鸡兔同笼问题的三种解法
鸡兔同笼问题几种不同的解法
![鸡兔同笼问题几种不同的解法](https://img.taocdn.com/s3/m/ad02b84a4531b90d6c85ec3a87c24028915f8522.png)
鸡兔同笼问题几种不同的解法鸡兔同笼是中国古代著名的数学趣题,大约在 1500 年前的《孙子算经》中就有记载。
这个问题虽然看似简单,却蕴含着丰富的数学思维和解题方法。
接下来,咱们就一起探讨一下鸡兔同笼问题常见的几种解法。
假设笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,那鸡和兔各有多少只呢?解法一:假设法咱们先假设笼子里全部都是鸡。
因为每只鸡有 2 只脚,那么 35 只鸡总共就应该有 35×2 = 70 只脚。
但实际上有 94 只脚,这说明我们少算了脚的数量。
少算的脚的数量为 94 70 = 24 只。
为什么会少算呢?因为每把一只兔当成鸡就会少算 4 2 = 2 只脚。
那少算的 24 只脚里面有几个 2 只脚,就有几只兔。
所以兔的数量就是 24÷2 = 12 只。
鸡的数量就是 35 12 = 23 只。
同样的,咱们也可以先假设笼子里全部都是兔。
每只兔有 4 只脚,35 只兔就应该有 35×4 = 140 只脚。
但实际上只有 94 只脚,多算了 140 94 = 46 只脚。
每把一只鸡当成兔就会多算 4 2 = 2 只脚。
多算的 46 只脚里面有几个 2 只脚,就有几只鸡。
所以鸡的数量就是 46÷2 = 23 只,兔的数量就是 35 23 = 12 只。
解法二:方程法设鸡的数量为 x 只,兔的数量就是 35 x 只。
因为每只鸡有 2 只脚,每只兔有 4 只脚,总共 94 只脚,所以可以列出方程 2x + 4×(35 x) = 94 。
先计算括号里的式子:2x + 140 4x = 94 。
移项可得:4x 2x = 140 94 。
合并同类项:2x = 46 。
解得:x = 23 ,所以鸡有 23 只,兔有 35 23 = 12 只。
咱们也可以设兔的数量为 y 只,那么鸡的数量就是 35 y 只,列出方程 4y + 2×(35 y) = 94 ,按照同样的步骤也能求出兔有 12 只,鸡有 23 只。
(奥数)鸡兔同笼问题五种解题思路
![(奥数)鸡兔同笼问题五种解题思路](https://img.taocdn.com/s3/m/07e83619c5da50e2524d7fc0.png)
鸡兔同笼问题经典形式的解题思路(1)已知总头数和总脚数,求鸡、兔各多少:思路:假设全部都是鸡,总脚数减去鸡脚数后剩下的事兔子比鸡多的脚,ok 再除以脚的差,算出兔子数。
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多,求鸡和兔的数量思路:根据鸡兔脚数的差数,折算成鸡的数量,总头数减去相应的折算数量后,剩下的鸡和兔的脚一样多,如果鸡和兔的脚一样多,他们的头数比肯定为2:1,根据比例算出兔的个数。
(总头数-脚数之差/一只鸡的脚数)÷(2+1)=兔数;例:鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只?兔:(40-32/2)÷(2+1)=8 只;鸡:40-8=3只(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多思路:和上题目一样,根据鸡兔脚数的差数,折算成兔的数量,总头数减去相应的折算数量后,剩下的鸡和兔的脚一样多,如果鸡和兔的脚一样多,他们的头数比肯定为2:1,根据比例算出兔的个数。
(4) 已知鸡和兔的头数差以及脚数和例:鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?思路:总脚数减去多的动物的脚数后,除以两种动物的单个脚数为兔子的个数。
274-(26×2)÷(2+4)=37(只) 兔(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),思路:根据互换前后的脚数相加除以(鸡的脚数加兔的脚数之和)为头数,再根据1求解。
鸡兔同笼解题技巧汇总
![鸡兔同笼解题技巧汇总](https://img.taocdn.com/s3/m/e9ab8b6da22d7375a417866fb84ae45c3b35c2b4.png)
鸡兔同笼解题技巧汇总鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中常见的一类应用题。
它不仅有趣,还能锻炼我们的逻辑思维和数学运算能力。
下面就为大家汇总一些常见的解题技巧。
一、假设法假设法是解决鸡兔同笼问题最常用的方法之一。
我们可以先假设笼子里全是鸡或者全是兔,然后根据实际的脚数与假设情况下的脚数差异来计算鸡和兔的数量。
假设全是鸡:如果笼子里全是鸡,那么每只鸡有 2 只脚。
假设笼子里一共有 n 个头,那么脚的总数就是 2n 只。
但实际的脚数比这个假设的脚数要多,多出来的部分就是因为把兔当成鸡来计算造成的。
每只兔有 4 只脚,而每只鸡只有 2 只脚,每把一只兔当成鸡,就少算了 2 只脚。
所以用实际脚数与假设脚数的差值除以 2,就可以得到兔的数量。
假设全是兔:同理,如果假设笼子里全是兔,那么每只兔有 4 只脚,脚的总数就是 4n 只。
但实际脚数比这个假设的脚数要少,少的部分就是因为把鸡当成兔来计算造成的。
每把一只鸡当成兔,就多算了 2 只脚。
所以用假设脚数与实际脚数的差值除以 2,就可以得到鸡的数量。
例如:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有94 只脚。
假设全是鸡,脚的总数为:35×2 = 70(只)实际脚数比假设多:94 70 = 24(只)每只兔比鸡多的脚数:4 2 = 2(只)兔的数量:24÷2 = 12(只)鸡的数量:35 12 = 23(只)二、方程法方程法是一种比较直接和通用的方法。
我们可以设鸡的数量为x 只,兔的数量为 y 只,然后根据头的总数和脚的总数列出方程组来求解。
根据头的总数:x + y =总头数根据脚的总数:2x + 4y =总脚数例如:还是上面的例子,设鸡有 x 只,兔有 y 只。
x + y = 35 (1)2x + 4y = 94 (2)由(1)式得:x = 35 y (3)将(3)式代入(2)式:2×(35 y) + 4y = 9470 2y + 4y = 942y = 24y = 12将 y = 12 代入(1)式:x + 12 = 35,x = 23所以鸡有 23 只,兔有 12 只。
鸡兔同笼的十种解法公式
![鸡兔同笼的十种解法公式](https://img.taocdn.com/s3/m/2fc50415cec789eb172ded630b1c59eef9c79a54.png)
鸡兔同笼的十种解法公式鸡兔同笼问题是一个经典的数学问题,它是指在一个笼子里,鸡和兔子的个数加起来是一定的,并且只知道它们的数量总和,而不知道具体的鸡和兔子的个数。
这个问题看似简单,却蕴含了一定的数学技巧和思维能力,在解题过程中需要灵活运用数学公式和逻辑推理,下面将介绍这个问题的十种解法公式。
解法一:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,2x+4y=总脚数。
通过解这个方程组可以得到鸡和兔子的具体数量。
解法二:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,2x+2y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法三:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,2x+3y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法四:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,2x+2.5y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法五:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,3x+4y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法六:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,3x+3y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法七:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,3x+2y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法八:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,4x+3y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法九:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,4x+4y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法十:设鸡的数量为x,兔子的数量为y。
鸡兔同笼问题
![鸡兔同笼问题](https://img.taocdn.com/s3/m/90884b4224c52cc58bd63186bceb19e8b9f6ec70.png)
鸡兔同笼解法一:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数,总只数-鸡的只数=兔的只数;解法二:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数,总只数-兔的只数=鸡的只数;解法三:总脚数÷2—总头数=兔的只数,总只数—兔的只数=鸡的只数。
例题:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。
问笼中各有多少只鸡和兔?(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。
一、折叠假设法:假设全是鸡:2 ×35 = 70 (条),鸡脚比总脚数少:94 - 70 = 24 (只)兔子比鸡多的脚数:4 - 2 = 2(只)兔子的只数:24 ÷2 = 12 (只)鸡的只数:35 - 12 = 23(只)假设全是兔子:4 ×35 = 140(只)兔子脚比总数多:140 - 94 = 46(只) 兔子比鸡多的脚数:4 - 2 = 2(只)鸡的只数:46 ÷2 = 23(只)兔子的只数:35 - 23 = 12(只)方程法:一元一次方程(一)解:设兔有x只,则鸡有(35-x)只。
列方程:4X+2(35-x)=94解方程:4X+2×35-2X=942X+70=942X=94-702X=24解得:X=12则鸡有:35 - 12 = 23 只(二)解:设鸡有x只,则兔有(35-x)只。
列方程:2X+4(35-x)=94解方程:2X+4×35-4X=94140-2X=942X=140-942X=46解得:X=23则兔有:35 - 23 = 12(只)答:兔子有12只,鸡有23只。
鸡兔同笼问题几种不同解法
![鸡兔同笼问题几种不同解法](https://img.taocdn.com/s3/m/e9fbd3c32dc58bd63186bceb19e8b8f67c1cefc8.png)
鸡兔同笼问题几种不一样的解法一、鸡兔同笼问题例 1 笼中有若干只鸡和兔,它们共有 50 个头和 140 只脚,问鸡兔各有多少只解法 1 假设法假设一个未知数是已知的,比方假设 50 个头全部是兔,则共有脚( 4×50=) 200 (只),这与题中已知 140 只不符,多出( 200-140=)60(只),多的原由是鸡当兔后每只鸡多算了 2 只脚,所以鸡的只数是( 60÷2=)30(只),则兔的只数为( 50-30 =) 20(只)。
这类解法,思路清楚,但较复杂,不便操作。
能不可以形象地画个图呢让我们试一试。
解法 2 图形法从图中看 ACDF的面积= 4×50=200(只脚),比实质多出GHEF的面积= 200-140 =60(只脚),AB=GH=60÷ 2=30(只鸡),BC=AC-AB=50-30= 20(只兔)解法 2 比解法 1 高级,算理是相同的。
这里答案是图上算出的,明显这两种解法都要用纸和笔。
不用纸和笔一定是用口诀或易记的公式,这是老公公的传家宝。
解法 3 公式法老公公讲:只要用哨子一吹,并喊一声口令:“全体肃立”。
这时每只鸡呈金鸡独立之状,每只兔呈玉兔拜月状,着地的脚数之和有( 140÷2=) 70(只),此中鸡的头数与脚数相等,因为每只兔的脚比头数多 1,所以兔的头数为( 70-50=)20(个),即兔有 20 只,则鸡有( 50-20=) 30(只)。
这个故事实质上老公公用了以下的公式。
脚数和÷ 2- 头数和 =兔子数。
小孙子们听了兴趣为之大增,纷纷叫老公公再出几道题。
老公公又出了(1) 30 个头, 80 只脚。
(兔 10,鸡 20)。
(2) 100 只脚, 40 个头。
(兔 10,鸡 30)。
(3) 80 个头, 200 只脚。
(兔 20,鸡 60)小孙子们个个都快乐地答出来了。
这个公式简洁好用,它是祖代传下来的还是老公公想出来的呢我们中华文化广博精湛,这两种可能性都是有的。
鸡兔同笼的三种方法
![鸡兔同笼的三种方法](https://img.taocdn.com/s3/m/97c4b6d5b90d6c85ed3ac6bf.png)
鸡兔同笼的三种方法鸡兔同笼问题的原型是已知鸡和兔子这两类动物的头、脚的总数量,求鸡和兔子分别多少只。
在考试中,题干内容往往会有所变化。
鸡兔同笼解法方法一:普通方程法设邮递员派送平邮X件,则派送的EMS有(14-X)件,根据补助构建等量关系,可得:7X+10(14-X)=119,解得X=7,选择A选项。
普通方程法是最容易想到的方法,对于思维的要求度不高,只需要设出未知数,列好等式求解即可。
方法二:假设法假设邮递员当天派送的全部是EMS,则可得的补助为10×14=140元。
然而实际上邮递员的补助只有119元,差值为140-119=21元。
因此平邮有21÷(10-7)=7件。
假设法是解决鸡兔同笼问题最常用的方法,跳过了普通方程设未知数、列方程等步骤,直接进入计算求解阶段,解题效果最明显。
在假设时,要根据题干的问法选择合适的假设条件来求解。
方法三:不定方程法设平邮X件,EMS 有Y件,则7X+10Y=119,由于7和119都能被7整除,根据整除特性可知Y=7,因此X=7(也可以通过尾数法判断7X的尾数为9,因此X=7)。
不定方程法只用了题干中的部分条件,结合选项就能快速判断求解了。
运用此方法对题目选项以及具体数值的要求较高,特别是对不定方程的解法要非常熟练才能快速判断求解。
数学名题:鸡兔同笼大约在1500年前,《孙子算经》中就记载了这个有趣的问题。
书中是这样叙述的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。
问笼中各有多少只鸡和兔?这一问题的本质是一种二元方程。
如果教学方法得当,可以让小学生初步地理解未知数和方程等概念,并锻炼从应用问题中抽象出数的能力。
一般在小学四到六年级时,配合一元一次方程等内容教授。
同一本书中还有一道变题:今有兽,六首四足;禽,四首二足,上有七十六首,下有四十六足。
鸡兔同笼三种解题技巧方法及精品练习题
![鸡兔同笼三种解题技巧方法及精品练习题](https://img.taocdn.com/s3/m/f9175f14be23482fb5da4c18.png)
鸡兔同笼问题三种解题方法及精品练习题例题:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,你能算出鸡和兔子各有多少只吗?方法一:人见人爱的方法“列表法”列举法就是将各种情况一一地罗列出来,再针对要求,筛选符合题意的答案。
根据上面的表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些!方法二:最常用的方法“假设法”假设法:把两个不同数量假设成相同数量,再找出与假设量之间的差距解决。
其数量关系:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数 - 兔数 = 鸡数在本题中,假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
或者假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只鸡9兔子变成鸡,即鸡为9只,兔子为14-9=5只。
方法三:最酷的方法“金鸡独立法”(见文档最后一页)精品练习1.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?2.某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?3.有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只?4.一只货船载重260吨,容积1000米3,现装运甲、乙两种货物,已知甲种货物每吨体积是8米3,乙种货物每吨体积2米3,要使这只船的载重量与容积得到充分利用,甲、乙两种货物应分别装多少吨?5.自行车越野赛全程 220千米,全程被分为 20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?6.如果被乘数增加15,乘数不变,积就增加180;如果被乘数不变,乘数增加4,那么积就增加120.原来两个数相乘的积是多少?7.编一本695页的故事书的页码,一共要用多少个数字?其中数字“5”用去了几个?8.编一本辞典一共用去了6889个数字,这本辞典共有几页?9. 甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发?10. 某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题?11. 有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了几只?12. 鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?13. 今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?14. 蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和 23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?15. 12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?。
鸡兔同笼解题方法(范文9篇)
![鸡兔同笼解题方法(范文9篇)](https://img.taocdn.com/s3/m/41ac794776232f60ddccda38376baf1ffc4fe38d.png)
鸡兔同笼解题方法(范文9篇)以下是网友分享的关于鸡兔同笼解题方法的资料9篇,希望对您有所帮助,就爱阅读感谢您的支持。
鸡兔同笼解题方法(1)一.笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?解题方法:1.猜测,列表法2.假设法3.解方程法1.列表法2.假设法假设笼子里全是鸡,则共有2×8=16(只)脚,比实际少了26-16=10(只)脚,因为我们把兔子都看成了鸡,每只兔子少算了2只脚,共少了10只脚,说明兔子应该有10÷2=5(只)同理:假设笼子里的全是兔子,则一共有4×8=32(只)脚,比实际多了32-26=6(只)脚。
把鸡的脚当兔子的脚计算时,每只兔子比鸡多算了2只脚,所以鸡有6÷2=3(只)3.解方程法兔的脚数+鸡的脚数=鸡兔总脚数=26(只)设鸡有x只,那么兔就有8-x只,就有方程:2x+4(8-x)=26;解出x是鸡的只数,再求兔的只数。
鸡兔同笼解题方法(2)鸡兔同笼的解题方法【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数.或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数.例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡.解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔.(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数.(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式. (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数.或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数.(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数. 例如,“灯泡厂生产灯泡的工人,按得分的多少给工资.每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分.某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元…….它的解法显然可套用上述公式.)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数.例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只.鸡兔各是多少只?”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)鸡兔同笼解题方法(3)四年级下册鸡兔同笼数学问题解决方案:1、假设法:假设全部都是兔,(每只兔的脚数x头数-原来的总脚数)÷(每只兔的脚数-每只鸡的脚数)=鸡的只数;头数-鸡的只数=兔的只数假设全部都是鸡,(原来的总脚数-每只鸡的脚数x头数)÷(每只兔的脚数-每只鸡的脚数)=兔的只数;头数-兔的只数=鸡的只数例如:鸡兔同笼,头共有20个,脚共有50只,鸡,兔分别有多少只?(4x20-50)÷(4-2)=15(只)……鸡;20-15=5(只)……兔(50-2x20)÷(4-2)=5(只)……兔;20-5=15(只)……鸡2、列方程解:设兔有x只,鸡有20-x只。
鸡兔同笼的十种解法公式
![鸡兔同笼的十种解法公式](https://img.taocdn.com/s3/m/9472ac1e3a3567ec102de2bd960590c69ec3d82b.png)
鸡兔同笼的十种解法公式
摘要:
1.鸡兔同笼问题的基本描述
2.鸡兔同笼的十种解法公式
3.结论
正文:
一、鸡兔同笼问题的基本描述
鸡兔同笼问题是一个古老的数学问题,指的是在一个笼子里关着鸡和兔子,已知笼子里共有n 个头,m 只脚。
要求解出鸡和兔子各有多少只。
二、鸡兔同笼的十种解法公式
1.直接法:通过列方程求解,设鸡为x,兔子为y,则有x+y=n,
2x+4y=m,解得x=(m-2n)/2,y=(m-2n)/2。
2.代入法:通过列方程将一个变量表示成另一个变量,再代入另一个方程求解。
3.消元法:通过两个方程相加或相减消去一个变量,再解另一个变量。
4.置换法:通过将一个方程的项置换到另一个方程,再解出变量。
5.矩阵法:将方程列成矩阵形式,通过矩阵运算求解。
6.行列式法:通过求解行列式得到方程的解。
7.解方程组法:通过解方程组求解。
8.韦达定理法:通过韦达定理求解。
9.容斥原理法:通过容斥原理求解。
10.棋盘法:通过画棋盘,将鸡和兔子的脚分别填入棋盘,求解。
三、结论
鸡兔同笼问题有着丰富的解法,这些解法在数学中有着广泛的应用。
(完整版)鸡兔同笼的方程公式
![(完整版)鸡兔同笼的方程公式](https://img.taocdn.com/s3/m/a28ab0e44431b90d6d85c780.png)
鸡兔同笼的方程公式解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的只数=鸡的只数解法3:总脚数÷2-总头数=兔的只数总只数—兔的只数=鸡的只数解法4(方程):X=总脚数÷2-总头数(X=兔的只数)总只数-兔的只数=鸡的只数解法5(方程):X=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(X=兔的只数)总只数—兔的只数=鸡的只数解法6(方程):X=:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(X=鸡的只数)总只数-鸡的只数=兔的只数3种算法(1).鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2兔的只数=鸡兔总只数-鸡的只数(2).兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2鸡的只数=鸡兔总只数—兔总只数(3)。
总腿数/2—总头数=兔只数总只数—兔只数=鸡的只数鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数—每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4—2)=14只兔; 36—14=22 只鸡。
解二(4×36—100)÷(4-2)=22只鸡; 36-22=14 只兔。
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时可用公式(每只鸡脚数×总头数—脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数总头数—兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数—鸡数=兔数.(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
鸡兔同笼的多种解法
![鸡兔同笼的多种解法](https://img.taocdn.com/s3/m/0a9a4735f11dc281e53a580216fc700abb6852f6.png)
鸡兔同笼的多种解法一、假设法1. 假设全是鸡- 设鸡和兔共有m个头,n只脚。
如果全是鸡,那么脚的总数应该是2m只。
- 但实际有n只脚,多出来的脚就是兔子比鸡多的脚。
每只兔比每只鸡多4 - 2=2只脚。
- 兔的数量=(实际脚数 - 假设全是鸡的脚数)div(每只兔比鸡多的脚数),即兔的数量=(n - 2m)div2。
- 鸡的数量=m-(n - 2m)div2。
2. 假设全是兔- 如果全是兔,脚的总数应该是4m只。
- 实际有n只脚,少的脚就是鸡比兔少的脚。
每只鸡比每只兔少4 - 2 = 2只脚。
- 鸡的数量=(假设全是兔的脚数-实际脚数)div(每只兔比鸡多的脚数),即鸡的数量=(4m - n)div2。
- 兔的数量=m-(4m - n)div2。
二、方程法1. 一元一次方程- 设鸡有x只,因为鸡和兔共有m个头,所以兔有(m - x)只。
- 根据鸡兔脚数总和为n,可列方程2x+4(m - x)=n。
- 展开方程得2x + 4m-4x=n,移项得2x=4m - n,解得x=(4m - n)/(2),这就是鸡的数量,兔的数量为m - x=m-(4m - n)/(2)。
2. 二元一次方程- 设鸡有x只,兔有y只。
- 根据头的总数可得x + y=m,根据脚的总数可得2x+4y=n。
- 由x + y=m可得x=m - y,将其代入2x + 4y=n中,得到2(m -y)+4y=n,展开得2m-2y+4y=n,即2y=n - 2m,解得y=(n - 2m)/(2)。
- 再把y=(n - 2m)/(2)代入x=m - y,得x=m-(n - 2m)/(2)。
三、抬腿法(古人的解法)1. 鸡兔同时抬起两只脚- 让鸡和兔都抬起两只脚,此时共抬起2m只脚。
- 那么剩下的脚n-2m只,这些脚都是兔子的,因为鸡此时已经没有脚在地上了,每只兔还剩下4 - 2 = 2只脚在地上。
- 所以兔的数量=(n - 2m)div2,鸡的数量=m-(n - 2m)div2。
“鸡兔同笼问题”的4种理解方法
![“鸡兔同笼问题”的4种理解方法](https://img.taocdn.com/s3/m/eda5309f2e3f5727a4e96263.png)
“鸡兔同笼问题”的4种理解方法▶题目:有若干只鸡和兔在同个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。
求笼中各有几只鸡和兔?解法1 站队法让所有的鸡和兔子都列队站好,鸡和兔子都听哨子指挥。
那么,吹一声哨子让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)。
那么再吹一声哨子,然后再抬起一只脚,这时候鸡两只脚都抬起来就一屁股坐地上了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只);鸡:35-12=23(只)解法2 松绑法由于兔子的脚比鸡的脚多出了两个,因此把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚。
那么,兔子就成了2只脚。
则捆绑后鸡脚和兔脚的总数:35×2=70(只)比题中所说的94只要少:94-70=24(只)。
现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,不断地一个一个地松开绳子,总的脚数则不断地增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只)从而鸡数:35-12=23(只)图片解法3 假设替换法实际上替代法的做题步骤跟上述松绑法相似,只不过是换种方式进行理解。
假设笼子里全是鸡,则应有脚70只。
而实际上多出的部分就是兔子替换了鸡所形成。
每一只兔子替代鸡,则增加每只兔脚减去每只鸡脚的数量。
兔子数=(实际脚数-每只鸡脚数*鸡兔总数)/(每只兔脚数-每只鸡脚数)与前相似,假设笼子里全是兔,则应有脚120只。
而实际上不足的部分就是鸡替换了兔子所形成。
每一只鸡替代兔子,则减少每只兔脚减去每只鸡脚的数量,即2只。
鸡数=(每只兔脚数*鸡兔总数-实际脚数)/(每只兔脚数-每只鸡脚数)将上述数值代入方法(1)可知,兔子数为12只,再求出鸡数为23只。
将上述数值代入方法(2)可知,鸡数为23只,再求出兔子数为12只。
由计算值可知,两种替代方法得出的答案完全一致,只是顺序不同。
鸡兔同笼问题
![鸡兔同笼问题](https://img.taocdn.com/s3/m/d569a0df5022aaea998f0fd9.png)
鸡兔问题一、鸡兔同笼的基本问题是:已知鸡、兔总头数和总脚数,求鸡、兔各有多少只。
1、解决鸡兔同笼问题的方法通常是用假设法,解题思路是:先假设笼子里装的全是鸡,根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就是1只兔,将所差的脚数除以2,就可以算出共有多少只兔。
2、解决鸡兔同笼问题的基本关系式是:①、鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)。
②、兔数=(总脚数-鸡脚数×总头数)÷(兔脚数—鸡脚数)。
注意:这两个公式不必都用,用其中一个算出兔数或鸡数,又知道总数,所以另一个也就知道了。
二、鸡兔同笼问题的变形有两类:1、将鸡、兔的总头数和总脚数中的“两数之和”变成“两数之差”,这样得到三种情况。
①、已知鸡、兔头数之差和总脚数,求鸡兔各有多少只;②、已知鸡、兔脚数之差和总头数,求鸡兔各有多少只;③、已知鸡、兔头数之差和脚数之差,求鸡兔各有多少只。
2、将基本问题中同笼的是鸡、兔两种不同东西,还可以引伸到同笼中不同东西是三种,四种等等。
注意:鸡兔同笼问题的两种变形均可化成基本问题来解决。
(详见例题)例1、在同一个笼子中,有若干只鸡和兔,从笼子上看有40个头,从笼子下数有130只脚,那么这个笼子中装有鸡、兔各多少只?分析:题目中给出了鸡、兔共有40只,如果把兔子的两只前脚用绳子捆起来,看成一只脚,两只后脚也捆起来,也看成一只脚,那么兔子就成了两只脚(即把兔子都当成两只脚的鸡)。
鸡兔总的脚数是40×2=80(只),比题中所说的130只要少,130-80=50(只)现在松开一只兔子脚上的绳子,总的脚数就增加2,即80+2=82。
再松开一只兔子脚上的绳子,总的脚数又增加2,即82+2=84,……一直继续下去,直至增加到50。
因此,兔子数是50÷2=25(只)。
实际上,这就是前述的基本关系式②。
鸡兔同笼的方程公式
![鸡兔同笼的方程公式](https://img.taocdn.com/s3/m/db3a1c15f18583d049645917.png)
鸡兔同笼的方程公式解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的只数=鸡的只数解法3:总脚数÷2—总头数=兔的只数总只数—兔的只数=鸡的只数解法4(方程):X=总脚数÷2—总头数(X=兔的只数)总只数—兔的只数=鸡的只数解法5(方程):X=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(X=兔的只数)总只数—兔的只数=鸡的只数解法6(方程):X=:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(X=鸡的只数)总只数-鸡的只数=兔的只数3种算法(1).鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2兔的只数=鸡兔总只数-鸡的只数(2).兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2鸡的只数=鸡兔总只数-兔总只数(3).总腿数/2-总头数=兔只数总只数-兔只数=鸡的只数鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14只兔; 36-14=22 只鸡。
解二(4×36-100)÷(4-2)=22只鸡; 36-22=14 只兔。
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
鸡兔同笼解题技巧全集
![鸡兔同笼解题技巧全集](https://img.taocdn.com/s3/m/cb176c47a200a6c30c22590102020740be1ecd8a.png)
鸡兔同笼解题技巧全集鸡兔同笼问题是中国古代著名的数学趣题,也是小学数学中常见的一类应用题。
它具有一定的趣味性和挑战性,能够锻炼我们的逻辑思维和数学运算能力。
接下来,我将为您详细介绍鸡兔同笼问题的各种解题技巧。
一、假设法假设法是解决鸡兔同笼问题最常用的方法之一。
我们可以先假设笼子里全部都是鸡或者全部都是兔,然后根据实际的脚数与假设情况下的脚数差异来进行计算。
假设笼子里全部都是鸡,那么每只鸡有 2 只脚。
如果笼子里有 n 个头,那么脚的总数就是 2n 只。
但实际上的脚数比假设的要多,这是因为把兔当成鸡来计算时,每只兔少算了 2 只脚。
用实际脚数减去假设的脚数,再除以每只兔少算的 2 只脚,就可以得到兔的数量。
例如,笼子里有 35 个头,94 只脚。
假设全部都是鸡,那么脚的总数就是 35×2 = 70 只。
实际有 94 只脚,多出来的 94 70 = 24 只脚就是因为把兔当成鸡计算少算的。
每只兔少算 2 只脚,所以兔的数量就是 24÷2 = 12 只,鸡的数量就是 35 12 = 23 只。
同样,如果假设笼子里全部都是兔,那么每只兔有 4 只脚。
如果笼子里有 n 个头,脚的总数就是 4n 只。
实际脚数比假设的少,这是因为把鸡当成兔来计算时,每只鸡多算了 2 只脚。
用假设的脚数减去实际的脚数,再除以每只鸡多算的 2 只脚,就可以得到鸡的数量。
二、方程法方程法是一种比较直接和通用的方法。
我们可以设鸡的数量为x 只,兔的数量为 y 只。
根据题目中的条件,可以列出两个方程:方程一:x + y =头的总数方程二:2x + 4y =脚的总数然后通过解方程组来求出 x 和 y 的值。
比如,还是上面那个例子,有 35 个头,94 只脚。
设鸡有 x 只,兔有 y 只,可列出方程组:x + y = 35 (1)2x + 4y = 94 (2)由(1)式得 x = 35 y,将其代入(2)式:2×(35 y) + 4y = 9470 2y + 4y = 942y = 24y = 12将 y = 12 代入(1)式,可得 x = 23所以,鸡有 23 只,兔有 12 只。
鸡兔同笼变形题解法
![鸡兔同笼变形题解法](https://img.taocdn.com/s3/m/a29f3ecbf71fb7360b4c2e3f5727a5e9856a27c7.png)
鸡兔同笼变形题解法引言鸡兔同笼变形题是数学中的经典问题之一,它需要我们利用已知的条件来确定存在的鸡和兔的数量。
这个问题在数学教育中被广泛应用,也是培养学生逻辑思维能力的有效工具。
在本文中,我们将会介绍几种解决鸡兔同笼变形题的方法,希望能帮助读者更好地理解和解决这类问题。
方法一:代数思维步骤一:建立方程我们首先考虑,设鸡的数量为x,兔的数量为y。
根据题目中的信息可知: 1. 鸡和兔的总数量是n:x + y = n; 2. 鸡和兔的总腿数是2n:2x + 4y = 2n。
根据这两个方程,我们可以得到一个关于x和y的二元一次方程组。
步骤二:解方程组将方程组x + y = n和2x + 4y = 2n进行求解。
可以通过消元法、代入法、加减法等方法得到最终的解。
步骤三:讨论解的情况解方程组得到的解可能有多个情况,我们需要进一步判断哪些解是符合问题要求的。
根据题目中的条件,鸡和兔的数量应该是非负整数。
步骤四:总结通过上述步骤,我们可以得到该变形题的解。
同时,我们也可以通过改变已知条件,进一步推导出更多的相关问题,拓展解题思路。
方法二:图形思维步骤一:建立图形将鸡和兔分别用一个点表示,根据鸡和兔的数量,可以在坐标系中确定它们的位置。
同时,根据鸡和兔的腿数,可以确定它们之间的关系。
步骤二:求解交点通过分析图形,我们可以得到鸡和兔的交点,即满足题目条件的解。
步骤三:讨论解的情况类似于方法一,我们需要判断交点是否满足问题的要求。
步骤四:总结通过上述步骤,我们可以用图形的方式来解决鸡兔同笼变形问题。
这种方法可以使问题更加直观,有助于培养学生的几何思维能力。
方法三:列举思维步骤一:列举可能性我们可以根据题目中给出的条件,列举出符合条件的可能解,然后逐一进行验证。
步骤二:验证解的情况对于每一个列举出的解,我们需要进一步验证它们是否满足问题的要求。
同样地,鸡和兔的数量应该是非负整数。
步骤三:总结通过上述步骤,我们可以用列举的方式来解决鸡兔同笼变形问题。
鸡兔同笼四种方法
![鸡兔同笼四种方法](https://img.taocdn.com/s3/m/803053212379168884868762caaedd3382c4b573.png)
鸡兔同笼四种方法
鸡兔同笼问题是中国古代著名的趣题之一,通过研究解题方法可以提高我们的问题分析和解决能力。
下面介绍几种解鸡兔同笼问题的方法。
解法一:列表法。
这种方法通过列出表格,逐步尝试的方式来解决问题。
但是这种方法过程繁琐,不太符合大多数人的口味。
解法二:抬腿法。
这是古人解题的方法,即“金鸡独立”,兔两个后腿着地,前腿抬起。
这种方法可以得出公式:兔子的只数=总腿数÷2-总只数,鸡的只数=总只数-兔子的只数。
解法三:假设法。
这是鸡兔同笼类问题最常用的方法之一。
假设35个头都是兔子,腿数就应该是35×4=140,比94还多。
这时我们可以列式得出鸡的只数。
同样地,如果35个头都是鸡,腿数应该是35×2=70,比94还少。
这时我们可以列式得
出兔子的只数。
总结公式为:鸡的只数=(兔的脚数×总只数
-总腿数)÷(兔的腿数-鸡的腿数),兔的只数=(总脚数
-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)。
解法四:砍腿法。
这种方法比较暴力,即通过砍去一些腿,使得鸡兔数量满足条件。
但是这种方法不够科学,不太推荐使用。
通过研究这些方法,我们可以更加灵活地解决问题,提高我们的数学思维能力。
鸡兔同笼问题的三种解法
![鸡兔同笼问题的三种解法](https://img.taocdn.com/s3/m/a77ec69ae518964bce847c71.png)
鸡兔同笼问题的三种解法
一、方法与技巧
解决鸡兔同笼问题主要有三个解题方法:方程法、十字交叉法和假设法。
(1)方程法:通过一元一次方程或者二元一次方程组求解;
(2)十字交叉图法:
二、鸡兔同笼问题举例
例:现有鸡兔同笼,已知鸡兔数头35,数脚94,求鸡和兔的个数。
(鸡兔同笼原型)方程法:设鸡的个数为x,则兔的个数为35-x,则有2x 4(35-x)=94,解得x=23。
故有鸡23只,兔12只。
1 / 2
三、鸡兔同笼解题技巧的运用
例:某地劳动部门租用甲、乙两个教室开展农村实用人才培训。
两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。
两教室当月共举办该培训27次,每次培训均座无虚席,当月共培训1290人次。
问甲教室当月共举办了多少次这项培训?
A.8
B.10
C.12
D.15
【答案】D
【方程法】甲教室一次可坐10×5=50人,乙教室一次可坐9×5=45人,设甲教室举办了x次培训,则有: 50x 45(27-x)=1290,解得x=15。
故选D。
【公式法】根据题意,甲教室一次可坐10×5=50人,乙教室一次可坐9×5=45人,则由鸡兔同笼公式可知:甲教室举办的培训次数=
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔同笼问题的三种解法
一、方法与技巧
解决鸡兔同笼问题主要有三个解题方法:方程法、十字交叉法和假设法。
(1)方程法:通过一元一次方程或者二元一次方程组求解;
(2)十字交叉图法:
第一部分的平均值
总数量的平均11
则可得两部分的数量比为
总量-第—部分的平均值兀总个数竿一翊八苹几抽
第二部分的平均値—第一部分的平均值—床—即'纱
、鸡兔同笼问题举例
例:现有鸡兔同笼,已知鸡兔数头35,数脚94,求鸡和兔的个数。
(鸡兔同笼原型)
方程法:设鸡的个数为x,则兔的个数为35-x,则有2x 4(35-x)=94,解得x=23。
故有鸡23只,兔12只。
第二却分的平均值h
假设求法;
十字交叉法:平均每个头对应澄只脚,根据十字交叉團法,有:
所加兔的个数之比为:鸡1兔= ^<|| = 23J2,所以漏的个数为 廿冥」_“3,所以兔的个数为3%丄诂
12+23 12+2^
假设法:假设35只都罡馮 刑用公式解題;兔的只数=
/.
=12,则漓有
4-2
三、鸡兔同笼解题技巧的运用
例:某地劳动部门租用甲、乙两个教室开展农村实用人才培训。
两教室均有
5排座位,
甲教室每排可坐10人,乙教室每排可坐9人。
两教室当月共举办该培训 27次,每次培训均 座无虚席,当月共培训 1290人次。
问甲教室当月共举办了多少次这项培训
【答案】D
【方程法】甲教室一次可坐 10X 5=50人,乙教室一次可坐 9X 5=45人,设甲教室举办 了 x 次培训,则有: 50x 45(27-x)=1290 ,解得 x=15。
故选 D
【公式法】根据题意,甲教室一次可坐 10X 5=50人,乙教室一次可坐 9X 5=45人,则 由鸡兔同笼公式可知:甲教室举办的培训次数
=
94 35
94 35
46
35
24 35
实际垮训总人决-全部用乙載室的垮训人次 -1290 —= 15次召
甲竅宣華应鬲曲人次-乙教童華次的培训人次
50 -45
"
宀
12QD 1^0
人』根擔十字交夏厨E 有
叶字交叉法】平均毎次培训対譬 三予
田教室
乙教室
则甲、乙妲举办驱之比为罟:¥之4,故甲教室举办沁
=15 次*
故选肌
27。