线y =x 2平移得到抛物线y =(x +2)2,则这个平移过程正确的是(A) A .向左平移2个单位长度 B .向右平移2个单位长度 C .向上平移2个单位长度 D .向下平移2个单位长度知识点2 画二次函数y =a(x -h)2(a≠0)的图象 3.(教材P12练习T2变式)已知二次函数y =-14(x +1)2.(1)完成下表;(2)在下面的坐标系中描点,画出该二次函数的图象.解:(1)如表. (2)如图所示.知识点3 二次函数y =a(x -h)2(a≠0)的图象与性质 4.对称轴是x =1的二次函数是(D) A .y =x 2B .y =-2x 2C .y =(x +1)2D .y =(x -1)25.在函数y =(x +1)2中,y 随x 的增大而减小,则x 的取值范围是(C)A .x >-1B .x >1C .x <-1D .x <16.在平面直角坐标系中,二次函数y =a(x -2)2(a≠0)的图象可能是(D)7.对于抛物线y =35(x +4)2,下列结论:①抛物线的开口向上;②对称轴为直线x =4;③顶点坐标为(-4,0);④x>-4时,y 随x 的增大而减小.其中正确结论的个数为(B) A .1B .2C .3D .48.(教材P12练习T1变式)(1)抛物线y =3(x -1)2的开口向上,对称轴是直线x =1,顶点坐标是(1,0);(2)抛物线y =-3(x -1)2的开口向下,对称轴是直线x =1,顶点坐标是(1,0).9.抛物线y =-(x +3)2,当x <-3时,y 随x 的增大而增大;当x >-3时,y 随x 的增大而减小. 10.如果二次函数y =a(x +3)2有最大值,那么a<0,当x =-3时,函数的最大值是0. 11.已知抛物线y =2x 2和y =2(x -1)2,请至少写出两条它们的共同特征. 解:答案不唯一,如:开口方向相同,开口大小相同,顶点均在x 轴上等.易错点 二次函数增减性相关的易错12.已知二次函数y =2(x -h)2,当x>3时,y 随x 的增大而增大,则h 的取值范围为h≤3. 中档题13.抛物线y =-3(x +1)2不经过的象限是(A) A .第一、二象限 B .第二、四象限 C .第三、四象限D .第二、三象限14.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =a(x +c)2的图象大致为(B)15.(2018·潍坊)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为(B)A.3或6 B.1或6 C.1或3 D.4或616.已知A(-4,y1),B(-3,y2),C(3,y3)三点都在二次函数y=-2(x+2)2的图象上,则y1,y2,y3的大小关系为y3<y1<y2.17.某一抛物线和y=-3x2的图象形状相同,对称轴平行于y轴,并且顶点坐标是(-1,0),则此抛物线的表达式是y=-3(x+1)2.18.已知二次函数y=2(x-1)2.(1)当x=2时,函数值y是多少?(2)当y=4时,x的值是多少?(3)当x在什么范围内时,随着x值的增大,y值逐渐增大?当x在什么范围内时,随着x值的增大,y值逐渐减少?(4)这个函数有最大值还是最小值,最大值或最小值是多少?这时x的值是多少?解:(1)当x=2时,y=2×(2-1)2=2.(2)当y=4时,2(x-1)2=4,解得x=1± 2.(3)当x>1时,随着x值的增大,y值逐渐增大;当x<1时,随着x值的增大,y值逐渐减小.(4)这个函数有最小值,最小值是0,这时x=1.19.已知点P(m,a)是抛物线y=a(x-1)2上的点,且点P在第一象限内.(1)求m的值;(2)过点P作PQ∥x轴交抛物线y=a(x-1)2于点Q,若a的值为3,试求点P,点Q及原点O围成的三角形的面积.解:(1)∵点P(m,a)是抛物线y=a(x-1)2上的点,∴a=a(m-1)2.解得m=2或m=0.∵点P在第一象限内,∴m=2.(2)∵a的值为3,∴二次函数的表达式为y =3(x -1)2. ∵点P 的横坐标为2,∴点P 的纵坐标y =3(x -1)2=3. ∴点P 的坐标为(2,3).∵PQ∥x 轴交抛物线y =a(x -1)2于点Q , ∴3=3(x -1)2.解得x =2或x =0. ∴点Q 的坐标为(0,3).∴PQ=2. ∴S △PQO =12×3×2=3.综合题20.已知一条抛物线y =a(x -h)2的顶点与抛物线y =-(x -2)2的顶点相同,且与直线y =3x -13的交点A 的横坐标为3. (1)求这条抛物线的表达式;(2)把这条抛物线向右平移4个单位长度后,求所得的抛物线的表达式. 解:(1)由题意可知:A(3,-4).∵抛物线y =a(x -h)2的顶点与抛物线y =-(x -2)2的顶点相同, ∴h=2.由题意,把点A 的坐标(3,-4)代入y =a(x -2)2,得-4=a(3-2)2. ∴a=-4.∴这条抛物线的表达式为y =-4(x -2)2.(2)把抛物线y =-4(x -2)2向右平移4个单位长度后,得到的抛物线的表达式为y =-4(x -6)2.第4课时二次函数y=a(x-h)2+k(a≠0)的图象与性质基础题知识点1 二次函数y=a(x-h)2+k(a≠0)的图象的平移1.将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为(A)A.y=(x+2)2-3 B.y=(x+2)2+3C.y=(x-2)2+3 D.y=(x-2)2-32.抛物线y=-3(x-2)2-3可以由抛物线y=-3x2+1平移得到,则下列平移过程正确的是(C) A.先向左平移4个单位长度,再向上平移2个单位长度B.先向左平移2个单位长度,再向下平移4个单位长度C.先向右平移2个单位长度,再向下平移4个单位长度D.先向右平移4个单位长度,再向上平移2个单位长度知识点2 二次函数y=a(x-h)2+k(a≠0)的图象与性质3.二次函数y=(x+2)2-1的图象大致为(D)4.(2018·岳阳)抛物线y=3(x-2)2+5的顶点坐标是(C)A.(-2,5) B.(-2,-5)C.(2,5) D.(2,-5)5.抛物线y=-(x+2)2-5的图象上有两点A(-4,y1),B(-3,y2),则y1,y2的大小关系是(C) A.y1>y2B.y1=y2C.y1<y2D.不能确定6.二次函数y=2(x-3)2-4的最小值为-4.7.写出下列抛物线的开口方向、对称轴及顶点坐标:知识点3 画二次函数y=a(x-h)2+k(a≠0)的图象8.(教材P14例4变式)画出函数y=(x-1)2-1的图象.解:列表:描点并连线:知识点4 利用顶点式求二次函数的表达式9.(教材P15练习T3变式)在平面直角坐标系内,二次函数图象的顶点为A(1,-4),且过点B(3,0).求该二次函数的表达式.解:∵二次函数图象的顶点为A(1,-4),∴设二次函数表达式为y=a(x-1)2-4.把点B(3,0)代入二次函数表达式,得0=4a-4,解得a=1.∴二次函数表达式为y=(x-1)2-4,即y=x2-2x-3.易错点将图象平移与坐标轴平移混淆10.在平面直角坐标系中,若抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移1个单位长度,则在新的平面直角坐标系中,抛物线的函数表达式为y=3(x+1)2-1.中档题11.二次函数的图象如图,则它的表达式正确的是(C)A.y=-(x+2)2+2B.y=-(x-2)2+2C.y=-2(x-1)2+2D.y=-2(x+1)2+212.二次函数y=a(x-m)2+n(a≠0)的图象如图所示,则一次函数y=mx+n的图象经过(B)A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限13.在同一平面直角坐标系中,如果两个二次函数y1=a(x+h1)2+k1与y2=a(x+h2)2+k2的图象的形状相同,并且对称轴关于y轴对称,那么我们称这两个二次函数互为“梦函数”,如二次函数y =(x+1)2-3与y=(x-1)2+1互为“梦函数”,请你写出二次函数y=2(x-3)2-1的一个梦函数答案不唯一,如y=2(x+3)2+2.14.已知二次函数y=2(x-3)2-8.(1)写出此函数图象的开口方向、对称轴及顶点坐标;(2)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?(3)当x取何值时,函数有最大值或最小值?并求出这个最大值或最小值;(4)函数图象可由函数y=2x2的图象经过怎样的平移得到?解:(1)抛物线开口向上,对称轴是直线x=3,顶点坐标是(3,-8).(2)当x>3时,y随x的增大而增大;当x <3时,y 随x 的增大而减小. (3)当x =3时,y 有最小值,最小值是-8.(4)该函数图象可由y =2x 2的图象先向右平移3个单位长度,再向下平移8个单位长度得到.15.如图,已知抛物线C 1:y =a(x +2)2-5的顶点为P ,与x 轴相交于A ,B 两点(点A 在点B 的左侧),点B 的横坐标是1.(1)由图象可知,抛物线C 1的开口向上,当x >-2时,y 随x 的增大而增大; (2)求a 的值;(3)抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,抛物线C 3的顶点为M ,当点P ,M 关于点O 成中心对称时,求抛物线C 3的表达式.解:(2)∵点B 是抛物线与x 轴的交点,横坐标是1,∴点B 的坐标为(1,0). ∴当x =1时,0=a(1+2)2-5.∴a=59.(3)设抛物线C 3表达式为y =a′(x-h)2+k ,∵抛物线C 2与C 1关于x 轴对称,且C 3为C 2向右平移得到,∴a′=-59.∵点P ,M 关于点O 中心对称,且点P 的坐标为(-2,-5),∴点M 的坐标为(2,5).∴抛物线C 3的表达式为y =-59(x -2)2+5=-59x 2+209x +259.综合题16.如图,已知抛物线的顶点为A(1,4),抛物线与y 轴交于点B(0,3),与x 轴交于C ,D 两点.点P 是x 轴上的一个动点. (1)求此抛物线的表达式;(2)当PA +PB 的值最小时,求点P 的坐标.解:(1)∵抛物线顶点坐标为(1,4), ∴设抛物线表达式为y =a(x -1)2+4. 由于抛物线过点B(0,3), ∴3=a(0-1)2+4. 解得a =-1. ∴抛物线的表达式为 y =-(x -1)2+4, 即y =-x 2+2x +3.(2)作点B 关于x 轴的对称点E(0,-3),连接AE 交x 轴于点P ,连接PB. 设AE 表达式为y =kx +b ,则⎩⎪⎨⎪⎧k +b =4,b =-3. 解得⎩⎪⎨⎪⎧k =7,b =-3. ∴y=7x -3. 当y =0时,x =37.∴点P 坐标为(37,0).第5课时二次函数y=ax2+bx+c(a≠0)的图象与性质基础题知识点1 用配方法将二次函数由一般式化为顶点式1.二次函数y=x2-2x+4化为y=a(x-h)2+k的形式,下列正确的是(B)A.y=(x+1)2+2 B.y=(x-1)2+3C.y=(x-2)2+2 D.y=(x-2)2+42.用配方法将二次函数y=2x2-4x-3化为顶点式:y=2(x2-2x)-3=2(x2-2x+1-1)-3=2[(x-1)2-1]-3=2(x-1)2-5.知识点2 二次函数y=ax2+bx+c(a≠0)的图象与性质3.抛物线y=x2+2x+3的对称轴是(B)A.直线x=1 B.直线x=-1C.直线x=-2 D.直线x=24.二次函数y=x2+2x-3的开口方向、顶点坐标分别是(A)A.开口向上、顶点坐标为(-1,-4)B.开口向下、顶点坐标为(1,4)C.开口向上、顶点坐标为(1,4)D.开口向下、顶点坐标为(-1,-4)5.在二次函数y=x2-2x+3的图象中,若y随x的增大而增大,则x的取值范围是(D)A.x<-1 B.x>-1C.x<1 D.x>16.(2018·成都)关于二次函数y=2x2+4x-1,下列说法正确的是(D)A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为-37.(教材P18练习T1变式)求下列函数图象的开口方向、对称轴及顶点坐标,并指出当x取何值时,y 的值随x 的增大而减小.(1)y =x 2-4x -3;(2)y =-3x 2-4x +2.解:(1)开口向上,对称轴:直线x =2,顶点坐标:(2,-7),当x <2时,y 的值随x 的增大而减小.(2)开口向下,对称轴:直线x =-23,顶点坐标:(-23,103),当x >-23时,y 的值随x 的增大而减小.8.二次函数y =x 2+bx +3的图象经过点(3,0).(1)求b 的值;(2)求出该二次函数图象的顶点坐标和对称轴;(3)在所给的坐标系中画出二次函数y =x 2+bx +3的图象.解:(1)将(3,0)代入函数表达式,得9+3b +3=0.解得b =-4.(2)∵y=x 2-4x +3=(x -2)2-1,∴顶点坐标是(2,-1),对称轴为直线x =2.(3)如图所示.知识点3 二次函数y =ax 2+bx +c(a≠0)的最值9.(教材P17例6变式)求下列函数的最大(小)值:(1)y =2x 2-4x +1;(2)y =-x 2+3x -1. 解:(1)y =2x 2-4x +1=2(x -1)2-1,∴当x =1时,函数有最小值-1.(2)y =-x 2+3x -1=-(x 2-3x)-1=-(x -32)2+54,∴当x =32时,函数有最大值54.中档题10.将抛物线y =x 2-4x -4向左平移3个单位长度,再向上平移5个单位长度,得到抛物线的函数表达式为(D)A .y =(x +1)2-13B .y =(x -5)2-3C .y =(x -5)2-13D .y =(x +1)2-311.点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是(D)A .y 3>y 2>y 1B .y 3>y 1=y 2C .y 1>y 2>y 3D .y 1=y 2>y 312.小韵从如图的二次函数y =ax 2+bx +c 图象中,观察得到下面四条信息:①a>0;②c<0;③函数的最小值为-3;④对称轴是直线x =2.你认为其中正确的个数是(B)A .4B .3C .2D .113.(2018·黄冈)当a≤x≤a+1时,函数y =x 2-2x +1的最小值为1,则a 的值为(D)A .-1B .2C .0或2D .-1或2 14.如图,已知抛物线y =ax 2+bx +c 与x 轴交于A ,B 两点,顶点C 的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y =a 1x 2+b 1x +c 1,则下列结论正确的是③④.(写出所有正确结论的序号)①b>0;②a-b +c <0;③阴影部分的面积为4;④若c =-1,则b 2=4a.15.已知二次函数y =-12x 2-x +32. (1)画出这个函数的图象;(2)根据图象,写出当y <0时,x 的取值范围;(3)若将此图象沿x 轴向右平移3个单位长度,请写出平移后图象所对应的函数表达式. 解:(1)如图所示.(2)当y <0时,x 的取值范围是x <-3或x >1.(3)平移后图象所对应的函数表达式为y =-12(x -2)2+2(或写成y =-12x 2+2x).16.已知二次函数y =x 2-4x +3.(1)用配方法求其图象的顶点C 的坐标,并描述该函数的函数值随自变量的增减而增减的情况;(2)求函数图象与x 轴的交点A ,B 的坐标,及△ABC 的面积.解:(1)y =x 2-4x +3=(x -2)2-1.∴函数的顶点C 的坐标为(2,-1).∴当x≤2时,y 随x 的增大而减小;当x>2时,y 随x 的增大而增大.(2)令y =0,则x 2-4x +3=0,解得x 1=1,x 2=3.∴当点A 在点B 左侧时,A(1,0),B(3,0);当点A 在点B 右侧时,A(3,0),B(1,0).∴AB=||1-3=2.过点C 作CD⊥x 轴于D ,S △ABC =12AB·CD=12×2×1=1.综合题17.如果二次函数的二次项系数为1,则此二次函数可表示为y =x 2+px +q ,我们称[p ,q]为此函数的特征数,如函数y =x 2+2x +3的特征数是[2,3].(1)若一个函数的特征数是[-2,1],求此函数的顶点坐标;(2)探究下列问题:①若一个函数的特征数是[4,-1],将此函数图象先向右平移1个单位长度,再向上平移1个单位长度,求得到的图象对应函数的特征数;②若一个函数的特征数是[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?解:(1)∵一个函数的特征数是[-2,1],∴该函数的表达式为y =x 2-2x +1.∵y=x 2-2x +1=(x -1)2,∴此函数的顶点坐标是(1,0).(2)①∵一个函数的特征数是[4,-1],∴该函数的表达式为y =x 2+4x -1,配方成顶点式为y =(x +2)2-5.∴将抛物线y =(x +2)2-5先向右平移1个单位长度,再向上平移1个单位长度得到抛物线的函数表达式为y =(x +2-1)2-5+1,即y =(x +1)2-4,即y =x 2+2x -3.∴得到的图象对应函数的特征数为[2,-3].②∵一个函数的特征数是[2,3],∴y=x 2+2x +3=(x +1)2+2.∵一个函数的特征数是[3,4],∴y=x 2+3x +4=(x +32)2+74=(x +1+12)2+2-14.∴将抛物线y =x 2+2x +3先向左平移12个单位长度,再向下平移14个单位长度即可得到抛物线y =x 2+3x +4,其特征数为[3,4].。

九年级数学下第1章二次函数1.2二次函数的图像与性质第5课时二次函数y=a2+k的图象与性质习题湘教

九年级数学下第1章二次函数1.2二次函数的图像与性质第5课时二次函数y=a2+k的图象与性质习题湘教
当 y=0 时,-53x-252+6145=0,
解得 x=-65或 2, ∴B(2,0).
∵D(-1,1), ∴BD2=(2+1)2+(1-0)2=10, CD2=(0+1)2+(4-1)2=10, BC2=22+42=20, ∴BD2+CD2=BC2,且BD=CD, ∴△BDC是等腰直角三角形.
(2)求tan ∠ABC. 解:令 x=0,则 y=13(0-4)2-3=73,则 OC=73. ∵二次函数图象的顶点坐标为(4,-3),
∴点 B 与点 A 关于直线 x=4 对称.
∴B 点坐标为(7,0).∴OB=7. 7
∴tan ∠ABC=OOCB=37=13.
12.把二次函数 y=a(x-h)2+k 的图象先向左平移 2 个单位 长度,再向上平移 4 个单位长度,得到二次函数 y=12(x +1)2-1 的图象.
探究培优 不习惯读书进修的人,常会自满于现状,觉得没有什么事情需要学习,于是他们不进则退2022年4月30日星期六2022/4/302022/4/302022/4/30
读书,永远不恨其晚。晚比永远不读强。2022年4月2022/4/302022/4/302022/4/304/30/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/302022/4/30April 30, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
(1)当m=5时,求n的值;
解:当 m=5 时,y=-12(x-5)2+4, 当 x=1 时,n=-12×42+4=-4.
(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2 时,自变量x的取值范围;
解:当 n=2 时,将 C(1,2)的坐标代入函数表达式 y=-12(x-m)2+4,得 2=-12(1-m)2+4, 解得 m=3 或 m=-1(舍去), ∴此时抛物线的对称轴为 x=3, 根据抛物线的对称性可知,当 y=2 时,x=1 或 x=5, ∴x 的取值范围为 1≤x≤5.

九年级数学 二次函数y=ax2bxc(a≠0)的图像与性质(知识讲解1)Word版含解析

九年级数学 二次函数y=ax2bxc(a≠0)的图像与性质(知识讲解1)Word版含解析

专题2.12 二次函数y=ax2+bx+c(a≠0)的图像与性质(知识讲解1)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.12 二次函数y=ax²+bx+c(a≠0)的图象与性质(知识讲解1) 【学习目标】1.会用描点法画二次函数2(0)y ax bx c a =++≠的图象;会用配方法将二次函数2y ax bx c =++的解析式写成2()y a x h k =-+的形式;2.通过图象能熟练地掌握二次函数2y ax bx c =++的性质;3.经历探索2y ax bx c =++与2()y a x h k =-+的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想. 【要点梳理】要点一、二次函数2(0)y ax bx c a =++≠与2(1)(0)y a x t k a =-+≠之间的相互关系 1.顶点式化成一般式从函数解析式2()y a x h k =-+我们可以直接得到抛物线的顶点(h ,k),所以我们称2()y a x h k =-+为顶点式,将顶点式2()y a x h k =-+去括号,合并同类项就可化成一般式2y ax bx c =++. 2.一般式化成顶点式 22222()()()22b b b b y ax bx c a x x c a x x c a a a a ⎡⎤=++=++=++-+⎢⎥⎣⎦224()24b ac b a x a a-=++.对照2()y a x h k =-+,可知2b h a =-,244ac b k a-=.∴抛物线2y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24(,)24b ac b a a--. 特别说明:1.抛物线2y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24(,)24b ac b a a--,可以当作公式加以记忆和运用.2.求抛物线2y ax bx c =++的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点二、二次函数2(0)y ax bx c a =++≠的图象的画法 1.一般方法:列表、描点、连线; 2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.(2)求抛物线2y ax bx c =++与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 特别说明:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象, 要点三、二次函数2(0)y ax bx c a =++≠的图象与性质 1.二次函数2(0)y ax bx c a =++≠图象与性质2.二次函数2(0)y ax bx c a =++≠图象的特征与a 、b 、c 及b2-4ac 的符号之间的关系要点四、求二次函数2(0)y ax bx c a =++≠的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当2b x a =-时,244ac b y a-=.特别说明:如果自变量的取值范围是x1≤x≤x2,那么首先要看2ba-是否在自变量的取值范围x1≤x≤x2内,若在此范围内,则当2b x a =-时,244ac b y a-=,若不在此范围内,则需要考虑函数在x1≤x≤x2范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当x =x2时,22y bx c ++;当x =x1时,211y ax bx c =++,如果在此范围内,y 随x 的增大而减小,则当x =x1时,2max 11y ax bx c =++;当x =x2时,2min 22y ax bx c =++,如果在此范围内,y 值有增有减,则需考察x =x1,x =x2,2bx a=-时y 值的情况. 特别说明: 【典型例题】类型一、二次函数2(0)y ax bx c a =++≠化为顶点式1.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0). (1)求抛物线的解析式; (2)求抛物线的顶点坐标. 举一反三: 【变式1】2.用配方法把二次函数y=12x 2–4x+5化为y=a(x+m)2+k 的形式,再指出该函数图象的开口方向、对称轴和顶点坐标. 【变式2】3.已知二次函数2y x 4x 3=-+.()1用配方法将其化为2y a(x h)k =-+的形式;()2在所给的平面直角坐标系xOy 中,画出它的图象.【变式3】4.已知二次函数y =﹣2x 2+bx +c 的图象经过点A (0,4)和B (1,﹣2). (1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标; (3)设抛物线的顶点为C ,试求∴CAO 的面积. 类型二、画二次函数2(0)y ax bx c a =++≠的图象5.已知:二次函数243y x x =++ (1)求出该函数图象的顶点坐标; (2)在所提供的网格中画出该函数的草图.举一反三: 【变式1】6.已知二次函数y =﹣x 2+4x .(1)写出二次函数y =﹣x 2+4x 图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线); (3)根据图象,写出当y <0时,x 的取值范围. 【变式2】7.已知二次函数y =12x 2﹣x ﹣32. (1)在平面直角坐标系内,画出该二次函数的图象; (2)根据图象写出:①当x 时,y >0; ②当0<x <4时,y 的取值范围为 .【变式3】8.已知抛物线22232(0)y ax ax a a =--+≠. (1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点()1,P m y ,()23,Q y 在抛物线上,若12y y <,求m 的取值范围. 类型三、二次函数2(0)y ax bx c a =++≠的性质9.把抛物线21:23C y x x =++先向右平移4个单位长度,再向下平移5个单位长度得到抛物线2C .(1)直接写出抛物线2C 的函数关系式;(2)动点(),6P a -能否在拋物线2C 上?请说明理由;(3)若点()()12,,,A m y B n y 都在抛物线2C 上,且0m n <<,比较12,y y 的大小,并说明理由. 举一反三: 【变式1】10.在平面直角坐标系xOy 中,关于x 的二次函数2y x px q +=+的图象过点(1,0)-,(2,0).(1)求这个二次函数的表达式;(2)求当21x -≤≤时,y 的最大值与最小值的差;(3)一次函数(2)2y m x m =-+-的图象与二次函数2y x px q +=+的图象交点的横坐标分别是a 和b ,且3a b <<,求m 的取值范围. 【变式2】11.如图,已知抛物线y=x 2-2x -3与x 轴交于A 、B 两点.(1)当0<x <3时,求y 的取值范围;(2)点P 为抛物线上一点,若S △PAB =10,求出此时点P 的坐标.【变式3】12.已知抛物线2y ax bx c =++,如图所示,直线1x =-是其对称轴,()1确定a ,b ,c ,24b ac =-的符号;()2求证:0a b c -+>;()3当x 取何值时,0y >,当x 取何值时0y <.类型四、二次函数的图象及各项的系数13.如图,抛物线y=﹣x2+(m﹣1)x+m与y轴交于点(0,3).(1)m的值为________;(2)当x满足________时,y的值随x值的增大而减小;(3)当x满足________时,抛物线在x轴上方;(4)当x满足0≤x≤4时,y的取值范围是________.举一反三:【变式1】14.已知二次函数y=ax2+bx+c的图象如图所示,给出下列结论:∴abc>0;∴a﹣b+c<0;∴2a+b﹣c<0;∴4a+2b+c>0,∴若点(﹣23,y1)和(73,y2)在该图象上,则y1>y2.其中正确的结论是_____(填入正确结论的序号)类型五、一次函数、二次函数图象的综合判断15.如图,已知直线y=-2x+m与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求m 的值; (2)求抛物线的解析式;(3)若点P 是x 轴上一点,当∴ABP 为直角三角形时直接写出点P 的坐标. 举一反三: 【变式1】16.已知二次函数()2229y mx m x m =++++.()1如果二次函数的图象与x 轴有两个交点,求m 的取值范围;()2如图,二次函数的图象过,点()4,0A ,与y 轴交于点B ,直线AB 与这个二次函数图象的对称轴交于点P ,求点P 的坐标.【变式2】17.如图所示,已知直线y=12-x 与抛物线y=2164x -+交于A 、B 两点,点C 是抛物线的顶点.(1)求出点A 、B 的坐标; (2)求出∴ABC 的面积;(3)在AB 段的抛物线上是否存在一点P ,使得∴ABP 的面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案:1.(1)2y x 2x 3=-++(2)(1,4)【详解】解:(1)∴抛物线2y x bx c =-++经过点A (3,0),B (-1,0), ∴抛物线的解析式为;()()y x 3x 1=--+,即2y x 2x 3=-++, (2)∴抛物线的解析式为()22y x 2x 3x 14=-++=--+, ∴抛物线的顶点坐标为:(1,4).(1)根据抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0),直接由交点式得出抛物线的解析式.(2)将抛物线的解析式化为顶点式,即可得出答案.2.抛物线的开口向上,对称轴是直线x =4,顶点坐标是(4,-3). 【分析】用配方法把一般式化为顶点式,根据二次函数的性质解答即可. 【详解】解:∵y =12x 2-4x +5=12(x -4)2-3,∴抛物线的开口向上,对称轴是直线x =4,顶点坐标是(4,-3).【点睛】本题考查的是二次函数的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.3.(1)2(x 2)1--;(2)见解析.【分析】(1)利用配方法把二次函数解析式化成顶点式即可; (2)利用描点法画出二次函数图象即可.【详解】解:()21y x 4x 3=-+=222x 4x 223-+-+ =2(x 2)1--()22y (x 2)1=--,∴顶点坐标为()2,1-,对称轴方程为x 2=.函数二次函数2y x 4x 3=-+的开口向上,顶点坐标为()2,1-,与x 轴的交点为()3,0,()1,0, ∴其图象为:故答案为(1)2(x 2)1--;(2)见解析.【点睛】本题考查二次函数的配方法,用描点法画二次函数的图象,掌握配方法是解题的关键.4.(1)y =﹣2x 2﹣4x +4;(2)对称轴为直线x =﹣1,顶点坐标为(﹣1,6);(3)∴CAO 的面积为2.【分析】(1)利用待定系数法把A (0,4)和B (1,﹣2)代入y =﹣2x 2+bx +c 中,可以解得b ,c 的值,从而求得函数关系式即可; (2)利用配方法求出图象的对称轴和顶点坐标;(3)由(2)可得顶点C 的坐标,再根据三角形的面积公式即可求出△CAO 的面积. 【详解】解:(1)把A (0,4)和B (1,﹣2)代入y =﹣2x 2+bx +c ,得:24212c b c =⎧⎨-⨯++=-⎩,解得:44b c =-⎧⎨=⎩, 所以此抛物线的解析式为y =﹣2x 2﹣4x +4; (2)∴y =﹣2x 2﹣4x +4 =﹣2(x 2+2x )+4 =﹣2[(x +1)2﹣1]+4 =﹣2(x +1)2+6,∴此抛物线的对称轴为直线x =﹣1,顶点坐标为(﹣1,6); (3)由(2)知:顶点C (﹣1,6), ∴点A (0,4),∴OA =4, ∴S △CAO =12OA •|xc |=12×4×1=2,即△CAO 的面积为2.故答案为(1)y =﹣2x 2﹣4x +4;(2)对称轴为直线x =﹣1,顶点坐标为(﹣1,6);(3)△CAO 的面积为2.【点睛】本题考查了用待定系数法求二次函数的解析式,二次函数解析式的三种形式,二次函数的性质以及三角形的面积,难度适中.正确求出函数的解析式是解题的关键. 5.(1) (-2,-1);(2)见解析【分析】(1)将二次函数化为顶点式即可得出顶点坐标; (2)利用五点法画二次函数的图象即可.【详解】(1)243y x x =++化为顶点式为2(2)1y x =+- 则该函数图象的顶点坐标为(2,1)--;(2)先求出自变量x 在4,3,2,1,0----处的函数值,再列出表格 当4x =-和0x =时,3y =当3x =-和=1x -时,2(1)4(1)30y =-+⨯-+= 当2x =-时,1y =- 列出表格如下:由此画出该函数的草图如下:【点睛】本题考查了二次函数的顶点式、画二次函数的图象,掌握函数图象的画法是解题关键.6.(1)对称轴是过点(2,4)且平行于y轴的直线x=2;(2)见解析;(3)x<0或x>4.【详解】试题分析:(1)把一般式化成顶点式即可求得;(2)首先列表求出图象上点的坐标,进而描点连线画出图象即可.(3)根据图象从而得出y<0时,x的取值范围.试题解析:(1)∴y=-x2+4x=-(x-2)2+4,∴对称轴是过点(2,4)且平行于y轴的直线x=2;(2)列表得:描点,连线.(3)由图象可知,当y<0时,x的取值范围是x<0或x>4.7.(1)见解析;(2)①x<﹣1或x>3;②﹣2≤y<52.【分析】(1)先把解析式配成顶点式得到抛物线的顶点坐标为(1,2);再分别求出抛物线与坐标轴的交点坐标,然后利用描点法画二次函数图象;(2)∴利用函数图象写出抛物线在x轴上方所对应的自变量的范围即可;∴先确定x=4时,y=52,然后利用函数图象写出当0<x<4时对应的函数值的范围.【详解】解:(1)∴y=12(x﹣1)2﹣2,∴抛物线的对称轴为直线x=1,顶点坐标为(1,2);当x=0时,y=12x2﹣x﹣32=﹣32,则抛物线与y轴交点坐标为(0,﹣32)当y =0时,12 x 2﹣x ﹣32=0,解得x 1=﹣1,x 2=3,抛物线与x 轴的交点坐标为(﹣1,0)、(3,0), 如图,(2)∴当x <﹣1或x >3时,y >0; ∴当0<x <4时,﹣2≤y <52;故答案为x <﹣1或x >3;﹣2≤y <52.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.8.(1)1x =;(2)233322y x x =-+或221y x x =-+-;(3)当a >0时,13m -<<;当a <0时,1m <-或3m >.【分析】(1)将二次函数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到a 的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q 关于对称轴的对称点,再结合二次函数的图象与性质,即可得到m 的取值范围.【详解】(1)∴22232y ax ax a =--+, ∴22(1)32y a x a a =---+, ∴其对称轴为:1x =.(2)由(1)知抛物线的顶点坐标为:2(1,23)a a --,∴抛物线顶点在x 轴上, ∴2230a a --=, 解得:32a =或1a =-, 当32a =时,其解析式为:233322y x x =-+, 当1a =-时,其解析式为:221y x x =-+-, 综上,二次函数解析式为:233322y x x =-+或221y x x =-+-. (3)由(1)知,抛物线的对称轴为1x =, ∴()23,Q y 关于1x =的对称点为2(1,)y -, 当a >0时,若12y y <, 则-1<m <3;当a <0时,若12y y <, 则m <-1或m >3.【点睛】本题考查了二次函数对称轴,解析式的计算,以及根据二次函数的图象性质求不等式的取值范围,熟知相关计算是解题的关键.9.(1)2(3)3y x =--;(2)不在,见解析;(3)12y y >,见解析【分析】(1)先求出抛物线1C 的顶点坐标,再根据向右平移横坐标加,向下平移纵坐标减求出平移后的抛物线的顶点坐标即可;(2)根据抛物线2C 的顶点的纵坐标为3-,即可判断点()6P a -,不在拋物线2C 上; (3)根据抛物线2C 的增减性质即可解答.【详解】(1)抛物线221:23(1)2C y x x x =++=++,∴抛物线1C 的顶点坐标为(﹣1,2),根据题意,抛物线2C 的顶点坐标为(-1+4,2-5),即(3,﹣3), ∴抛物线2C 的函数关系式为:2(3)3y x =--; (2)动点P 不在抛物线2C 上. 理由如下:∴抛物线2C 的顶点为()3,3-,开口向上, ∴抛物线2C 的最低点的纵坐标为3-. ∴63P y =-<-,∴动点P 不在抛物线2C 上; (3)12y y >. 理由如下:由(1)知抛物线2C 的对称轴是3x =,且开口向上, ∴在对称轴左侧y 随x 的增大而减小. ∴点()()12,,,A m y B n y 都在抛物线2C 上,且03m n <<<, ∴12y y >.【点睛】本题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,熟练掌握平移的规律“左加右减,上加下减”以及熟练掌握二次函数的性质是解题的关键. 10.(1)2y x x 2=--;(2)254;(3)1m <. 【分析】(1)利用待定系数法将点(1,0)-,(2,0)代入解析式中解方程组即可; (2)根据(1)中函数关系式得到对称轴12x =,从而知在21x -≤≤中,当x=-2时,y 有最大值,当12x =时,y 有最小值,求之相减即可; (3)根据两函数相交可得出x 与m 的函数关系式,根据有两个交点可得出∆>0,根据根与系数的关系可得出a ,b 的值,然后根据3a b <<,整理得出m 的取值范围. 【详解】解:(1)∴2y x px q +=+的图象过点(1,0)-,(2,0),∴10420p q p q -+=⎧⎨++=⎩解得12p q =-⎧⎨=-⎩ ∴2y x x 2=--(2)由(1)得,二次函数对称轴为12x =∴当21x -≤≤时,y 的最大值为(-2)2-(-2)-2=4,y 的最小值为21192224⎛⎫--=- ⎪⎝⎭ ∴y 的最大值与最小值的差为925444⎛⎫--= ⎪⎝⎭;(3)由题意及(1)得()2222y m x my x x ⎧=-+-⎨=--⎩整理得()()2340x m x m ----=即()(1)40x x m +--=⎡⎤⎣⎦∴一次函数(2)2y m x m =-+-的图象与二次函数2y x px q +=+的图象交点的横坐标分别是a 和b ,∴()()23440m m ∆=-+-> 化简得210250m m -+> 即()250m -> 解得m≠5∴a ,b 为方程()(1)40x x m +--=⎡⎤⎣⎦的两个解 又∴3a b << ∴a=-1,b=4-m 即4-m>3 ∴m<1综上所述,m 的取值范围为1m <.【点睛】本题考查了利用待定系数法求二次函数解析式,二次函数图象的性质,根与系数的关系等知识.解题的关键是熟记二次函数图象的性质. 11.(1) ﹣4≤y <0;(2) P 点坐标为(﹣2,5)或(4,5)【详解】分析:(1)、首先将抛物线配成顶点式,然后根据x 的取值范围,从而得出y 的取值范围;(2)、根据题意得出AB 的长度,然后根据面积求出点P 的纵坐标,根据抛物线的解析式求出点P 的坐标.详解:(1)∴抛物线的解析式为y=x 2﹣2x ﹣3,∴y=x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴顶点坐标为(1,﹣4),由图可得当0<x <3时,﹣4≤y <0. (2)当y=0时,x 2﹣2x ﹣3=0, 解得:x 1=-1 x 2=3 ∴A (﹣1,0)、B (3,0), ∴AB=4.设P (x ,y ),则S △PAB =AB•|y|=2|y|=10, ∴|y|=5, ∴y=±5. ∴当y=5时,x 2﹣2x ﹣3=5,解得:x 1=﹣2,x 2=4, 此时P 点坐标为(﹣2,5)或(4,5); ∴当y=﹣5时,x 2﹣2x ﹣3=﹣5,方程无解; 综上所述,P 点坐标为(﹣2,5)或(4,5).点睛:本题主要考查的是二次函数的性质,属于基础题型.求函数值取值范围时,一定要注意自变量的取值范围是否是在对称轴的一边.12.(1)0a <,0b <,0c >,240b ac =->;(2)详见解析;(3)当31x -<<时,0y >;当3x <-或1x >时,0y <.【分析】(1)根据开口方向确定a 的符号,根据对称轴的位置确定b 的符号,根据抛物线与y 轴的交点确定c 的符号,根据抛物线与x 轴交点的个数确定b 2-4ac 的符号; (2)根据图象和x=-1的函数值确定a -b+c 与0的关系; (3)抛物线在x 轴上方时y >0;抛物线在x 轴下方时y <0. 【详解】()1∵抛物线开口向下, ∴0a <, ∵对称轴12bx a=-=-, ∴0b <,∵抛物线与y 轴的交点在x 轴的上方, ∴0c >,∵抛物线与x 轴有两个交点, ∴240b ac =->;()2证明:∵抛物线的顶点在x 轴上方,对称轴为1x =-,∴当1x =-时,0y a b c =-+>;()3根据图象可知,当31x -<<时,0y >;当3x <-或1x >时,0y <.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是熟练的掌握二次函数图象与系数的关系.13.(1)3;(2)x >1;(3)-1<x <3;(4)-5≤y ≤4 【分析】根据函数的图象和性质即可求解.【详解】解:(1)将(0,3)代入y =﹣x 2+(m ﹣1)x +m 得,3=m , 故答案为3;(2)m =3时,抛物线的表达式为y =﹣x 2+2x +3, 函数的对称轴为直线x =2ba-=1, ∴﹣1<0,故抛物线开口向下,当x >1时,y 的值随x 值的增大而减小, 故答案为x >1;(3)令y =﹣x 2+2x +3,解得x =﹣1或3, 从图象看,当﹣1<x <3时,抛物线在x 轴上方; 故答案为﹣1<x <3;(4)当x =0时,y =3;当x =4时,y =﹣x 2+2x +3=﹣5, 而抛物线的顶点坐标为(1,4),故当x 满足0≤x ≤4时,y 的取值范围是﹣5≤y ≤4, 故答案为﹣5≤y ≤4.【点睛】本题主要考查二次函数的图像与性质及系数的关系,熟练掌握二次函数的图像与性质及系数的关系是解题的关键. 14.∴∴∴【详解】解:∴抛物线开口向下, ∴a <0,∴对称轴在y 轴右边, ∴b >0,∴抛物线与y 轴的交点在x 轴的上方, ∴c >0,∴abc <0,故∴错误;∴二次函数y =ax 2+bx +c 图象可知,当x =﹣1时,y <0,∴a ﹣b +c <0,故∴正确;∴二次函数图象的对称轴是直线x =1,c >0, ∴2b a-=1, ∴2a +b =0,∴2a +b <c ,∴2a +b ﹣c <0,故∴正确;∴二次函数y =ax 2+bx +c 图象可知,当x =2时,y >0,∴4a +2b +c >0,故∴正确;∴二次函数图象的对称轴是直线x =1,∴抛物线上x =23-时的点与当x =83时的点对称, ∴x >1,y 随x 的增大而减小,∴y 1<y 2,故∴错误;故答案为∴∴∴.【点睛】本题考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:∴二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;∴一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)∴常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).15.(1)m =6;(2)y =﹣x 2+2x +3;(3)点P 的坐标为(7,0)或(1,0).【分析】(1)将点A 坐标代入y=-2x+m ,即可求解;(2)y=-2x+6,令y=0,则x=3,故点B (3,0),则二次函数表达式为:y=a (x -1)2+4,将点B 的坐标代入上式,即可求解;(3)分∴BAP=90°、∴AP (P′)B=90°两种情况,求解即可.【详解】解:(1)将点A 坐标代入y =﹣2x+m 得:4=﹣2+m ,解得:m =6;(2)y =﹣2x+6,令y =0,则x =3,故点B (3,0),则二次函数表达式为:y =a (x ﹣1)2+4,将点B 的坐标代入上式得:0=a (3﹣1)2+4,解得:a =﹣1,故抛物线的表达式为:y =﹣(x ﹣1)2+4=﹣x 2+2x+3;(3)∴当∴BAP =90°时,直线AB 的表达式为:y =﹣2x+6,则直线PB 的表达式中的k 值为12,设直线PB 的表达式为:y =12x+b ,将点A 的坐标代入上式得:4=12×1+b , 解得:b =72, 即直线PB 的表达式为:y =12x+72, 当y =0时,x =﹣7,即点P (7,0);∴当∴AP (P′)B =90°时,点P′(1,0);故点P 的坐标为(7,0)或(1,0).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的基本知识,要注意类讨论,避免遗漏,本题较为简单.16.(1)45m <且0m ≠;(2)P 点坐标为()1,6. 【分析】解:(1)根据题意得0m ≠且()24(2)490m m m =+-⋅+>;(2)先求二次函数的解析式,再求抛物线的对称轴,用待定系数法求直线AB 的解析式,再求AB 与对称轴的交点P.【详解】解:()1根据题意得0m ≠且()24(2)490m m m =+-⋅+>, 所以45m <且0m ≠; ()2把()4,0A 代入()2229y mx m x m =++++得()168290m m m ++++=,解得1m =-,所以抛物线解析式为2228(1)9y x x x =-++=--+,所以抛物线的对称轴为直线1x =,当0x =时,2288y x x =-++=,则()0,8B ,设直线AB 的解析式为y kx b =+,把()4,0A ,()0,8B 代入得{408k b b +==,解得{28k b =-=,所以直线AB 的解析式为28y x =-+,当1x =时,286y x =-+=,所以P 点坐标为()1,6.【点睛】本题考核知识点:二次函数与一次函数. 解题关键点:理解二次函数图象的交点问题.17.(1)点A 、B 的坐标分别为:(6,﹣3),(﹣4,2);(2)30;(3)当a =1时,∴ABP 的面积最大,此时点P 的坐标为(1,234). 【分析】(1)由直线1y x 2=-与抛物线21y x 64=-+交于A 、B 两点,可得方程211x x 624-=-+,解方程即可求得点A 、B 的坐标;(2)首先由点C 是抛物线的顶点,即可求得点C 的坐标,又由S △ABC =S △OBC +S △OAC 即可求得答案;(3)首先过点P 作PD∴OC ,交AB 于D ,然后设21P a,a 64⎛⎫-+ ⎪⎝⎭,即可求得点D 的坐标,可得PD 的长,又由S △ABP =S △BDP +S △ADP ,根据二次函数求最值的方法,即可求得答案.【详解】解:(1)∴直线1y x 2=-与抛物线21y x 64=-+交于A 、B 两点, ∴211x x 624-=-+, 解得:x =6或x =﹣4,当x =6时,y =﹣3,当x =﹣4时,y =2,∴点A 、B 的坐标分别为:(6,﹣3),(﹣4,2);(2)∴点C 是抛物线的顶点.∴点C 的坐标为(0,6),∴S △ABC =S △OBC +S △OAC =12×6×4+12×6×6=30;(3)存在.过点P 作PD∴OC ,交AB 于D ,设P(a ,﹣14a 2+6), 则D(a ,﹣12a), ∴PD =﹣14a 2+6+12a , ∴S △ABP =S △BDP +S △ADP =12×(﹣14a 2+6+12a)×(a+4)+12×(﹣14a 2+6+12a)×(6﹣a)=25125(a 1)44--+ (﹣4<a <6), ∴当a =1时,∴ABP 的面积最大,此时点P 的坐标为(1,234).【点睛】此题考查了二次函数与一次函数的交点问题,三角形面积的求解以及二次函数的最值问题等知识.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.。

2 二次函数的图象与性质2.二次函数y=ax2+bx+c的图象与性质第5课时PPT课件(华师大版)

2 二次函数的图象与性质2.二次函数y=ax2+bx+c的图象与性质第5课时PPT课件(华师大版)

例 3 [教材补充例题]
2
(1)已知 0≤x≤1,那么函数 y=-2x +8x-6 的
最大值是 ( B )
B.0
A.-6
C.2
D.4
2
(2)函数 y=x +2x-3(-2≤x≤2)的最大值和最小值分别是 ( C )
A.4 和-3
B.-3 和-4
C.5 和-4
D.-1 和-4
第5课时
二次函数最值的应用
第26章
26.2
二次函数
二次函数的图象与性质
2.二次函数y=ax2+bx+c的图象与性质
第26章
第5课时
二次函数
二次函数最值的应用
目标突破
总结反思
第5课时
二次函数最值的应用
目标突破
目标一 能用二次函数模型解决几何图形中的最值
例 1 [教材补充例题] 如图 26-2-4,在△ABC 中,∠B=90°,AB=12
第5课时
二次函数最值的应用
2
2
则 y=(x-40)[90-3(x-50)]=-3x +360x-9600=-3(x-60) +1200.
∵a=-3<0,∴抛物线开口向下,y 有最大值,最大值为 1200,∴销售该
苹果每天能获得的最大利润是 1200 元.
上面的解答过程正确吗?如果不正确,错在哪里?并写出正确的
cm,BC=24 cm,动点 P 从点 A 开始沿边 AB 向点 B 以 2 cm/s 的速度移动(不
与点 B 重合),动点 Q 从点 B 开始沿边 BC 向点 C 以 4 cm/s 的速度移动(不
与点 C 重合),点 P,Q 分别从点 A,B 同时出发.

二次函数y=ax2的图象与性质--教学设计(王莉丹)

二次函数y=ax2的图象与性质--教学设计(王莉丹)

二次函数y=ax2的图象与性质--教学设计(王莉丹)广西桂林市宝贤中学王莉丹内容和内容解析1.内容湘教版义务教育课程标准实验教科书九年级下册第1章1.2节二次函数的图象与性质第一课时——二次函数y=ax2的图象与性质。

2.内容解析本章是继一次函数和反比例函数之后学习的一类新的函数模型——二次函数。

二次函数在研究内容和研究方法上与前两类函数类似,都是先从实际问题中抽象出函数模型,得出函数定义,然后借助图象研究函数的性质,再应用函数性质解决实际问题。

由于二次函数与一次函数的表达式都是整式,与一次函数一脉相承,所以二次函数的图象与性质主要类比一次函数来学习,即先从最特殊的一类二次函数y=ax2开始,遵循从特殊到一般的研究方法,运用数形结合、分类讨论等数学思想,着重研究a>0的图象和性质,再类比探究a<0的图象和性质,体会a的作用。

与一次函数相比,二次函数图象出现了新的特征和性质:如形状、开口方向和大小、对称性、分段讨论函数增减性等,在教学中可让学生体会一次函数与二次函数的联系与区别。

目标和目标解析目标〔1〕会用描点法画出形如y=ax2 的二次函数图象;〔2〕经历独学、对学、群学等方式,通过实验观察、分类讨论、归纳类比、抽象概括等方法理解二次函数y=ax2的图像特征和性质,体悟探究二次函数的思想与方法;〔3〕体验研究二次函数y=ax2 的规律与魅力,增强学习数学的信心与兴趣。

目标解析达到目标〔1〕的标志是:能合理地选择自变量的值进行描点,知道二次函数的图象是抛物线,能根据图象指出抛物线的对称轴和和顶点坐标;达到目标〔2〕的标志是:通过观察函数图象,能说出二次函数y=ax2的图象特征和性质:形状、位置、对称轴、增减性、最值等,能说出本节课研究二次函数y=ax2的函数图象和性质的基本方法和基本内容;达到目标〔3〕的标志是:学生主动探究,课堂气氛轻松愉快。

教学问题诊断分析学生已经历过一次函数和反比例函数的学习,对函数图象及性质的研究内容和研究方法有了一定的了解,但中间隔了一段时间,可能造成遗忘,需要唤醒他们的记忆。

苏科版九年级下册数学第5章二次函数y=ax2+k,y=a(x+ h)2的图像和性质

苏科版九年级下册数学第5章二次函数y=ax2+k,y=a(x+ h)2的图像和性质
由图像知,对于一切x的值,总有y≤2.
解题技巧:
知4-讲
①“左加右减自变量,上加下减常数项”,抛物线左右平移时,
只有h发生变化;上下平移时,只有k发生变化,反之,根据
h的值可以确定左右平移的方向和距离;根据k的值可以确定
上下平移的方向和距离.
②画二次函数y=a(x+h)2+k(a≠0)的图像的关键是先确定顶点坐
要点提醒: a 决 定 抛 物 线 的 开 口 方 向 和 开 口 大 小 , 所 以 y=ax2(a≠0) 与
y=ax2+k(a≠0)的图像开口方向和开口大小相同,只是位置不同.
(0,k)
知1-讲
a,k 的符 y=ax2+k(a>0) y=ax2+k(a<0)

k>0 k<0 k>0 k<0
图像
方法点拨:
知2-讲
平移规律:左加右减,横变纵不变.
①“ 左 加 ” 表 示 当 h > 0 时 , 函 数 y=a(x+h)2 的 图 像 可 以 由 函 数
y=ax2的图像向左平移h个单位长度得到.
②“ 右 减 ” 表 示 当 h < 0 时 , 函 数 y=a(x+h)2 的 图 像 可 以 由 函 数
知2-讲
方法点拨: 当a>0时,抛物线开口向上,图像有最低点,当x=
-h时,y最小值=0; 当a<0时,抛物线开口向下,图像有最高点,当x=
-h时,y最大值=0.
知2-讲
解:由y=-3(x-1)2可知,抛物线开口向下,对称轴 为直线x=1,顶点坐标为(1,0).
知2-讲
例4 在平面直角坐标系中,函数y=-x-1与y=- (3x

5.2二次函数的图像和性质 第3课时 二次函数y=ax^2 bx c的图像和性质(教学课件)-初中数

5.2二次函数的图像和性质 第3课时 二次函数y=ax^2 bx c的图像和性质(教学课件)-初中数
=-(x2+4x+4-4)-5 =-(x+2)2-1. 二次项系数-1<0,函数图像开口向下,顶点坐标为(-2,-1),对称轴 是过点(-2,-1)且平行于y轴的直线.
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的性质
二次函数y=-x2-4x-5 的图像如图所示.
由图像可知, 当x=-2时, y的值最大, 最大值是-1.
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的图像
y=
1 2
x2-6x+21
y=
1 2
(x2-12x)+21
你知道是怎样配方的吗? 1. “提”:提出二次项系数;
1 y= 2 (x2-12x+36-36)+21
y= 1 (x-6) 2+21-18 2
2.“配”:括号内配成完全平方式;
a<0时,抛物线开口向下,函数有最大值;
4ac - b2
函数在顶点处取得有最大(小)值 4a
.
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的图像
练一练:用配方法将二次函数y=x2-8x-9化为y=a(x-h)2+k的形式 为( B ) A.y=(x-4)2+7 B.y=(x-4)2-25 C.y=(x+4)2+7 D.y=(x+4)2-25
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的性质
例1 画出二次函数y=-x2-4x-5的图像,并指出它的开口方向、顶点坐 标、对称轴、最大值或最小值. 【分析】要画出二次函数y=-x2-4x-5的图像,可先将函数表达式变

北师大版九年级下册数学《二次函数的图象与性质》二次函数研讨说课复习课件

北师大版九年级下册数学《二次函数的图象与性质》二次函数研讨说课复习课件
当a<0时,开口向下.
- - - - - O1 2 3 4 5 x
5 4 3 2 1联 系: 二次项系数互为相反数,开
2
1
y =- x
口相反,大小相同,它们关
2
-3
于x轴对称.
4
5
ቤተ መጻሕፍቲ ባይዱ知讲解
5
4
3
2
y
对于抛物线 y = ax 2 (a>0)
当x>0时,y随x取值的增大而增大;
当x<0时,y随x取值的增大而减小.
与二次函数y=2x2的图象有什么相同与不同?
解:先列表:
8
2
9
3
1
3
7
1
-1
1
0
2
8
9
7
观察发现
再描点,连线
y
8
6
1、因为a值相同,所以开口方向,
4
大小都相同;
2
2、二次函数y=2x2+1的图象,可以看作是由y=2x2
的图象向上平移1个单位得到;
3、二次函数
的图象,可以看作是由y=2x2
的图象向下平移1个单位得到.
2
-4
-2
2
O
-1
4
x
归纳
开口方向

y = 2x2+1

y = 2x2 -1
对称轴
y轴
y轴
顶点坐标
(0,1)
(0,-1)
y
y = 2x2+1
8
y = 2x2 -1
6
4
相同点:开口方向相同、形状相同,
对称轴都是y轴。
不同点:顶点坐标发生了改变。

湘教版九年级下册数学精品课件 第1章 二次函数 第5课时 二次函数y=ax2+bx+c的图象与性质

湘教版九年级下册数学精品课件 第1章  二次函数 第5课时 二次函数y=ax2+bx+c的图象与性质

大而减小;当 x > 6 时,函数
值随 x 的增大而增大.
O
(6,3)
5 10 x
归纳总结 二次函数 y = ax2+bx+c的图象和性质
抛物线 y = ax2+bx+c 的顶点坐标是:
b 4ac b2
( ,
).
2a 4a
对称轴是:直线 x b . 2a
二次函数 y = ax2+bx+c的图象和性质
y
x b 2a
O (1)
如果 a>0,当 x< b 时,y 随x
的增大而减小;当
2a
x>
b
时,
2a
y 随 x 的增大而增大;当 x = b
x
2a
时,函数达到最小值,最小值
为 4ac b2 .
4a
二次函数 y = ax2+bx+c的图象和性质
y x b
2a
O (2)
如果 a < 0,当 x< b 时,y 随 x
(2) y 5x2 80x 319; 直线 x = 8
(3)
y
2
x
1 2
x
2
;
直线 x = 1.25
(4) y x 12 x.
直线 x = 0.5
3, 5
8, 1
5 4
,
9 8
1 2
,
9 4
2. 把抛物线 y=x2+bx+c 的图象向右平移 3 个单位长
度,再向下平移 2 个单位长度,所得图象的解析式为
那么现在你会画这个二次函2 数的图象吗?2
根据顶点式 y 1 (x 6)2 3 确定对称轴,顶点坐标.

北师大版九年级下册数学第5讲《二次函数y=ax2(a≠0)的图象与性质》知识点梳理(1)

北师大版九年级下册数学第5讲《二次函数y=ax2(a≠0)的图象与性质》知识点梳理(1)

北师大版九年级下册数学第 5 讲《二次函数y=ax2(a≠0)的图象与性质》知识点梳理【学习目标】1.经历探索二次函数y=ax2 和y=ax2+c 的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验.2.会作出y=ax2 和y=ax2+c 的图象,并能比较它们与y=x2 的异同,理解a 与c 对二次函数图象的影响.3.能说出y=ax2+c 与y=ax2 图象的开口方向、对称轴和顶点坐标.4.体会二次函数是某些实际问题的数学模型.【要点梳理】要点一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=a x2(a≠0)的图象二次函数y=ax2的图象(如图),是一条关于y 轴对称的曲线,这样的曲线叫做抛物线.抛物线y=ax2(a≠0)的对称轴是y 轴,它的顶点是坐标原点.当a>0 时,抛物线的开口向上,顶点是它的最低点;当a<0 时,抛物线的开口向下,顶点是它的最高点.2.二次函数y=a x2(a≠0)的图象的画法——描点法描点法画图的基本步骤:列表、描点、连线.(1)列表:选择自变量取值范围内的一些适当的x 的值,求出相应的y 值,填入表中.(自变量x 的值写在第一行,其值从左到右,从小到大.)(2)描点:以表中每对x 和y 的值为坐标,在坐标平面内准确描出相应的点.一般地,点取的越多,图象就越准确.(3)连线:按照自变量的值由小到大的顺序,把所描的点用平滑的曲线连结起来.要点诠释:(1)用描点法画二次函数y=ax2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值.(2)二次函数y=ax2(a≠0)的图象,是轴对称图形,对称轴是y 轴.y=ax2(a≠0)是最简单的二次函数.(3)画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.3.二次函数y=a x2(a≠0)的图象的性质二次函数y=ax2(a≠0)的图象的性质,见下表:要点诠释:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a│相同,抛物线的开口大小、形状相同.│a│越大,开口越小,图象两边越靠近y 轴,│a│越小,开口越大,图象两边越靠近x 轴.要点二、二次函数y=a x2+c(a≠0)的图象与性质1.二次函数y=a x2+c(a≠0)的图象(1)a 0yy = ax 2+ c (c > 0)c Oxyy = ax 2 + c (c < 0) Oc x(2) a < 0yc OxyOcx2.二次函数 y =a x 2+c (a ≠0)的图象的性质y = ax 2 + c (c > 0)y = ax 2 + c (关c < 0于) 二 次 函 数y = ax 2 + c (a ≠ 0) 的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:函数y= ax 2 + c (a > 0, c > 0)y = ax 2 + c (a < 0, c > 0)图象开口方向 向上 向下 顶点坐标 (0,c) (0,c) 对称轴y 轴y 轴函数变化当 x > 0 时,y 随 x 的增大而增大; 当 x < 0 时,y 随 x 的增大而减小.当 x > 0 时,y 随 x 的增大而减小; 当 x < 0 时,y 随 x 的增大而增大.最大(小)当x = 0 时,y最小值=c当x = 0 时,y最大值=c 值【典型例题】类型一、二次函数y=ax2(a≠0)的图象与性质1.(2014 秋•青海校级月考)二次函数y=ax2与直线y=2x﹣1 的图象交于点P(1,m)(1)求a,m 的值;(2)写出二次函数的表达式,并指出x取何值时该表达式y随x的增大而增大?(3)写出该抛物线的顶点坐标和对称轴.【思路点拨】(1)把点P(1,m)分别代入二次函数y=ax2与直线y=2x﹣1 即可求出未知数的值;(2)把a 代入二次函数y=ax2与即可求出二次函数表达式;根据二次函数的对称轴及增减性判断出x 的取值.(3)根据二次函数的性质直接写出即可.【答案与解析】解:(1)点P(1,m)在y=2x﹣1 的图象上∴m=2×1﹣1=1 代入y=ax2∴a=1(2)二次函数表达式:y=x2因为函数y=x2的开口向上,对称轴为y 轴,当x>0 时,y 随x 的增大而增大;(3)y=x2的顶点坐标为(0,0),对称轴为y 轴.【总结升华】本题考查了用待定系数法求函数解析式的方法,及二次函数的增减性.举一反三:【变式1】二次函数y =ax2与y =-2x2的形状相同,开口大小一样,开口方向相反,则a=.【答案】2.【变式2】(2015•山西模拟)抛物线y=﹣x2不具有的性质是().A.开口向上B. 对称轴是y 轴C. 在对称轴的左侧,y 随x 的增大而增大D. 最高点是原点【答案】A.2.已知y=(m+1)x m2+m 是二次函数且其图象开口向上,求m 的值和函数解析式.【思路点拨】根据二次函数的定义以及函数y=ax2(a≠0)的图象性质来解答.【答案与解析】⎩⎧m 2 + m = 2由题意, ⎨m +1>0 ,解得 m=1,∴二次函数的解析式为:y= 2x 2 .【总结升华】本题中二次函数还应该有 m+1≠0 的限制条件,但当 m +1>0 时,一定存在 m+1≠0,所以就不再考虑了.类型二、二次函数 y =a x 2+c (a ≠0)的图象与性质3. 求下列抛物线的解析式:(1) 与抛物线 y = - 1 x 2+ 3 形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线; 2(2) 顶点为(0,1),经过点(3,-2)并且关于 y 轴对称的抛物线.【思路点拨】抛物线形状相同则| a | 相同,再由开口方向可确定 a 的符号,由顶点坐标可确定 c 的值,从而确定抛物线的解析式 y = ax 2 + c .【答案与解析】(1) 由于待求抛物线 y = -1x 2 + 3 21形状相同,开口方向相反,可知二次项系数为 , 2又顶点坐标是(0,-5),故常数项 k = -5 ,所以所求抛物线为 y = 1x 2 - 5 .2(2) 因为抛物线的顶点为(0,1),所以其解析式可设为 y = ax 2 +1 ,又∵该抛物线过点(3,-2),∴ 9a +1 = -2 ,解得 a = - 1.3∴所求抛物线为 y = - 1x 2 +1.3【总结升华】本题考察函数 y = ax 2 + c (a ≠ 0) 的基本性质,并考察待定系数法求简单函数的解析式.4. 在同一直角坐标系中,画出 y = -x 2 和 y = -x 2 +1的图象,并根据图象回答下列问题.(1)抛物线y =-x2+1向平移个单位得到抛物线y =-x2;(2)抛物线y =-x2+1开口方向是,对称轴为,顶点坐标为;(3)抛物线y =-x2+1,当x时,随x 的增大而减小;当x时,函数y 有最值,其最值是.【思路点拨】利用描点法画出函数图象,根据图象进行解答.【答案与解析】函数y =-x2与y =-x2+1的图象如图所示:(1)下;l ;(2)向下;y 轴;(0,1);(3)>0;=0;大;大; 1.【总结升华】本例题把函数y =-x2+1与函数y =-x2的图象放在同一直角坐标系中进行对比,易得出二次函数y =ax2+c(a ≠ 0) 与y =ax2 (a ≠ 0) 的图象形状相同,只是位置上下平移的结论.y =ax2+c(a ≠ 0) 可以看作是把y =ax2 (a ≠ 0) 的图象向上(k > 0) 或向下(k < 0) 平移| k | 个单位得到的.举一反三:【变式】函数y = 3x2可以由y = 3x2-1 怎样平移得到?【答案】向上平移1 个单位.。

湘教版九年级数学下册 1.2:二次函数的图像和性质 课件(考场对接)(30张PPT)

湘教版九年级数学下册 1.2:二次函数的图像和性质 课件(考场对接)(30张PPT)

题型六 二次函数图像与a, b, c之间的关系
例题6 [衡阳中考]图1-2-6为二次函数y=ax2 +bx+c的图像, 则下列
说法:①a>0;②2a+b>0;③a+b+c>0;④当-1<x<3时, y>0.
其中正确的个数为( B ).
A.1
B.2
C.3
D.4
1.2 二次函数的图像与性质
分析 ∵二次函数图像的开口向下, ∴a<0,①错误;
1.2 二次函数的图像与性质
题型三 利用二次函数的性质比较函数值的大小
例题3 [河南中考]已知点A(4, y1 ), B( , y2 ),C(-2, y3 )都在二次 函数y=(x-2)2 -1的图像上, 则y1 ,y2 , y3 的大小关系是 __y_2 _<__y_1_<__y_3_ (用“<”连接).
1.2 二次函数的图像与性质
解: (1)∵二次函数y=-x2 +2x+m的图像与x轴的一个交点为A(3, 0), ∴-9+2×3+m=0, 解得m=3. (2)由(1), 得二次函数的表达式为y=-x2 +2x+3.当y=0时, -x2 +2x+3=0, 解得x=3或x=-1, ∴点B的坐标为(-1, 0).
1.2 二次函数的图像与性质
解: ∵y=x2 +2x-1=x2 +2x+1-2=(x+1)2 -2, ∴函数图像的顶点坐标为(-1, -2), 对称轴为直线x=-1, 当x=-1时, y最小值 =-2.
1.2 二次函数的图像与性质
锦囊妙计
求二次函数y=ax2 +bx+c(a≠0)的图像的顶点坐标、对称轴 及函数的最值时, 将表达式化成y=a(x-h)2 +k(a≠0)的形式, 可快 速求解.

北师版九年级数学下册课件 第二章 二次函数 第2课时 二次函数y=ax2和y=ax2+c的图象与性质

北师版九年级数学下册课件 第二章 二次函数 第2课时 二次函数y=ax2和y=ax2+c的图象与性质

练一练 1.函数y=4x2的图象的开口 向上,对称轴是 y轴 ,顶点是 (0,0) ;2.函数y=-3x2的源自象的开口 向下 抛物线的最_高___点
,对称轴是 y轴
,顶点是_(_0_,0_)_ 顶点是
3.函数y= 3 x2的图象的开口向上 ,对称轴是 y轴 ,顶点是向下 ; 顶点是抛物线的最__低__点.
5.不画函数y=-x2和y=-x2+1的图象回答下面的问题: (1)抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.
向下平移1个单位. (2)函数y=-x2+1,当x >0 时, y随x的增大而减小;当x 时,函数y有最大值,最大值y是 =0 ,其图象与y轴的交点坐标 是 1 ,与x轴的交点坐标是 (0,1) .
例2 已知 y (k 2)xk2 k4 是二次函数,且当x>0时,y随x 增大而增大,则k= 2 .
分析: y (k 2)xk2 k4 是二次函数,即二次项的系数
不为0,x的指数等于2.
又因当x>0时,y随x增大而增大,即说明二次项的系数大于0.
因此,
k2 k 4 2 k 2>0
解得 k=2
x
··· -1.5 -1 -0.5 0 0.5 1 1.5
···
···
4.5
2
0.5 0 0.5 2 4.5
···
描点,连线.
y x2 8 6
4 2
-4
-2
y 2x2
2
4
观察思考
问题1 二次函数y=2x2的图象是什么形状? 二次函数y=2x2的图象是一条抛物线, 并且抛物线开口向上. 问题2 图象的对称轴是什么?
与y=ax2的关 系
平移规律: c正向上; c负向下.

湘教版九年级下册数学 第1章 二次函数y=ax2+bx+c(a≠0)的图象与性质

湘教版九年级下册数学 第1章 二次函数y=ax2+bx+c(a≠0)的图象与性质

4.【中考·上海】下列对二次函数y=x2-x的图象的描述,正确的是( )
A.开口向下
B.对称轴是y轴
C.经过原点
D.在对称轴右侧部分是下降的
【点拨】A.∵a=1>0,∴抛物线开口向上,选项A不正确;
B.∵
,∴抛物线的对称轴为直线x= ,选项B不正确;
b 1 1 C.当x=0时,y=x2-x=0,∴抛物线经过原点,选项C正确;
【答案】D
6.【2021·江西】在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx +c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是( )
D
7. (易错题)若二次函数y=ax2+bx+a2-4(a,b为常数)的图象如图所示,则a的值 为________. -2
【点拨】根据函数图象经过坐标原点可以确定a2-4=0,解得 a=±2.再利用图象开口向下进一步确定a<0,∴a=-2.本题 易错点是根据图象经过坐标原点求出a=±2后忽略图象开口 向下的限制,不能进一步判断a的符号.
【答案】A
13.【原创题】若抛物线y=-2x2-qx+2q+5中不论q为何值时都通过定点,
则定点坐标为__________.
(2,-3)
【点拨】∵y=-2x2-qx+2q+5可化为y=-2x2-q(x-2)+5,当x=2时, y=-3且与q的取值无关.故不论q为何值时都通过定点(2,-3).
14.定义:若抛物线y=ax2+bx+c与x轴的两个交点和顶点构成直角三角形, 则称这条抛物线为“直角抛物线”.
(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.
解:由题意知,函数y1的图象的对称轴为直线x= .
1
∴点Q(1,n)关于直线x= 对称的点为点(0,n).

人教版 九年级数学讲义 二次函数的图像与性质(含解析)

人教版 九年级数学讲义 二次函数的图像与性质(含解析)

第5讲二次函数的图象与性质知识定位讲解用时:2分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习二次函数的图象与性质,本节课的重点是掌握二次函数的平移法则,能够结合二次函数图象和性质判断a、b、c的之间的关系,而难点在于二次函数的图象和性质的综合考查,需要学生能够根据二次函数的图象与性质正确分析并解决问题。

希望同学们能够认真学习并掌握,为后面二次函数的应用打好基础。

知识梳理讲解用时:25分钟二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表;①描点:在平面直角坐标系中描出表中的各点;①连线:用平滑的曲线按顺序连接各点;①在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可,连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来,画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧。

x…-223--112-0121232…2y x= (4)491140141494…(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移|ab2|个单位,再向上或向下平移|abac442-|个单位得到的。

12341234xyxyOO1212----图1图2向上()或向下()平移个单位向上()或向下()平移个单位向左()或向右()平移个单位向左()或向右()平移个单位课堂精讲精练【例题1】抛物线212y x =向左平移8个单位,再向下平移9个单位,所得的抛物线的解析式是___________________。

【答案】218232y x x =++【解析】本题考查了二次函数平移规则,根据二次函数的平移法则,“上加下减,左加右减”,可知平移后的函数解析式为()21892y x =+-,整理即为218232y x x =++讲解用时:2分钟解题思路:牢记平移法则即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档