人教版九年级上第24章圆-24.1.1-圆-集体备课
人教版九年级数学上第24章24.1圆的基本性质教案
圆基本性质1、圆的定义(1)圆的定义点集定义:圆是平面内到定点的距离等于定长的点的集合.定点称为圆心,定长称为半径.(2)弦与直径①弦:连结圆上任意两点间的线段叫做弦.②直径:经过圆心弦,称为直径.(注意:直径是最长的弦,直径是弦,但弦不一定是直径.)(3)弧、优弧、劣弧、半圆①弧:圆上任意两点问的部分叫做圆弧,简称弧,用“⌒”表示.②半圆.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.③优弧、劣弧:大于半圆的弧叫做优弧;小于半圆的弧叫做劣弧.2、圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴.注意:圆有无数条直径,所以圆有无数条对称轴.3、垂径定理及推理定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于这条弦并且平分弦所对的两条弧.4、圆心角圆心角:顶点在圆心的角叫做圆心角.5、圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧或两条弦中有一组量相等,那么它们所对的其余各组量分别相等.注意:(1)在具体运用定理或推论解决问题时可根据需要,选择有关部分,比如“等弧所对圆心角相等”,“在同圆或等圆中,相等的圆心角所对的弧相等”等.(2)不能忽略“在同圆或等圆中”这个前提条件,若没有这一条件,虽然圆心角相等,但所对的弧、弦不一定相等.(3)结合图形深刻理解圆心角、弧、弦这几个概念与“所对”一词的含义.(4)若无特殊说明,定理推论中“弧”一般指劣弧.6、圆周角(1)圆周角:顶点在圆上,两边和圆相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、重难点知识归纳重点:垂径定理、三组量之间的关系、圆周角定理.难点:以上定理的综合应用.三、典例剖析例1、如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.已知AB=2DE,∠E=18°.求∠AOC的度数.例2、如图,AB、CD是⊙O的弦,∠A=∠C.求证:AB=CD.例3、已知圆内接△ABC中,AB=AC,圆心O到BC距离为6cm,圆的半径为10cm.求腰AB的长.例4、要测量一个钢板上小孔的直径,通常采用间接的测量方法.如果用一个直径为10mm的标准钢珠放在小孔上,测得钢珠顶端与小孔平面的距离h=8mm(如图),求此小孔的直径d.例5、已知,如图,AD=BC.求证:AB=CD.例6、已知:如图,A点是半圆上一个三等份点,B点是的中点,P是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值是多少?例7、如图,半圆O的直径是AB,CF⊥AB,弦AC的垂直平分线交CF于点D,连结AD并延长AD交半圆O于点E,相等吗?请证明你的结论.例8、如图,四边形ABCD的四个顶点在⊙O上,且对角线AC⊥BD,OE⊥BC于E.求证:.例9、如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,作∠BAC的外角平分线AE交⊙O于点E,连结DE.求证:DE=AB.课堂练习与作业:圆:1、已知,⊙O的半径为3cm,P是⊙O内一点,OP=1cm,则点P到⊙O上各点的最小距离是______cm,最大距离是_________cm.2、如图,已知OA、OB是圆的两条半径,∠OAB=45°,OA=8cm,则AB=__________.3、如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,则∠ACD=__________.4、如图,△ABC中,∠C=90°,AC=6cm,BC=8cm,分别以A、B为圆心,AC、BC为半径画弧,交斜边于E、F,则EF的长是__________.图2图3图4图65、平面直角坐标系中有一个点M(2,3),⊙M的半径为r,若⊙M上的点不全在第一象限内,则r的取值范围是()A.r=2 B.r=3 C.r≥2 D.r≥36、如图,点C在以AB为直径的半圆上,O是圆心,连接OC,则△ABC是()A.锐角三角形B.钝角三角形 C.直角三角形D.不能确定7、如图,点A、D、G、M在半圆O上,四边形ABOC,DEOF,HMNO为矩形,设BC=a,EF=b,NH=c,则下列各式正确的是()A.a>b>c B.a=b=c C.c>a>b D.b >c>a8、如图,BD、CE分别是△ABC的两条高,试说明点E、B、C、D四点在同一个圆上,并画出这个圆.9、如图所示,某部队在灯塔A的周围进行爆破作业,A的周围3千米内的水域为危险区域.有一渔船误入与A距离2千米的B处.为了尽快驶离危险区域,该船应怎样航行?并说明理由.垂径定理:1、如图,AB是⊙O的弦,圆心O到AB的距离OD=1,AB=4,则该圆的半径是__________.2、如图,水平铺设的圆柱形排水管的截面半径是0.5m,其中水面宽为AB=0.6m,则水的最大深度为_____m.3、如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP、PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF=__________.4、如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP∶PB=1∶5,那么⊙O 的半径是()5、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm图1图2图3图4图65、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm6、如图所示,AB是⊙O的一条固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)移动时,点P()A.到CD的距离保持不变 B.位置不变 C.平分 D.随点C的移动而移动7、如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长.8、离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内的公路CD长为4千米.问这条公路在免疫区内有多少千米?9、如图,⊙O中的弦AB、CD互相垂直于E,AE=5cm,BE=13cm,O到AB的距离为.求⊙O的半径及O到CD的距离.10、如图,某地有一座圆弧形的拱桥,桥下水面宽为7.2m,拱顶高出水面2.4m,现有一艘宽3m,船舱顶部为正方形并高出水面2m的货船要经过这里,此时货船能顺利通过这座拱桥吗?请说明理由.弧、弦、圆心角:1、如果⊙O的半径为R,则⊙O中60°的圆心角所对的弦长为_______,90°的圆心角所对的弦长为_____.2、如图,AB、CD是⊙O的直径,弦DE∥AB,则AC与AE的大小关系是__________.3、如图,D、E分别是⊙O的半径OA、OB上的点,CD⊥OA,CE⊥OB,CD=CE.则的大小关系是________.4、如图,在半径为2cm的⊙O内有长为的弦AB,则此弦所对的圆心角∠AOB为()A.60°B.90° C.120° D.150°图2图3图4图55、如图,在⊙O中,,则下列结论正确的是()A.AB>2CD B.AB=2CD C.AB<2CD D.以上都不正确6、AD是⊙O的直径,弦AB、AC交于A点,且AD平分∠BOC,则下列结论不一定成立的是()A.AB=AC B. C.AD⊥BC D.AB=BC9、如图,以⊙O的直径BC为一边作等边△ABC,AB、AC交⊙O于D、E,求证:BD=DE=EC.10、已知:如图,P为直径AB上一点,EF、CD为过点P的两条弦且∠DPB=∠EPB,求证:(1)CD=EF;(2).圆周角:1、如图,A、B、C是⊙O上三点,∠ACB=40°,则∠ABO等于__________度.2、如图,△ABC的顶点都在⊙O上,∠C=30°,AB=2cm,则⊙O的半径为__________cm.3、如图,在平面直角坐标系中,P是经过O(0,0),A(0,2),B(2,0)的圆上的一个动点(P与O、A、B不重合),则∠OAB=__________,∠OPB=__________.4、如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC=__________cm.5、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC=__________.6、如图,BD是⊙O的直径,弦AC、BD相交于点E,则下列结论不成立的是()A.∠ABD=∠ACD B. C.∠BAE=∠BDC D.∠ABD=∠BDC图1图2图3图4图5图6图77、如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50° C.40°D.20°8、如图,AB为⊙O的直径,BD是⊙O的弦,延长到C,使BD=DC,连接AC交⊙O于点F,点F不与点A重合.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.9、如图,△ABC的三个顶点都在⊙O上,CN为⊙O的直径,CM⊥AB,交⊙O于M,点F 为的中点.求证:(1);(2)CF平分∠NCM.10、如图(1),已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.(1)求证:△DOE是等边三角形;(2)如图(2),若∠A=60°,AB≠AC,则(1)的结论是否成立?如果成立,请给出证明,如果不成立,请说明理由.。
人教版数学九年级上册《24.1.1圆》教学设计1
人教版数学九年级上册《24.1.1圆》教学设计1一. 教材分析人教版数学九年级上册第24章《圆》是初中数学的重要内容,主要让学生掌握圆的基本概念、性质及相关的运算。
本节内容在学生的认知发展过程中具有承上启下的作用,既是对以前平面几何知识的拓展,也为后续学习圆的方程、圆与圆的位置关系等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和推理能力有一定的基础。
但圆的概念较为抽象,学生对其理解和掌握可能存在一定的困难。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出圆的概念,并通过丰富的实例让学生体会圆的性质。
三. 教学目标1.理解圆的概念,掌握圆的性质。
2.学会用圆规和直尺画圆。
3.能够运用圆的性质解决实际问题。
四. 教学重难点1.圆的概念和性质。
2.圆的画法。
3.圆的性质在实际问题中的应用。
五. 教学方法1.情境教学法:通过实际问题引入圆的概念,让学生在情境中感受圆的特点。
2.直观教学法:利用圆规和直尺示范画圆,让学生直观地理解圆的性质。
3.实践操作法:让学生亲自动手画圆,加深对圆的认识。
4.问题驱动法:引导学生提出问题,并进行解答,激发学生的学习兴趣。
六. 教学准备1.教学课件:制作相关的教学课件,辅助讲解。
2.圆规和直尺:准备足够的圆规和直尺供学生实践操作。
3.练习题:准备相应的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入圆的概念,如“在一条固定的绳子长度为2米的情况下,如何才能画出一个最大的圆?”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)讲解圆的概念和性质,如圆的定义、圆心、半径等。
通过课件展示,让学生直观地理解圆的特点。
3.操练(10分钟)让学生亲自动手用圆规和直尺画圆,体会圆的性质。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)出示一些练习题,让学生运用所学的圆的性质进行解答。
教师及时批改,给予反馈。
5.拓展(10分钟)引导学生思考圆在实际生活中的应用,如自行车轮子、圆桌等。
人教版数学九年级上册第24章圆24.1.1圆教学设计
5.拓展提高题:针对学有余力的学生,设计一些难度较大的题目,如圆与圆的位置关系、圆的切线问题等。这类题目旨在激发学生的学习兴趣,提高他们的数学思维。
作业布置要求:
1.学生需独立完成作业,确保作业质量。
(四)课堂练习
在课堂练习环节,我会设计以下几类题目:
1.基础巩固题:针对圆的基本概念和性质,设计一些选择题、填空题,让学生巩固所学知识。
2.应用提高题:设计一些与生活实际相关的题目,如计算圆形花坛的面积、圆桌的周长等,让学生学会将所学知识应用于实际问题。
3.拓展挑战题:针对学有余力的学生,设计一些难度较大的题目,如圆与圆的位置关系、圆的切线问题等。
2.创设问题情境,引导学生通过探究、讨论的方式,发现和掌握圆的相关性质。
-设计一系列由浅入深的问题,如圆中任意两点到圆心的距离是否相等,引导学生自主探索和发现圆的性质。
-组织小组合作学习,鼓励学生之间交流想法,共同解决难题。
3.将理论知识与生活实际相结合,设计实际应用题,提高学生解决问题的能力。
-通过设计如操场跑道周长、圆形花园面积等实际问题,让学生在实际情境中应用所学的圆的周长和面积知识。
5.教学评价多元化,不仅关注学生的知识掌握,也注重学习过程中的思维方法和情感态度。
-通过课堂提问、小组讨论、课后作业、小测验等多种方式,全面评估学生的学习成效。
-鼓励学生自我评价和同伴评价,培养他们的自我反思和批判性思维能力。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将利用学生对日常生活的经验,激发他们对圆的好奇心和探究欲。首先,我会向学生展示一系列包含圆的图片,如车轮、硬币、圆桌等,让学生观察并思考这些图片中的共同特征。通过这种方式,引导学生发现圆在生活中的普遍存在。接着,我会提出问题:“为什么这些图形都是圆的?圆有什么特别之处?”从而引出本节课的主题——圆。
人教版数学九年级上册24.1.1《圆》教学设计
人教版数学九年级上册24.1.1《圆》教学设计一. 教材分析人教版数学九年级上册第24.1.1节《圆》是本册教材中的重要内容,主要介绍了圆的概念、特征以及圆的直径、半径等基本概念。
本节内容为学生提供了丰富的探究活动,让学生在探究圆的性质过程中,进一步理解圆的相关概念,提高空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的认识和理解有一定的深度。
但圆作为一个特殊的几何图形,其性质和特点与其他图形有很大的不同,学生需要通过实例和探究活动,来理解和掌握圆的相关概念。
三. 教学目标1.知识与技能:使学生了解圆的概念,掌握圆的特征,理解圆的直径、半径等基本概念。
2.过程与方法:培养学生通过实例探究圆的性质,提高空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 教学重难点1.重点:圆的概念、特征,圆的直径、半径等基本概念。
2.难点:圆的性质的探究和理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实例和探究活动,理解和掌握圆的相关概念。
2.利用多媒体课件,直观展示圆的性质和特点,提高学生的空间想象能力。
3.分组讨论,培养学生的团队协作能力和自主学习能力。
六. 教学准备1.多媒体课件2.圆的相关实例和图片3.分组讨论的素材七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些生活中的圆形物体,如硬币、地球等,引导学生关注圆形的特征,激发学生对圆的学习兴趣。
2.呈现(10分钟)介绍圆的概念和特征,讲解圆的直径、半径等基本概念,让学生初步理解圆的相关知识。
3.操练(10分钟)学生分组讨论,每组选取一个圆形物体,观察和测量其直径、半径等,总结圆的性质。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)学生独立完成教材中的相关练习题,教师及时批改和反馈,巩固学生对圆的概念和性质的理解。
5.拓展(10分钟)引导学生思考:圆还有哪些其他的性质和特点?如何应用圆的性质解决实际问题?教师与学生互动,共同探讨。
圆的有关性质集体备课
中点到弦的距离)为7.23m,求赵州桥主桥拱的半径(结果保留小数点后1位)。
(分析:解决此问题的关键是根据赵州桥的实物图画出几何图形。
)例题2:在⊙O中,A⌒B=A⌒C, ∠ACB=60°.求证:∠AOB=∠BOC=∠AOC。
在圆中,除圆心角外,还有一类角,它的顶点在圆上,并且两边都与圆相交,我们把这样的角叫做圆周角。
探究3:在⊙O上任取一条弧,作出这条弧所对的圆周角和圆心角,测量它的度数,它们之间有什么关系?由此你能发现什么规律?例题3:如图所示,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,求BC,AD,BD的长。
解:如下图所示,连接OD。
∵AB是直径,∴∠ACB=∠ADB=90°在Rt △ABC 中,BC =22AC AB -=22610-=8(cm ) ∵CD 平分∠ACB ,∴∠ACD=∠BCD, ∴∠AOD=∠BOD, ∴AD=BD又在Rt △ABC 中,AD 2=BD 2=AB 2,∴AD=BD=22AB=52(cm )思考:圆内接四边形的四个角有什么关系?由此可知:1.圆的对称性:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴;2.垂径定理及其推论。
3.在同圆或等圆中,圆心角及其所对的弧、弦之间的关系。
4.圆周角定理及其推论。
5.圆内接四边形的一个性质:圆内接四边形的对角互补。
练习题:(1)如图,点A、B、C在⊙O上,若∠BAC=24°,则∠BOC=________。
第(1)题第(2)题(2)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是________。
(3)如图是一条直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时最深处为________米。
第(3)题第(4)题(4)如图,AB是⊙O的直径,CD为弦,CD ⊥AB于E,则下列结论中不成立的是________。
人教数学九年级上册第二十四章24.1.1圆教学设计
三、教学重难点和教学设想
(一)教学重点
1.圆的基本概念和性质,如半径、直径、圆周率等。
2.圆的方程,包括标准方程和一般方程的求解和应用。
3.圆的周长和面积的计算方法,以及在实际问题中的应用。
4.圆与直线、圆与圆之间的位置关系,以及这些关系在几何问题中的应用。
(二)教学难点
1.圆的方程的求解,特别是含有多个未知数的方程组的求解。
2.圆与直线、圆与圆位置关系的判断,以及这些关系在复杂几何图形中的应用。
3.在实际问题中,如何将问题抽象为几何模型,并运用圆的相关知识进行解决。
教学设想:
1.对于教学重点的突破,我设想采用以下策略:
-利用直观教具和几何画板,让学生通过观察和操作,直观感受圆的性质。
1.基础知识掌握情况:了解学生对圆的基本概念、性质、周长和面积公式的掌握程度,以便进行有针对性的教学。
2.思维能力:关注学生的逻辑思维和空间想象力,引导他们运用圆的性质和位置关系解决几何问题。
3.学习方法:培养学生主动探究、合作交流的学习习惯,提高学生分析问题和解决问题的能力。
4.情感态度:关注学生的学习兴趣和积极性,激发他们对数学学科的热情,培养严谨、求实的科学态度。
-定期进行课堂小结,帮助学生巩固所学知识,形成系统化的知识网络。
4.教学评价方面,我将:
-采用多元化的评价方式,包括课堂问答、小组讨论、作业、小测验等,全面评估学生的学习效果。
-注重过程性评价,关注学生在学习过程中的态度、方法、合作精神等非智力因素。
-及时给予反馈,指导学生进行自我反思和调整学习策略,促进学生的持续发展。
人教版九年级数学上册《二十四章 圆 24.1 圆》优质课教案_20
24.1圆的有关性质24.1.1 圆(教学设计)教学目标:一、知识与技能目标:经历圆的概念的形成过程,理解圆、弧、弦等与圆有关的概念,了解等圆、等弧的概念。
二、过程与方法目标:(一)经历探索圆的形成过程和发现有关结论的过程,发展学生的数学思考能力。
(二)利用圆的概念解决简单问题,形成几何直观,增强应用意识。
三、情感态度与价值观目标:体会圆在生产生活中的广泛应用,感受数学的价值,体会图形的匀称美,培养审美意识,通过数学文化,培养学生的民族自豪感。
教学重点:经历形成圆的概念的过程,理解圆及其有关概念。
教学难点:理解圆的概念的形成过程和圆的集合性定义。
教学过程:一、情境创设:感知圆的世界:圆是生活中常见的图形,许多物体给人以圆的形象.二、探索新知:活动1:观察下列图形,从中找出共同特点。
活动2:观察下列画圆的过程,你能由此说出圆如何画出来的吗?归纳:(一)圆的旋转定义:在一个平面内,线段OA绕它的一个固定端点O旋转一周,另一个端点A所形成的图形叫做圆。
固定端点O叫做圆心,线段OA叫做半径。
以点O为圆心的圆,记作“⊙O”,读作“圆O”.注意:圆是指圆周,而不是圆面(二)圆的集合性定义:圆心为O,半径为r的圆,可以看成所有到定点O,距离等于定长r的点的集合。
注:①圆上各点到定点(圆心O)的距离都等于定长(半径r);②到定点的距离都等于定长的点都在同一个圆上。
巩固练习1.如何在操场上画一个半径是5m的圆?说出你的理由2. 你见过树木的年轮吗?从树木的年轮,可以很清楚的看出树木生长的年龄,如果一棵20年树龄的红杉树的树干直径是23cm,这棵红杉树的半径每年增加多少?活动3:1、以1厘米为半径能画几个圆?这些圆的位置和大小有什么特点?大小相同(半径相同),位置不同(圆心不同),这样的两个圆叫做等圆。
2、以点O为圆心能画几个圆?这些圆的位置和大小有什么特点?圆心相同,但圆的大小不同(半径不同),这样的两个圆叫做同心圆。
人教版九年级数学上册24.1.1《圆》教学设计
人教版九年级数学上册24.1.1《圆》教学设计一. 教材分析人教版九年级数学上册24.1.1《圆》是学生在学习了直线、射线、平面图形等知识的基础上,进一步学习圆的相关概念、性质和运算。
本节课的内容包括圆的定义、圆心和半径、圆的直径、弧、弦等概念,以及圆的周长和面积的计算。
这些知识是学生今后学习圆的进一步应用和解决实际问题的重要基础。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于平面图形的性质和运算有一定的了解。
但是,对于圆的相关概念和性质,学生可能还比较陌生,需要通过实例和操作来加深理解。
此外,学生可能对于圆的周长和面积的计算公式记忆不牢,需要在课堂上进行强化训练。
三. 教学目标1.知识与技能:理解圆的定义,掌握圆心和半径、圆的直径、弧、弦等概念,学会计算圆的周长和面积。
2.过程与方法:通过观察、操作、讨论等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.重点:圆的定义,圆心和半径、圆的直径、弧、弦等概念,圆的周长和面积的计算。
2.难点:圆的周长和面积的计算公式的记忆和应用。
五. 教学方法1.情境教学法:通过实物和图形的观察,引导学生发现圆的性质和特点。
2.问题驱动法:通过提问和讨论,激发学生的思考,引导学生自主探究。
3.合作学习法:分组进行讨论和实践,培养学生的团队合作意识和解决问题的能力。
六. 教学准备1.教具:圆规、直尺、圆形的实物和图片。
2.课件:圆的相关概念和性质的图片,圆的周长和面积的计算公式的动画演示。
七. 教学过程1.导入(5分钟)教师通过展示圆形的实物和图片,引导学生观察和描述圆的特点,从而引出圆的定义。
2.呈现(10分钟)教师通过课件展示圆心和半径、圆的直径、弧、弦等概念的图片,引导学生理解和记忆这些概念。
3.操练(10分钟)教师提出问题,引导学生用圆规和直尺进行实际的操作,如画圆、测量圆的直径和半径等,巩固对圆的概念的理解。
九年级上册数学集体备课圆
九年级上册数学集体备课教案授课人:授课时间:教学难圆的概念的理解点教学准多媒体备1课时课时安排教学过程集体备课教学设计个性化设计一、情境导入,初步认识圆是生活中常见的图形,许多物体都给我们以圆的形象.1.观察以上图形,体验圆的和谐与美丽.请大家说说生活中还有哪些圆形?2.请同学们在草稿纸上用圆规画圆,体验画圆的过程,想想圆是怎样形成的.二、思考探究,获取新知1.圆的描述性定义问题1如教材79页图所示,通过用绳子和圆规画圆的过程,你发现了什么?由此你能得到什么结论?如右图:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.注意:圆指的是圆周,不是圆面.2.圆的集合定义问题2我们以前学过“角平分线上的点到角的两边距离相等.”“到角的两边的距离相等的点在角的平分线上.”“线段的垂直平分线可以看作是到线段两个端点的距离相等的点的集合.”由此你能类似地给圆从集合的角度进行定义吗?问:(1)圆上各点到定点(圆心O)的距离有什么共同特征?(2)到定点(圆心O)距离等于定长(半径r)的点有什么共同特征?通过上面两个问题我们就能得到圆的集合定义.【归纳结论】圆心为O,半径为r的圆,可以看成是所有到定点O的距离等于定长r的点的集合.思考车轮为什么做成圆形的?如果车轮不是圆的(如椭圆或正方形等),坐车人会是什么感觉?如果车轮不是圆的,车辆在行驶时,坐车人感觉到上下颠簸,不舒服.3.与圆有关的概念弦:连接圆上任意两点的线段叫做弦.(如:线段AB、AC)经过圆心的弦(如AB)叫做直径.注:直径是特殊的弦,但弦不一定是直径. 弧:圆上任意两点间的部分叫做圆弧,简称弧.如图,以A、B为端点的弧记作:AB,读作:弧AB.注:①圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.②大于半圆的弧,用三个点表示,如图中的ABC,叫做优弧.小于半圆的弧,用两个点表示,如图中的AC,叫做劣弧.等圆:能够重合的两个圆叫做等圆.注:半径相等的两个圆是等圆,反过来,同圆或等圆的半径相等.等弧:在等圆或同圆中,能够互相重合的弧叫等弧.注:①等弧是全等的,不仅是弧的长度相等.②等弧只存在于同圆或等圆中.三、运用新知,深化理解1.如何在操场上画一个半径是5m的圆?说说你的理由.2.(1)以点A为圆心,可以画_____个圆. (2)以已知线段AB的长为半径,可以画______个圆.(3)以A为圆心,AB长为半径,可以画______个圆.3.如图,半圆的直径AB=______.4.如图,图中共有______条弦.四、师生互动,课堂小结1.师生共同回顾圆的两种定义,弦(直径),弧(半圆、优弧、劣弧、等弧),等圆等知识点.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流. 五.作业布置课本79练习1.2.3板书设计:。
人教版九上数学第24章 圆 24.1.1圆 教案+学案
人教版九年级数学(上)第24章圆24.1圆的有关性质24.1.1圆教案【教学目标】知识与技能:1.认识圆,理解圆的本质属性;2.认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系;3.利用圆的有关概念进行简单的证明和计算.过程与方法:掌握点和圆的三种位置关系.使学生会利用点到圆心的距离和圆的半径之间的数量关系判定点和圆的位置关系.情感态度与价值观:初步会运用圆的定义证明四个点在同一个圆上.使学生真正体验到数学知识来源于实践,反过来指导实践这一理论.【教学重点】1.与圆有关的概念,并了解它们之间的区别和联系;2.点和圆的三种位置关系.【教学难点】理解圆的本质属性,用集合的观点定义圆.【教学过程设计】一、情境导入在我们日常生活中常常可以看到有许多圆形物体,例如茶碗的碗口、锅盖、太阳、车轮、射击用的靶子等都是圆的,怎样画出一个圆呢?木工师傅是用一根黑线来画圆的,给你一根细绳、一个图钉和一支铅笔,你能画出一个圆吗?二、新知探究知识点:圆的有关概念【类型一】圆的有关概念的理解例1直径;④半圆是弧,但弧不一定是半圆;⑤任意一条直径都是圆的对称轴.其中错误的说法个数是( )A.1 B.2 C.3 D.4解析:根据圆、直径、弦、半圆等概念来判断.半径确定了,只能说明圆的大小确定了,但是位置没有确定;直径是弦,但弦不一定是直径;圆的对称轴是一条直线,每一条直径所在的直线是圆的对称轴,所以①③⑤的说法是错误的.故选C.方法总结:对称轴是直线,不能说成每条直径就是圆的对称轴;注意圆的对称轴有无数条.【类型二】点和圆的三种位置关系若设圆O的半径为r,点O到圆心的距离为d,当点与圆心的距离由小于半径变到等于半径再变到大于半径时,点和圆的位置关系就由圆内变到圆上再变到圆外.这说明点和圆的位置关系可以得到d与r之间的关系,由d与r的数量关系也可以判定点和圆的位置关系.这时板书下列关系式:点在圆内⇔d<r点在圆上⇔d=r点在圆外⇔d>r这时教师讲清“⇔”符号的组哟用和圆的表示方法.以点O为圆心的圆,记作“⊙O”,读作“圆O”.接下来为了巩固定义,师生共同分析例1.例2求证矩形四个顶点在以对角线交点为圆心的同一个圆上.已知:如图,矩形ABCD的对角线AC和BD相交于点O.求证:A、B、C、D4个点在以O为圆心,OA为半径的圆上.解析:∵AC=BD ∴21AC=21BD即OA=OC=OB=OD∴A、B、C、D4个点在以O为圆心,OA为半径的圆上.方法总结:求证矩形四个顶点在以对角线交点为圆心的同一个圆上,对于这个问题不是教师讲怎么做,而是引导学生分析这个命题的题设和结论,然后启发学生思考分析这一问题的证明思路.【类型三】圆中有关线段的证明例3如图所示,OA、OB是⊙O的半径,点C、D分别为OA、OB的中点,求证:AD=BC.解析:先挖掘隐含的“同圆的半径相等”、“公共角”两个条件,再探求证明△AOD≌△BOC的第三个条件,从而可证出△AOD≌△BOC,根据全等三角形对应边相等得出结论.证明:∵OA、OB是⊙O的半径,∴OA=OB.∵点C、D分别为OA、OB的中点,....OBAC∴OC =12OA ,OD =12OB ,∴OC =OD .又∵∠O =∠O ,∴△AOD ≌△BOC (SAS),∴BC =AD .方法总结:“同圆的半径相等”、“公共角”、“直径是半径的2倍”等都是圆中隐含的条件.在解决问题时,要充分利用图形的直观性挖掘出这些隐含的条件,从而使问题迎刃而解.【类型四】圆中有关角的计算例3 CD 是⊙O 的弦,AB ,CD 的延长线交于点E .已知AB =2DE ,∠E =18°,求∠AOC 的度数.解析:要求∠AOC 的度数,由图可知∠AOC =∠C +∠E ,故只需求出∠C 的度数,而由AB =2DE 知DE 与⊙O 的半径相等,从而想到连接OD 构造等腰△ODE 和等腰△OCD .解:连接OD ,∵AB 是⊙O 的直径,OC ,OD 是⊙O 的半径,AB =2DE ,∴OD =DE ,∴∠DOE =∠E =18°,∴∠ODC =∠DOE +∠E =36°.∵OC =OD ,∴∠C =∠ODC =36°,∠AOC =∠C +∠E =36°+18°=54°.三、教学小结1.圆的两种定义:动态:如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆.静态:圆心为O 、半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点组成的图形.2.与圆有关的概念弦:连接圆上任意两点的线段叫做弦,直径:经过圆心的弦叫做直径.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A 、B 为端点的弧记作 AB,读作“圆弧AB”或“弧AB”. 半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. 优弧:大于半圆的弧(用三个字母表示)叫做优弧.劣弧:小于半圆的弧叫做劣弧;【板书设计】24.1 圆的有关性质24.1.1 圆1.圆有关概念的认识2.点和圆的三种位置关系3.圆中有关线段的证明4.圆中有关角的计算【课堂检测】1.圆的定义○1:在一个平面内,线段OA绕它固定的一个端点O旋转,另一个端点所形成的图形叫做.固定的端点O叫做,线段OA叫做.以点O为圆心的圆,记作“”,读作“”决定圆的位置,决定圆的大小。
人教版数学九年级上册24.1《圆(1)》教案
人教版数学九年级上册24.1《圆(1)》教案一. 教材分析人教版数学九年级上册第24.1节《圆(1)》主要介绍了圆的定义、圆心和半径的概念。
本节内容是学生对圆的基本知识的掌握,为后续学习圆的周长、面积等知识打下基础。
教材通过生活中的实例,引导学生认识圆,并探索圆的性质,从而培养学生的观察、思考和动手能力。
二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,具备一定的逻辑思维和空间想象能力。
但对于圆的概念和性质,部分学生可能还较为陌生。
因此,在教学过程中,教师需要注重引导学生从生活实际中发现圆的规律,激发学生的学习兴趣,并通过实例让学生体会圆在生活中的广泛应用。
三. 教学目标1.知识与技能:使学生了解圆的定义,掌握圆心和半径的概念,能运用圆的性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生探索圆的性质的能力。
3.情感态度与价值观:激发学生学习圆的兴趣,体验数学与生活的紧密联系,培养学生的团队协作精神。
四. 教学重难点1.重点:圆的定义,圆心和半径的概念。
2.难点:圆的性质的探索和应用。
五. 教学方法采用问题驱动法、合作学习法、实例教学法等,引导学生从实际问题中发现圆的规律,培养学生的动手操作能力和团队协作精神。
六. 教学准备1.教具:圆形的实物,如硬币、圆规等。
2.学具:每人一份圆形的实物,如硬币、圆规等。
七. 教学过程1. 导入(5分钟)教师通过展示生活中常见的圆形物体,如硬币、圆桌等,引导学生观察并思考:这些物体有什么共同的特点?学生思考后,教师总结出圆的定义:在同一平面内,到定点的距离等于定长的点的集合。
2. 呈现(10分钟)教师提问:圆心在哪里?半径是什么?学生通过观察手中的圆形实物,思考并回答问题。
教师进行点评并总结:圆心是圆的中心点,半径是从圆心到圆上任意一点的线段。
3. 操练(10分钟)学生分组进行讨论,尝试找出圆的性质。
教师巡回指导,给予提示和指导。
新人教九年级上册第24章24.1.1《圆》说课稿
新人教九年级上册第24章24.1.1《圆》说课稿一、教材分析1.教材的地位和作用圆是在学习了直线图形的有关性质的基础上来研究的一种特殊的曲线图形。
它是常见的几何图形之一,在初中数学中占有重要地位,中考中分值占有一定比例,与其它知识的综合性较强。
本节课的内容是对已学过的旋转及轴对称等知识的巩固,也为本章即将要探究的圆的性质、圆与其它图形的位置关系、数量关系等知识打下坚实的基础。
2.教学目标课程标准对圆这一章的要求是:“……在教学中,应注重所学内容与现实生活的联系,注重使学生经历观察,操作,推理,想像等探索过程……”。
根据这一要求和本课时内容的地位和作用以及九年级学生的认知结构,我确定了以下教学目标:【知识与技能】通过观察、操作、归纳等理解圆的定义,理解弦、弧、直径、等圆、等弧等相关概念;并通过对“草坪问题”的讨论等活动提高学生运用圆的相关知识解决生活中实际问题的能力。
【过程与方法】采取课件与导学案相结合,学生自主学习与小组合作相结合的教学方法,让学生体会圆的不同定义,感受圆和实际生活的联系,培养学生把实际问题转化为数学问题的能力。
【情感态度与价值观】在解决问题的过程中体会圆的知识在生活中的普遍性,以及圆在生活和生产中的地位和作用,增强学生学习数学的兴趣。
3.教材重、难点的处理根据教学内容和学生实际,遵循课程标准,在认真钻研教材的基础上,本节课我确定了以下教学重点和难点:重点:1.圆的两种定义和圆的有关概念的学习。
2.能够解释和解决一些生活中关于圆的问题。
难点:圆的第二种定义。
为了突破难点,将抽象的文字叙述转化为图形,我设计了学生自己动手画圆及观看老师演示等方法,最后辅之以相关练习题,使学生得以巩固。
二、学情分析九年级学生在过去的生活和学习中对圆的知识已经有了一些认识,初步体会到圆在生活、工农业生产、交通运输、土木建筑等方面均广泛存在,这对进一步探究圆的定义及相关性质奠定了一定的基础。
但对圆的相关性质掌握较少,对知识的转化能力较差,所以重在要学生参与,主动探究,增加解决实际问题的能力。
人教版九年级数学上册第二十四章圆24.1圆的有关性质24.1.1圆教案2新版
24.圆1授课目标1.认识圆的基本见解,并能正确地表示出来.2.理解并掌握与圆相关的见解:弦、直径、圆弧、等圆、同心圆等.2预习反应阅读教材 P79~80内容,理解记忆与圆相关的见解,并达成以下问题.1.如图,在一个平面内,线段OA绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.2.圆心为 O、半径为 r 的圆能够看作是所有到定点O的距离等于定长r 的点的会合.3.连结圆上随意两点的线段叫做弦,经过圆心的弦叫做直径;圆上随意两点间的部分叫做圆弧;圆的随意一条直径的两个端点把圆分红两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.4.以点 A 为圆心,能够画无数个圆;以已知线段AB 的长为半径,能够画无数个圆;以点 A 为圆心,AB 的长为半径,能够画 1 个圆.【点拨】确定圆的两个要素:圆心 ( 定点 ) 和半径 ( 定长 ) .圆心确定圆的地址,半径确定圆的大小.5.到定点O的距离为 5 的点的会合是以O为圆心, 5 为半径的圆.3新课讲解例 1 ( 教材 P80 例 1) 矩形ABCD的对角线AC, BD订交于点O.求证: A, B, C, D四个点在以点O 为圆心的同一个圆上.【思路点拨】要求证几个点在同一个圆上,即需要证明这几个点到同一个点( 即圆心 ) 的距离相等.【解答】证明:∵四边形ABCD为矩形,11∴OA= OC=2AC,OB= OD=2BD, AC=BD.∴OA= OC= OB= OD.∴A, B,C, D四个点在以点 O为圆心, OA为半径的圆上(如图).例 2( 教材 P80 例 1 的变式 ) △ABC中,∠C=90° . 求证:A,B,C三点在同一个圆上.【解答】证明:如图,取AB的中点 O,连结 OC.∵在△ ABC中,∠ C=90°,∴△ ABC是直角三角形.1∴ OC= OA= OB=2AB(直角三角形斜边上的中线等于斜边的一半) .∴ A, B,C三点在同一个圆上.【追踪训练1】( 例 1 的变式题 )(1) 在图中,画出⊙O的两条直径;(2)依次连结这两条直径的端点,得一个四边形.判断这个四边形的形状,并说明理由.解: (1) 作图略.(2)矩形.原因:因为该四边形的对角线互相均分且相等,所以该四边形为矩形.【思虑】由刚才的问题思虑:矩形的四个极点必然共圆吗?例 3已知⊙ O的半径为2,则它的弦长 d 的取值范围是0<d≤ 4.【点拨】直径是圆中最长的弦.例 4 在⊙ O中,若弦 AB等于⊙ O的半径,则△ AOB的形状是等边三角形.【点拨】与半径相等的弦和两半径结构等边三角形是常用数学模型.【追踪训练2】如图,点A, B, C, D 都在⊙ O 上.在图中画出以这 4 点为端点的各条弦.这样的弦共有多少条?解:图略 .6 条.4坚固训练1.如图,图中有 1 条直径, 2 条非直径的弦,圆中以 A 为一个端点的优弧有 4 条,劣弧有 4 条.【点拨】这类数弧问题,为防多半或少许,平常按必然的次序和方素来数.2.如图,⊙ O 中,点 A, O, D 以及点 B,O, C 分别在一条直线上,图中弦的条数为2.3.习题)点P到⊙ O上各点的最大距离为10 cm,最小距离为8 cm,则⊙O的半径是 1 或 9cm.【点拨】这里分点在圆外和点在圆内两种情况.4.如图,已知AB 是⊙ O的直径,点C在⊙ O上,点 D 是 BC的中点.若AC=10 cm,则 OD的长为 5__cm.【点拨】圆心 O是直径 AB 的中点.5.如图, CD为⊙ O的直径,∠ EOD= 72°, AE交⊙ O于 B,且 AB= OC,则∠ A 的度数为 24°.【点拨】连结 OB结构三角形,进而得出角的关系.5讲堂小结1.这节课你学了哪些知识?2.学会了哪些解圆的相关问题的技巧?。
2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案)24.1.2 垂直于弦的直径教案
24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标【知识与技能】1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及其推论.理解其证明,并会用它解决有关的证明与计算问题.【过程与方法】通过探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.【情感态度与价值观】1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】垂径定理及其推论,会运用垂径定理等结论解决一些有关证明,计算和作图问题.【教学难点】垂径定理及其推论.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?(出示课件2)(二)探索新知探究一圆的轴对称性教师问:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(出示课件4)学生通过自己动手操作,归纳出结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.出示课件5:教师问:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?学生答:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.思考:如何来证明圆是轴对称图形呢?出示课件6:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.教师问:此图是轴对称图形吗?学生答:是轴对称图形.教师问:满足什么条件才能证明圆是轴对称图形呢?师生共同解答如下:(出示课件7)证明:连结OA、OB.则OA=OB.又∵CD⊥AB,∴直径CD所在的直线是AB的垂直平分线.∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.师生进一步认知:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.探究二垂径定理及其推论出示课件8:如图,AB是⊙O的一条弦, 直径CD⊥AB, 垂足为E.你能发现图中有哪些相等的线段和劣弧?为什么?学生独立思考后口答:线段:AE=BE弧:AC⌒=BC⌒,AD⌒=BD⌒学生简述理由:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A 与点B重合,AE与BE重合,重合.教师总结归纳:(出示课件9)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE, AC⌒=BC⌒,AD⌒=BD⌒教师强调:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?(出示课件10)学生独立思考后口答:1图是;2图不是,因为没有垂直;3图是;4图不是,因为CD没有过圆心.教师强调:垂径定理的几个基本图形:(出示课件11)出示课件12:如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?学生思考后教师总结:深化认知:(出示课件13)如图,①CD是直径;②CD⊥AB,垂足为E;③AE=BE;④AC⌒=BC⌒;⑤AD⌒=BD⌒.举例证明其中一种组合方法.学生思考后独立解决,并加以交流,教师加以指导,并举例.(出示课件14)如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?⑵AC⌒与BC⌒相等吗?AD⌒与BD⌒相等吗?为什么?证明:⑴连接AO,BO,则AO=BO,又AE=BE,OE=OE∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得AC⌒=BC⌒,AD⌒=BD⌒教师归纳总结:(出示课件15)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.思考:“不是直径”这个条件能去掉吗?如不能,请举出反例.教师强调:圆的两条直径是互相平分的.出示课件16:例1 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.学生思考后师生共同解答:连接OA,∵OE⊥AB,巩固练习:(出示课件17)如图,⊙O的弦AB=8cm,直径CE⊥AB于D,DC=2cm,求半径OC的长.学生自主思考后,独立解答如下:解:连接OA,∵CE⊥AB于D,,∴设OC=xcm,则OD=x-2,根据勾股定理,得x2=42+(x-2)2,∴22221068AE OA OE=-=-=cm.1184(cm)22AD AB==⨯=解得x=5,即半径OC的长为5cm.出示课件18:例2 已知:⊙O中弦AB∥CD,求证:学生思考后师生共同解答.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则(垂直于弦的直径平分弦所对的弧)教师强调:平行弦夹的弧相等.师生共同归纳总结:(出示课件19)解决有关弦的问题,经常是过圆心作弦的弦心距(垂线段),或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.巩固练习:(出示课件20)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证: 四边形ADOE是正方形.学生独立解答,一生板演.证明:∵OE⊥AC,OD⊥AB,AB⊥AC,∴∠OEA=∠EAD=∠ODA=90°.∴四边形ADOE为矩形,AE=12AC,AD=12AB.又∵AC=AB,∴AE=AD.∴四边形ADOE为正方形.出示课件21:例3 根据刚刚所学,你能利用垂径定理求出导入中赵州桥主桥拱半径的问题吗?教师引导学生分析题意,先把实际问题转化为数学问题,然后画出图形进行解答.解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C 是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.AB=18.5m,OD=OC-CD=R-7.23.∴AD=12OA2=AD2+OD2,R2=18.52+(R-7.23)2,解得R≈27.3.即主桥拱半径约为27.3m.巩固练习:(出示课件23)如图a、b,一弓形弦长为cm,弓形所在的圆的半径为7cm,则弓形的高为_______.学生独立思考后解答:如图,分两种情况,弓形的高为5cm或12cm.教师归纳:1.涉及垂径定理时辅助线的添加方法(出示课件24)在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.2.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:⑴d+h=r;⑵2 222ar d⎛⎫=+ ⎪⎝⎭.(三)课堂练习(出示课件25-29)1.2.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.3.⊙O的直径AB=20cm, ∠BAC=30°则弦AC= .4.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.你认为AC和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.参考答案:1.C2.5cm3.4.14cm或2cm5.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.6.解:连接OC.设这段弯路的半径为Rm,则OF=(R-90)m.,OE CD ⊥11600300(m)22CF CD ∴==⨯=,根据勾股定理,得222,OC CF OF =+ ()22230090.R R =+- 解得R=545.∴这段弯路的半径约为545m.(四)课堂小结通过这节课的学习,你有哪些收获和体会?(五)课前预习预习下节课(24.1.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.这节课的教学从利用垂径定理来解决赵州桥桥拱半径问题开始,引入课题从实验入手,得到圆的轴对称性,进而推出垂径定理及推论.教学设计中,从具体、简单、特殊到抽象、复杂、一般,层层递进,以利于提高学生的数学思维能力,同时,注意加强对学生的启发和引导,培养学生们大胆猜想,小心求证的科学研究素质.2.本课的教学方法是将垂径定理和勾股定理有机结合,将圆的问题转化为直角三角形,常作的辅助线是半径或垂直于弦的直径.。
九年级数学上册第二十四章24.1圆有关的性质24.1.1圆备课资料教案新人教版(2021年整理)
九年级数学上册第二十四章24.1 圆有关的性质24.1.1 圆备课资料教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二十四章24.1 圆有关的性质24.1.1 圆备课资料教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二十四章24.1 圆有关的性质24.1.1 圆备课资料教案(新版)新人教版的全部内容。
第二十四章 24.1.1圆知识点1:圆的定义在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。
固定的端点O叫做圆心,线段OA叫做半径,以O为圆心的圆叫做圆O,记作☉O.关键提醒:(1)圆是指圆周,而不是指圆面;(2)确定一个圆需要两个要素:一是位置,二是大小,圆心决定圆的位置,半径决定圆的大小;(3)圆上各点到定点(圆心)的距离都等于定长(半径);(4)到定点的距离等于定长的点都在同一个圆上。
知识点2:圆的有关概念弦:连接圆上任意两点间的线段叫做弦.经过圆心的弦叫做直径.弧:圆上任意两点间的部分叫做圆弧,简称弧,弧用符号“⌒”表示,以A、B为端点的弧记作,读作“弧AB"。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。
等圆:能够重合的两个圆叫做等圆.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
归纳整理:(1)弦与直径的关系:直径是过圆心的弦,凡是直径都是弦,但弦不一定是直径,直径是圆中最长的弦,弦与直径都是线段;(2)半圆与弧的关系:半圆是弧,弧不一定是半圆,它有劣弧和优弧的区别;(3)“等弧”不能说成“相等的弧”,因为“相等的弧”不明确,后面我们会学到“度数相等的弧”和“长度相等的弧";(4)根据“等圆"的意义知:半径相等的两个是等圆,反过来,同圆或等圆的半径相等.考点1:圆的概念的认识【例1】矩形的四个顶点能否在同一个圆上?如果不在,说明理由;如果在,指出这个圆的圆心和半径.解:如图,连接AC、BD交于点O,在矩形ABCD中,因为AO=CO=AC,BO=DO=BD,AC=BD,所以AO=BO=CO=DO,所以A、B、C、D这四个点在以点O为圆心,OA为半径的同一个圆上。
人教数学九年级上册第二十四章24.1.1圆教学设计
3.增强动手操作能力,提高实践应用能力,为将来的学习和工作打下基础。
4.树立正确的价值观,认识到数学知识在解决实际问题中的价值,增强社会责任感。
5.培养勇于探索、积极进取的精神,面对困难和挑战,保持乐观向上的态度。
二、学情分析
九年级的学生已经具备了一定的几何图形认识和操作能力,对圆的概念也有初步的了解。在此基础上,他们对本章节的学习将面临以下挑战:首先,对圆的性质和计算方法的理解需要进一步深化,尤其是圆周率的概念和运用。其次,在实际问题中运用圆的相关知识解决问题时,学生可能需要提高将理论知识与实际情境相结合的能力。此外,学生的动手操作能力和几何直观思维能力也需加强。因此,在教学过程中,应关注学生的个体差异,通过设置不同难度的任务,使每位学生都能在原有基础上得到提高,激发他们的学习兴趣和自信心,为今后的数学学习打下坚实基础。
(2)准备圆规、直尺等教学工具,便于学生动手操作。
2.课堂教学:
(1)导入:通过展示生活中的圆形物体,引导学生发现圆的特点,激发学习兴趣。
(2)新授:采用直观演示和动手操作相结合的方式,让学生掌握圆的性质、画圆方法以及圆周率的运用。
(3)巩固:设计具有代表性的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。
2.学生在规定时间内完成练习题,教师对学生的解答进行批改和反馈,针对共性问题进行讲解。
3.提高。
(五)总结归纳
1.教师带领学生回顾本节课所学内容,总结圆的性质、画圆方法、圆周率的运用等知识点。
2.强调圆在实际生活中的重要性,鼓励学生在生活中多观察、多思考,将所学知识运用到实际中。
3.难点突破策略:
(1)开展小组合作学习,让学生在讨论交流中共同解决问题,提高几何直观思维能力。
【人教版九年级数学上册第二十四章24.1.1圆教案】
《【人教版九年级数学上册第二十四章24.1.1圆教案】》摘要:月日课题 24.1.1 圆课型新授课时 1 教材分析本节内容是圆的概念以及与圆有关的一些性质,他们是进一步学习圆的相关内容的基础,圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.同时从圆的定义中归纳:(1)圆上各点到定点(圆心)的距离都等于定长(半径),如图,CD为⊙O的直径,∠EOD=72°,AE交⊙O于B,且AB=OC,求∠A的度数板书设计圆课后反思圆的第一课,半径相等作为已知条件,学生用的不熟练初二(数学)学科学习指导案年月日课题 24.1.1 圆课型新授课时 1 教材分析本节内容是圆的概念以及与圆有关的一些性质,他们是进一步学习圆的相关内容的基础。
学情分析学生对圆有一定了解,但理解不深课程目标 1、探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别. 2、体会圆的不同定义方法,感受圆和实际生活的联系.培养学生把实际问题转化为数学问题的能力.学习重点圆的两种定义的探索,能够解释一些生活问题.学习难点圆的运动式定义方法教具准备圆规学案学习过程学习内容学习形式教师指导时间一、创设问题情境,激发学生兴趣,引出本节内容活动1:如图1,观察下列图形,从中找出共同特点.学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形说出图形特点,引入新课让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情.学习过程学习内容学习形式教师指导时间二、问题引申,探究圆的定义,培养学生的探究精神活动2:如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件:画圆)图2 圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段OA的长度叫作这个圆的半径.圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.同时从圆的定义中归纳:(1)圆上各点到定点(圆心)的距离都等于定长(半径);(2)到定点的距离等于定长的点都在同一个圆上.于是得到圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.活动3:讨论圆中相关元素的定义.如图3,你能说出弦、直径、弧、半圆的定义吗?弦:连接圆上任意两点的线段叫作弦;直径:经过圆心的弦叫作直径;弧:圆上任意两点间的部分叫作圆弧,简称弧;弧的表示方法:以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”;半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的;劣弧:小于半圆的弧叫作劣弧,如图3中的.学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果.表示的区别在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:强调同一平面内在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决.当堂检测如图,已知AB是⊙O的直径,点C在⊙O上,点D是BC的中点,若AC=10cm,求OD的长. 学生过程不完善作业布置请您在布置作业前先试做,建议根据学情布置个性化作业,为学生减负。
人教版-数学-九年级上册-第24章 圆 教案-24.1圆1
课题课型新授课时数备课人赵德堂审核人张月梅授课人授课日期课标解读与教材分析教学目标知识与技能了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题。
过程与方法从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念。
利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴。
通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解。
情感态度价值观1、结合本课教学特点,向学生进行爱国主义教育。
2、激发学生观察、探究、发现数学问题的兴趣和欲望。
教学重点重点垂径定理及其运用与难点难点难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题。
媒体教具圆规、直尺课时一课时教学过程修改栏教学内容师生互动一、复习引入请同学口答下面两个问题(提问一、两个同学)1、举出生活中的圆三、四个。
2、你能讲出形成圆的方法有多少种?(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆。
二、探索新知从以上圆的形成过程,我们可以得出:在一个平面内,线段OA绕它固定的一个端点O旋转一周,•另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径。
以点O为圆心的圆,记作“⊙O”,读作“圆O”。
讨论下面的两个问题:问题1:图上各点到定点(圆心O)的距离有什么规律?问题2:到定点的距离等于定长的点又有什么特点?老师提问几名学生并点评总结。
(1)图上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上。
因此,我们可以得到圆的新定义:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形。
同时,我们又把①连接圆上任意两点的线段叫做弦,如图线段AC,AB;②经过圆心的弦叫做直径,如图24-1线段AB;③圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作AC”,读作“圆弧AC”或“弧AC”.大于半圆的弧(如图所示ABC叫做优弧,•小于半圆的弧(如图所示)AC 学生活动老师点评学生先自主探索,在小组合作、分析、总结、交流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备课时间:主备人:审核人:九数学组
课题:24.1.1 圆
【学习目标】
明确圆的两种定义、弦、弧等概念,澄清“圆是圆周而非圆面”、“等弧不是长度相等的弧”等模糊概念。
.
【学习重、难点】“圆是圆周而非圆面”、“等弧不是长度相等的弧”等模糊概念
【预习案】
一、自主探究
1、举例说出生活中的圆。
2、你是怎样画圆的?你能讲出形成圆的方法有多少种吗?
二、自学指导
自学课本P78---P79页思考下列问题:
1.分别用不同的方法作圆,标明圆心、半径,体会圆的形成过程。
2.圆的两个定义各是什么?
3.弄清圆的有关概念?怎样用数学符号表示?
【练习案】
一、自学检测
1、车轮为什么做成圆形的?
2、为什么说“直径是圆中最长的弦”?试说说你的理由.
3、什么是弦、直径、弧、半圆、等圆、等弧、优弧、弧劣?
4、什么是圆?
二、当堂检测
1.P81页练习 1.
2.
2.判断正误:
1)弦是直径()
2)半圆是弧;()
3)过圆心的线段是直径;()
4)过圆心的直线是直径;()
5)半圆是最长的弧;()
6)直径是最长的弦;()
7)圆心相同,半径相等的两个圆是同心圆; ()
8)半径相等的两个圆是等圆;()
9)等弧就是拉直以后长度相等的弧。
()
归纳小结:
把车轮做成圆形,车轮上各点到车轮中心
(圆心)的距离都等于车轮的半径,当车轮
在平面上滚动时,车轮中心与平面的距离保
持不变,因此,当车辆在平坦的路上行驶【课后反思】。