高斯平面直角坐标系与大地坐标系相互转化
大地坐标与直角空间坐标转换计算公式

⼤地坐标与直⾓空间坐标转换计算公式⼤地坐标与直⾓空间坐标转换计算公式⼀、参⼼⼤地坐标与参⼼空间直⾓坐标转换1名词解释:A :参⼼空间直⾓坐标系:a) 以参⼼0为坐标原点;b) Z轴与参考椭球的短轴(旋转轴)相重合;c) X轴与起始⼦午⾯和⾚道的交线重合;d) Y轴在⾚道⾯上与 X轴垂直,构成右⼿直⾓坐标系O-XYZ ;e) 地⾯点P的点位⽤(X,Y,Z)表⽰;B :参⼼⼤地坐标系:a) 以参考椭球的中⼼为坐标原点,椭球的短轴与参考椭球旋转轴重合;b) ⼤地纬度B :以过地⾯点的椭球法线与椭球⾚道⾯的夹⾓为⼤地纬度 B ;c) ⼤地经度L:以过地⾯点的椭球⼦午⾯与起始⼦午⾯之间的夹⾓为⼤地经度L;d) ⼤地⾼H:地⾯点沿椭球法线⾄椭球⾯的距离为⼤地⾼H ;e) 地⾯点的点位⽤(B,L,H)表⽰。
2参⼼⼤地坐标转换为参⼼空间直⾓坐标:X =(N +H )* cosB* cosLY =(N +H )* cosB* sin L ?Z =[N * (I _e2) +H]* sin B”公式中,N为椭球⾯卯⾣圈的曲率半径,e为椭球的第⼀偏⼼率,a、b椭球的长短半径,f椭球扁率,W为第⼀辅助系数a2 -b22* f -1e 或e =a fW = . (1 -g*sin2BN aW西安80椭球参数:长半轴 a=6378140⼟ 5( m)短半轴 b=6356755.2882m扁率a =1/298.2573参⼼空间直⾓坐标转换参⼼⼤地坐标Z* (N + H) (X2 Y2)* N* (1 -e2) HX2 Y2cosB⼆⾼斯投影及⾼斯直⾓坐标系1、⾼斯投影概述⾼斯-克吕格投影的条件:1.是正形投影;2.中央⼦午线不变形⾼斯投影的性质: 1.投影后⾓度不变; 2.长度⽐与点位有关,与⽅向⽆关;3.离中央⼦午线越远变形越⼤为控制投影后的长度变形,采⽤分带投影的⽅法。
常⽤3度带或6度带分带,城市或⼯程控制⽹坐标可采⽤不按 3度带中央⼦午线的任意带。
空间大地坐标系及平面直角坐标系转换公式

§2.3.1 坐标系的分类正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。
人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。
在测量中常用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。
某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用图2-3来表示:图2-3 空间直角坐标系二、空间大地坐标系空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。
空间大地坐标系可用图2-4来表示:图2-4空间大地坐标系三、平面直角坐标系平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。
投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。
在我XX 用的是高斯-克吕格投影也称为高斯投影。
UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。
高斯投影是一种横轴、椭圆柱面、等角投影。
从几何意义上讲,是一种横轴椭圆柱正切投影。
如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切〔此子午线称为中央子午线或轴子午线〕,椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。
高斯投影满足以下两个条件:1、 它是正形投影;2、 中央子午线投影后应为x 轴,且长度保持不变。
将中央子午线东西各一定经差〔一般为6度或3度〕X 围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如以下图2-5右侧所示。
浅析几种常用坐标系和坐标转换

浅析⼏种常⽤坐标系和坐标转换⼀般来讲,GPS直接提供的坐标(B,L,H)是1984年世界⼤地坐标系(Word Geodetic System 1984即WGS-84)的坐标,其中B为纬度,L为经度,H为⼤地⾼即是到WGS-84椭球⾯的⾼度。
⽽在实际应⽤中,我国地图采⽤的是1954北京坐标系或者1980西安坐标系下的⾼斯投影坐标(x,y,),不过也有⼀些电⼦地图采⽤1954北京坐标系或者1980西安坐标系下的经纬度坐标(B,L),⾼程⼀般为海拔⾼度h。
GPS的测量结果与我国的54系或80系坐标相差⼏⼗⽶⾄⼀百多⽶,随区域不同,差别也不同,经粗落统计,我国西部相差70⽶左右,东北部140⽶左右,南部75⽶左右,中部45⽶左右。
现就上述⼏种坐标系进⾏简单介绍,供⼤家参阅,并提供各坐标系的基本参数,以便⼤家在使⽤过程中⾃定义坐标系。
1、1984世界⼤地坐标系WGS-84坐标系是美国国防部研制确定的⼤地坐标系,是⼀种协议地球坐标系。
WGS-84坐标系的定义是:原点是地球的质⼼,空间直⾓坐标系的Z轴指向BIH(1984.0)定义的地极(CTP)⽅向,即国际协议原点CIO,它由IAU和IUGG共同推荐。
X轴指向BIH定义的零度⼦午⾯和CTP⾚道的交点,Y轴和Z,X轴构成右⼿坐标系。
WGS-84椭球采⽤国际⼤地测量与地球物理联合会第17届⼤会测量常数推荐值,采⽤的两个常⽤基本⼏何参数:长半轴a=6378137m;扁率f=1:298.2572235632、1954北京坐标系1954北京坐标系是将我国⼤地控制⽹与前苏联1942年普尔科沃⼤地坐标系相联结后建⽴的我国过渡性⼤地坐标系。
属于参⼼⼤地坐标系,采⽤了前苏联的克拉索夫斯基椭球体。
其长半轴 a=6378245,扁率 f=1/298.3。
1954年北京坐标系虽然是苏联1942年坐标系的延伸,但也还不能说它们完全相同。
3、1980西安坐标系1978年,我国决定建⽴新的国家⼤地坐标系统,并且在新的⼤地坐标系统中进⾏全国天⽂⼤地⽹的整体平差,这个坐标系统定名为1980年西安坐标系。
大地坐标系转换方法

大地坐标系转换方法引言大地坐标系是地理空间测量中常用的一种坐标系统,用来描述地球上任意点的位置。
在使用大地坐标时,常见的问题是如何将大地坐标转换为其他坐标系,或者将其他坐标系转换为大地坐标。
本文将介绍一些常用的大地坐标系转换方法。
经纬度坐标与平面坐标间的转换大地坐标系与平面坐标系的关系大地坐标系使用经度(longitude)和纬度(latitude)来表示地球上的位置,是一种球面坐标系统。
而平面坐标系使用直角坐标系来表示位置,适用于小范围的测量。
因此,经纬度坐标与平面坐标之间的转换是常见的需求。
大地坐标转换为平面坐标大地坐标转换为平面坐标的方法称为投影。
常用的投影方法有等经纬度投影、高斯-克吕格投影、墨卡托投影等。
等经纬度投影等经纬度投影是一种简单的投影方法,它将地球表面划分为等大小的网格,将经纬度坐标映射到网格坐标上。
这种投影方法在小范围测量中常被使用,如城市规划、地图制作等。
高斯-克吕格投影高斯-克吕格投影是一种惯用的大范围测量投影方法。
这种投影方法在使用时需要选择一个中央子午线,并将经度平移至该子午线上,然后再进行投影转换。
高斯-克吕格投影适用于跨越多个经度带的地区。
墨卡托投影墨卡托投影是一种等积投影,具有无扭曲、保持形状不变和保持角度不变的特点。
这种投影方法广泛应用于航海、航空、地图制图等领域。
平面坐标转换为大地坐标平面坐标转换为大地坐标的方法称为反投影。
常用的反投影方法包括逆高斯-克吕格投影、反墨卡托投影等。
逆高斯-克吕格投影逆高斯-克吕格投影是将平面坐标转换为大地坐标的常用方法。
在逆高斯-克吕格投影中,需要知道投影中心的经纬度信息,然后通过逆运算将平面坐标转换为大地坐标。
反墨卡托投影反墨卡托投影将平面坐标转换为大地坐标的方法也很常见。
在反墨卡托投影中,需要指定投影的中心经纬度和投影的参数,然后通过逆运算将平面坐标转换为大地坐标。
大地坐标系间的转换大地坐标系间的转换通常包括从经纬度到其他大地坐标系的转换,或从其他大地坐标系到经纬度的转换。
测量中的常用坐标系及坐标转换概述

三、坐标转换
5、高斯投影的邻带换算
应用高斯投影正反算公式间接进行换带计算:实质是把椭球 面上的大地坐标作为过渡坐标,首先把某投影带(比如I带)内 有关点的平面坐标(x,y) I ,利用高斯投影反算公式换算成椭球 面上的大地坐标(B ,ι),进而得到L=L10+ ι,然后再由大地坐 标(B ,ι),利用投影正算公式换算成相邻带第Ⅱ带的平面坐标 (x,y) Ⅱ,在这一步计算中,要根据第Ⅱ带的中央子午线L20来 计算经差ι,此时ι=L- L20
大地高H:某点沿投影方向到基准面(参考椭球面)的距离。
在大地坐标系中,某点的位置用(B , L,H)来表示。
二、测量中的各种坐标系
2、空间直角坐标系
定义:以椭球体中心为原点,起始子午面与赤道面交线为X轴,在赤 道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴。
在空间直角坐标系中,某点的位置用(X,Y,Z)来表示。
二、测量中的各种坐标系
3、平面直角坐标系
在小区域进行测量工作若采用大地坐标来表示地面点位置是不方便的, 通常采用平面直角坐标系。 测量工作以x轴为纵轴,以y轴为横轴 投影坐标:为了建立各种比例尺地形图的控制及工程测量控制,一般应 将椭球面上各点的大地坐标按照一定的规律投影到平面上,并以相应的 平面直角坐标表示。
三、坐标转换
3、大地坐标同空间直角坐标的变换
X N cos B cos L Y N cos B sin L Z N (1 e 2 ) sin B
三、坐标转换
4、大地坐标与高斯平面坐标的变换
将大地坐标转换为高斯平面坐标,按照高斯投影正算公式 进行。
高斯投影正算公式:
x X 0 0.5 N sin B cos B l 2 y N cos B l 1 / 6 N cos3 B l 3 (1 t 2 2 )
坐标系转换步骤以及公式

一、各坐标系下椭球参数WGS84大地参数北京54大地参数西安80大地参数参考椭球体:WGS 84 长半轴:6378137短半轴:6356752.3142 扁率:1/298.257224 参考椭球体:Krasovsky_1940长半轴:6378245短半轴:6356863.0188扁率:1/298.3参考椭球体:IAG 75长半轴:6378140短半轴:6356755.2882扁率:1/298.257000二、WGS84转北京54一般步骤(转80一样,只是椭球参数不同)前期工作:收集测区高等级控制点资料。
在应用手持GPS接收机观测的区域内找出三个以上分布均匀的等级点(精度越高越好)或GPS“B”级网网点,点位最好是周围无电磁波干扰,视野开阔,卫星信号强。
并到测绘管理部门抄取这些点的54北京坐标系的高斯平面直角坐标(x、y),大地经纬度(B、L),高程h ,高程异常值ξ和WGS-84坐标系的大地经纬度(B、L),大地高H。
如果没有收集到WGS-84下的大地坐标,则直接用手持GPS测定已知点B、L、H值。
转换步骤:1、把从GPS中接收到84坐标系下的大地坐标(经纬度高程B、L, H,其中B为纬度,L为经度,H为高程),使用84坐标系的椭球参数转换为84坐标系下的地心直角坐标(空间坐标):式中,N为法线长度,为椭球长半径,b为椭球短半径,为第一偏心率。
2、使用七参数转换为54坐标系下的地心直角坐标(x,y,z):x = △x + k*X- β*Z+ γ*Y+ Xy = △y + k*Y + α*Z - γ*X + Yz = △z + k*Z - α*Y + β*X + Z其中,△x,△y,△z为三个坐标方向的平移参数;α,β,γ为三个方向的旋转角参数;k为尺度参数。
(采用收集到的控制点计算转换参数,并需要验证参数)在小范围内可使用七参数的特殊形式即三参数,即k、α、β、γ都等于0,变成:x = △x+ Xy = △y+ Yz = △z + Z3、根据54下的椭球参数,将第二步得到的地心坐标转换为大地坐标(B54,L54,H54)计算B时要采用迭代,推荐迭代算法为:4、根据工程需要以及各种投影(如高斯克吕格)规则进行投影得到对应的投影坐标,即平面直角坐标。
大地坐标与平面坐标之间的区别与转换

南方CASS和南方平差易可以计算,正反算,坐标换带下面收集的文章总结,相互转换需根据文章计算方法:1.大地坐标系:WGS84(世界坐标系)坐标以经纬度显示,GPS测得2.平面直角坐标系:高斯投影平面直角坐标系:北京54全国80,平面坐标以数字显示,由WGS84坐标系根据椭球参数转换而得。
北京54和全国80坐标系之间可以相互转换3.全站仪放样测得坐标属于平面直角坐标;GPS测得坐标属于大地坐标,高程是海拔高程。
4.同一个坐标系之间的转换高斯投影坐标系中坐标换带的计算见以下文章,比如80坐标系的6度带坐标,要换带计算为80坐标系的3度带,需要平面坐标先转换为大地坐标后根据经纬度调整再转换为另一度带坐标5.全站仪采用极坐标放样原理:把坐标输入全站仪,全站仪自动转换成方位角和距离,根据后视基准边的夹角和距离来放样。
具体参考WORD直角坐标与极坐标的区别和转换例题:高斯坐标和北京54,西安80坐标有什么区别,举例说一下,行吗?举个例子,野外采集GPS数据,数据是用大地坐标表示的,也就是用经纬度和高程表示。
而采集的数据要在地图上显示出来,就需要将经纬度转化为平面坐标,也就是通常说的x,y 坐标。
因为我国地形图一般采用高斯投影,所以通常转化成高斯平面坐标显示到地图上。
而在经纬度向平面坐标转化的过程中,需要用到椭球参数,因此要考虑所选的坐标系,我国常用的坐标系有北京54,西安80,WGS-84坐标系,不同的坐标系对应的椭球体是不一样的,这里你可能会不明白根椭球体有啥关系,是这样的,我们所说的地理数据都是为了描述大地水准面上的某一个点,而大地水准面是不规则的,我们用一个规定的椭球面去拟合这个水准面,用椭球面上的点来近似表示地球上的点。
每个国家地理情况不同,采用的椭球体也不尽相同。
北京54坐标系采用的是克拉索夫斯基(Krassovsky)椭球体,而西安80采用的是IAG 75地球椭球体WGS84坐标与北京54坐标转换(转)2007-09-20 12:03转自GIS中的坐标系定义与转换戴勤奋1. 椭球体、基准面及地图投影GIS中的坐标系定义是GIS系统的基础,正确定义GIS系统的坐标系非常重要。
高斯正反算及空间直角坐标与大地地理坐标转换

高斯正反算及空间直角坐标与大地地理坐标转换一、实验目的与要求1.对以上理论内容的验证与应用。
2.通过学习掌握测绘软件开发过程与方法,初步具备测绘软件开发基本技能。
3.熟练掌握Visual C++编程环境的使用,了解其特点与程序开发过程,掌软件调试、测试的技术方法。
4.分析测绘程序设计技术课程中相关软件的结构和模块功能,掌握结构化程序设计方法和技术,掌握测绘数据处理问题的基本特点。
5.开发相关程序功能模块,独立完成相关问题概念结构分析、程序结构设计、模块设计、代码编写、调试、测试等工作。
二、实验安排1.实验时数12学时。
2.每实验小组可以由3~4人组成,或独立完成。
若由几个人完成程序设计,应进行合理的分工。
三、实验步骤和要点1.熟悉程序设计任务书的基本内容,调查了解软件需求状况,进行需求分析;2.进行总体设计。
根据所调查收集的资料和任务书的要求,对系统的硬件资源进行初步设计,提出硬件配置计划;进行软件总体设计,设计出软件程序功能的模块;3.根据总体设计的结果,进行详细设计,进行数据存储格式设计、算法等,写出逻辑代码;4.编写程序代码,调试运行;5.程序试运行。
最后同学们可根据自己的选题,写出软件开发设计书一份,打印程序代码和运行结果。
四实验原理高斯正反算:高斯正反算包括两部分内容:高斯正算和高斯反算。
简单的说就是大地地理坐标系坐标(B,L)与其对应的高斯平面直角坐标系坐标(x,y)之间的转换。
若已知大地地理坐标系坐标(B,L)解求对应的高斯平面直角坐标系坐标(x,y)称为高斯正算;反之,则为高斯反算。
空间直角坐标与大地地理坐标转换:地球表面可用一个椭球面表示。
设空间直角坐标系为OXYZ,当椭球的中心与空间直角坐标系原点重合,空间坐标系Z 轴与地球旋转重合(北极方向为正),X 轴正向经度为零时,就可以确定空间直角坐标系与大地地理坐标系的数学关系。
⎪⎩⎪⎨⎧+-=+=+=B H e N Z LB H N Y L B H N X sin ])1([sin cos )(cos cos )(2 式中 N 为卯酉圈曲率半径,B e a N 22sin 1-=; e 为椭球偏心率,222a b a e -=(a ,b 为椭球长半轴和短半轴)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高斯平面直角坐标系与大地坐标系相互转化
高斯平面直角坐标系与大地坐标系转换 1. 高斯投影坐标正算公式(1) 高斯投影正算:已知椭球面上某点的大地坐标(L,B),求该点在高斯投影平面上的直角坐标(x,y),即(L,B)->(x,y)的坐标变换。
(2) 投影变换必须满足的条件中央子午线投影后为直线; 中央子午线投影后长度不变; 投影具有正形性质,即正形投影条件。
(3) 投影过程在椭球面上有对称于中央子午线的两点P 1 和P 2 ,它们的大地坐标分别为(L,B)及(l,B),式中l 为椭球面上P 点的经度与中央子午线(L 0 )的经度差:l=L-L 0 ,P 点在中央子午线之东,l 为正,在西则为负,则投影后的平面坐标一定为P 1 ’(x,y)和P 2 ’(x,-y)。
(4) 计算公式 4 ' ' 2 2 3 4 ' ' 2 ' ' 2 ' ' ) 9 5 ( cos sin 2 sin 2 l t B B N Bl N X x 5 ' ' 4 2 5 5 ' ' 3 ' ' 2 2 3 ' ' ' ' ' ' ) 18 5 ( cos 120 ) 1 ( 6 cos l t t B N l t B N Bl N y 当要求转换精度精确至0.001m时,用下式计算: 6 ' ' 4 2 5 6 ' ' 4 ' ' 4 2 2 3 4 ' ' 2 ' ' 2 ' ' ) 58 61 ( cos sin 720 ) 4 9 5 ( cos sin 24 sin 2 l t t B B N l t B B N Bl N X x
5 ' ' 2 2 2 4 2 5 5 ' ' 3 ' ' 2 2 3 3 ' ' ' ' ' ' ) 58 14 18 5 ( cos 720 ) 1
( cos 6 cos l t t t B N l t B N Bl N y
2. 高斯投影坐标反算公式(1) 高斯投影反算:已知某点的高斯投影平面上直角坐标(x,y),求该点在椭球面上的大地坐标(L,B),即(x,y)->(L,B)的坐标变换。
(2) 投影变换必须满足的条件x 坐标轴投影成中央子午线,是投影的对称轴; x 轴上的长度投影保持不变; 投影具有正形性质,即正形投影条件。
(3) 投影过程根据x 计算纵坐标在椭球面上的投影的底点纬度 B f ,接着按B f 计算(B f -B)及经差l,最后得到B=B f -(B f -B)、L=L 0 +l。
(4) 计算公式6 4 2 5 4 2 2 2 3 3 2 ) 45 90
61 ( 720 ) 9 3 5 ( 24 2 y t t N M t y t t N M t y N M t B
B f f f f f f f f f f f f f f f f
5 2 2 2 4 2 5 3 2 2 3 ) 8
6 24 23 5 ( cos 120 1 )
2 1 ( cos 6 1 cos 1 y t t t B N y t B N y B N l f f f f f f f f
f f f f f 当要求转换精度至0.01”时,可简化为下式: 4 2 2 2 2 3 2 ) 9 3 5 ( 24 2 y t t N M t y N M t B B f f f f f f f f f f f
5 4 2 5 3 2 2 3 ) 24 28 5 ( cos 120 1 ) 2 1 ( cos
6 1 cos 1 y t t B N y t B N y B N l f f f f f f f f f f 近几年来,在测绘行政主管部门的推动下,我国西安80 坐标系正在
逐步得到使用,第二次全国土地调查明确要求平面控制使用80 西安坐标系统,省级基础测绘成果1:10000 地形图也采用了1980 西安坐标系。
现有1954 年北京坐标系将逐步渐向1980 西安坐标系过度,但是,五十年来,我国在1954 年北京坐标系下完成的大地控制及基本系列地形图数量巨大,价值巨大,必须充分利用。
1954 年北京坐标系是我国五十年代由原苏联1942 年普尔科沃坐标系传算而来,采用克拉索夫斯基椭球体,其参数为:长半轴6378245 米,扁率为1/298.3。
这个坐标系的建立在我国国民经济和社会发展中发挥了巨大的作用,但该坐标系存在着定位后的参考椭球面与我国大地水准面不能达到最佳拟合,在中国东部地区大地水准面差距自西向东增加最大达+68 米; 其椭球的长半轴与现代测定的精确值相比109 米的缺陷;定向不明确,椭球短轴未指向国际协议原点CIO,也不是中国地极原点JYD1968.0;其实大地子午面也不是国际时间局BIH 所定义的格林尼治平均天文台子午面。
同时,该系统提供的大地点坐标是通过局部平差逐级控制求得的,由于施测年代不同、承担单位不同,不同锁段算出的成果相矛盾,给用户使用带来困难。
1978 年 4 月,中国在西安召开了全国天文大地网平差会
议,在会议上决定建立中国新的国家大地坐标系,有关部门根据会议纪要,开展并进行了多方面的工作,建成了1980 西安国家大地坐标系(GBD80),该坐标系全面描述了椭球的4 纲基本参数,同时反映了椭球的几何特性和物理特性,这 4 个参数的数值采用的是1975 年国际大地测量与地球物理联合会第16 届大会的推荐值(简称IGA-1975 椭球)。
其主要参数为:长半轴为6378140 米,扁率为1/298.257。
IAG-1975 椭球参数精度较高,能更好地代表和描述地球的几何形状和物理特征。
在其椭球体定位方面,以我国范围内高程异常平方和最小为原则,做到了与我国大地水准面较好的吻合。
此外,1982 年我国已完成了全国天文大地网的整体平差,消除了以前局部平差和逐级控制产生的不合理影响,提高了大地网的精度,在上述基础上建立的1980 西安坐标系比1954 年北京坐标系更科学、更眼咪咪、更能满足科研和经济建设的需要。
由于北京54 坐标系和西安80 坐标系是两种不同的大地基准面,这两个椭球参数不同,参心所在位置不同、指向不同,在高斯平面上其纵横坐标轴不重合,因而同一点的坐标是不同的,无论是三度带六度带还是经纬度坐标都是不同的,其平面位置最大相差80 米。