坐标系向国家大地坐标系的转换完整版
2000国家大地坐标系转换实施方案

2000国家大地坐标系转换实施方案
2000国家大地坐标系转换是将其他坐标系的数据转换为2000
国家大地坐标系的过程。
为了实施该转换方案,可以采取以下步骤:
1. 了解目标坐标系的投影系统和地理坐标系参数。
不同的坐标系可能使用不同的投影系统和参数,例如经纬度、UTM等。
确保了解目标坐标系的参数是非常重要的。
2. 收集源数据。
这些源数据可以是各种类型的,如航空影像、GPS测量数据、地图数据等。
确保源数据是可靠的和准确的,以便获得高质量的转换结果。
3. 确定转换方法。
根据源数据和目标坐标系的参数,选择最合适的转换方法。
一种常用的方法是使用地理坐标系转换参数进行数据转换。
4. 编写转换算法或使用专业的转换软件。
根据选择的转换方法,编写相应的算法进行数据转换。
如果有现成的专业软件可用,可以考虑使用该软件进行数据转换。
5. 进行数据转换。
将源数据输入到转换算法或软件中,进行数据转换。
确保输入数据格式的正确性并进行必要的数据处理。
6. 验证转换结果。
将转换后的数据与已知的控制点或现有的标准数据进行比较,验证转换结果的准确性和精度。
7. 调整转换参数(可选)。
如果转换结果与标准数据存在偏差或误差较大,可以尝试调整转换参数,重新进行转换,直到达到满意的结果为止。
8. 文档化转换过程。
对转换过程进行详细记录,包括所使用的数据、方法、参数等信息,以备将来参考和复查。
以上是一个简单的2000国家大地坐标系转换实施方案。
实际实施过程中还需要根据具体情况进行调整和优化。
坐标转换从经纬度坐标到大地坐标及源码

坐标转换从经纬度坐标到大地坐标及源码坐标转换是指将一个坐标系下的点的坐标转换为另一个坐标系下的点的坐标。
在地理空间领域,经纬度坐标(也称为地理坐标)和大地坐标是两个常用的坐标系。
经纬度坐标是地理坐标系中用来表示地球表面上其中一点位置的一种方式。
它使用经度和纬度两个数值来确定一个点的位置。
经度表示点与地球质心之间的角度差,范围为-180°到180°,其中0°表示位于本初子午线上,东经为正,西经为负。
纬度表示点与地球赤道间的角度差,范围为-90°到90°,南纬为负,北纬为正。
大地坐标(也称为投影坐标)是将地球表面的球面坐标映射到平面上的坐标系。
大地坐标系使用X、Y坐标来表示一个点的位置,其中X轴通常表示东西方向,Y轴通常表示南北方向。
接下来,我们将提供一种经纬度坐标到大地坐标的转换方法以及相关源码。
方法一:使用Python编程语言在Python中,我们可以使用Pyproj库来进行经纬度坐标到大地坐标的转换。
下面是一个示例代码,展示了如何使用该库进行转换:```pythonimport pyprojdef latlon_to_utm(lat, lon):#定义转换器utm_x, utm_y = transformer.transform(lon, lat)return utm_x, utm_y#测试lat = 39.9087 # 纬度值lon = 116.3975 # 经度值utm_x, utm_y = latlon_to_utm(lat, lon)print("UTM坐标: X =", utm_x, "Y =", utm_y)```方法二:使用JavaScript编程语言在JavaScript中,我们可以使用proj4js库来进行经纬度坐标到大地坐标的转换。
下面是一个示例代码,展示了如何使用该库进行转换:```javascriptvar proj4 = require('proj4');function latlon_to_utm(lat, lon)//定义转换器var source = '+proj=longlat +datum=WGS84 +no_defs';var target = '+proj=utm +zone=50 +datum=WGS84 +units=m+no_defs';var utm = proj4(source, target, [lon, lat]);return {x: utm[0], y: utm[1]};//测试var lat = 39.9087; // 纬度值var lon = 116.3975; // 经度值var utm = latlon_to_utm(lat, lon);console.log("UTM坐标: X =", utm.x, "Y =", utm.y);```在上述代码中,我们使用proj4库来定义转换器并进行转换。
GPS坐标和国家大地坐标之间的转换

GPS坐标和国家大地坐标之间的转换一、前言WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的星历参数就是基于此坐标系统的。
WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。
WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统-WGS-72坐标系统而成为GPS的所使用的坐标系统。
WGS-84坐标系的坐标原点位于地球的质心,轴指向BIH1984.0定义的协议地球极方向,轴指向BIH1984.0的启始子午面和赤道的交点。
采用椭球参数为:a=6 378 137m,f= 1/298.257 223 563。
北京54 坐标系、西安80 坐标系—属于参心坐标系, 北京54 坐标系采用克拉索夫斯基椭球参数,长轴a= 6 3 78 2 4 5 米, 扁率f=l : 2 98.3 ;西安80 大地系坐标系椭球参数采用国际大=地测量和地球物理联合19 7 5 后推荐的地球椭球参数, 长轴a= 6 3 7 8 140 米, 扁率f1 : 298.257,大地原点在我西安市径阳县永乐镇。
西安80 坐标系的建立是在54 年北京坐标系的基础上完成的。
在实际的工作中,对于GPS的测量数据。
我们需要将其转换成所需要的54或80坐标系,才能够使用。
或是将其转换成相应的地方坐标系。
在转换的过程中需要进行一系列的变换。
本文将对其过程做详细的说明。
二、转换过程(1)数据测量:在实际操作中,首先进行的是数据的观测。
根据实际工作需要,采用相应的观测方法进行观测,得到合格的测量成果。
本文主要是针对GPS控制网的转换来说明的。
(2)平差:在GPS控制网的测量工程中,在进行完基线测量(地面坐标和高程)后,需要对测量结果进行平差,得到相应的平差结果。
下面对相应的条件平差①做具体说明:AV-W=0 [1]L#=L+V [2]基础方程和它的解:设有r个平差线性条件方程:[3]式中a i,b i…r i(i=1,2,…n)为条件方程系数,a0,b0…r0为条件方程常数项。
城市坐标系转换2000国家大地坐标系分析

试点论坛shi dian lun tan288城市坐标系转换2000国家大地坐标系分析◎王爱霞摘要:伴随着2000国家大地坐标的应用范围越来越广,使用2000国家大地坐标的项目也在不断的增加。
通过对2000年国家地质公共坐标系转换的技术方法和程序进行探索,实现地质调查结果和主体空间数据库坐标系向2000国家地质坐标系的转换的目标,为地质数据坐标系转换奠定了技术基础。
因此,本文对2000国家大地坐标系进行了简述,并对现有大地坐标系转换为2000国家大地坐标系的方法进行了分析。
关键词:2000年国家大地坐标系;坐标系转换在2008年国家测绘地理信息局发布的公告中,规定道:“经国务院批准,一句《中华人民共和国测绘法》的规定,在2008年7月1日以后我国开始使用2000国家大地坐标系。
” 在2013年,中国地质调查局发布了《中国地质调查通知书《2000国家大地坐标系推广使用技术指南》和《大地测量控制点坐标转换技术规程》(中地调函[2013] 332号)》,要求质量调查项目主管部门对相关的文件进行调查分析,必须做好原坐标系进行2000国家大地坐标系的转换工作。
但是,在十多年的发展以来,地质调查数据量非常大。
一、城市坐标系向2000国家大地坐标系转换的技术路线城市坐标系向2000国家大地坐标系转换的技术程序有:第一,对现有坐标系结果数据进行收集,对局部坐标系的使用进行分析和控制。
第二,需要构建精度极高的2000坐标系,充分发挥现有的基本控制网点的作用,构建区域内的高精度的2000坐标基准架构。
第三,以2000区域坐标系的基准架构以及现有的城市坐标系为基础,明确区域坐标系向2000国家大地坐标系进行转换的关系。
二、对于2000国家大地坐标系基本架构进行构建的具体方式(一)收集现有坐标系的结果数据通常,在选择区域坐标系时,通常会通过标准区域投影来选择更接近国家标准指标区域的中央子午线的区域(3度区域,6度区域),要与国家基本地理信息数据相符合。
直角坐标系和大地坐标系转换

直角坐标系和大地坐标系的转换
在地理信息系统和测量领域中,直角坐标系和大地坐标系是两种常用的坐标系统。
直角坐标系是平面直角坐标系,由水平的x轴和垂直的y轴构成,可以用来表示平面上的点的位置,通常以米为单位。
而大地坐标系则是一种用来描述地球上点的位置的坐标系统,通常是经度(Longitude)和纬度(Latitude)的组合。
直角坐标系到大地坐标系的转换
直角坐标系到大地坐标系的转换涉及到高等数学的知识,主要是利用球面三角学的相关技巧。
在进行转换之前,需要知道点在直角坐标系中的坐标值,以及直角坐标系的原点。
然后,可以通过一系列的数学运算,将点的直角坐标值转换为大地坐标系中的经度和纬度。
大地坐标系到直角坐标系的转换
大地坐标系到直角坐标系的转换相对直接一些。
给定一个点的经度和纬度,我们可以利用地球的半径及球面三角学的相关公式,将该点的经度和纬度转换为直角坐标系中的坐标值。
这种转换可以帮助我们将地球表面上的点的位置转换为平面直角坐标系中的表示,便于进行地理信息系统中的测量和计算。
应用
直角坐标系和大地坐标系的转换在地理信息系统、地图制作、导航系统等领域都有着重要的应用。
通过这种转换,我们可以方便地将地球上的点的位置在不同坐标系统之间进行转换,从而实现不同系统之间的数据交换和信息共享。
总的来说,直角坐标系和大地坐标系的转换是地理信息系统和测量领域中的重要技术,对于地球表面上点的位置的表示和计算具有重要意义,能够为人类的地理信息分析和决策提供便利。
坐标系向国家大地坐标系的转换完整版

坐标系向国家大地坐标系的转换HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】北京54坐标系向国家2000大地坐标系的转换摘要:2000国家坐标系统提高了测量的绝对精度,并且可以快速获取精确的三维地心坐标,能够提供高精度、地心、实用、统一的大地坐标系,自此以后的测量成果要求坐标系统采用2000国家大地坐标系,本文就北京54坐标系和2000国家大地坐标系原理和转换方法进行简单的分析。
1引言大地坐标系是地球空间框架的重要基础,是表征地球空间实体位置的三维参考基准,科学地定义和采用国家大地坐标系将会对航空航天、对地观测、导航定位、地震监测、地球物理勘探、地学研究等许多领域产生重大影响。
建立大地坐标框架,是测量科技的精华,与空间导航乃至与经济、社会和军事活动均有密切关系,它是适应一定社会、经济和科技发展需要和发展水平的历史产物。
过去受科技水平的限制,人们不得不使用经典大地测量技术建立局部大地坐标系,它的基本特点是非地心的、二维使用的。
采用地心坐标系,即以地球质量中心为原点的坐标系统,是国际测量界的总趋势,世界上许多发达和中等发达国家和地区多年前就开始采用地心坐标系,如美国、加拿大、欧洲、墨西哥、澳大利亚、新西兰、日本、韩国等。
我国也于2008年7月开始启用新的国家大地坐标系—2000国家大地坐标系。
2北京54系我国北京54坐标系是采用前苏联的克拉索夫斯基椭球参数(长轴6378245ra,短轴635686m,扁率1/298.3),并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
其坐标的原点不在北京,而是在前苏联的普尔科沃。
3国家2000坐标系(CGCS2000)经国务院批准我国自2008年7月1日启用2000国家大地坐标系,2000国家坐标系统提高了测量的绝对精度,并且可以快速获取精确的三维地心坐标,能够提供高精度、地心、实用、统一的大地坐标系,为各项社会经济活动提供基础性保障;更好地阐明地球空间物体的运动,满足各部门高精度定位的需求。
坐标系的转换

对于坐标系之间的转换,目前我们国家有以下几种:1、大地坐标(BLH)对平面直角坐标(XYZ);2、北京54全国80及WGS84坐标系的相互转换;3、任意两空间坐标系的转换。
坐标转换就是转换参数。
常用的方法有三参数法、四参数法和七参数法。
以下对上述三种情况作转换基本原理描述如下:1、大地坐标(BLH)对平面直角坐标(XYZ)常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。
椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。
一般的工程中3度带应用较为广泛。
对于中央子午线的确定的一般方法是:平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。
如x=3888888m,y=388888666m,则中央子午线的经度=38*3=114度。
另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。
确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。
2、北京54全国80及WGS84坐标系的相互转换这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。
其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。
由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。
对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。
当然若条件不许可,且有足够的重合点,也可以进行人工解算。
详细方法见第三类。
3、任意两空间坐标系的转换由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。
地方坐标到2000国家大地坐标转换方法

浅谈地方坐标到2000国家大地坐标转换方法摘要:我国自2008年7月1日起启用2000国家大地坐标系作为我国测绘生产和gis系统建设新的坐标系。
但我国目前用以测图及工程规划、设计以及其他用途的大地控制点一般又都是基于北京54坐标系或1980西安坐标系。
如何将这些控制点统一到2000国家坐标系是当前必须解决的问题。
本文探讨了我国原有地方坐标系与cgcs2000坐标系的定义差别以及相互转换的基础理论和方法进行研究。
关键词:cgcs2000; 转换参数;七参数转换模型1、引言随着科技的进步,特别是gps技术和新的大地测量技术的发展,原有的北京54、西安80坐标系都不是基于以地球质量中心为原点的坐标系统,已不能适应新时期国民经济和科学发展的需要以及我国建设地理空间信息框架等各个行业的需求。
2、2000国家坐标系简介以地球质量中心为原点的地心大地坐标系,是当今空间时代全球通用的基本大地坐标系。
以空间技术为基础的地心大地坐标系,是我国新一代大地坐标系的适宜选择。
地心大地坐标系可以满足大地测量、地球物理、天文、导航和航天应用以及经济、社会发展的广泛需求。
2.1采用地心坐标系的优点采用地心坐标系有助于利用空间测量技术,有利于充分享用空间技术的成果;②使用地心坐标系有助于促进航天技术与武器应用的发展;③采用地心坐标系有助于推动大地测量以至整个测绘科技的发展;④采用地心坐标系有利于地球空间信息产业及地球动力学、地球物理学和地震学的研究;⑤使用地心坐标系有助于推动卫星导航产业,进而推动陆地、海洋和空中交通运输业的发展;⑥使用地心坐标系,有利于统一世界大地基准,进而有利于我国参与经济全球化及国际竞争,有利于社会的可持续发展。
2.22000国家大地坐标系的定义cgcs 2000是一种协议地球坐标系。
在国家测绘局发布的“现有测绘成果转换到2000国家大地坐标系技术指南”(以下简称“指南”)中,对2000国家大地坐标系有完整的定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标系向国家大地坐标
系的转换
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
北京54坐标系向国家2000大地坐标系的转换
摘要:2000国家坐标系统提高了测量的绝对精度,并且可以快速获取精确的三维地心坐标,能够提供高精度、地心、实用、统一的大地坐标系,自此以后的测量成果要求坐标系统采用2000国家大地坐标系,本文就北京54坐标系和2000国家大地坐标系原理和转换方法进行简单的分析。
1引言大地坐标系是地球空间框架的重要基础,是表征地球空间实体位置的三维参考基准,科学地定义和采用国家大地坐标系将会对航空航天、对地观测、导航定位、地震监测、地球物理勘探、地学研究等许多领域产生重大影响。
建立大地坐标框架,是测量科技的精华,与空间导航乃至与经济、社会和军事活动均有密切关系,它是适应一定社会、经济和科技发展需要和发展水平的历史产物。
过去受科技水平的限制,人们不得不使用经典大地测量技术建立局部大地坐标系,它的基本特点是非地心的、二维使用的。
采用地心坐标系,即以地球质量中心为原点的坐标系统,是国际测量界的总趋势,世界上许多发达和中等发达国家和地区多年前就开始采用地心坐标系,如美国、加拿大、欧洲、墨西哥、澳大利亚、新西兰、日本、韩国等。
我国也于2008年7月开始启用新的国家大地坐标系—2000国家大地坐标系。
2北京54系我国北京54坐标系是采用前苏联的克拉索夫斯基椭球参数(长轴6378245ra,短轴635686m,扁率1/298.3),并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
其坐标的原点不在北京,而是在前苏联的普尔科沃。
3国家2000坐标系(CGCS2000)经国务院批准我国自2008年7月1日启用2000国家大地坐标系,2000国家坐标系统提高了测量的绝对精度,并且可以快速获取精确的三维地心坐标,能够提供高精度、地心、实用、统一的大地坐标系,为各项社会经济活动提供基础性保障;更好地阐明地球空间物体的运动,满足各部门高精度定位的需求。
2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转, X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z 轴、 X轴构成右手正交坐标系。
采用广义相对论意义下的尺度。
2000国家大地坐标系采用的地球椭球参数的数值为:长半轴, a=6378137m;扁率, f=1/298.;地心引力常数,GM=3.×1014m3s-2;自转角速度,ω=7.292l15×10-5 rads-1 。
2000国家大地坐标系
(CGCS2000)其定义与ITRS协议的定义一致,即坐标系原点为包括海洋和大气的整个地球的质量中心;尺度为在引力相对论意义下的局部地球框架的尺度;定向的初始值由1984.0时BIH定向给定,而定向的时间演化保证相对地壳不产生残余的全球旋转;长度单位为引力相对意义下局部地球框架中的米。
CGCS2000的参考历元为2000.0。
CGCS2000所采用的参考椭球以a(赤道半径)、J2(动力形状因子)、GM(地心引力常数)和ω(地球自转角速度)等四个基本参数定义,国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。
目前CGCS2000的维持主要依靠连续运行GPS 参考
站,它们是GPS2000的骨架,其坐标精度为毫米级,速度精度为±
1mm/a。
CGCS2000框架由2000国家GPS大地控制网点构成,共有约2600个三维大地控制点,其点位精度约为±3cm。
而由国务院测绘行政主管部门和军事测绘行政主管部门分别实施完成的全国天文大地网与2000国家GPS大地控制网联合平差形成的近5万点构成了CGCS2000Q框架的加密网点,三维点位误差约为±0.3m。
4转换方法通过以上可以看出这两种坐标系统的起算点不在一个椭球基准面上,这就涉及到两个椭球间的相互转换问题。
所谓坐标转换的过程最重要的就是转换参数的求解过程,目前的转换方法主要分为数学计算模型、格网内插模型。
⑴全国及省级范围的坐标转换选择二维七参数转换模型。
ΔLΔ[] B=-sinLNcosBρ"cosLNcosBρ" 0-sinBcosLMρ"-sinBcosLMρ"cosBM ρ"ΔXΔYΔZ+[ ] 0εxεyεz+0-NM e2sinBcosBρ "m +00NMae2sinBcosBρ"(2-e2sin2B)1-f sinBcosBρ"Δa Δ[] f其中:ΔB,ΔL-同一点位在两个坐标系下的纬度差、经度差,单位为弧度;Δa,Δf-椭球长半轴差(单位米)、扁率差(无量纲);ΔX,ΔY,ΔZ-平移参数,单位为米;εx,εy,εz-旋转参数,单位为弧度;m-尺度参数(无量纲)。
⑵省级以下的坐标转换可选择三维四参数模型或平面四参数模型。
对于相对独立的平面坐标系统与2000国家大地坐标系的联系可采用平面四参数模型或多项式回归模型,四参数模型属于两维坐标转换,对于三维坐标,需将坐标通过高斯投影变换得到平面坐标再计算转换参数。
平面直角坐标转换模型:x2y[]2=x0y[]0 +(1+m) cosa -
sina[ ]sinacosa x1 y[] 2 其中:x0,y0为平移参数,α为旋转参数,m为尺度参数。
x2,y2为2000国家大地坐标系下的平面直角坐标,x1,y1为原坐标系下平面直角坐标。
坐标单位为米。
⑶插值内插模型主要有多项式回归法(二次曲面)、高斯克里格加权法、加权反距离法、三角剖分法、临近点法、最小曲率内插法等等。
⑷模型参数计算,是用所确定的重合点坐标,根据坐标转换模型利用最小二乘法计算模型参数,也就是计算重合点坐标改正量,利用两个坐标系间控制点的坐标改正量,采用适宜的方法计算一定间隔的格网结点上的坐标改正量内插其他任意点上的坐标改正量,从而实现不同坐标的变换,其优点在于可以很好地拟合由于大地网局部性系统误差(或形变)的影响产生的变形差,能达到局部细致拟合和全网连续的效果,且有较高的转换精度。
⑸插值内插模型整体转换法,其基本思路是:以各个转换点(格网点)为中心,以适当的搜索半径搜索出计算该点的北京54坐标系向国家2000坐标系的坐标改正量,进而获得该点的国家2000坐标系坐标。
坐标重合点可采用在两个坐标系下均有坐标成果的点。
但最终重合点还需根据所确定的转换参数,计算重合点坐标残差,根据其残差值的大小来确定,若残差大于3倍中误差则剔除,重新计算坐标转换参数,直到满足精度要求为止;用于计算转换参数的重合点数量与转换区域的大小有关,但不得少于5个。
⑹精度评估与检核。
用上述模型进行坐标转换时必须满足相应的精度指标,具体精度评估指标及评估方法见相关内容。
选择部分重合点作为外部检核点,不参与转换参数计算,用转换参数计算这些点的转换坐
标与已知坐标进行比较进行外部检核。
应选定至少6个均匀分布的重合点对坐标转换精度进行检核。
在甘肃省区域,经过分析后,各种插值方法的精度和点的密度程度有关,克里格和最小曲率内插法,在点的密集度高、点均匀时,内符合精度高,但是不能外推,点位稀疏时,内插严重失真。
二次多项式能够反映变换趋势,也可外推计算,在甘肃省采用多项式回归模型中的二次曲面模型。
5结语国务院批准自2008年7月1日启用我国的地心坐标系-2000国家大地坐标系(CGCS2000),同时要求用8-10年的时间,完成现行国家大地坐标系向国家2000大地坐标系的过度和转换。
过渡期结束,将停止提供现行国家大地坐标系下测绘成果,也就是北京54坐标系和西安80坐标系的成果。
因此在这8-10年中,矿区的北京54坐标系下成果都要转换成国家2000大地坐标下的成果,矿区一般面积较小,因此可以采用三维四参数模型或平面四参数模型,比较严密和准确的还是应该采用二维七参数模型。
为完成甘肃基础测绘数据转换而开发的软件GST-2000,能够完成北京1954、西安1980、WGS84、国家2000控制成果的相互转换,这将大大方便我省的数据转换工作。
利用Micromine地质建模技术建立的矿体、地表实体模型更加直观的反映矿床内各矿体立体空间形态及品位分布特征,利用建立的矿体模型可进行品位估值、矿床矿体储量计算,能够解决传统方法中复杂矿床内矿体之间互相交叉重叠、重复计算储量的问题,便捷的对矿床内不同边界品位区间的储量进行统计,实时掌控矿体储量动态变化情况,任意方位截取地质剖面、平面图及图件输出,能够进行工程空间定位,为采矿工程师进行采矿设计等提供很好的平台,最终服务于矿山整个生产过
程,该项技术的应用不仅对矿山企业生产与管理的数字化进程起到巨大的推动作用,也将促使我国地质矿产部门的矿产资源勘查、储量核实与管理工作迈向一个崭新的高科技时代。