鸡兔同笼问题几种不同的解法
鸡兔同笼问题几种不同的解法
鸡兔同笼问题几种不同的解法鸡兔同笼是中国古代著名的数学趣题,大约在 1500 年前的《孙子算经》中就有记载。
这个问题虽然看似简单,却蕴含着丰富的数学思维和解题方法。
接下来,咱们就一起探讨一下鸡兔同笼问题常见的几种解法。
假设笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,那鸡和兔各有多少只呢?解法一:假设法咱们先假设笼子里全部都是鸡。
因为每只鸡有 2 只脚,那么 35 只鸡总共就应该有 35×2 = 70 只脚。
但实际上有 94 只脚,这说明我们少算了脚的数量。
少算的脚的数量为 94 70 = 24 只。
为什么会少算呢?因为每把一只兔当成鸡就会少算 4 2 = 2 只脚。
那少算的 24 只脚里面有几个 2 只脚,就有几只兔。
所以兔的数量就是 24÷2 = 12 只。
鸡的数量就是 35 12 = 23 只。
同样的,咱们也可以先假设笼子里全部都是兔。
每只兔有 4 只脚,35 只兔就应该有 35×4 = 140 只脚。
但实际上只有 94 只脚,多算了 140 94 = 46 只脚。
每把一只鸡当成兔就会多算 4 2 = 2 只脚。
多算的 46 只脚里面有几个 2 只脚,就有几只鸡。
所以鸡的数量就是 46÷2 = 23 只,兔的数量就是 35 23 = 12 只。
解法二:方程法设鸡的数量为 x 只,兔的数量就是 35 x 只。
因为每只鸡有 2 只脚,每只兔有 4 只脚,总共 94 只脚,所以可以列出方程 2x + 4×(35 x) = 94 。
先计算括号里的式子:2x + 140 4x = 94 。
移项可得:4x 2x = 140 94 。
合并同类项:2x = 46 。
解得:x = 23 ,所以鸡有 23 只,兔有 35 23 = 12 只。
咱们也可以设兔的数量为 y 只,那么鸡的数量就是 35 y 只,列出方程 4y + 2×(35 y) = 94 ,按照同样的步骤也能求出兔有 12 只,鸡有 23 只。
鸡兔同笼问题的三种解法
鸡兔同笼问题的三种解法
一、方法与技巧
解决鸡兔同笼问题主要有三个解题方法:方程法、十字交叉法和假设法。
(1)方程法:通过一元一次方程或者二元一次方程组求解;
(2)十字交叉图法:
二、鸡兔同笼问题举例
例:现有鸡兔同笼,已知鸡兔数头35,数脚94,求鸡和兔的个数。
(鸡兔同笼原型)方程法:设鸡的个数为x,则兔的个数为35-x,则有2x 4(35-x)=94,解得x=23。
故有鸡23只,兔12只。
三、鸡兔同笼解题技巧的运用
例:某地劳动部门租用甲、乙两个教室开展农村实用人才培训。
两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。
两教室当月共举办该培训27次,每次培训均座无虚席,当月共培训1290人次。
问甲教室当月共举办了多少次这项培训?
【答案】D
【方程法】甲教室一次可坐10×5=50人,乙教室一次可坐9×5=45人,设甲教室举办了x次培训,则有: 50x 45(27-x)=1290,解得x=15。
故选D。
【公式法】根据题意,甲教室一次可坐10×5=50人,乙教室一次可坐9×5=45人,则由鸡兔同笼公式可知:甲教室举办的培训次数=。
鸡兔同笼五种解题方法
鸡兔同笼五种解题方法
鸡兔同笼,又称孰胜孰劣问题,是一个著名的古老问题,也可以用来考察学生的数学思维能力。
它被认为是一个古老又怪异的数学题目,有几种不同的解法,下面就详细介绍五种解题方法:
一、直接算法:
这是最常用的解题方法,即直接找出兔子与鸡的个数,用数学方法计算出来最精准的答案。
需要用到兔子加鸡等于总数,鸡的脚数也等于总数的概念。
二、迭代算法:
迭代算法是一种重复应用重复运算结果,以解决问题的解法,也就是说,先根据问题给出一个初始猜想,然后根据当前猜想推出下一个猜想,以此类推,直至找出最优解。
三、动态规划法:
动态规划法是根据问题求解步骤,它的特点是分析问题求解过程,建立模型,然后用模型解决问题,通过建立正确的递推关系,把复杂问题分解成一个个小问题,从而达到解决复杂问题的目的。
四、回溯法:
通过后向查找的方式,不断尝试可行的解决方案,通过回溯可以快速求出满足一定要求的解,但是这种方法如果不能提前给出限制条件,就会产生大量的岔路,影响解题效率。
五、枚举法:
枚举法的思想是将问题的所有可能情况一一枚举出来,然后判断
哪个解符合要求,从而找出最佳解。
枚举法的优点是简单易行,但是由于枚举出来的可能解太多,难以确定哪个解是最佳解,因此需要对可能的解进行优化,以节省解题时间。
鸡兔同笼13种解题方法
鸡兔同笼13种解题方法鸡兔同笼问题是一类经典的数学问题,常见于初中数学题目中。
这个问题的基本思路是通过解方程组来求解鸡和兔子的数量。
在本文中,将介绍13种不同的解题方法,包括逆向思维、代数法、图形法等多种方法,帮助读者更好地理解和掌握这一问题。
一、逆向思维法逆向思维法是一种比较简单易懂的方法,其基本思路是先确定总数量,再确定其中一个物品的数量,最后计算出另一个物品的数量。
1. 假设笼子里有13只动物,则鸡和兔子的总数量为13。
2. 假设有x只鸡,则有13-x只兔子。
3. 根据题目所给条件“总腿数为32”,得到方程式2x+4(13-x)=32。
4. 解方程得到x=6,则笼子里有6只鸡和7只兔子。
二、代数法代数法是一种常用的解题方法,其基本思路是通过设定未知量来建立方程组,并通过求解方程组来得到答案。
1. 设鸡和兔子的数量分别为x和y,则有方程组:x+y=132x+4y=322. 通过求解方程组得到x=6,y=7,则笼子里有6只鸡和7只兔子。
三、图形法图形法是一种直观易懂的方法,其基本思路是通过画图来解决问题。
1. 在平面直角坐标系中,设鸡和兔子的数量分别为x和y,则可以用一条直线表示鸡和兔子的总数量为13。
2. 根据题目所给条件“总腿数为32”,可以得到另一条直线表示鸡和兔子的总腿数为32。
3. 通过求解两条直线的交点,即可得到笼子里有6只鸡和7只兔子。
四、枚举法枚举法是一种简单易行的方法,其基本思路是通过列举所有可能情况来找到符合条件的答案。
1. 从1到12枚举鸡的数量x。
2. 根据题目所给条件“总腿数为32”,计算出相应的兔子数量y。
3. 如果x+y=13,则找到符合条件的答案。
五、分段函数法分段函数法是一种利用函数性质解题的方法,其基本思路是将问题拆分成多个部分,并建立相应的函数关系式来求解问题。
1. 假设笼子里有x只鸡,则有13-x只兔子。
2. 根据题目所给条件“总腿数为32”,可以得到下列函数关系式: f(x)=2x+4(13-x)3. 通过求解f(x)=32的解,即可得到笼子里有6只鸡和7只兔子。
鸡兔同笼问题几种不同解法
鸡兔同笼问题几种不一样的解法一、鸡兔同笼问题例 1 笼中有若干只鸡和兔,它们共有 50 个头和 140 只脚,问鸡兔各有多少只解法 1 假设法假设一个未知数是已知的,比方假设 50 个头全部是兔,则共有脚( 4×50=) 200 (只),这与题中已知 140 只不符,多出( 200-140=)60(只),多的原由是鸡当兔后每只鸡多算了 2 只脚,所以鸡的只数是( 60÷2=)30(只),则兔的只数为( 50-30 =) 20(只)。
这类解法,思路清楚,但较复杂,不便操作。
能不可以形象地画个图呢让我们试一试。
解法 2 图形法从图中看 ACDF的面积= 4×50=200(只脚),比实质多出GHEF的面积= 200-140 =60(只脚),AB=GH=60÷ 2=30(只鸡),BC=AC-AB=50-30= 20(只兔)解法 2 比解法 1 高级,算理是相同的。
这里答案是图上算出的,明显这两种解法都要用纸和笔。
不用纸和笔一定是用口诀或易记的公式,这是老公公的传家宝。
解法 3 公式法老公公讲:只要用哨子一吹,并喊一声口令:“全体肃立”。
这时每只鸡呈金鸡独立之状,每只兔呈玉兔拜月状,着地的脚数之和有( 140÷2=) 70(只),此中鸡的头数与脚数相等,因为每只兔的脚比头数多 1,所以兔的头数为( 70-50=)20(个),即兔有 20 只,则鸡有( 50-20=) 30(只)。
这个故事实质上老公公用了以下的公式。
脚数和÷ 2- 头数和 =兔子数。
小孙子们听了兴趣为之大增,纷纷叫老公公再出几道题。
老公公又出了(1) 30 个头, 80 只脚。
(兔 10,鸡 20)。
(2) 100 只脚, 40 个头。
(兔 10,鸡 30)。
(3) 80 个头, 200 只脚。
(兔 20,鸡 60)小孙子们个个都快乐地答出来了。
这个公式简洁好用,它是祖代传下来的还是老公公想出来的呢我们中华文化广博精湛,这两种可能性都是有的。
鸡兔同笼问题几种不同的解法
鸡兔同笼问题几种不同的解法鸡兔同笼问题是中国古代著名的数学趣题,也是小学数学中常见的一类应用题。
它的表述通常是:在一个笼子里,有鸡和兔若干只,从上面数有若干个头,从下面数有若干只脚,求鸡和兔各有多少只。
下面我们来介绍几种常见的解法。
解法一:假设法假设全是鸡,那么腿的总数就会比实际的腿数少。
因为每只兔子有4 条腿,而每只鸡有 2 条腿,所以每把一只鸡换成一只兔子,腿的总数就会增加 2 条。
比如,笼子里有 35 个头,94 条腿。
假设全是鸡,那么腿的总数就是 35×2 = 70 条。
但实际有 94 条腿,少了 94 70 = 24 条腿。
这是因为把兔子当成鸡来算了,每把一只兔子当成鸡,就少算 2 条腿,所以兔子的数量就是 24÷2 = 12 只。
鸡的数量就是 35 12 = 23 只。
同样,如果假设全是兔子,那么腿的总数就会比实际的腿数多。
因为每把一只鸡当成兔子,腿的总数就会多算 2 条,所以多出来的腿数除以 2 就是鸡的数量。
解法二:方程法我们可以设鸡的数量为 x 只,兔的数量为 y 只。
根据头的数量,我们可以得到方程 x + y =总头数。
再根据腿的数量,又可以得到方程 2x + 4y =总腿数。
然后联立这两个方程,就可以解出 x 和 y 的值。
比如还是前面的例子,有 35 个头,94 条腿。
我们设鸡有 x 只,兔有 y 只,就可以列出方程组:x + y = 352x + 4y = 94由第一个方程可得 x = 35 y,将其代入第二个方程:2(35 y) + 4y = 9470 2y + 4y = 942y = 24y = 12则 x = 35 12 = 23所以鸡有 23 只,兔有 12 只。
解法三:抬腿法这是一种比较有趣的方法。
让笼子里的鸡和兔都抬起两条腿,此时鸡就坐在地上了,兔子还有两条腿站立。
因为总共抬起的腿数是头数的两倍,所以剩下的腿数就是兔子的腿数,而且此时剩下的腿都是兔子的,每只兔子还剩两条腿。
鸡兔同笼问题的13种解决方法
鸡兔同笼问题的13种解决方法鸡兔同笼问题是一道经典的数学问题,许多人在学习数学的初级阶段都会遇到。
此问题的目标是根据给定的头数和脚数,计算出鸡和兔的数量。
在本文中,我们将介绍鸡兔同笼问题的13种解决方法,从简单到复杂,帮助你更全面地理解这个问题。
方法一:穷举法最简单的方法是使用穷举法来解决鸡兔同笼问题。
我们从给定的头数和脚数开始,逐个尝试鸡和兔的组合数量,直到找到满足条件的解。
这种方法的缺点是计算量大,尤其是当给定的头数和脚数较大时。
方法二:代数方程法我们可以将鸡和兔的数量表示为变量,使用代数方程组来解决鸡兔同笼问题。
假设鸡的数量为x,兔的数量为y,根据头数和脚数的关系可以得到两个方程:x + y = 头数,2x + 4y = 脚数。
通过解这个方程组,我们可以得到鸡和兔的具体数量。
方法三:二次方程法如果给定的头数和脚数是完全平方数,我们可以使用二次方程来解决鸡兔同笼问题。
首先,我们假设鸡的数量为x,兔的数量为y,根据头数和脚数的关系可以得到两个方程:x + y = 头数,2x + 4y = 脚数。
将第一个方程代入第二个方程,得到一个只包含鸡或兔数量的二次方程。
通过解这个二次方程,我们可以得到鸡和兔的具体数量。
方法四:列方程法我们可以通过列方程的方法来解决鸡兔同笼问题。
假设鸡的数量为x,兔的数量为y,根据头数和脚数的关系可以得到两个方程:x + y = 头数,2x + 4y = 脚数。
通过解这个方程组,我们可以得到鸡和兔的具体数量。
方法五:二进制法我们可以使用二进制法来解决鸡兔同笼问题。
将鸡和兔的数量用二进制表示,每个头对应一个二进制位,每个脚对应一个二进制位。
通过遍历所有可能的二进制组合,找到满足条件的解。
这种方法适用于给定的头数和脚数较小的情况。
方法六:因式分解法如果给定的头数和脚数是正整数且具有公因式,我们可以使用因式分解法来解决鸡兔同笼问题。
将头数和脚数分别进行因式分解,找到它们的公因式,然后通过计算得到鸡和兔的具体数量。
鸡兔同笼的解题方法
鸡兔同笼的解题方法鸡兔同笼问题,是我国古代著名趣题之一,大约在 1500 年前的《孙子算经》中就有记载。
这个问题看似简单,却蕴含着丰富的数学思维和解题技巧。
接下来,咱们就一起探讨一下鸡兔同笼问题的各种解题方法。
咱们先来看一个经典的鸡兔同笼问题:笼子里有若干只鸡和兔,从上面数,有 35 个头,从下面数,有 94 只脚。
问鸡和兔各有多少只?方法一:假设法假设全是鸡,那么一共有脚 2×35 = 70 只。
但实际上有 94 只脚,多出来的脚就是因为把兔当成鸡来算少算的。
每把一只兔当成鸡,就会少算 4 2 = 2 只脚。
总共少算了 94 70 = 24 只脚,所以兔的数量就是 24÷2 = 12 只。
鸡的数量就是 35 12 = 23 只。
假设全是兔,那么一共有脚 4×35 = 140 只。
实际上只有 94 只脚,多出来的就是因为把鸡当成兔多算的。
每把一只鸡当成兔,就会多算 4 2 = 2 只脚。
总共多算了 140 94 = 46 只脚,所以鸡的数量就是 46÷2 = 23 只。
兔的数量就是 35 23 = 12 只。
方法二:方程法咱们设鸡有 x 只,兔有 y 只。
因为鸡和兔一共有 35 个头,所以 x + y = 35。
又因为鸡有 2 只脚,兔有 4 只脚,一共有 94 只脚,所以2x + 4y = 94。
由第一个方程可得 x = 35 y,把它代入第二个方程,得到 2×(35 y) + 4y = 94,70 2y + 4y = 94,2y = 24,y = 12。
再把 y = 12 代入 x = 35 y,得到 x = 23。
方法三:抬腿法让鸡和兔都抬起两只脚,此时笼子里一共少了 2×35 = 70 只脚。
剩下的脚都是兔的,而且每只兔还剩下 2 只脚,所以兔的数量就是(94 70)÷2 = 12 只,鸡的数量就是 35 12 = 23 只。
鸡兔同笼”的13种解法
一只鸡变成一只兔子腿增加2条,10÷2=5只
即兔子为5只
鸡为14-5=9只
6 假设法2
假设全是兔
则有14×4=56条腿 比实际多56-38=18只
一只兔子变成一只鸡,腿减少2条,18÷2=9只
即鸡为9只,兔子为14 - 9=5只
7 特异功能法1
关键在于通过增加鸡的腿数,进而达到和兔子腿数相同 鸡有2条腿,比兔子少2条腿 但鸡有2只翅膀,兔子却没有 假设鸡翅变鸡腿,鸡也有4条腿
所以
兔的只数是10÷2=5只 鸡则是14-5=9只
12 方程法1
设
鸡的数量为x只
则
兔子有(14-x)只
列
2x+4(14-x)=38
解
x=9
答
鸡9只,兔子14-9=5只
13 方程法2
设
兔子的数量为x只
则
鸡有(14-x)只
列
4x+2(14-x)=38
解
x=5
答
兔子有5只,鸡有14-5=9只
腿的总数:14×4=56条(实际上只有38条,多出的是鸡翅) 鸡翅总数=56-38=18只 鸡有18÷2=9只,兔就是14-9=5只
8 特异功能法2
关键是使鸡兔的的腿数都减少两条
鸡飞 假设鸡兔都具有“ 特异功能 ”
兔立
站立在地上的全是兔的腿数38-14×2=10条
因此
兔:10÷2=5只 鸡有14-5=9只
两前腿抱胸 两后腿直立
9 特异功能法3
假设孙悟空施法
令每只兔子
又长出一个头来 两头四脚中间劈开 变为2个“半兔”
半兔与鸡都是一头两脚
38÷2=19个头(实际只有14个头)
兔:19-14=5(多出的头是兔子的)
小学六年级鸡兔同笼问题解法
小学六年级鸡兔同笼问题解法鸡兔同笼是中国古代的数学名题之一。
书中曾这样叙述:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。
问笼中各有几只鸡和兔?鸡兔同笼这道题,有这样几种解法:1、假设法假设全是鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)2、方程法一元一次方程解:设兔有x只,则鸡有(35-x)只。
4x+2(35-x)=944x+70-2x=942x=94-702x=24x=1235-12=23(只)或解:设鸡有x只,则兔有(35-x)只。
2x+4(35-x)=942x+140-4x=942x=46x=2335-23=12(只)答:兔子有12只,鸡有23只。
注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。
二元一次方程解:设鸡有x只,兔有y只。
x+y=352x+4y=94(x+y=35)×2=2x+2y=70(2x+2y=70)-(2x+4y=94)=(2y=24)y=12把y=12代入(x+y=35) x+12=35x=35-12(只)x=23(只)答:兔子有12只,鸡有23只3、抬腿法法一假如让鸡抬起一只脚,兔子抬起2只脚,还有94除以2=47只脚。
笼子里的兔就比鸡的头数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。
法二假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚,这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。
鸡兔同笼的多种解法
鸡兔同笼的多种解法一、假设法1. 假设全是鸡- 设鸡和兔共有m个头,n只脚。
如果全是鸡,那么脚的总数应该是2m只。
- 但实际有n只脚,多出来的脚就是兔子比鸡多的脚。
每只兔比每只鸡多4 - 2=2只脚。
- 兔的数量=(实际脚数 - 假设全是鸡的脚数)div(每只兔比鸡多的脚数),即兔的数量=(n - 2m)div2。
- 鸡的数量=m-(n - 2m)div2。
2. 假设全是兔- 如果全是兔,脚的总数应该是4m只。
- 实际有n只脚,少的脚就是鸡比兔少的脚。
每只鸡比每只兔少4 - 2 = 2只脚。
- 鸡的数量=(假设全是兔的脚数-实际脚数)div(每只兔比鸡多的脚数),即鸡的数量=(4m - n)div2。
- 兔的数量=m-(4m - n)div2。
二、方程法1. 一元一次方程- 设鸡有x只,因为鸡和兔共有m个头,所以兔有(m - x)只。
- 根据鸡兔脚数总和为n,可列方程2x+4(m - x)=n。
- 展开方程得2x + 4m-4x=n,移项得2x=4m - n,解得x=(4m - n)/(2),这就是鸡的数量,兔的数量为m - x=m-(4m - n)/(2)。
2. 二元一次方程- 设鸡有x只,兔有y只。
- 根据头的总数可得x + y=m,根据脚的总数可得2x+4y=n。
- 由x + y=m可得x=m - y,将其代入2x + 4y=n中,得到2(m -y)+4y=n,展开得2m-2y+4y=n,即2y=n - 2m,解得y=(n - 2m)/(2)。
- 再把y=(n - 2m)/(2)代入x=m - y,得x=m-(n - 2m)/(2)。
三、抬腿法(古人的解法)1. 鸡兔同时抬起两只脚- 让鸡和兔都抬起两只脚,此时共抬起2m只脚。
- 那么剩下的脚n-2m只,这些脚都是兔子的,因为鸡此时已经没有脚在地上了,每只兔还剩下4 - 2 = 2只脚在地上。
- 所以兔的数量=(n - 2m)div2,鸡的数量=m-(n - 2m)div2。
鸡兔同笼的四种方法
鸡兔同笼问题是一种经典的数学问题,通常涉及两个未知数,需要通过建立方程组来解决。
以下是解决鸡兔同笼问题的四种常见方法:方法一:代数法
1. 设鸡的数量为x,兔的数量为y。
2. 根据题目条件,列出两个方程,例如:x + y = 总数,2x + 4y = 总腿数。
3. 解这个方程组,得到x和y的值。
方法二:列表法
1. 列出所有可能的鸡和兔的组合,使得总数和总腿数满足题目条件。
2. 找到符合两个条件的唯一组合,即为答案。
方法三:画图法
1. 在坐标系中画出两条直线,分别代表鸡和兔的数量。
2. 通过交点找到符合题目条件的点,这个点的坐标就是鸡和兔的数量。
方法四:方程组法
1. 使用两个未知数建立方程组,如x + y = a和2x + 4y = b。
2. 解这个方程组,得到x和y的值。
以上四种方法中,代数法和方程组法是较为常用的,因为它们可以直接通过数学运算得到答案。
列表法和画图法更直观,但在处理较大数值时较为繁琐。
在实际应用中,可以根据具体情况选择合适的方法。
鸡兔同笼的五种方法
鸡兔同笼的五种方法
鸡兔同笼问题是一个经典的数学逻辑问题,通常涉及到两种动物的数量及其腿数,需要通过解方程组来求解。
以下是五种解决鸡兔同笼问题的方法:
1. 列方程法:设鸡和兔的数量分别为x和y,根据题目所给出的条件列方程组,例如2x+4y=20和x+y=8,然后解方程求出x和y 的值。
2. 矩阵法:将方程组转化成矩阵形式,然后使用矩阵运算求解,这种方法适用于多元线性方程组的求解。
3. 图像法:在平面直角坐标系中画出鸡和兔的数量的图像,然后根据题目所给的条件确定交点的位置,从而求出鸡和兔的数量。
4. 枚举法:根据题目所给的总数量和总腿数,枚举不同的鸡和兔的组合方式,判断哪一种组合方式符合条件。
5. 巧用因式分解法:根据题目所给的总数量和总腿数,可以巧妙地利用因式分解的方法推导出鸡和兔的数量,这种方法适用于特定情况下的问题。
以上是解决鸡兔同笼问题的五种方法,不同的方法适用于不同的情况和水平的考生,可以选择最适合自己的方法进行求解。
鸡兔同笼问题4种解题方法
鸡兔同笼问题4种解题方法鸡兔同笼解题方法:1,假设法设全是鸡,则兔的只数为:(总头数×2--总脚数)÷2设全是兔,则鸡的只数为:(总头数x4--总脚数)÷2总只数--鸡只数=兔只数基本原理:总头数x2如果=总脚数,说明全是鸡,如果<总脚数,说明其中有兔,每少2只脚就有1只兔。
总头数×4=总脚数,说明全是兔,如果>总脚数,说明其中有鸡,每多2只就有1只鸡。
2,公式法:总脚数÷2--总头数=兔只数总只数--兔只数=鸡只数基本原理:原来的头总量是鸡头和兔头的总量,脚总量也是鸡脚和兔脚的总量。
用脚总数÷2是按全是鸡来计算的,如果商=总头数,说明全是鸡,如果商>总头数,说明其中有兔。
每多1个头就是1只兔。
因为1只兔有4只脚,前面÷的是2,1只兔就变成2个头,也就多了1个头,所以总脚数÷2--总头数的差是多少就有多少只兔。
3,排除法:(脚总量--总头数x2)÷2=兔只数:总只数--兔只数=鸡只数基本原理:先让每只鸡兔各抬起2只脚,这时鸡无剩下的脚,排除鸡后剩下的脚都是兔的。
前面抬起2只脚,现在每只兔还剩下2只脚。
所以用总脚数--总头数×2的差再÷2就是兔的只数。
4,分组法(1)鸡兔共有100只,鸡脚比兔脚多20只,问鸡兔各有多少只?20÷2=10只100--10=90只兔:90÷(1+2)=30只100--30=70只验算:70×2--30×4=20(2)鸡兔共有90只,鸡的脚比兔的脚少60只,问有鸡兔各几只?60÷4=15只90--15=75只免:75÷(1+2)=25只鸡:75--25=50只验算:50×2=100(25+15)x4=160160--100=60只5,方程法可用一元一次和二元一次方程直接解题。
“鸡兔同笼问题”的4种理解、解答方法
“鸡兔同笼问题”的4种理解方法题目:有若干只鸡和兔在同个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。
求笼中各有几只鸡和兔?01♪解法1站队法让所有的鸡和兔子都列队站好,鸡和兔子都听哨子指挥。
那么,吹一声哨子让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)。
那么再吹一声哨子,然后再抬起一只脚,这时候鸡两只脚都抬起来就一屁股坐地上了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只);鸡:35-12=23(只)02♪解法2松绑法由于兔子的脚比鸡的脚多出了两个,因此把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚。
那么,兔子就成了2只脚。
则捆绑后鸡脚和兔脚的总数:35×2=70(只)比题中所说的94只要少:94-70=24(只)。
现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,不断地一个一个地松开绳子,总的脚数则不断地增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只)从而鸡数:35-12=23(只)03♪解法3假设替换法实际上替代法的做题步骤跟上述松绑法相似,只不过是换种方式进行理解。
假设笼子里全是鸡,则应有脚70只。
而实际上多出的部分就是兔子替换了鸡所形成。
每一只兔子替代鸡,则增加每只兔脚减去每只鸡脚的数量。
兔子数=(实际脚数-每只鸡脚数*鸡兔总数)/(每只兔脚数-每只鸡脚数)与前相似,假设笼子里全是兔,则应有脚120只。
而实际上不足的部分就是鸡替换了兔子所形成。
每一只鸡替代兔子,则减少每只兔脚减去每只鸡脚的数量,即2只。
将上述数值代入方法(1)可知,兔子数为12只,再求出鸡数为23只。
将上述数值代入方法(2)可知,鸡数为23只,再求出兔子数为12只。
由计算值可知,两种替代方法得出的答案完全一致,只是顺序不同。
由替代法的顺序不同可知,求鸡设兔,求兔设鸡,可以根据题目问题进行假设以减少计算步骤。
鸡兔同笼的五种解法
鸡兔同笼的五种解法鸡兔同笼问题是一个经典的数学问题。
在这个问题里,给定了笼子里的动物的总数和腿的总数,需要求出鸡和兔的数量。
这个问题可以用多种方法解决。
在这里,我们将介绍五种解题方法。
方法一:列方程假设鸡的数量是x,兔的数量是y,根据题意,我们可以得到以下方程组:x + y = 总数2x + 4y = 腿的总数根据这个方程组,我们可以解出x和y的值,从而得到鸡和兔的数量。
方法二:画图法我们可以画出一张鸡和兔的图,用数字表示每只鸡和兔的数量和腿的数量,然后用这张图来解题。
这种方法比较直观,适合孩子或初学者使用。
方法三:数学归纳法我们可以观察鸡兔同笼问题的特征,发现每增加一只动物,会增加两条腿。
因此,我们可以将问题转化为:有n 个动物,它们共有m条腿,求鸡和兔的数量。
然后使用数学归纳法来解决这个问题。
方法四:递归算法我们可以将问题分解为小问题,再利用递归算法来解决。
具体地,假设有n只动物,其中m只是鸡,n-m只是兔。
如果这些动物共有k条腿,我们可以先考虑只有一只动物的情况,然后逐步增加动物的数量,直到n只为止。
方法五:运用数学知识我们可以运用一些数学知识,如组合数学和二元一次方程等,来解决这个问题。
具体地,我们可以用组合数学的方法计算出在给定腿的数量下,鸡的数量和兔的数量的所有可能组合,然后用二元一次方程来验证哪种组合符合题意。
以上五种方法各有特点。
对于初学者来说,列方程和画图法比较易懂;对于高中学生或数学专业学生来说,数学归纳法和递归算法可能更加适合;而对于数学专业研究生或数学爱好者来说,运用数学知识的方法可能更为有趣和有挑战性。
不管采用哪种方法,解决鸡兔同笼问题都可以让人在玩乐中学习,锻炼数学思维能力。
“鸡兔同笼问题”的4种理解方法
“鸡兔同笼问题”的4种理解方法▶题目:有若干只鸡和兔在同个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。
求笼中各有几只鸡和兔?解法1 站队法让所有的鸡和兔子都列队站好,鸡和兔子都听哨子指挥。
那么,吹一声哨子让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)。
那么再吹一声哨子,然后再抬起一只脚,这时候鸡两只脚都抬起来就一屁股坐地上了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只);鸡:35-12=23(只)解法2 松绑法由于兔子的脚比鸡的脚多出了两个,因此把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚。
那么,兔子就成了2只脚。
则捆绑后鸡脚和兔脚的总数:35×2=70(只)比题中所说的94只要少:94-70=24(只)。
现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,不断地一个一个地松开绳子,总的脚数则不断地增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只)从而鸡数:35-12=23(只)图片解法3 假设替换法实际上替代法的做题步骤跟上述松绑法相似,只不过是换种方式进行理解。
假设笼子里全是鸡,则应有脚70只。
而实际上多出的部分就是兔子替换了鸡所形成。
每一只兔子替代鸡,则增加每只兔脚减去每只鸡脚的数量。
兔子数=(实际脚数-每只鸡脚数*鸡兔总数)/(每只兔脚数-每只鸡脚数)与前相似,假设笼子里全是兔,则应有脚120只。
而实际上不足的部分就是鸡替换了兔子所形成。
每一只鸡替代兔子,则减少每只兔脚减去每只鸡脚的数量,即2只。
鸡数=(每只兔脚数*鸡兔总数-实际脚数)/(每只兔脚数-每只鸡脚数)将上述数值代入方法(1)可知,兔子数为12只,再求出鸡数为23只。
将上述数值代入方法(2)可知,鸡数为23只,再求出兔子数为12只。
由计算值可知,两种替代方法得出的答案完全一致,只是顺序不同。
鸡兔同笼的十种解法
鸡兔同笼的十种解法鸡兔同笼是一道经典的数学问题,它的解法有很多种。
在这篇文章中,我们将介绍十种不同的解法。
解法一:代数法设鸡的数量为x,兔的数量为y,根据题意可得以下两个方程:x + y = n2x + 4y = m其中n表示笼子里的总数量,m表示笼子里的总腿数。
解这个方程组,即可得到鸡和兔的数量。
解法二:图像法将鸡和兔分别用不同的图形表示出来,如圆形和三角形。
然后将它们放在同一个笼子里,根据题意可得到它们的数量。
解法三:枚举法从1开始枚举鸡和兔的数量,直到找到符合题意的解为止。
解法四:递推法根据题意,可以得到以下递推公式:f(n) = f(n-1) + f(n-2)其中f(n)表示笼子里的总数量,f(n-1)表示上一个状态的数量,f(n-2)表示上上个状态的数量。
通过递推,即可得到鸡和兔的数量。
解法五:二分法将鸡和兔的数量分别设为x和y,然后用二分法逐步逼近符合题意的解。
解法六:贪心法先假设所有的动物都是兔子,然后逐步将一些兔子变成鸡,直到符合题意为止。
解法七:暴力法将所有可能的情况都列出来,然后逐一验证,直到找到符合题意的解为止。
解法八:分治法将笼子分成两个部分,分别放鸡和兔,然后逐步逼近符合题意的解。
解法九:随机法随机生成一些鸡和兔的数量,然后逐步逼近符合题意的解。
解法十:遗传算法将鸡和兔的数量看作基因,然后用遗传算法逐步逼近符合题意的解。
以上就是十种不同的鸡兔同笼问题的解法。
每种解法都有其独特的优点和适用范围,我们可以根据具体情况选择合适的解法来解决问题。
鸡兔同笼问题的几种解法
3、方程法
例题同上例。今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡 脚与兔脚共94只。问鸡、兔各有多少只?
①一元一次方程
• 解:设兔有x只,则鸡有(35-x)只。
4x+2(35-x)=94
2、抬脚法 就是让我们列出表格,采用依次列举,逐步尝试的方法来解决这个问题
例:鸡兔同笼共12个头,32条腿
2、分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。
这只样不•, 过就这例将种买说。文法化,今用我品们有问理题解鸡转起换来、成更鸡容兔兔易同而共笼已问居题了一。 笼,已知鸡头和兔头共35个,鸡脚与兔
二、鸡兔同笼问题常用的解法 • 1、假设法 • 2、抬脚法 • 3、方程法 • 4、列表法
1、假设法
例。今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚 共94只。问鸡、兔各有多少只?
解析:已知情况 鸡脚 2
鸡兔共35只
兔脚 4
鸡兔总脚数94只
①假设笼子里全是鸡:那么总脚数应为 35×2=70只 对比实际94 只的总脚数 假设的情况比实际情况少了 94-70=24只
解析: • 先用逐一列表的方式,计算出一只鸡11只兔的腿数,和2只鸡
10只兔的腿数,为第三步做准备。 • 通过第一、二步的计算,我们发现了兔子只数减少一只时,腿
=20(人)。
今但有是鸡 此、种头兔方共法数居过一程×笼太,过2已笨只知拙鸡、,头繁和琐(兔,头数3共字5越3×5大个越,2复鸡=杂脚7与0兔只脚共9)4只。由于鸡只有2只脚,所以笼子里
鸡兔同笼的五种方法
鸡兔同笼的五种方法介绍鸡兔同笼,顾名思义就是指将鸡和兔子放在同一个笼子中。
在这个任务中,我们将探讨解决鸡兔同笼问题的五种方法。
这个问题涉及到数学知识和逻辑思维,通过研究这些方法,我们可以提高自己的解题能力和思维灵活性。
方法一:暴力解法1.假设鸡的数量为x,兔子的数量为y,总共有z只动物。
2.使用两层循环,枚举所有可能的鸡和兔子的数量组合。
3.对于每一种组合,判断是否满足以下条件:x + y = z,2x + 4y = z。
如果满足条件,输出结果。
4.当找到一种满足条件的组合后,即可停止循环,得到问题的解。
方法二:二元一次方程求解1.由鸡和兔子的数量可得到两个方程:x + y = z,2x + 4y = z。
2.将第一个方程变形为x = z - y,代入第二个方程得到2(z - y) + 4y = z。
3.化简方程得到z = 2y,进一步代入得到x = z - y = 2y - y = y。
4.因此,鸡的数量等于兔子的数量,鸡兔同笼时,动物的数量应为偶数。
方法三:因数分解法1.设鸡的数量为x,兔子的数量为y,总共有z只动物。
2.将总数量z进行因数分解,得到两个因数a和b,满足z = a * b。
3.根据鸡和兔子的腿数算出总的腿数为2x + 4y。
4.将总腿数除以a,得到商c和余数d,即2x + 4y = a * c + d,其中d为0或2。
5.如果d = 0,那么总的腿数可以被a整除,将a代入方程可以得到x的值。
6.如果d = 2,那么总的腿数除以2得到的商再减去b,将得到的差代入方程可以得到x的值。
7.根据得到的x值,即可求得y的值。
方法四:二元一次方程的图像法1.将两个方程化为标准形式,即x + y = z和2x + 4y = z。
2.将方程右侧的常数项去掉,得到x + y = 0和2x + 4y = 0。
3.画出这两个方程所表示的直线的图像。
4.这两个直线的交点表示满足方程组的解。
如果交点在整数点上,则表示鸡和兔子的数量为整数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔同笼问题几种不同的解法
一、鸡兔同笼问题
例1 笼中有若干只鸡和兔,它们共有50个头和140只脚,问鸡兔各有多少只?解法1 假设法
假设一个未知数是已知的,比如假定50个头全是兔,则共有脚(4×50=)200(只),这与题中已知140只不符,多出(200-140=)60(只),多的原因是鸡当兔后每只鸡多算了2只脚,所以鸡的只数是(60÷2=)30(只),则兔的只数为(50-30=)20(只)。
这种解法,思路清晰,但较复杂,不便操作。
能不能形象地画个图呢?让我们试试。
解法2 图形法
从图中看ACDF的面积=4×50=200(只脚),比实际多出GHEF 的面积=200-140=60(只脚),AB=GH=60÷2=30(只鸡),BC=AC-AB=50-30=20(只兔)
解法2比解法1高级,算理是一样的。
这里答案是图上算出的,显然这两种解法都要用纸和笔。
不用纸和笔肯定是用口诀或易记的公式,这是老公公的传家宝。
解法3 公式法
老公公讲:只要用哨子一吹,并喊一声口令:“全体肃立”。
这时每只鸡呈金鸡独立之状,每只兔呈玉兔拜月状,着地的脚数之和有(140÷2=)70(只),其中鸡的头数与脚数相等,由于每只兔的脚比头数多1,因此兔的头数为(70-50=)20(个),即兔有20只,则鸡有(50-20=)30(只)。
这个故事实际上老公公用了如下的公式。
脚数和÷2-头数和=兔子数。
小孙子们听了兴趣为之大增,纷纷叫老公公再出几道题。
老公公又出了
(1)30个头,80只脚……。
(兔10,鸡20)。
(2)100只脚,40个头……。
(兔10,鸡30)。
(3)80个头,200只脚……。
(兔20,鸡60)
小孙子们个个都愉快地答出来了。
这个公式简洁好用,它是祖代传下来的还是老公公想出来的呢?我们中华文化博大精深,这两种可能性都是有的。
这个公式是碰巧做对还是符合算理的呢?这是十分重要的。
数学家高斯说过:“数学中许多方法与定理是靠归纳发现的,证明只是补行的手续而已。
”现在我们就来补行这个手续。
2鸡头=鸡脚。
4兔头=兔脚。
得:兔脚+鸡脚=2鸡头+4兔头
=2(鸡头+2兔头)。
这就证明了老公公归纳的公式。
说到鸡兔同笼问题,常常大家精神就紧张起来,以为是难题来了。
现在掌握了规
律其实不难,所以凡事都应去摸索规律,照规律办事。
鸡兔同笼问题在民间是当故事讲的,有没有实际价值呢?我们再来看下面的问题。
二、邮票问题
例2 买3角与5角的邮票共24张,总值9.6元,问两种邮票各买了几张?
解这道题当然可以用假设法和图形法,但用什么样的公式呢?美国数学教育家C·波利亚说:“……不论初等数学、高等数学中的发现……特别是不能没有类比。
”用类比很容易发现这个公式是:邮
设3角邮票为A1张,价值A2角;
5角邮票为B1张,价值B2角。
说明数量关系与鸡兔同笼问题相一致。
又3A1=A2,5B1=B2。
得:A2+B2=3A1+5B1,
这就与例1的公式相类似,很容易将这个公式翻译成语言陈述,大家试
(24-12=)12(张)。
如果你认为这个公式不太好记,就不妨用图来解。
(24×5-96)÷2=12(张、3角)24-12=12
所以解题方法的选用常常是根据具体情况而定的。
再试试
(1)6角与8角的邮票共18张,总价12.4元,问两种邮票各几张?(10,8)(2)3角与8角的邮票共100张,总价50元,问两种邮票各几张?(60,40)三、植树问题
例3 一次植树活动,规定大树每人种2棵,小树每人种4棵,全班50人种树140棵,问种这两种树的各有多少人?
这道题可用例1的公式很快解得种大树的有30人,种小树的有20人。
四、运输(工作)问题
例4 有小卡车50辆,大卡车每辆运4吨,小卡车每辆运2吨,共运140吨化肥,问大小卡车各几辆?
难道不是题目看完答案就出来了吗?
五、农药问题
例5 甲种农药每千克兑水20千克,乙种农药每千克兑水40千克,现为了提高药效,根据农科所意见,甲乙两种农药混合使用,已知两种农药共50千克,要配药水140千克,问甲、乙两种农药各需多少千克?
用公式解很简单(30,20),如果将这个公式交给农民,那么他们配起农药来就既方便又正确,你能想出这个公式是什么吗?
还会遇到许多许多的问题,它们的数量关系(应用题的本质)与鸡兔同笼问题相一致,都可以用鸡兔同笼问题的三种方法来解,这些问题我们将它们统称为鸡兔同笼问题。
相传大禹治水到黄河,发现一只神龟,背上驮了一张图叫河图(洛书)。
(左图),用阿拉伯数字表示就是右图,图中三条竖线、三条横线、二条对角线共八条线上三个数的和都是15,这样的图是怎样造出来的呢?其法一时失传了,于是有人用它来占卜、相风水,进入迷信状态。
后来数学家发现其原理是二进制,说明二进制是中国人最先发明的,近代根据二进制发明了计算机,所以有些基础科学的研究成果一时看起来无多大用途,以后渐渐会发现有大用途。