不同坐标系之间的变换.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§10.6不同坐标系之间的变换

10.6.1欧勒角与旋转矩阵

对于二维直角坐标,如图所示,有:

(10-8

在三维空间直角坐标系中,具有相同原点的两坐标系间的变换一般需要在三个坐标平面上,通过三次旋转才能完成。如图所示,设旋转次序为:

①绕旋转角,旋转至;

②绕旋转角旋转至;

③绕旋转角,旋转至。

为三维空间直角坐标变换的三个旋转角,也称欧勒角,与它相对应的旋转矩阵分别为:

(10-10

(10-11

(10-12

令(10-13

则有:

(10-14 代入:

一般为微小转角,可取:

于是可化简

(10-16

上式称微分旋转矩阵。

10.6.2不同空间直角坐标之间的变换

当两个空间直角坐标系的坐标换算既有旋转又有平移时,则存在三个平移参数和三个旋转参数,再顾及两个坐标系尺度不尽一致,从而还有一个尺度变化参数,共计有七个参数。相应的坐标变换公式为:

(10-17

上式为两个不同空间直角坐标之间的转换模型,其中含有7个转换参数,为了求得7个转换参数,至少需要3个公共点,当多于3个公共点时,可按最小二乘法求得个参数的最或是值。

10.6.3不同大地坐标系的变换

对于不同大地坐标系的换算,除包含三个平移参数、三个旋转参数和一个尺度变化参数外,还包括两个地球椭球元素变化参数,以下推导不同大地坐标系的换算公式。

由(7-30式

取全微分得

(10-19 式中

(10-20

(10-21

上式两端乘以并加以整理得:

(10-22

式中

顾及(10-21)式及

(10-23 (10-22)式可写为:

(10-24

上式通常称为广义大地坐标微分公式或广义变换椭球微分公式。如略去旋转参数和尺度变化参数的影响,即简化为一般的大地坐标微分公式。根据3个以上公共点的两套大地坐标值,可列出9个以上(10-24式的方程,可按最小二乘法求得8个转换参数。

相关文档
最新文档