鸡兔同笼问题五种基本公式和例题讲解

合集下载

鸡兔同笼问题五种基本公式和例题讲解最全面(精华版)

鸡兔同笼问题五种基本公式和例题讲解最全面(精华版)

鸡兔同笼问题五种基本公式与例题讲解【鸡兔问题公式】(1)已知总头数与总脚数,求鸡,兔各多少:(总脚数- 每只鸡地脚数×总头数)÷(每只兔地脚数- 每只鸡地脚数)=兔数;总头数- 兔数=鸡数;或者为(每只兔脚数×总头数- 总脚数)÷(每只兔脚数- 每只鸡脚数)=鸡数;总头数- 鸡数=兔数;例如,“有鸡,兔共36只,它们共有脚100只,鸡,兔各为多少只?”解一(100- 2×36)÷(4-2 )=14(只)兔;36-14=22(只)鸡;解二(4×36-100 )÷(4-2 )=22(只)鸡;36-22=14(只)兔;(答略)(2)已知总头数与鸡兔脚数地差数,当鸡地总脚数比兔地总脚数多时,可用公式(每只鸡脚数×总头数- 脚数之差)÷(每只鸡地脚数+每只兔地脚数)=兔数;总头数- 兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡地脚数+ 每只免地脚数)=鸡数;总头数- 鸡数=兔数;(例略)(3)已知总数与鸡兔脚数地差数,当兔地总脚数比鸡地总脚数多时,可用公式;(每只鸡地脚数×总头数+鸡兔脚数之差)÷(每只鸡地脚数+ 每只兔地脚数)=兔数;总头数- 兔数=鸡数;或(每只兔地脚数×总头数- 鸡兔脚数之差)÷(每只鸡地脚数+ 每只兔地脚数)=鸡数;总头数- 鸡数=兔数;(例略)(4)得失问题(鸡兔问题地推广题)地解法,可以用下面地公式:(1只合格品得分数×产品总数- 实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数;或者为总产品数- (每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+ 每只不合格品扣分数)=不合格品数;例如,“灯泡厂生产灯泡地工人,按得分地多少给工资;每生产一个合格品记4分,每生产一个不合格品不仅不记分,仍要扣除15分;某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525 )÷(4+15)=475÷19=25(个)解二1000- (15×1000+3525)÷(4+15)=1000- 18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破旧者不仅不给运费,仍需要赔成本××元;它地解法明显可套用上述公式;)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少地问题),可用下面地公式:〔(两次总脚数之与)÷(每只鸡兔脚数与)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之与)÷(每只鸡兔脚数之与)- (两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数;例如,“有一些鸡与兔,共有脚44只,如将鸡数与兔数互换,就共有脚52只;鸡兔各为多少只?”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)兔(答略)鸡兔同笼目录 1 总述 2 假设法 3 方程法一元一次方程二元一次方程4 抬腿法5 列表法6 详解7 具体解法基本问题特别算法习题8 鸡兔同笼公式1 总述鸡兔同笼为中国古代地数学名题之一;大约在1500年前,《孙子算经》中就记载了这个好玩地问题;书中为这样表达地:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话地意思为:有如干只鸡兔同在一个笼子里,从上面数,有35 个头,从下面数,有94 只脚;问笼中各有几只鸡与兔?算这个有个最简洁地算法;(总脚数-总头数×鸡地脚数)÷(兔地脚数-鸡地脚数)=兔地只数(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数说明:让兔子与鸡同时抬起两只脚,这样笼子里地脚就削减了头数×2 只,由于鸡只有 2 只脚,所以笼子里只剩下兔子地两只脚,再除以2 就为兔子数;虽然现实中没人鸡兔同笼;2 假设法假设全为鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)假设法(通俗)假设鸡与兔子都抬起一只脚,笼中站立地脚:94-35=59(只)然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,只剩下用两只脚站立地兔子,站立脚:59-35=2(4只)兔:24÷2=1(2只)鸡:35-12=23(只)3 方程法一元一次方程解:设兔有x 只,就鸡有(35-x)只;4x+2(35-x)=944x+70-2x=942x=94-702x=24x=1235-12=23(只)或解:设鸡有x 只,就兔有(35-x)只;2x+4(35-x)=942x+140-4x=942x=46x=2335-23=12(只)答:兔子有12 只,鸡有23 只;注:通常设方程时,挑选腿地只数多地动物,会在套用到其他类似鸡兔同笼地问题上,好算一些;二元一次方程解:设鸡有x 只,兔有y 只;x+y=352x+4y=94(x+y=35)×2=2x+2y=70(2x+2y=70)-(2x+4y=94)=(2y=24)y=12把y=12 代入(x+y=35)x+12=35x=35-12(只)x=23(只);答:兔子有12 只,鸡有23 只4 抬腿法法一假如让鸡抬起一只脚,兔子抬起 2 只脚,仍有94 除以2=47 只脚;笼子里地兔就比鸡地头数多1,这时,脚与头地总数之差47-35=12,就为兔子地只数;法二假如鸡与兔子都抬起两只脚,仍剩下94-35×2=24 只脚,这时鸡为屁股坐在地上,地上只有兔子地脚,而且每只兔子有两只脚在地上,所以有24÷2=12 只兔子,就有35-12=23 只鸡5 列表法腿数鸡(只数)兔(只数)6 详解中国古代《孙子算经》共三卷,成书大约在公元 5 世纪;这本书浅显易懂,有很多好玩地算术题,比如“鸡兔同笼”问题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?题目中给出雉兔共有35 只,假如把兔子地两只前脚用绳子捆起来,看作为一只脚,两只后脚也用绳子捆起来,看作为一只脚,那么,兔子就成了 2 只脚,即把兔子都先当作两只脚地鸡;鸡兔总地脚数为35×2=70(只),比题中所说地94 只要少94-70=24(只);现在,我们松开一只兔子脚上地绳子,总地脚数就会增加 2 只,即70+2=72(只),再松开一只兔子脚上地绳子,总地脚数又增加2,2,2,2 ,始终连续下去,直至增加24,因此兔子数:24÷2=12(只),从而鸡有35-12=23(只);我们来总结一下这道题地解题思路:假如先假设它们全为鸡,于为依据鸡兔地总数就可以算出在假设下共有几只脚,把这样得到地脚数与题中给出地脚数相比较,看看差多少,每差2 只脚就说明有 1 只兔,将所差地脚数除以2,就可以算出共有多少只兔;概括起来,解鸡兔同笼题地基本关系式为:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数);类似地,也可以假设全为兔子;我们也可以采纳列方程地方法:设兔子地数量为x,鸡地数量为y那么:x+y=35 那么4x+2y=94 这个算方程解出后得出:兔子有12 只,鸡有23 只;7 具体解法基本问题" 鸡兔同笼" 为一类出名地中国古算题;最早显现在《孙子算经》中.很多学校算术应用题都可以转化成这类问题,或者用解它地典型解法--" 假设法"来求解;因此很有必要学会它地解法与思路.例1 有如干只鸡与兔子,它们共有88 个头,244 只脚,鸡与兔各有多少只解:我们设想,每只鸡都为" 金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着;现在,地面上显现脚地总数地一半,·也就为244÷2=122(只).在122 这个数里,鸡地头数算了一次,兔子地头数相当于算了两次;因此从122 减去总头数88,剩下地就为兔子头数122-88=34(只),有34 只兔子.当然鸡就有54 只;答:有兔子34 只,鸡54 只;上面地运算,可以归结为下面算式:总脚数÷2-总头数=兔子数. 总头数-兔子数=鸡数特别算法上面地解法为《孙子算经》中记载地;做一次除法与一次减法,立刻能求出兔子数,多简洁!能够这样算,主要利用了兔与鸡地脚数分别为4 与2,4 又为2 地2 倍.可为,当其他问题转化成这类问题时," 脚数"就不肯定为 4 与2,上面地运算方法就行不通;因此,我们对这类问题给出一种一般解法.仍说例1.假如设想88 只都为兔子,那么就有4×88 只脚,比244 只脚多了88×4-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).说明我们设想地88 只"兔子"中,有54 只不为兔子;而为鸡.因此可以列出公式鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).当然,我们也可以设想88 只都为" 鸡",那么共有脚2×88=176(只),比244 只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,68÷2=34(只).说明设想中地"鸡",有34 只为兔子,也可以列出公式兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数;假设全为鸡,或者全为兔,通常用这样地思路求解,有人称为" 假设法".现在,拿一个具体问题来试试上面地公式;例2 红铅笔每支元,蓝铅笔每支元,两种铅笔共买了16 支,花了元;问红,蓝铅笔各买几支?解:以"分"作为钱地单位.我们设想,一种"鸡" 有11 只脚,一种" 兔子"有19 只脚,它们共有16 个头,280 只脚;现在已经把买铅笔问题,转化成" 鸡兔同笼"问题了.利用上面算兔数公式,就有蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支).红笔数=16-3=13(支).答:买了13 支红铅笔与 3 支蓝铅笔;对于这类问题地运算,经常可以利用已知脚数地特别性.例2 中地" 脚数"19 与11 之与为30.我们也可以设想16 只中,8 只为"兔子",8 只为"鸡",依据这一设想,脚数为8×(11+19)=240(支);比280 少40.40÷(19-11)=5(支);就知道设想中地8 只"鸡" 应少5 只,也就为"鸡"( 蓝铅笔)数为 3.30×8 比19×16 或11×16 要简洁运算些;利用已知数地特别性,靠心算来完成运算.实际上,可以任意设想一个便利地兔数或鸡数;例如,设想16 只中,"兔数" 为10,"鸡数"为6,就有脚数19×10+11×6=256.比280 少24.24÷(19-11)=3,就知道设想 6 只"鸡",要少 3 只;要使设想地数,能给运算带来便利,经常取决于你地心算本事.下面再举四个稍有难度地例子;例3 一份稿件,甲单独打字需 6 小时完成.乙单独打字需10 小时完成,现在甲单独打如干小时后,因有事由乙接着打完,共用了7 小时;甲打字用了多少小时?解:我们把这份稿件平均分成30 份(30 为6 与10 地最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).现在把甲打字地时间看成" 兔"头数,乙打字地时间看成"鸡" 头数,总头数为7."兔"地脚数为5," 鸡"地脚数为3,总脚数为30,就把问题转化成"鸡兔同笼" 问题了;依据前面地公式"兔" 数=(30-3×7)÷(5-3)=4.5,"鸡" 数=2.5,也就为甲打字用了小时,乙打字用了小时;答:甲打字用了 4 小时30 分.例4 今年为1998 年,父母年龄(整数)与为78 岁,兄弟地年龄与为17 岁;四年后(2002 年)父地年龄为弟地年龄地 4 倍,母地年龄为兄地年龄地 3 倍.那么当父地年龄为兄地年龄地 3 倍时,为公元哪一年?解:4年后,两人年龄与都要加8.此时兄弟年龄之与为17+8=25,父母年龄之与为78+8=86.我们可以把兄地年龄看作"鸡"头数,弟地年龄看作"兔" 头数;25 为" 总头数".86 为"总脚数".依据公式,兄地年龄为(25×4-86)÷(4-3)=14(岁).1998 年,兄年龄为14-4=10(岁).父年龄为(25-14)×4-4=40(岁).因此,当父地年龄为兄地年龄地 3 倍时,兄地年龄为(40-10)÷(3-1)=15(岁).这为2003 年;答:公元2003 年时,父年龄为兄年龄地 3 倍.例5 蜘蛛有8 条腿,蜻蜓有6 条腿与2 对翅膀,蝉有6 条腿与1 对翅膀;现在这三种小虫共18 只,有118 条腿与20 对翅膀.每种小虫各几只?解:由于蜻蜓与蝉都有 6 条腿,所以从腿地数目来考虑,可以把小虫分成"8 条腿" 与"6 条腿" 两种;利用公式就可以算出8 条腿地蜘蛛数=(118-6×18)÷(8-6)=5(只).因此就知道 6 条腿地小虫共18-5=13(只).也就为蜻蜓与蝉共有13 只,它们共有20 对翅膀;再利用一次公式蝉数=(13×2-20)÷(2-1)=6(只).因此蜻蜓数为13-6=7(只).答:有5 只蜘蛛,7 只蜻蜓,6 只蝉;例6 某次数学考试考五道题,全班52 人参与,共做对181 道题,已知每人至少做对 1 道题,做对 1 道地有7 人,5道全对地有 6 人,做对2 道与3 道地人数一样多,那么做对 4 道地人数有多少人?解:对2 道,3 道,4 道题地人共有52-7-6=39(人).他们共做对181-1×7-5×6=144(道).由于对 2 道与 3 道题地人数一样多,我们就可以把他们看作为对道题地人((2+3)÷2=2.5).这样兔脚数=4,鸡脚数=2.5,总脚数=144,总头数=39.对 4 道题地有×39)÷(4-2.5)=31(人).答:做对 4 道题地有31 人;以例 1 为例有如干只鸡与兔子,它们共有88 个头,244 只脚,鸡与兔各有多少只?以简洁地X 方程运算地话,我们一般用设大数为X,那么也就为设兔为X,那么鸡地只数就为总数减去鸡地只数,即(88-X )只;解:设兔为X 只;就鸡为(88-X)只;4X+2 ×(88-X)=244上列地方程说明为:兔子地脚数加上鸡地脚数,就为共有地脚数;4X就为兔子地脚数,2×(88-X)就为鸡地脚数;4X+2 ×88-2X=2442X+176=2442X+176-176=244-1762X=682X÷2=68÷2X=34即兔子为34 只,总数为88 只,就鸡:88-34=54 只;答:兔子有34 只,鸡有54 只;习题一1.龟鹤共有100 个头,350 只脚.龟,鹤各多少只?2.学校有象棋,跳棋共26 副,恰好可供120 个同学同时进行活动;象棋 2 人下一副棋,跳棋 6 人下一副.象棋与跳棋各有几副?3.一些2 分与5 分地硬币,共值 2.99 元,其中2 分硬币个数为 5 分硬币个数地 4 倍,问 5 分硬币有多少个?4.某人领得工资240 元,有2 元,5 元,10 元三种人民币,共50 张,其中2 元与5 元地张数一样多;那么 2 元,5 元,10 元各有多少张?5.一件工程,甲单独做12 天完成,乙单独做18 天完成,现在甲做了如干天后,再由乙接着单独做完余下地部分,这样前后共用了16 天.甲先做了多少天?6.摩托车赛全程长281 千米,全程被划分成如干个阶段,每一阶段中,有地为由一段上坡路(3 千米),一段平路(4 千米),一段下坡路(2 千米)与一段平路(4 千米)组成地;有地为由一段上坡路(3 千米),一段下坡路(2 千米)与一段平路(4 千米)组成地;已知摩托车跑完全程后,共跑了25 段上坡路.全程中包含这两种阶段各几段?7.用1 元钱买4 分,8分,1 角地邮票共15 张,问最多可以买 1 角地邮票多少张?二,"两数之差" 地问题鸡兔同笼中地总头数为"两数之与",假如把条件换成"两数之差", 又应该怎样去解呢例7 买一些4 分与8 分地邮票,共花6 元8 角;已知8 分地邮票比4分地邮票多40 张,那么两种邮票各买了多少张?解一:假如拿出40 张8 分地邮票,余下地邮票中8 分与4 分地张数就一样多.(680-8×40)÷(8+4)=30(张),这就知道,余下地邮票中,8 分与4 分地各有30 张;因此8 分邮票有40+30=70(张).答:买了8 分地邮票70 张,4 分地邮票30 张;也可以用任意假设一个数地方法.解二:譬如,假设有20 张4 分,依据条件"8 分比4 分多40 张",那么应有60 张8 分;以" 分"作为运算单位,此时邮票总值为4×20+8×60=560.比680 少,因此仍要增加邮票;为了保持"差" 为40,每增加 1 张4 分,就要增加 1 张8 分,每种要增加地张数为(680-4×20-8×60)÷(4+8)=10(张).因此4 分有20+10=30(张),8分有60+10=70(张).例8 一项工程,假如全为晴天,15 天可以完成;假如下雨,雨天比晴天多 3 天,工程要多少天才能完成解:类似于例3,我们设工程地全部工作量为150 份,晴天每天完成10 份,雨天每天完成8 份.用上一例题解一地方法,晴天有(150-8×3)÷(10+8)= 7(天).雨天为7+3=10 天,总共7+10=17(天).答:这项工程17 天完成;请留意,假如把"雨天比晴天多 3 天"去掉,而换成已知工程为17 天完成,由此又回到上一节地问题.差为3,与与为17,知道其一,就能推算出另一个;这说明白例7,例8 与上一节基本问题之间地关系.总脚数为"两数之与",假如把条件换成" 两数之差",又应当怎样去解呢例9 鸡与兔共100 只,鸡地脚数比兔地脚数少28.问鸡与兔各几只?解一:假如再补上28 只鸡脚,也就为再有鸡28÷2=14(只),鸡与兔脚数就相等,兔地脚为鸡地脚4÷2=2(倍),于为鸡地只数为兔地只数地 2 倍;兔地只数为(100+28÷2)÷(2+1)=38(只).鸡为100-38=62(只).答:鸡62 只,兔38 只;当然也可以去掉兔28÷4=7(只).兔地只数为(100-28÷4)÷(2+1)+7=38(只).也可以用任意假设一个数地方法;解二:假设有50 只鸡,就有兔100-50=50(只).此时脚数之差为4×50-2×50=100,比28 多了72.就说明假设地兔数多了(鸡数少了).为了保持总数为100,一只兔换成一只鸡,少了 4 只兔脚,多了 2 只鸡脚,相差为6只(千万留意,不为2).因此要削减地兔数为(100-28)÷(4+2)=12(只). 兔只数为50-12=38(只).另外,仍存在下面这样地问题:总头数换成"两数之差", 总脚数也换成"两数之差".例10 古诗中,五言绝句为四句诗,每句都为五个字;七言绝句为四句诗,每句都为七个字;有一诗选集,其中五言绝句比七言绝句多13 首,总字数却反而少了20 个字.问两种诗各多少首?解一:假如去掉13 首五言绝句,两种诗首数就相等,此时字数相差13×5×4+20=280(字).每首字数相差7×4-5×4=8(字).因此,七言绝句有280÷(28-20)=35(首).五言绝句有35+13=48(首).答:五言绝句48 首,七言绝句35 首;解二:假设五言绝句为23 首,那么依据相差13 首,七言绝句为10 首.字数分别为20×23=460(字),28×10=280(字),五言绝句地字数,反而多了460-280=180(字).与题目中"少20 字"相差180+20=200(字).说明假设诗地首数少了;为了保持相差13 首,增加一首五言绝句,也要增一首七言绝句,而字数相差增加8.因此五言绝句地首数要比假设增加200÷8=25(首).五言绝句有23+25=48(首).七言绝句有10+25=35(首).在写出"鸡兔同笼"公式地时候,我们假设都为兔,或者都为鸡,对于例7,例9 与例10 三个问题,当然也可以这样假设;现在来具体做一下,把列出地运算式子与"鸡兔同笼"公式对比一下,就会发觉特别好玩地事.例7,假设都为8 分邮票,4 分邮票张数为(680-8×40)÷(8+4)=30(张).例9,假设都为兔,鸡地只数为(100×4-28)÷(4+2)=62(只).10,假设都为五言绝句,七言绝句地首数为(20×13+20)÷(28-20)=35(首).第一,请读者先弄明白上面三个算式地由来,然后与" 鸡兔同笼" 公式比较,这三个算式只为有一处"-" 成了"+". 其奥妙何在呢当你进入中学,有了负数地概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举地全部例子都为同一件事;例11 有一辆货车运输2000 只玻璃瓶,运费按到达时完好地瓶子数目运算,每只 2 角,如有破旧,破旧瓶子不给运费,仍要每只赔偿1元.结果得到运费元,问这次搬运中玻璃瓶破旧了几只?解:假如没有破旧,运费应为400 元;但破旧一只要削减(元).因此破旧只数为(400-379.6)÷(1+0.2)=17(只).答:这次搬运中破旧了17 只玻璃瓶;请你想一想,这为"鸡兔同笼" 同一类型地问题吗例12 有两次自然测验,第一次24 道题,答对1 题得5 分,答错(包含不答) 1 题倒扣 1 分;其次次15 道题,答对 1 题8 分,答错或不答 1 题倒扣2 分,小明两次测验共答对30 道题,但第一次测验得分比其次次测验得分多10 分,问小明两次测验各得多少分?解一:假如小明第一次测验24 题全对,得5×24=120(分).那么第二次只做对30-24=6(题)得分为8×6-2×(15-6)=30(分).两次相差120-30=90(分).比题目中条件相差10 分,多了80 分;说明假设地第一次答对题数多了,要削减.第一次答对削减一题,少得5+1=6(分),而其次次答对增加一题不但不倒扣 2 分,仍可得8 分,因此增加8+2=10 分;两者两差数就可削减6+10=16(分).(90-10)÷(6+10)=5(题).因此第一次答对题数要比假设(全对)削减 5 题,也就为第一次答对19 题,其次次答对30-19=11(题).第一次得分5×19-1×(24- 19)=90.其次次得分8×11-2×(15-11)=80.答:第一次得90 分,其次次得80 分;解二:答对30 题,也就为两次共答错24+15-30=9(题).第一次答错一题,要从满分中扣去5+1=6(分),其次次答错一题,要从满分中扣去8+2=10(分).答错题互换一下,两次得分要相差6+10=16(分).假如答错9 题都为第一次,要从满分中扣去6×9.但两次满分都为120 分;比题目中条件"第一次得分多10 分",要少了6×9+10.因此,其次次答错题数为(6×9+10)÷(6+10)=4(题)·第一次答错9-4=5(题).第一次得分5×(24-5)-1×5=90(分).其次次得分8×(15-4)-2×4=80(分).习题二1.买语文书30 本,数学书24 本共花元;每本语文书比每本数学书贵元;每本语文书与数学书地价格各为多少?2.甲茶叶每千克132 元,乙茶叶每千克96 元,共买这两种茶叶12 千克.甲茶叶所花地钱比乙茶叶所花钱少354 元;问每种茶叶各买多少千克?3.一辆卡车运矿石,晴天每天可运16 次,雨天每天只能运11 次.一连运了如干天,有晴天,也有雨天;其中雨天比晴天多 3 天,但运地次数却比晴天运地次数少27 次.问一连运了多少天?4.某次数学测验共20 道题,做对一题得 5 分,做错一题倒扣 1 分,不做得0 分;小华得了76 分.问小华做对了几道题?5.甲,乙二人射击,如命中,甲得 4 分,乙得5 分;如不中,甲失2 分,乙失3 分;每人各射10 发,共命中14 发.结算分数时,甲比乙多10 分;问甲,乙各中几发?6.甲,乙两地相距12 千米.小张从甲地到乙地,在停留半小时后,又从乙地返回甲地,小王从乙地到甲地,在甲地停留40 分钟后,又从甲地返回乙地;已知两人同时分别从甲,乙两地动身,经过 4 小时后,他们在返回地途中相遇.假如小张速度比小王速度每小时多走千米,求两人地速度;?三,从"三" 到"二""鸡" 与"兔"为两种东西,实际上仍有三种或者更多种东西地类似问题. 在第一节例 5 与例 6 就都有三种东西;从这两个例子地解法,也可以看出,要把"三种" 转化成"二种" 来考虑.这一节要通过一些例题,告知大家两类转化地方法;例13 学校组织新年游艺晚会,用于奖品地铅笔,圆珠笔与钢笔共232 支,共花了300 元.其中铅笔数量为圆珠笔地 4 倍;已知铅笔每支元,圆珠笔每支元,钢笔每支元;问三种笔各有多少支解:从条件"铅笔数量为圆珠笔地 4 倍",这两种笔可并成一种笔,四支铅笔与一支圆珠笔成一组,这一组地笔,每支价格算作(×4+2.7)÷(元).现在转化成价格为与两种笔;用"鸡兔同笼"公式可算出,钢笔支数为×232)÷(6.3-1.02)=12(支).铅笔与圆珠笔共232-12=220(支).其中圆珠笔220÷(4+1)=44(支).铅笔220-44=176(支).答:其中钢笔12 支,圆珠笔44 支,铅笔176 支;例14 商店出售大,中,小气球,大球每个 3 元,中球每个元,小球每个 1 元;张老师用120 元共买了55 个球,其中买中球地钱与买小球地钱恰好一样多.问每种球各买几个解:由于总钱数为整数,大,小球地价钱也都为整数,所以买中球地钱数为整数,而且仍为 3 地整数倍;我们设想买中球,小球钱中各出3 元.就可买2 个中球,3 个小球;因此,可以把这两种球看作一种,每个价钱为×2+1×3)÷(元).从公式可算出,大球个数为×55)÷(3-1.2)=30(个).买中,小球钱数各为(120-30×3)÷2=15(元).可买10 个中球,15 个小球;答:买大球30 个,中球10 个,小球15 个.例13 为从两种东西地个数之间倍数关系,例14 为从两种东西地总钱数之间相等关系(倍数关系也可用类似方法),把两种东西合井成一种考虑,实质上都为求两种东西地平均价,就把"三"转化成"二" 了;例15 为为例16 作预备.例15 某人去时上坡速度为每小时走 3 千米,回来时下坡速度为每小时走 6 千米,求他地平均速度为多少解:去与回来走地距离一样多;这为我们考虑问题地前提.平均速度=所行距离÷所用时间去时走 1 千米,要用20 分钟;回来时走 1 千米,要用10 分钟;来回共走 2 千米,用了30 分钟,即半小时,平均速度为每小时走 4 千米. 千万留意,平均速度不为两个速度地平均值:每小时走(6+3)÷千米;例16 从甲地至乙地全长45 千米,有上坡路,平路,下坡路.李强上坡速度为每小时 3 千米,平路上速度为每小时 5 千米,下坡速度为每小时 6 千米;从甲地到乙地,李强行走了10 小时;从乙地到甲地,李强行走了11 小时.问从甲地到乙地,各种路段分别为多少千米解:把来回路程45×2=90(千米)算作全程;去时上坡,回来为下坡;去时下坡回来时上坡.把上坡与下坡合并成" 一种"路程,依据例15,平均速度为每小时 4 千米;现在形成一个特别简洁地"鸡兔同笼" 问题.头数10+11=21,总脚数90,鸡,兔脚数分别为 4 与5.因此平路所用时间为(90-4×21)÷(5-4)=6(小时).单程平路行走时间为6÷2=3(小时).从甲地至乙地,上坡与下坡用了10-3=7(小时)行走路程为:45-5×3=30(千米).又为一个"鸡兔同笼" 问题;从甲地至乙地,上坡行走地时间为:(6×7-30)÷(6-3)=4(小时).行走路程为3×4=12(千米).下坡行走地时间为7-4=3(小时).行走路程为6×3=18(千米). 答:从甲地至乙地,上坡12 千米,平路15 千米,下坡18 千米;做两次"鸡兔同笼"地解法,也可以叫"两重鸡兔同笼问题".例16 为非常典型地例题;例17 某种考试已举办了24 次,共出了426 题.每次出地题数,有25 题,或者16 题,或者20 题;那么,其中考25 题地有多少次解:假如每次都考16 题,16×24=384,比426 少42 道题.每次考25 道题,就要多25-16=9(道).每次考20 道题,就要多20-16=4(道).就有9×考25 题地次数+4×考20 题地次数=42.请留意,4 与42 都为偶数,9×考25 题次数也必需为偶数,因此,考25 题地次数为偶数,由9×6=54 比42 大,考25 题地次数,只能为0,2,4 这三个数;由于42 不能被4 整除,0与4 都不合适.只能为考25 题有2 次(考20 题有6 次).答:其中考25 题有 2 次;例18 有50 位同学前往参观,乘电车前往每人元,乘小巴前往每人 4 元,乘地下铁路前往每人 6 元;这些同学共用了车费110 元,问其中乘小巴地同学有多少位解:由于总钱数110 元为整数,小巴与地铁票也都为整数,因此乘电车前往地人数肯定为 5 地整数倍.假如有30 人乘电车,×30=74(元).仍余下50-30=20(人)都乘小巴钱也不够;说明假设地乘电车人数少了.假如有40 人乘电车。

鸡兔同笼问题(一)五种基本公式和例题讲解

鸡兔同笼问题(一)五种基本公式和例题讲解

(奥数)鸡兔同笼问题(一) 【2 】五种根本公式和例题讲授(一)已知总头数和总脚数,求鸡.兔各若干(假设法):假设满是鸡:口诀:假“鸡”得“兔”(第一次算得的数)(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数.或者假设满是兔:口诀:假“兔”得“鸡”(第一次算得的数)(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数.例如,“有鸡.兔共36只,它们共有脚100只,鸡.兔各是若干只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡.解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔.答:略(二)已知总头数和鸡.兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式※仍属假“鸡”得“兔”类型(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数※仍属假“兔”得“鸡”类型或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数.(例如:鸡和兔总共107只,鸡比兔多58只脚,鸡和兔各几只?(1)假设满是鸡:(2×107-58)÷(2+4)=26(只兔);107-26=81(只鸡)※↓因为鸡脚比兔脚多58,所以应减去58(2)假设满是兔: (4×107+58)÷(2+4)=81(只鸡); 107-81=26(只兔)※↓因兔脚比鸡脚少58,所以应加上58(三)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式.※仍属假“鸡”得“兔”类型(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数.※仍属假“兔”得“鸡”类型或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数.例如:鸡和兔总共107只,兔比鸡多56只脚,鸡和兔各几只?(2×107+56)÷(2+4)=45(只兔);107-45=62(只鸡)※↓因为鸡脚比兔脚少56,所以应加上56或(4)62(只鸡);107-62=45(只兔)※↓因为兔脚比鸡脚多56,所以应减去56解释:每增长(或削减)一只鸡(或兔),它们脚数的差就是(2+4)(四)鸡兔交换问题(已知总脚数及鸡兔交换后总脚数,求鸡兔各若干的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡.兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡.兔脚数之和)-(两次总脚数之差)÷(每只鸡.兔脚数之差)〕÷2=兔数.例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数交换,则共有脚52只.鸡兔各是若干只?”剖析:由题意知,鸡比兔多解法一:(1)〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=(16+4)2=20÷2=10(只鸡)(2)〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=(16-4)=12÷2=6(只兔)(答略)或:解:(52-44)4(只兔)→鸡比兔多4只法二:设鸡有x只,则兔有(x-4)只. 法三:解:设兔有x只,则鸡有(x+4)只.(x-4)4+2x=44 (x+4)2+4x=444x-16+2x=44 2x+8+4x=446x=60 6x=36X=10 x=610-4=6(只兔) 6+4=10(只鸡)答:略答:略(五)得掉问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只及格品得分数×产品总数-实得总分数)÷(每只及格品得分数+每只不及格品扣分数)=不及格品数;或者是总产品数-(每只不及格品扣分数×总产品数+实得总分数)÷(每只及格品得分数+每只不及格品扣分数)=不及格品数.例如,“灯泡厂临盆灯泡的工人,按得分的若干给工资.每临盆一个及格品记4分,每临盆一个不及格品不仅不记分,还要扣除15分.某工人临盆了1000只灯泡,共得3525分,问个中有若干个灯泡不及格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得掉问题”也称“运玻璃器皿问题”,运到无缺无损者每只给运费××元,破损者不仅不给运费,还须要赔成本××元…….它的解法显然可套用上述公式.)。

鸡兔同笼公式

鸡兔同笼公式

鸡兔同笼公式解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的只数=鸡的只数解法3:总脚数÷2—总头数=兔的只数总只数—兔的只数=鸡的只数例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?分析如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。

解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2 =56÷2 =28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。

鸡数=(每只兔脚数×兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数1.一个大笼子里关了一些鸡和兔子。

数它们的头,一共有36个;数它们的腿,共100条。

则鸡有多少只,兔有多少只?2.王老师用40元钱买来20枚邮票,全是1元和5元的。

求这两种邮票分别买了多少枚和多少枚。

3.兔妈妈上山采蘑菇,晴天,每天能採30个,雨天,每天能採12个它从4月10号开始,到4月29号,中间没休息,一共採了510个蘑菇。

那么,晴天是多少天?雨天有多少天?4.肖老师带51名学生去公园里划船。

他们一共租了44条船,其中有大船和小船,每条大船坐6人,小船4人。

每条都坐满了人。

他们租的大船有几条,小船有几条?5.一辆汽车参加车赛,9天共行了5000公里。

已知它晴天每天行688公里,雨天平均每天行390公里。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(例题略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时(例题略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时(例题略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。

它的解法显然可套用上述公式。

)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

1、“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”2、有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?3、有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?4、有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。

鸡兔同笼问题五种基本公式[1]

鸡兔同笼问题五种基本公式[1]

鸡兔同笼问题五种基本公式鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

鸡兔同笼问题基本公式

鸡兔同笼问题基本公式

鸡兔同笼问题基本公式鸡兔同笼问题基本公式和例题讲解第一种题型:已知总头数和总脚数,求鸡、兔各多少:A:假设把所有的兔子当成鸡:看成兔子后退站立,翘起两只前腿(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

B:假设把所有的鸡当成兔子:看成鸡伸出双翅也着地(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

总脚数÷2—总头数=兔的只数总只数—兔的只数=鸡的只数例如:有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

第二种题型:已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

第三种题型:已知总头数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(总头数+鸡兔脚数之差)÷(2+1)= 兔数。

总头数-兔数=鸡数。

(上面公式实际上转化为和倍问题)例如:鸡兔共40只,兔的脚数比鸡的脚数多70只,问鸡兔各多少只?第四种题型:鸡兔互换问题(已知互换前总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

鸡兔同笼问题一五种基本公式和例题讲解

鸡兔同笼问题一五种基本公式和例题讲解

(奥数)鸡兔同笼问题(一)令狐采学五种基本公式和例题讲解(一)已知总头数和总脚数,求鸡、兔各几多(假设法):假设全是鸡:口诀:假“鸡”得“兔”(第一次算得的数)(总脚数每只鸡的脚数×总头数)÷(每只兔的脚数每只鸡的脚数)=兔数;总头数兔数=鸡数。

或者假设全是兔:口诀:假“兔”得“鸡”(第一次算得的数)(每只兔脚数×总头数总脚数)÷(每只兔脚数每只鸡脚数)=鸡数;总头数鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是几多只?”解一(1002×36)÷(42)=14(只)………兔;3614=22(只)……………………………鸡。

解二(4×36100)÷(42)=22(只)………鸡;3622=14(只)…………………………兔。

答:略(二)已知总头数和鸡、兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式※仍属假“鸡”得“兔”类型(每只鸡脚数×总头数脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数兔数=鸡数※仍属假“兔”得“鸡”类型或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数鸡数=兔数。

(例如:鸡和兔总共107只,鸡比兔多58只脚,鸡和兔各几只?(1)假设全是鸡:(2×10758)÷(2+4)=26(只兔);10726=8 1(只鸡)※↓因为鸡脚比兔脚多58,所以应减去58(2)假设全是兔: (4×107+58)÷(2+4)=81(只鸡); 10 781=26(只兔)※↓因兔脚比鸡脚少58,所以应加上58(三)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

※仍属假“鸡”得“兔”类型(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数兔数=鸡数。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

小学奥数“鸡兔同笼”问题的五种常见解题思路

小学奥数“鸡兔同笼”问题的五种常见解题思路

每只兔都抬两只脚起来
地上还站着多少只脚?
兔一共抬了多少只脚? 兔有多少只?
鸡有多少只?
50×2=100 因为所有的动物地上都只站着两只脚
120-100=20 20÷2=10 因为每只兔抬了两只脚 50-10=40
七、方法五:补脚法
假设每只鸡都补上两只脚
地上站着多少只脚?
鸡一共抬了多少只脚? 鸡有多少只?
三、要解决的问题:鸡、兔各有的:画图法
1.先画出50个圆圈代表50只动物 2.然后,每个圆圈划2只脚,总共
100只脚
三、方法一:画图法
3.依次给每个动物添2只脚,直 到添够120只,就不再添加,数
一数有多少只兔,多少只鸡
4只脚的是兔
10只兔
2只脚的是鸡
40只鸡
鸡有多少只?
50-10=40
六、方法四:抬脚法2
每只鸡和兔都抬一半的脚起来
地上还站着多少只脚?
120÷2=60
都再抬一只脚
地上还站着多少只脚?
60-50=10
地上站着的10只脚都是谁的? 兔的,因为鸡全都爬在地上了
说明兔有多少只?
10只,因为每只兔只有一只脚站在地上
鸡有多少只?
50-10=40
六、方法四:抬脚法3
50×4=200 200-120=80 4-2=2
80÷2=40 50-40=10
六、方法四:抬脚法1
每只鸡和兔都抬起两只脚
一共抬起了多少只脚?
50×2=100
地上还站着多少只脚?
120-100=20
地上站着的脚都是谁的? 兔的,因为鸡只有两只,全都爬在地上了。
兔有多少只?
20÷2=10
为什么是除以2而不是除以4呢? 因为每只免只有两只脚站在地上。

鸡兔同笼问题五种基本公式和例题讲解修订稿

鸡兔同笼问题五种基本公式和例题讲解修订稿

鸡兔同笼问题五种基本公式和例题讲解Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

经典奥数鸡兔同笼公式例题讲解习题

经典奥数鸡兔同笼公式例题讲解习题

经典奥数鸡兔同笼公式例题讲解习题鸡兔同笼问题“鸡兔同笼”问题小朋友们听说过吗?这是一类著名的数学问题。

比如:“鸡兔同笼,共有45个头,146只脚。

笼中各有多少只鸡兔?”鸡兔同笼问题的特点是:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。

解题时,首先要根据题目中所给出的两个未知数的关系,用一个未知数代替另一个未知数,从而将两个未知数装化为一个未知数,从而解出答案。

鸡兔问题公式】五种基本公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解
鸡兔同笼问题是一个经典的数学问题,本文通过五种基本公式和例题详细讲解了其解方程的方法。首先,我们介绍了如何通过设定变量和建立方程组来解决这一问题。具体来说,设鸡的数量为x,兔的数量为y,根据题目给出的总头数和总脚数,我们可以列出两个方程。通过解这个方程组,我们就能找出鸡和兔的确切数量。此外,本文还提供了五种不同的公式,这些公式都是基于鸡兔的头数和脚数关系推导出来的,可以帮些公式的应用,我们还通过具体的例题进行了详细讲解。这些例题不仅展示了如何运用公式,还揭示了解决鸡兔同笼问题的一些关键技巧和思路。总的来说,通过掌握这些公式和方法,读者将能够轻松解决鸡兔同笼问题,并提升解决此类数学问题的能力。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

鸡兔同笼问题公式解法

鸡兔同笼问题公式解法

鸡兔同笼问题公式解法一、鸡兔同笼问题公式。

1. 假设法公式。

- 假设全是鸡:兔的只数=(总脚数 - 2×总头数)÷(4 - 2);鸡的只数 = 总头数- 兔的只数。

- 假设全是兔:鸡的只数=(4×总头数 - 总脚数)÷(4 - 2);兔的只数 = 总头数- 鸡的只数。

2. 方程法公式(设鸡有x只,兔有y只)- 对于一般的鸡兔同笼问题,头数关系:x + y=总头数;脚数关系:2x+4y=总脚数。

二、题目及解析。

1. 题目1。

- 鸡兔同笼,共有头30个,脚88只,求鸡和兔各有多少只?- 解析:- 假设法:假设全是鸡,那么兔的只数(88 - 2×30)÷(4 - 2)=(88 - 60)÷2 = 14(只),鸡的只数=30 - 14 = 16(只)。

- 方程法:设鸡有x只,兔有y只。

则x + y=30 2x + 4y=88,由第一个方程得x = 30 - y,代入第二个方程2(30 - y)+4y = 88,60-2y + 4y=88,2y=28,y = 14,x=30 - 14 = 16。

2. 题目2。

- 鸡兔同笼,头共46,足共128,鸡兔各几只?- 解析:- 假设法:假设全是鸡,兔的只数(128 - 2×46)÷(4 - 2)=(128 - 92)÷2 = 18(只),鸡的只数=46 - 18 = 28(只)。

- 方程法:设鸡有x只,兔有y只。

x + y = 46 2x+4y = 128,由x = 46 - y代入2x + 4y=128得2(46 - y)+4y = 128,92-2y+4y = 128,2y = 36,y = 18,x = 28。

3. 题目3。

- 笼子里有鸡和兔共10只,共有脚28只,鸡和兔各有多少只?- 解析:- 假设法:假设全是鸡,兔的只数(28 - 2×10)÷(4 - 2)=(28 - 20)÷2 = 4(只),鸡的只数=10 - 4 = 6(只)。

三四年级奥数-鸡兔同笼问题-简单版讲义[推荐五篇]

三四年级奥数-鸡兔同笼问题-简单版讲义[推荐五篇]

三四年级奥数-鸡兔同笼问题-简单版讲义[推荐五篇]第一篇:三四年级奥数-鸡兔同笼问题-简单版讲义基本的鸡兔同笼A知识结构一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:(1)如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数(2)如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法例题精讲【例 1】动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少?【巩固】鸡和兔共56只眼睛和92只脚,问:鸡和兔各有几只?【例2】动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?【巩固】一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【例3】鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只?【巩固】鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【例4】鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?【巩固】鸡、兔共有27只,鸡的脚比兔的脚少18只。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解鸡兔问题公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡(de)脚数×总头数)÷(每只兔(de)脚数-每只鸡(de)脚数)=兔数;总头数-兔数=鸡数.或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数.例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡.解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔.(答略)(2)已知总头数和鸡兔脚数(de)差数,当鸡(de)总脚数比兔(de)总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡(de)脚数+每只兔(de)脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡(de)脚数+每只免(de)脚数)=鸡数;总头数-鸡数=兔数.(例略)(3)已知总数与鸡兔脚数(de)差数,当兔(de)总脚数比鸡(de)总脚数多时,可用公式.(每只鸡(de)脚数×总头数+鸡兔脚数之差)÷(每只鸡(de)脚数+每只兔(de)脚数)=兔数;总头数-兔数=鸡数.或(每只兔(de)脚数×总头数-鸡兔脚数之差)÷(每只鸡(de)脚数+每只兔(de)脚数)=鸡数;总头数-鸡数=兔数.(例略)(4)得失问题(鸡兔问题(de)推广题)(de)解法,可以用下面(de)公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.例如,“灯泡厂生产灯泡(de)工人,按得分(de)多少给工资.每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分.某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二 1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元…….它(de)解法显然可套用上述公式.)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少(de)问题),可用下面(de)公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数.例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只.鸡兔各是多少只”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)鸡兔同笼目录 1总述 2假设法 3方程法一元一次方程二元一次方程4抬腿法 5列表法 6详解 7详细解法基本问题特殊算法习题8鸡兔同笼公式1总述鸡兔同笼是中国古代(de)数学名题之一.大约在1500年前,孙子算经中就记载了这个有趣(de)问题.书中是这样叙述(de):“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何”这四句话(de)意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚.问笼中各有几只鸡和兔算这个有个最简单(de)算法.(总脚数-总头数×鸡(de)脚数)÷(兔(de)脚数-鸡(de)脚数)=兔(de)只数(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)解释:让兔子和鸡同时抬起两只脚,这样笼子里(de)脚就减少了头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子(de)两只脚,再除以2就是兔子数.虽然现实中没人鸡兔同笼.2假设法假设全是鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)假设法(通俗)假设鸡和兔子都抬起一只脚,笼中站立(de)脚:94-35=59(只)然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,只剩下用两只脚站立(de)兔子,站立脚:59-35=24(只)兔:24÷2=12(只)鸡:35-12=23(只)3方程法一元一次方程解:设兔有x只,则鸡有(35-x)只.4x+2(35-x)=944x+70-2x=942x=94-702x=24x=24÷2x=1235-12=23(只)或解:设鸡有x只,则兔有(35-x)只.2x+4(35-x)=942x+140-4x=942x=46x=2335-23=12(只)答:兔子有12只,鸡有23只.注:通常设方程时,选择腿(de)只数多(de)动物,会在套用到其他类似鸡兔同笼(de)问题上,好算一些.二元一次方程解:设鸡有x只,兔有y只.x+y=352x+4y=94(x+y=35)×2=2x+2y=70(2x+2y=70)-(2x+4y=94)=(2y=24)y=12把y=12代入(x+y=35)x+12=35x=35-12(只)x=23(只).答:兔子有12只,鸡有23只4抬腿法法一假如让鸡抬起一只脚,兔子抬起2只脚,还有94除以2=47只脚.笼子里(de)兔就比鸡(de)头数多1,这时,脚与头(de)总数之差47-35=12,就是兔子(de)只数.法二假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚 , 这时鸡是屁股坐在地上,地上只有兔子(de)脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡5列表法腿数鸡(只数)兔(只数)6详解中国古代孙子算经共三卷,成书大约在公元5世纪.这本书浅显易懂,有许多有趣(de)算术题,比如“鸡兔同笼”问题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何题目中给出雉兔共有35只,如果把兔子(de)两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚,那么,兔子就成了2只脚,即把兔子都先当作两只脚(de) 鸡.鸡兔总(de)脚数是35×2=70(只),比题中所说(de)94只要少94-70=24(只).现在,我们松开一只兔子脚上(de)绳子,总(de)脚数就会增加2只,即70+2=72(只),再松开一只兔子脚上(de)绳子,总(de)脚数又增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只),从而鸡有35-12=23(只).我们来总结一下这道题(de)解题思路:如果先假设它们全是鸡,于是根据鸡兔(de)总数就可以算出在假设下共有几只脚,把这样得到(de)脚数与题中给出(de)脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差(de)脚数除以2,就可以算出共有多少只兔.概括起来,解鸡兔同笼题(de)基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数).类似地,也可以假设全是兔子.我们也可以采用列方程(de)办法:设兔子(de)数量为x,鸡(de)数量为y 那么:x+y=35那么4x+2y=94 这个算方程解出后得出:兔子有12只,鸡有23只.7详细解法基本问题"鸡兔同笼"是一类有名(de)中国古算题.最早出现在孙子算经中.许多小学算术应用题都可以转化成这类问题,或者用解它(de)典型解法--"假设法"来求解.因此很有必要学会它(de)解法和思路.例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚(de)总数(de)一半,·也就是244÷2=122(只).在122这个数里,鸡(de)头数算了一次,兔子(de)头数相当于算了两次.因此从122减去总头数88,剩下(de)就是兔子头数122-88=34(只),有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面(de)计算,可以归结为下面算式:总脚数÷2-总头数=兔子数. 总头数-兔子数=鸡数特殊算法上面(de)解法是孙子算经中记载(de).做一次除法和一次减法,马上能求出兔子数,多简单能够这样算,主要利用了兔和鸡(de)脚数分别是4和2,4又是2(de)2倍.可是,当其他问题转化成这类问题时,"脚数"就不一定是4和2,上面(de)计算方法就行不通.因此,我们对这类问题给出一种一般解法.还说例1.如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).说明我们设想(de)88只"兔子"中,有54只不是兔子.而是鸡.因此可以列出公式鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).当然,我们也可以设想88只都是"鸡",那么共有脚2×88=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,68÷2=34(只).说明设想中(de)"鸡",有34只是兔子,也可以列出公式兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.假设全是鸡,或者全是兔,通常用这样(de)思路求解,有人称为"假设法". 现在,拿一个具体问题来试试上面(de)公式.例2 红铅笔每支元,蓝铅笔每支元,两种铅笔共买了16支,花了元.问红,蓝铅笔各买几支解:以"分"作为钱(de)单位.我们设想,一种"鸡"有11只脚,一种"兔子"有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成"鸡兔同笼"问题了.利用上面算兔数公式,就有蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支).红笔数=16-3=13(支).答:买了13支红铅笔和3支蓝铅笔.对于这类问题(de)计算,常常可以利用已知脚数(de)特殊性.例2中(de)"脚数"19与11之和是30.我们也可以设想16只中,8只是"兔子",8只是"鸡",根据这一设想,脚数是8×(11+19)=240(支).比280少40.40÷(19-11)=5(支).就知道设想中(de)8只"鸡"应少5只,也就是"鸡"(蓝铅笔)数是3.30×8比19×16或11×16要容易计算些.利用已知数(de)特殊性,靠心算来完成计算.实际上,可以任意设想一个方便(de)兔数或鸡数.例如,设想16只中,"兔数"为10,"鸡数"为6,就有脚数19×10+11×6=256.比280少24.24÷(19-11)=3,就知道设想6只"鸡",要少3只.要使设想(de)数,能给计算带来方便,常常取决于你(de)心算本领.下面再举四个稍有难度(de)例子.例3 一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时解:我们把这份稿件平均分成30份(30是6和10(de)最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).现在把甲打字(de)时间看成"兔"头数,乙打字(de)时间看成"鸡"头数,总头数是7."兔"(de)脚数是5,"鸡"(de)脚数是3,总脚数是30,就把问题转化成"鸡兔同笼"问题了.根据前面(de)公式"兔"数=(30-3×7)÷(5-3)=,"鸡"数==,也就是甲打字用了小时,乙打字用了小时.答:甲打字用了4小时30分.例4 今年是1998年,父母年龄(整数)和是78岁,兄弟(de)年龄和是17岁.四年后(2002年)父(de)年龄是弟(de)年龄(de)4倍,母(de)年龄是兄(de)年龄(de)3倍.那么当父(de)年龄是兄(de)年龄(de)3倍时,是公元哪一年解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄(de)年龄看作"鸡"头数,弟(de)年龄看作"兔"头数.25是"总头数".86是"总脚数".根据公式,兄(de)年龄是(25×4-86)÷(4-3)=14(岁).1998年,兄年龄是14-4=10(岁).父年龄是(25-14)×4-4=40(岁).因此,当父(de)年龄是兄(de)年龄(de)3倍时,兄(de)年龄是(40-10)÷(3-1)=15(岁).这是2003年.答:公元2003年时,父年龄是兄年龄(de)3倍.例5蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只解:因为蜻蜓和蝉都有6条腿,所以从腿(de)数目来考虑,可以把小虫分成"8条腿"与"6条腿"两种.利用公式就可以算出8条腿(de)蜘蛛数=(118-6×18)÷(8-6)=5(只).因此就知道6条腿(de)小虫共18-5=13(只).也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式蝉数=(13×2-20)÷(2-1)=6(只).因此蜻蜓数是13-6=7(只).答:有5只蜘蛛,7只蜻蜓,6只蝉.例6 某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道(de)有7人,5道全对(de)有6人,做对2道和3道(de)人数一样多,那么做对4道(de)人数有多少人解:对2道,3道,4道题(de)人共有52-7-6=39(人).他们共做对181-1×7-5×6=144(道).由于对2道和3道题(de)人数一样多,我们就可以把他们看作是对道题(de)人((2+3)÷2=.这样兔脚数=4,鸡脚数=,总脚数=144,总头数=39.对4道题(de)有×39)÷=31(人).答:做对4道题(de)有31人.以例1为例有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只以简单(de)X方程计算(de)话,我们一般用设大数为X,那么也就是设兔为X,那么鸡(de)只数就是总数减去鸡(de)只数,即(88-X)只.解:设兔为X只.则鸡为(88-X)只.4X+2×(88-X)=244上列(de)方程解释为:兔子(de)脚数加上鸡(de)脚数,就是共有(de)脚数.4X就是兔子(de)脚数,2×(88-X)就是鸡(de)脚数.4X+2×88-2X=2442X+176=2442X+176-176=244-1762X=682X÷2=68÷2X=34即兔子为34只,总数是88只,则鸡:88-34=54只.答:兔子有34只,鸡有54只.习题一1.龟鹤共有100个头,350只脚.龟,鹤各多少只2.学校有象棋,跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副3.一些2分和5分(de)硬币,共值元,其中2分硬币个数是5分硬币个数(de)4倍,问5分硬币有多少个4.某人领得工资240元,有2元,5元,10元三种人民币,共50张,其中2元与5元(de)张数一样多.那么2元,5元,10元各有多少张5.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下(de)部分,这样前后共用了16天.甲先做了多少天6.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有(de)是由一段上坡路(3千米),一段平路(4千米),一段下坡路(2千米)和一段平路(4千米)组成(de);有(de)是由一段上坡路(3千米),一段下坡路(2千米)和一段平路(4千米)组成(de).已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段7.用1元钱买4分,8分,1角(de)邮票共15张,问最多可以买1角(de)邮票多少张二、"两数之差"(de)问题鸡兔同笼中(de)总头数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢例7 买一些4分和8分(de)邮票,共花6元8角.已知8分(de)邮票比4分(de)邮票多40张,那么两种邮票各买了多少张解一:如果拿出40张8分(de)邮票,余下(de)邮票中8分与4分(de)张数就一样多.(680-8×40)÷(8+4)=30(张),这就知道,余下(de)邮票中,8分和4分(de)各有30张.因此8分邮票有40+30=70(张).答:买了8分(de)邮票70张,4分(de)邮票30张.也可以用任意假设一个数(de)办法.解二:譬如,假设有20张4分,根据条件"8分比4分多40张",那么应有60张8分.以"分"作为计算单位,此时邮票总值是4×20+8×60=560.比680少,因此还要增加邮票.为了保持"差"是40,每增加1张4分,就要增加1张8分,每种要增加(de)张数是(680-4×20-8×60)÷(4+8)=10(张).因此4分有20+10=30(张),8分有60+10=70(张).例8 一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天比晴天多3天,工程要多少天才能完成解:类似于例3,我们设工程(de)全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一(de)方法,晴天有(150-8×3)÷(10+8)= 7(天).雨天是7+3=10天,总共7+10=17(天).答:这项工程17天完成.请注意,如果把"雨天比晴天多3天"去掉,而换成已知工程是17天完成,由此又回到上一节(de)问题.差是3,与和是17,知道其一,就能推算出另一个.这说明了例7,例8与上一节基本问题之间(de)关系.总脚数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢例9 鸡与兔共100只,鸡(de)脚数比兔(de)脚数少28.问鸡与兔各几只解一:假如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔(de)脚是鸡(de)脚4÷2=2(倍),于是鸡(de)只数是兔(de)只数(de)2倍.兔(de)只数是(100+28÷2)÷(2+1)=38(只).鸡是 100-38=62(只).答:鸡62只,兔38只.当然也可以去掉兔28÷4=7(只).兔(de)只数是(100-28÷4)÷(2+1)+7=38(只).也可以用任意假设一个数(de)办法.解二:假设有50只鸡,就有兔100-50=50(只).此时脚数之差是4×50-2×50=100,比28多了72.就说明假设(de)兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少(de)兔数是 (100-28)÷(4+2)=12(只).兔只数是50-12=38(只).另外,还存在下面这样(de)问题:总头数换成"两数之差",总脚数也换成"两数之差".例10 古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首解一:如果去掉13首五言绝句,两种诗首数就相等,此时字数相差13×5×4+20=280(字).每首字数相差 7×4-5×4=8(字).因此,七言绝句有 280÷(28-20)=35(首).五言绝句有35+13=48(首).答:五言绝句48首,七言绝句35首.解二:假设五言绝句是23首,那么根据相差13首,七言绝句是10首.字数分别是20×23=460(字),28×10=280(字),五言绝句(de)字数,反而多了460-280=180(字).与题目中"少20字"相差180+20=200(字).说明假设诗(de)首数少了.为了保持相差13首,增加一首五言绝句,也要增一首七言绝句,而字数相差增加8.因此五言绝句(de)首数要比假设增加200÷8=25(首).五言绝句有23+25=48(首).七言绝句有 10+25=35(首).在写出"鸡兔同笼"公式(de)时候,我们假设都是兔,或者都是鸡,对于例7,例9和例10三个问题,当然也可以这样假设.现在来具体做一下,把列出(de)计算式子与"鸡兔同笼"公式对照一下,就会发现非常有趣(de)事.例7,假设都是8分邮票,4分邮票张数是(680-8×40)÷(8+4)=30(张).例9,假设都是兔,鸡(de)只数是(100×4-28)÷(4+2)=62(只).10,假设都是五言绝句,七言绝句(de)首数是(20×13+20)÷(28-20)=35(首).首先,请读者先弄明白上面三个算式(de)由来,然后与"鸡兔同笼"公式比较,这三个算式只是有一处"-"成了"+".其奥妙何在呢当你进入初中,有了负数(de)概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举(de)所有例子都是同一件事.例11 有一辆货车运输2000只玻璃瓶,运费按到达时完好(de)瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费元,问这次搬运中玻璃瓶破损了几只解:如果没有破损,运费应是400元.但破损一只要减少1+=(元).因此破损只数是÷(1+=17(只).答:这次搬运中破损了17只玻璃瓶.请你想一想,这是"鸡兔同笼"同一类型(de)问题吗例12 有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分解一:如果小明第一次测验24题全对,得5×24=120(分).那么第二次只做对30-24=6(题)得分是 8×6-2×(15-6)=30(分).两次相差 120-30=90(分).比题目中条件相差10分,多了80分.说明假设(de)第一次答对题数多了,要减少.第一次答对减少一题,少得5+1=6(分),而第二次答对增加一题不但不倒扣2分,还可得8分,因此增加8+2=10分.两者两差数就可减少6+10=16(分).(90-10)÷(6+10)=5(题).因此第一次答对题数要比假设(全对)减少5题,也就是第一次答对19题,第二次答对30-19=11(题).第一次得分5×19-1×(24- 19)=90.第二次得分8×11-2×(15-11)=80.答:第一次得90分,第二次得80分.解二:答对30题,也就是两次共答错24+15-30=9(题).第一次答错一题,要从满分中扣去5+1=6(分),第二次答错一题,要从满分中扣去8+2=10(分).答错题互换一下,两次得分要相差6+10=16(分). 如果答错9题都是第一次,要从满分中扣去6×9.但两次满分都是120分.比题目中条件"第一次得分多10分",要少了6×9+10.因此,第二次答错题数是(6×9+10)÷(6+10)=4(题)·第一次答错9-4=5(题).第一次得分5×(24-5)-1×5=90(分).第二次得分8×(15-4)-2×4=80(分).习题二1.买语文书30本,数学书24本共花元.每本语文书比每本数学书贵元.每本语文书和数学书(de)价格各是多少2.甲茶叶每千克132元,乙茶叶每千克96元,共买这两种茶叶12千克.甲茶叶所花(de)钱比乙茶叶所花钱少354元.问每种茶叶各买多少千克3.一辆卡车运矿石,晴天每天可运16次,雨天每天只能运11次.一连运了若干天,有晴天,也有雨天.其中雨天比晴天多3天,但运(de)次数却比晴天运(de)次数少27次.问一连运了多少天4.某次数学测验共20道题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分.问小华做对了几道题5.甲,乙二人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分.每人各射10发,共命中14发.结算分数时,甲比乙多10分.问甲,乙各中几发6.甲,乙两地相距12千米.小张从甲地到乙地,在停留半小时后,又从乙地返回甲地,小王从乙地到甲地,在甲地停留40分钟后,又从甲地返回乙地.已知两人同时分别从甲,乙两地出发,经过4小时后,他们在返回(de)途中相遇.如果小张速度比小王速度每小时多走千米,求两人(de)速度.三、从"三"到"二""鸡"和"兔"是两种东西,实际上还有三种或者更多种东西(de)类似问题.在第一节例5和例6就都有三种东西.从这两个例子(de)解法,也可以看出,要把"三种"转化成"二种"来考虑.这一节要通过一些例题,告诉大家两类转化(de)方法.例13 学校组织新年游艺晚会,用于奖品(de)铅笔,圆珠笔和钢笔共232支,共花了300元.其中铅笔数量是圆珠笔(de)4倍.已知铅笔每支元,圆珠笔每支元,钢笔每支元.问三种笔各有多少支解:从条件"铅笔数量是圆珠笔(de)4倍",这两种笔可并成一种笔,四支铅笔和一支圆珠笔成一组,这一组(de)笔,每支价格算作(×4+÷5=(元).现在转化成价格为和两种笔.用"鸡兔同笼"公式可算出,钢笔支数是×232)÷(支).铅笔和圆珠笔共232-12=220(支).其中圆珠笔220÷(4+1)=44(支).铅笔220-44=176(支).答:其中钢笔12支,圆珠笔44支,铅笔176支.例14 商店出售大,中,小气球,大球每个3元,中球每个元,小球每个1元.张老师用120元共买了55个球,其中买中球(de)钱与买小球(de)钱恰好一样多.问每种球各买几个解:因为总钱数是整数,大,小球(de)价钱也都是整数,所以买中球(de)钱数是整数,而且还是3(de)整数倍.我们设想买中球,小球钱中各出3元.就可买2个中球,3个小球.因此,可以把这两种球看作一种,每个价钱是×2+1×3)÷(2+3)=(元).从公式可算出,大球个数是×55)÷=30(个).买中,小球钱数各是(120-30×3)÷2=15(元).可买10个中球,15个小球.答:买大球30个,中球10个,小球15个.例13是从两种东西(de)个数之间倍数关系,例14是从两种东西(de)总钱数之间相等关系(倍数关系也可用类似方法),把两种东西合井成一种考虑,实质上都是求两种东西(de)平均价,就把"三"转化成"二"了.例15是为例16作准备.例15 某人去时上坡速度为每小时走3千米,回来时下坡速度为每小时走6千米,求他(de)平均速度是多少解:去和回来走(de)距离一样多.这是我们考虑问题(de)前提.平均速度=所行距离÷所用时间去时走1千米,要用20分钟;回来时走1千米,要用10分钟.来回共走2千米,用了30分钟,即半小时,平均速度是每小时走4千米.千万注意,平均速度不是两个速度(de)平均值:每小时走(6+3)÷2=4.5千米.例16 从甲地至乙地全长45千米,有上坡路,平路,下坡路.李强上坡速度是每小时3千米,平路上速度是每小时5千米,下坡速度是每小时6千米.从甲地到乙地,李强行走了10小时;从乙地到甲地,李强行走了11小时.问从甲地到乙地,各种路段分别是多少千米解:把来回路程45×2=90(千米)算作全程.去时上坡,回来是下坡;去时下坡回来时上坡.把上坡和下坡合并成"一种"路程,根据例15,平均速度是每小时4千米.现在形成一个非常简单(de)"鸡兔同笼"问题.头数10+11=21,总脚数90,鸡,兔脚数分别是4和5.因此平路所用时间是 (90-4×21)÷(5-4)=6(小时).单程平路行走时间是6÷2=3(小时).从甲地至乙地,上坡和下坡用了10-3=7(小时)行走路程是:45-5×3=30(千米).又是一个"鸡兔同笼"问题.从甲地至乙地,上坡行走(de)时间是:(6×7-30)÷(6-3)=4(小时).行走路程是3×4=12(千米).下坡行走(de)时间是7-4=3(小时).行走路程是6×3=18(千米). 答:从甲地至乙地,上坡12千米,平路15千米,下坡18千米.做两次"鸡兔同笼"(de)解法,也可以叫"两重鸡兔同笼问题".例16是非常典型(de)例题.例17 某种考试已举行了24次,共出了426题.每次出(de)题数,有25题,或者16题,或者20题.那么,其中考25题(de)有多少次解:如果每次都考16题,16×24=384,比426少42道题.每次考25道题,就要多25-16=9(道).每次考20道题,就要多20-16=4(道).就有9×考25题(de)次数+4×考20题(de)次数=42.请注意,4和42都是偶数,9×考25题次数也必须是偶数,因此,考25题(de)次数是偶数,由9×6=54比42大,考25题(de)次数,只能是0,2,4这三个数.由于42不能被4整除,0和4都不合适.只能是考25题有2次(考20题有6次).。

鸡兔同笼问题四年级

鸡兔同笼问题四年级

鸡兔同笼问题四年级【鸡兔同笼问题五种基本公式和例题讲解】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

【例】“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”【解】解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

【例】“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二 1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。

它的解法显然可套用上述公式。

)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。

鸡兔各是多少只?”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)鸡兔同笼目录1总述2假设法3方程法一元一次方程二元一次方程4抬腿法5列表法6详解7详细解法基本问题特殊算法习题8鸡兔同笼公式1总述鸡兔同笼是中国古代的数学名题之一。

大约在1500年前,《孙子算经》中就记载了这个有趣的问题。

书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。

问笼中各有几只鸡和兔?算这个有个最简单的算法。

(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再除以2就是兔子数。

虽然现实中没人鸡兔同笼。

2假设法假设全是鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)假设法(通俗)假设鸡和兔子都抬起一只脚,笼中站立的脚:94-35=59(只)然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只)鸡:35-12=23(只)3方程法一元一次方程解:设兔有x只,则鸡有(35-x)只。

4x+2(35-x)=944x+70-2x=942x=94-702x=24x=1235-12=23(只)或解:设鸡有x只,则兔有(35-x)只。

2x+4(35-x)=942x+140-4x=942x=46x=2335-23=12(只)答:兔子有12只,鸡有23只。

注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。

二元一次方程解:设鸡有x只,兔有y只。

x+y=352x+4y=94(x+y=35)×2=2x+2y=70(2x+2y=70)-(2x+4y=94)=(2y=24)y=12把y=12代入(x+y=35)x+12=35x=35-12(只)x=23(只)。

答:兔子有12只,鸡有23只4抬腿法法一假如让鸡抬起一只脚,兔子抬起2只脚,还有94除以2=47只脚。

笼子里的兔就比鸡的头数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。

法二假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚,这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡5列表法腿数鸡(只数)兔(只数)6详解中国古代《孙子算经》共三卷,成书大约在公元5世纪。

这本书浅显易懂,有许多有趣的算术题,比如“鸡兔同笼”问题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?题目中给出雉兔共有35只,如果把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚,那么,兔子就成了2只脚,即把兔子都先当作两只脚的鸡。

鸡兔总的脚数是35×2=70(只),比题中所说的94只要少94-70=24(只)。

现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,即70+2=72(只),再松开一只兔子脚上的绳子,总的脚数又增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只),从而鸡有35-12=23(只)。

我们来总结一下这道题的解题思路:如果先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。

概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。

类似地,也可以假设全是兔子。

我们也可以采用列方程的办法:设兔子的数量为x,鸡的数量为y那么:x+y=35那么4x+2y=94 这个算方程解出后得出:兔子有12只,鸡有23只。

7详细解法基本问题"鸡兔同笼"是一类有名的中国古算题。

最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解。

因此很有必要学会它的解法和思路.例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着。

现在,地面上出现脚的总数的一半,·也就是244÷2=122(只).在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次。

因此从122减去总头数88,剩下的就是兔子头数122-88=34(只),有34只兔子.当然鸡就有54只。

答:有兔子34只,鸡54只。

上面的计算,可以归结为下面算式:总脚数÷2-总头数=兔子数. 总头数-兔子数=鸡数特殊算法上面的解法是《孙子算经》中记载的。

做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,"脚数"就不一定是4和2,上面的计算方法就行不通。

因此,我们对这类问题给出一种一般解法.还说例1.如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).说明我们设想的88只"兔子"中,有54只不是兔子。

而是鸡.因此可以列出公式鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).当然,我们也可以设想88只都是"鸡",那么共有脚2×88=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,68÷2=34(只).说明设想中的"鸡",有34只是兔子,也可以列出公式兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数。

假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为"假设法".现在,拿一个具体问题来试试上面的公式。

例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元。

问红,蓝铅笔各买几支?解:以"分"作为钱的单位.我们设想,一种"鸡"有11只脚,一种"兔子"有19只脚,它们共有16个头,280只脚。

现在已经把买铅笔问题,转化成"鸡兔同笼"问题了.利用上面算兔数公式,就有蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支).红笔数=16-3=13(支).答:买了13支红铅笔和3支蓝铅笔。

相关文档
最新文档