数字图像处理7
数字图像处理课后参考答案
数字图像处理第一章1、1解释术语(2) 数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置与每个像素的灰度级数的图像形式称为数字图像。
(3)图像处理:就是指对图像信息进行加工以满足人的视觉或应用需求的行为。
1、7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。
彩色图像、多光谱图像与高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术与方法。
1、8基本思路就是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。
1、9基本思路就是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。
1、10基本思路就是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储与实时传输的应用需求。
1、11基本思路就是,通过数学方法与图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。
1、12基本目的就是,找出便于区分与描述一幅图像中背景与目标的方法,以方便图像中感兴趣的目标的提取与描述。
第二章2、1解释下列术语(18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。
(19)灰度分辨率:就是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。
(20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的4个像素称为该像素的4邻域像素,她们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。
数字图像处理7-不同噪声的特点,随机数与样本的关系
这次作业的内容是理解噪声的生成,同时了解各种随机噪声的特性。
第一项作业主要是监测按照不同的模型生成的随机数与原本模型的契合度,这里举了两个例子,我就来根据代码以及程序运行的结果来一一进行解释。
代码如下:x = -5:0.1:5; %直方图的范围y = randn(10000,1);%产生一组随机序列,10000个。
z=rand(1,10000)*10-5;t = -5:0.01:5;hist(y,x);%画出直方图hold on;xm=mean(y);xv=var(y);disp(xm);disp(xv);pdf = length(y)*0.1*exp(-t.^2/2)/sqrt(2*pi);%产生高斯概率分布pdfplot(t,pdf,'r')%画出高斯概率分布函数a=xcorr(y);figure;plot(a);figure;hist(z,x);hold on;xm=mean(z);xv=var(z);disp(xm);disp(xv);pdf = t*0+length(y)/(10/0.1);%产生均匀概率分布pdfplot(t,pdf,'r')%画出均匀概率分布函数im1 im2 im3首先来看程序,程序先中定义了直方图的范围,从-5到5,其中分度值为0.1,也就是一共10/0.1=100个量化等级。
随后产生了两组随机数,y是基于高斯分布模型产生的随机数,z是均匀分布的随机数,二者都产生了10000个数据。
随后先对y这组数据进行处理,用hist函数,根据之前定义的范围,画出了这组随机数的概率分布函数。
可以看出其基本的轮廓和正态分布还是非常接近的,但是在某些值上参差不齐,会有突然突出或者凹陷的情况。
在画完之后,程序调用mean和var函数对这一组数据分别进行了求方差和求均值的操作。
这里的输出分别为方差0.9909,而均值为-8.9737e-04,也就是0.00089737.randn函数默认的模型是方差为1而均值为0的正态分布函数,因此生成的随机数虽然有些误差,但是在大体方向上还是遵循了这个模型的方差与均值。
HALCON数字图像处理-第7章 图像分割
典型算子
一阶算子
Roberts算子利用局部差分算子寻找边缘,边缘定 位较准,但容易丢失一部分边缘,同时由于图像没有经过平滑 处理,因此不具有抑制噪声的能力。该算子对具有陡峭边缘且 含噪声少的图像处理效果较好。
Sobel算子很容易在空间上实现。Sobel算子边缘 检测器不但产生较好的边缘检测效果,同时因为Sobel算子引 入了局部平均,使其受噪声的影响也比较小。当使用较大的模 板时,抗噪声特性会更好,但是这样会增大计算量,并且得到 的边缘比较粗。
HALCON数字图像处理
Hough变换 Hough变换是一种检测、定位直线和解析曲线的有效方法。它是 把二值图变换到Hough参数空间,在参数空间用极值点的检测来完成 目标的检测。 在实际中由于噪声和光照不均等因素,使得在很多情况下所获 得的边缘点是不连续的,必须通过边缘连接将它们转化为有意义的 边缘,一般的做法是对经过边缘检测的图像进一步使用连接技术, 从而将边缘像素组合成完整的边缘。
HALCON数字图像处理
7.3 区域分割
区域分割利用的是图像的空间性质,认为分割出 来的属于同一区域的像素应具有相似的性质。传统的 区域分割方法有区域生长和区域分裂与合并,还有源 于地形学的分水岭分割。
HALCON数字图像处理
1、区域生长法
区域生长也称为区域生成,其基本思想是将一幅图 像分成许多小的区域,并将具有相似性质的像素集合起 来构成区域。
HALCON数字图像处理
典型算子 像素边缘提取和亚像素边缘提取
例如某CMOS摄像机芯片,其像素间距为5.2微米。两 个像素之间有5.2微米的距离,在宏观上可以看作是连在一起 的。但是在微观上,它们之间还有更小的东西存在,这个更小 的东西我们称它为“亚像素”。
数字图像处理第7章
mpq x p yq f (x, y)dxdy
中心矩
pq (x x)p ( y y)q f (x, y)dxdy
式中
x m10 m00
y m01 m00
m00 f (x, y)dxdy
L1
n (zi m)n p(zi ) i0 L1
m zi p(zi ) (均值) i0
(0=1; 1= 0)
图像描述—纹理分析
二阶矩2(即方差2)在纹理描述中很重要(灰度对比度的度量)。
三阶矩3表示直方图的偏斜度。
L1
一致性度量 U p2 (zi ) i0 ——区域内所有像素灰度级相同时U=1(最大)
L1
平均熵 p(zi )ln p(zi ) i0
图像描述—纹理分析
灰度共生矩阵(联合概率密度描述)
对于图像中的任一点(x,y)及另一个对应点(x+a,y+b),n(i,j)为(x,y)的 灰度级为 i,而(x+a,y+b)的灰度级为 j 的这样的点对出现的次数。 设图像共有L个灰度级,则得到L2个元素组成的矩阵,称为“灰度 共生矩阵”。或用Cij = n(i,j)/(所有点对数)归一化。
ij
——当Cij相等时有最大值。
熵:
Cij ln Cij
ij
——当所有Cij值有最大随机性时最大。
频谱方法
考虑对于具有某种周期性纹理图像,应用傅立叶变换——频谱中 出现较显著的成分,其位置反映出(1)基本空间周期,(2)纹 理模式分布的方向性。
图像描述—纹理分析
令 S (u,v) = F(u,v)2 F(u,v)为图像的傅立叶变换,则S(u,v) 为功率谱。
(完整版)数字图像处理每章课后题参考答案
数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。
遥感数字图像处理-第7章 图像去噪声
3
二、空间域去噪声
由于噪声像元的灰度值常与周边像元的灰度值不协调, 表现为极高或极低,因此可利用局部窗口的灰度值统计 特性(如均值、中值)来去除噪声。
空间域去噪声是利用待处理像元邻域窗口内的像元进行 均值、中值或其他运算得到新的灰度值,并将其赋给待 处理像元,通过对整幅图中值滤波、边缘保持平滑滤波和数学形态学去噪声等。
6
三、变换域去噪声
3.其他变换
主成分变换、最小噪声分离变换和独立成分变换去噪声主要用 于多波段数据,其去噪声的原理基本相同,即图像通过变换,噪 声主要集中在后面几个分量,选择前面噪声较少的分量进行反向 变换即可实现对图像的去噪声处理。
这里只简单介绍一下主成分变换去噪声的过程,最小噪声 分离变换和独立成分变换去噪声的过程类似。
第7章
图像去噪声
图像去噪声
一、常见噪声类型及其识别 二、空间域去噪声 三、变换域去噪声 难点:傅里叶变换和小波变换去噪声原理 重点:空间域和变换域去噪声方法
2
一、常见噪声类型及其识别
遥感数字图像成像过程中,受到外部环境和内部系统等因 素干扰会产生噪声,我们将其分为内部噪声和外部噪声。
噪声具有随机性,可以被认为是由概率密度函数(PDF) 表示的随机变量,通常采用噪声分量灰度值的统计特性( 如均值、方差等)进行描述。
7
4
三、变换域去噪声
1.傅里叶变换
中心化的频谱图像
5
三、变换域去噪声
2.小波变换 利用傅里叶变换去噪声,带宽选得过宽,达不到去噪的目
的;选得过窄,噪声虽然滤去得多,但同时信号的高频部 分也损失了,不但带宽内的信噪比得不到改善,某些突变 点的信息也可能被模糊掉了。 在信号的低频部分,小波对频率的分辨率较高,而对时间 的分辨率较低;在高频部分,则恰好相反。它能自适应地 依据信号的变化而自行变化。 小波变换去噪的基本思路就是利用小波变换把含噪信号分 解到多尺度中,然后在每一尺度下把属于噪声的小波系数 抑制或去除,保留并增强属于信号的小波系数,最后重构 出小波消噪后的信号。
数字图像处理(参考题及答案
三、名词解释 1.灰度直方图
答案:灰度直方图(histogram)是灰度级的函数,它表示图象中具有每种灰度级的象素的个数,反映图像中每种灰度出现的频 率。
2.中值滤波
答案:中值滤波法是一种非线性平滑技术,基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代 替,让周围的像素值接近的真实值,从而消除孤立的噪声点。
3.数字图像
答案:数字图像是将一幅画面在空间上分割成离散的点(或像元),各点(或像元)的灰度值经量化用离散的整数来表示,形成 计算机能处理的形式。
4.Sobel算子
答案:
四、简答题 1. 根据所学数字图像处理知识,写出汽车牌照识别中涉及的图像处理技术。
答案:答:(1)汽车牌照定位:通过Sobel或高通滤波,得到所有的边缘,对边缘细化找出所有封闭的边缘,对封闭边缘求多边 形逼近。在逼近后的所有4边形中,找出尺寸与牌照大小相同的四边形。牌照被定位。(10分)(2)识别图像中的数字:对牌照 区域中的细化后的图像对象进行识别。(5分)
答案:C
3.下列图象边缘检测算子中抗噪性能最好的是()。
A、梯度算子 B、Prewitt算子 C、Roberts算子 D、Laplacian算子
答案:B
4.下列算法中属于点处理的பைடு நூலகம்()。
A、梯度锐化 B、二值化 C、傅立叶变换 D、中值滤波
答案:B
5.以下选项中属于图像处理技术的是()。
A、图像拼接 B、图像合成 C、图像增强 D、图像分类。
答案:C
6.采用模板[-11]主要检测()方向的边缘。
A、水平 B、45° C、垂直 D、135°
答案:C
7.下列算法中属于图象锐化处理的是()。
数字图像处理技术
数字图像处理技术数字图像处理技术是一种针对数字图像进行处理和分析的技术。
随着计算机技术的不断发展和普及,数字图像处理技术在图像处理领域中扮演着越来越重要的角色。
本文将详细介绍数字图像处理技术的概念、原理、应用及未来发展方向。
概念数字图像处理技术是指利用计算机对数字图像进行处理和分析的技术。
数字图像是通过像素表示的图像,而像素是图像最小的单元,每个像素都有其特定的数值表示颜色和亮度。
数字图像处理技术可以对图像进行各种操作,如增强图像的质量、提取图像特征、恢复图像信息等。
原理数字图像处理技术的原理主要包括图像获取、图像预处理、图像增强、图像分割、特征提取和图像识别等基本步骤。
1.图像获取:通过相机或扫描仪等设备获取数字图像,将图像转换为数字信号。
2.图像预处理:对原始图像进行去噪、几何校正、尺度变换等预处理操作,以提高后续处理的效果。
3.图像增强:通过直方图均衡化、滤波等方法增强图像的对比度、亮度等特征。
4.图像分割:将图像分割成若干个区域或对象,以便更好地分析和处理图像。
5.特征提取:提取图像中的特征信息,如颜色、纹理、形状等,为图像识别和分类提供依据。
6.图像识别:利用机器学习、深度学习等算法对图像进行分类、识别和分析。
应用数字图像处理技术在各个领域都有广泛的应用,如医疗影像分析、无人驾驶、安防监控、智能交通等。
以下列举一些典型的应用场景:•医疗影像分析:利用数字图像处理技术分析医学影像,辅助医生进行疾病诊断和治疗。
•安防监控:通过视频监控系统、人脸识别技术等实现对安全领域的监控和警报。
•智能交通:通过交通监控系统、车辆识别技术等提高交通管理效率和道路安全。
未来发展数字图像处理技术在人工智能、物联网等新兴技术的推动下不断发展和创新,未来的发展方向主要包括以下几个方面:1.深度学习在图像处理中的应用:深度学习技术在图像分类、目标检测等方面取得重大突破,将在数字图像处理领域得到更广泛的应用。
2.虚拟现实与增强现实:数字图像处理技术将与虚拟现实、增强现实技术结合,实现更加沉浸式的用户体验。
《数字图像处理(实验部分)》实验7_图像增强(精)
《数字图像处理(实验部分)》教案实验七:图像增强1.实验目的1.掌握MATLAB 的基本操作。
2.了解数字图像处理在MATLAB 中的基本处理过程。
3.学习图像增强的原理,观察算法处理结果2.实验设备2.1.PC 兼容机一台;操作系统为WindowsWindowsXP 。
2.2.数字图像处理开发环境:MATLAB 软件3.实验原理图像增强:运用5种不同的梯度增强法进行图像锐化4.实验步骤.1 打开MA TLAB 开发环境.2点击MATLAB 窗口上File 菜单,选择New-〉M —File ,在弹出的Edit 编辑器内输入如下程序:clear;close all ;[I,map]=imread('cameraman.tif' ;figure(1;subplot(2,3,1,imshow(I,map;title(' 原图' ;I=double(I;[Gx,Gy]=gradient(I; % 计算梯度, 获得的是二维偏导向量G=sqrt(Gx.*Gx+Gy.*Gy; % 注意是矩阵点乘J1=G;subplot(2,3,2,imshow(J1,map;title(' 梯度图' ; % 第一种图像增强J2=I; % 第二种图像增强K1=find(G>=7; %返回满足条件的索引号, 如果是N 行M 列的数组, 索引号顺序为从左边第一列开始, % 按列向顺序.J2(K1=G(K1;subplot(2,3,3,imshow(J2,map;title(' 超过7的梯度图' ;J3=I; % 第三种图像增强K=find(G>=7;J3(K=255;subplot(2,3,4,imshow(J3,map;title(' 梯度超过7的白亮图' ;J4=I; % 第四种图像增强K=find(G<=7;J4(K=255;subplot(2,3,5,imshow(J4,map;title(' 梯度未过7的白亮图' ;J5=I; % 第五种图像增强K=find(G<=7;J5(K=0;Q=find(G>=7;J5(Q=255;subplot(2,3,6,imshow(J5,map;title(' 梯度7为阈值分割的二值图' ;.3将该程序保存,并点击工具栏中Run 按钮,程序会自动运行,并显示出结果。
数字图像处理第7章
1 0 1
1
Wh 2
2
2
1
0 0
2
1
1
Wv
1 2
2
0 1
2 1
0 0
2
1
▓图7.2.5给出了上述五种梯度算子的边缘点检测实例。
Digital Image Processing
7.2 边缘点检测
(a)原图像
(b)梯度算子检测
(c) Roberts检测
(d) Prewitt检测
(e) Sobel检测
感。形成的方向梯度模板集就称为方向匹配检测模板,或方向梯
度响应数组。用其中的每一个方向的模板分别与图像卷积,其最
大模值就是边缘点的强度,最大模值对应的模板方向就是边缘点
的方向,这种检测边缘点并确定其方向的方法就称为方向梯度法
或方向匹配模板法。边缘梯度的定义式为:
N 1
G(m,
n)
MAX i0
{
Gi
(m,
Digital Image Processing
7.2 边缘点检测
(2) Sobel算子法(加权平均差分法) ▓Sobel算子就是对当前行或列对应的值加权后,再进行平
均和差分,也称为加权平均差分。水平和垂直梯度模板分别为:
1 0 1
Wh
1 4
2
0
2
1 0 1
1 2 1
Wv
1 4
0
0
0
1 2 1
(f)各向同性Sobel检测
图7.2-5 五种梯度算子的边缘点检测实例
Digital Image Processing
7.2 边缘点检测
◘方向梯度法(方向匹配模板法)
▓若事先并不知道哪个方向有边缘,但需要检测边缘,并确定 边缘的方向时。我们可设计一系列对应不同方向边缘的方向梯度
数字图像处理填空题复习
1 图像按照人眼的视觉特性可以分为可见图像和不可见图像。
Page 12 图像按照所含波段数可以分为单波段图像和多波段图像及超波段图像。
Page 13 图像按照空间坐标的连续性可分为模拟图像和数字图像。
Page 14 不可见的图像包括不可见光成像和不可见量按数学模型生成的图像。
Page 15 数字图像是一种空间坐标和灰度均不连续的,用离散数字表示的图像。
Page 16 数字图像处理可分为狭义图像处理、图像分析和图像理解三个层次。
Page 27 狭义图像处理是对输入图像进行某种变换得到输出图像,是一种图像到图像的处理过程,如图像增强等。
Page 28 模拟图像指空间坐标和亮度都是连续变化的图像。
Page 19数字图像处理即用计算机对图像进行处理。
Page 21 视网膜的表面分布有大量的光敏细胞,按照形状可以分为两类:锥状细胞和杆状细胞。
P112 人眼分辨率和被观察对象的相对对比度有关,当相对对比度小时,会导致人眼分辨率下降。
P123 在RGB彩色空间的原点上,若三个基色均没有亮度,则原点为黑色。
P144 图像中最大亮度和最小亮度的比值称为图像对比度。
P125 图像中最大亮度与最小亮度之差和最小亮度的比值称为相对对比度。
P126 物体的颜色是人的视觉器官感受光后在大脑的一种反映。
P137 一幅图像可以看成是空间上各点光强度的集合,若只考虑光的能量而不考虑光波长,则称为亮度图像。
P158 在彩色图像中,每个像素的颜色含有R,G和B三个分量。
P189 当两种或两种以上有色光同时照射到消色物体上时,物体呈现加色法效应。
P1410 BMP图像文件包括文件信息头,位图信息和位图数据三部分。
P3411 Windows在生成位图文件时,按照从左到右,从下到上的顺序记录位图的各个像素值。
P3612 描述数字图像的基本单元是像素。
P1613 图像噪声按其对图像的影响可分为加性噪声模型和乘性噪声模型两大类。
P4114 椒盐噪声的幅值基本相同,而噪声出现的位置是随机的。
遥感数字图像处理第7章 图像滤波
不足:会造成图像模糊,削弱边缘和细节
均值滤波模板
1 1 1 1 1 1 1 ,或 1 1 1 1 1 1 1 9 8 1 1 1 1 1 1
中值滤波(Median filtering)
中值滤波取每个领域像素值的中均作为该像素的新值。
图像滤波的方法:
1. 空间域滤波
通过窗口或卷积核
2. 频率域滤波
通过傅立叶变换和逆变换
相关概念
1. 邻域、4-邻域、8-邻域
2. 卷积、窗口卷积
噪声
噪声是影响对图像信息理解或分析的成分
遥感图像中常见的噪声:
1. 高斯噪声
在信号上附加均值为0,具有高斯概率密度的函数值
2. 椒盐噪声(脉冲噪声)
随机改变一些像素值
优点:对椒盐噪声比较有效,能保留部分细节信息,
减少模糊
不足:计算复杂,对随机噪声效果不好
高斯低通滤波(Gaussian low-pass filtering)
高斯低通滤波的模板由二维高斯分布计算得到,使用
窗口卷积计算像素新值。
优点:对高斯噪声比较有效
不足:计算复杂
梯度倒数加权法
在离散图像内部相邻区域的变化大于区域内部的变化,
通过微分过程来实现。
梯度
梯度反映了相邻像素之间灰度的变化率,图像中的边
缘部分灰度变化率大,因此梯度值较大;相应的灰
度值变化小的地方,梯度值也较小。
f ( x , y ) ' f x x gradf ( x , y ) ' f ( x , y ) fy y
1 1 1 0 或1 0 1 1 0 0 1 1 2 2 1 1 或 1 2 1 1 1 1 1 2
(数字图像处理)第七章图像重建
带通滤波器
允许一定频率范围内的信号通 过,阻止其他频率的信号通过 ,用于提取图像的特定频率成 分。
陷波滤波器
阻止特定频率的信号通过,其 他频率的信号不受影响,用于 消除图像中的周期性噪声。
傅里叶反变换实现图像恢复过程
01
傅里叶反变换定义
将频率域的信号转换回时间域或空间域的过程,是傅里叶变换的逆操作。
80%
模型评估指标
使用峰值信噪比(PSNR)、结构 相似性(SSIM)等指标,客观评 价重建图像的质量。
实例
1 2
超分辨率技术介绍
利用低分辨率图像重建出高分辨率图像的技术, 广泛应用于图像增强和修复领域。
CNN在超分辨率技术中的应用
通过设计多层的卷积神经网络,实现对低分辨率 图像的特征提取和重建,生成高分辨率图像。
频率混叠现象
当采样频率低于信号最高频率的两倍时,会出现频率混叠现象,即高频信号成 分会折叠到低频区域,导致重建出的图像出现失真和伪影。
离散信号与连续信号转换关系
离散信号到连续信号的转换
在图像重建中,需要将离散的采样点转换为连续的图像信号 。这通常通过插值算法实现,如最近邻插值、线性插值、立 方插值等,以在离散采样点之间生成平滑的过渡。
稀疏表示与字典学习的关系
稀疏表示是字典学习的目标,而字典学习是实现稀疏表示的手段。
实例:基于CS-MRI技术医学图像重建
CS-MRI技术
基于压缩感知理论的磁共振成像技术,通过减少采样数据 量和优化重建算法,实现高质量医学图像的快速重建。
实现步骤
首先,利用MRI系统的部分采样数据构建测量矩阵;然后, 通过稀疏表示和字典学习方法得到图像的稀疏系数;最后, 利用重建算法恢复出原始图像。
数字图像处理PPT——第七章 图像分割
p-参数法
针对已知目标物在画面中所占比例的情况。 基本设计思想 选择一个值Th,使前景目标物所占的比例 为p,背景所占比例为1-p。 基本方法 先试探性地给出一个阈值,统计目标物的 像素点数在整幅图中所占的比例是否满足 要求,是则阈值合适;否则,阈值则偏大 或者偏小,再进行调整,直到满足要求。
p-参数法算法步骤
⎧ σ b2 ⎫ η | Th* = max ⎨ 2 ⎬ ⎩σ in ⎭
局部阈值方法
提出的原因 阈值方法对于较为简单的图像(目标 与背景差别大,容易区分的图像)简 单有效,对于较为复杂的图像,分割 效果不稳定。 方法 把图像分成子块,在每个子块上再采 样前述阈值分割方法
灰度-局部灰度均值散布图法
σ 12 =
f ( x , y )∈C 1
∑
( f ( x, y ) − μ1 )2
2 σ2 =
f ( x , y )∈C 22 )2
1 μ1 = N C1
f ( x , y )∈C 1
∑
f ( x, y )
1 μ2 = NC 2
f ( x , y )∈C 2
∑
f ( x, y )
参数空间的一条直线对应xy空间的一 个点
Hough变换提取直线原理
Xy空间一条直线上的n个点,对应kb 空间经过一个公共点的n条直线 Kb空间一条直线上的n点对应于xy空 间中过一公共点的n条直线
Hough变换提取直线算法
假设原图像为二值图像,扫描图中的每一 个像素点: 背景点,不作任何处理 目标点,确定直线: b = − xk + y 参数空间上的对应直线上所有的值累加1 循环扫描所有点 参数空间上累计值为最大的点(k*,b*)为所求 直线参数 按照该参数与原图像同等大小的空白图像 上绘制直线
数字图像处理常用方法
数字图像处理常用方法
是基于图像的性质进行计算,利用数字图像处理方法来处理和分析数字图像信息。
数字图像处理包括图像采集、图像建模、图像增强、图像分割、图像特征提取、图像修复、图像变换等。
具体数字图像处理方法有:
1、图像采集:利用摄像机采集图像,可以采用光学成像、数字成像或其他技术技术来实现;
2、图像建模:利用数学模型将图像信息表达出来,有些模型可以用来确定图像的特征,而有些模型则能够捕捉图像的复杂细节;
3、图像增强:对采集的图像数据进行处理,包括图像的锐化、滤波、清晰度增强、局部像素增强等;
4、图像分割:根据指定的阈值将图像分成不同的区域,分割图像后可以获得更多的精确细节和信息;
5、图像特征提取:将图像信息中的有价值部分提取出来,提取的过程有多种算法,提取的结果均可以用来进行分类识别等;
6、图像修复:通过卷积神经网络,利用图像的实际内容和特征,自动修复受损图像;
7、图像变换:针对图像的数据结构,可以利用变换矩阵将图像像素坐标和分量进行变换,以获得新的图像。
914754-数字图像处理-第七章第1讲 图像描述概述、边界描述(曲线拟合、链码)
(Digital Image Processing)
山东科技大学 曹茂永 教 授
第7章 图像描述
第1讲 图像描述概述、边界描述(曲线拟合、链码)
演示文稿说明: 本讲内容以板书为主,ppt 演示为辅; 本讲部分图片来自冈萨雷斯的数字图像处理(英文版)教材。
第7章 图像描述
问题
预处理 图像获取
分割
描述
ห้องสมุดไป่ตู้
中级处理
知识库
识别
与
结果
解释
低级处理
高级处理 图像分析系统的基本构成
概述
概述
概述
✓ 描述方法
曲线拟合
链码表示
y
2
1
3
0x
0
(c)
(x-1,y-1)
3 (x,y-1) 4
y
4 5
3
6
2
1
7 0x
0
(d)
(x-1,y) 2
(x,y)
(x-1,y+1)
1 (x,y+1) 0
5
6
7
(x+1,y-1)图 链码与(x坐+1标,y)位置的关(x系+1,y+1)
链码表示
4-链码:000033333322222211110011
链码表示
S’(2,5)
S(5,5)
设起始点s的坐标为(5,5),逆时针
分别用4方向链码和8方向链码表示区域边界:
4方向链码:(5, 5)1 1 1 2 3 2 3 2 3 0 0 0
8方向链码:(5, 5)2 2 2 4 5 5 6 0 0 0
电子信息工程《数字图像处理》总复习题(第1-7章)(1)
电⼦信息⼯程《数字图像处理》总复习题(第1-7章)(1)第⼀章引⾔⼀.填空题1. 图像可以分为物理图像和虚拟图像两种。
其中,采⽤数学的⽅法,将由概念形成的物体进⾏表⽰的图像是虚拟图像。
2. 数字图像是⽤⼀个数字阵列来表⽰的图像。
数字阵列中的每个数字,表⽰数字图像的⼀个最⼩单位,称为像素。
3. 数字图像处理可以理解为两个⽅⾯的操作:⼀是从图像到图像的处理,如图像增强等;⼆是从图像到⾮图像的⼀种表⽰,如图像测量等。
4. 数字图像处理包含很多⽅⾯的研究内容。
其中,图像重建的⽬的是根据⼆维平⾯图像数据构造出三维物体的图像。
⼆.简答题1. 数字图像处理的主要研究内容包含很多⽅⾯,请列出并简述其中的4种。
①图像数字化:将⼀幅图像以数字的形式表⽰。
主要包括采样和量化两个过程。
②图像增强:将⼀幅图像中的有⽤信息进⾏增强,同时对其⽆⽤信息进⾏抑制,提⾼图像的可观察性。
③图像的⼏何变换:改变图像的⼤⼩或形状。
④图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进⾏定量化描述后,将其所期望获得的⽬标物进⾏提取,并且对所提取的⽬标物进⾏⼀定的定量分析。
2. 简述图像⼏何变换与图像变换的区别。
①图像的⼏何变换:改变图像的⼤⼩或形状。
⽐如图像的平移、旋转、放⼤、缩⼩等,这些⽅法在图像配准中使⽤较多。
②图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⽐如傅⾥叶变换、⼩波变换等。
3. 简述数字图像处理的⾄少4种应⽤。
①在遥感中,⽐如⼟地测绘、⽓象监测、资源调查、环境污染监测等⽅⾯。
②在医学中,⽐如B超、CT机等⽅⾯。
③在通信中,⽐如可视电话、会议电视、传真等⽅⾯。
④在⼯业⽣产的质量检测中,⽐如对⾷品包装出⼚前的质量检查、对机械制品质量的监控和筛选等⽅⾯。
⑤在安全保障、公安⽅⾯,⽐如出⼊⼝控制、指纹档案、交通管理等。
数字图像处理教学大纲
数字图像处理教学大纲一、课程基本信息课程名称:数字图像处理课程类别:专业必修课学分:X总学时:X授课对象:具体专业二、课程教学目标通过本课程的学习,使学生掌握数字图像处理的基本概念、原理和方法,具备运用相关知识和技术解决实际问题的能力。
具体包括:1、理解数字图像的获取、表示和存储方式。
2、掌握数字图像增强、复原、压缩、分割等基本处理技术。
3、能够运用编程工具实现简单的数字图像处理算法。
4、培养学生的创新思维和实践能力,为进一步学习和从事相关领域的工作打下坚实的基础。
三、课程教学内容(一)数字图像基础1、图像的感知和获取视觉系统的特性图像的形成与数字化图像的采样和量化2、数字图像的表示灰度图像彩色图像图像的矩阵表示3、数字图像的存储图像文件格式图像数据库(二)图像增强1、空域增强灰度变换直方图均衡化空域滤波2、频域增强傅里叶变换频域滤波(三)图像复原1、图像退化模型常见的退化原因退化函数的建立2、逆滤波原理与实现局限性3、维纳滤波基本原理算法实现(四)图像压缩1、图像压缩的基本原理信息论基础冗余度2、无损压缩霍夫曼编码算术编码3、有损压缩预测编码变换编码(五)图像分割1、阈值分割全局阈值局部阈值2、边缘检测梯度算子拉普拉斯算子Canny 算子3、区域分割区域生长区域分裂与合并(六)图像特征提取与描述1、颜色特征颜色直方图颜色矩2、纹理特征统计方法结构方法3、形状特征边界描述区域描述(七)图像识别1、模式识别基础分类器设计特征选择与提取2、图像分类与识别应用人脸识别车牌识别四、课程教学方法1、课堂讲授通过讲解理论知识,使学生掌握数字图像处理的基本概念、原理和方法。
2、实验教学安排一定数量的实验课程,让学生通过实践加深对理论知识的理解,提高编程和解决实际问题的能力。
3、案例分析结合实际应用案例,引导学生分析问题、解决问题,培养学生的创新思维和实践能力。
4、小组讨论组织学生进行小组讨论,促进学生之间的交流与合作,激发学生的学习兴趣和主动性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1.1、图像的信息量与信息熵 ) (Information Content and Entropy)
2. 信息熵
对信息源X的各符号的自信息量取统计平均,可得每个符号 的平均自信息量为:
H ( X ) p(ai )log 2 p(ai )
%以jpeg压缩格式存储为lena1
%得到原图像的字节数
%得到压缩图像的字节数 %计算压缩比 %显示原图像
7.1.4、压缩技术的性能指标(Evaluation Index of Image compressionapproaches)
2.平均码字长度 Ck 的长度( C 编码成二 平均码字长度:设l (ck ) 为数字图像第k个码字 进制码的位数)。其相应出现的概率为p(ck ) , 则该数字图像所赋予 的平均码字长度为:
7.2.1、哈夫曼编码(Huffman coding)
举例:设输入图像的灰度级{y1,y2,y3,y4,y5,y6,y7,y8}出现的概率分别 为0.40,0.18,0.10,0.10,0.07,0.06,0.05,0.04。试进行哈夫曼编码,并 计算编码效率、压缩比、冗余度 。 按照上述的编码过程和例题所给出的参数,其哈夫曼编码过程及其编 码的结果如图7.6所示。图像信源熵为:
3. 信息熵冗余
信息熵冗余是针对数据的信息量而言的。设某种编码的平均码长为
L p( si )l ( si )
i 0
p( s 为符号出现的概率。 ) l (si )为分配给第符号 s i 的比特数, 式中,
i
k 1
这种压缩的目的就是要使L接近 H X
7.1.2、图像数据冗余 (Image data redundancy)
2. 哈夫曼(Huffman)编码的编码思路 实现哈夫曼编码的基本步骤如下: (1) 将信源符号出现的概率按由大到小地顺序排列。 (2) 将两处最小的概率进行组合相加,形成一个新概率。并按第(1)步方法 重排,如此重复进行直到只有两个概率为止。 (3) 分配码字,码字分配从最后一步开始反向进行,对最后两个概率一个赋 于“0”码字,一个赋于“1”码字。如此反向进行到开始的概率排列,在此 过程中,若概率不变采用原码字。
6. 视觉冗余
由于人眼的视觉特性所限,人眼不能完全感觉到图像画面的所 有细小的变化。例如人眼的视觉对图像边缘的剧烈变化不敏感,而 对图像的亮度信息非常敏感,因此经过图像压缩后,虽然丢了一些 信息,但从人眼的视觉上并未感到其中的变化,而仍认为图像具有 良好的质量。
7.1.3、 图像压缩编码分类 (Coding methods of Image Compression
7.1.2、图像数据冗余 (Image data redundancy) 2. 时间冗余
由于活动图像序列中的任意两相邻的图像之间的时间间隔很短,因 此两幅图像中存在大量的相关信息,如图7.3所示 。 时间冗余是活动图像和语音数据中经常存在的一种冗余。
图7.3 时间冗余
7.1.2、图像数据冗余 (Image data redundancy)
说明:图中()表示码字。 最终编码结果为:
(1) 0.40
(01) 0.23
(000) 0.19 (001) 0.18
概率
y1=1 y5=0100 y2=001 y6=0101 y3=011 y7=00010 y4=0000 y8=00011
符号y8 概率
图7.6 哈夫曼编码过程
7.2.1、哈夫曼编码(Huffman coding)
7.4 图像编码新技术(New Image Compression Technology)
7.5 图像压缩技术标准(Image Compression Standards)
7.1 概述(Introduction)
为什么要对图像进行压缩
举例1:对于电视画面的分辨率640*480的彩色图像,每秒 30帧,则一秒钟的数据量为:640*480*24*30=221.12M , 1张CD可存640M,如果不进行压缩,1张CD则仅可以存放 2.89秒的数据 举例2:目前的WWW互联网包含大量的图像信息,如果图像 信息的数据量太大,会使本来就已经非常紧张的网络带 宽变得更加不堪重负(World Wide Web变成了World Wide Wait)
H PK log 2 PK (0.4 log 2 0.4 0.18 log 2 0.18 2 0.1log 0.1
K 1
M
0.07 log 2 0.07 0.06 log 2 0.06 0.05 log 2 0.05 0.04 log 2 0.04) 2.55
7.1.4、压缩技术的性能指标(Evaluation Index of Image Compression approaches)
1.压缩比 为了表明某种压缩编码的效率,通常引入压缩比这一参数,它的定 义为:
b1 c b2
其中 b1 表示压缩前图像每像素的平均比特数, b2 表示压缩后每 像素所需的平均比特数,一般的情况下压缩比c总是大于等于1的, c愈大则压缩程度愈高。
数字图像压缩编码分类方法有很多,但从不同的角度,可以有不 同的划分。从信息论角度分,可以将图像的压缩编码方法分为无失 真压缩编码和有限失真编码。
无失真图像压缩编码利用图像信源概率分布的不均匀性, 通过变长编码来减少信源数据冗余,使编码后的图像数据接 近其信息熵而不产生失真,因而也通常被称为熵编码。 有限失真编码则是根据人眼视觉特性,在允许图像产生一 定失真的情况下(尽管这种失真常常不为人眼所觉察),利用 图像信源在空间和时间上具有较大的相关性这一特点,通过某 一种信号变换来消除信源的相关性、减少信号方差,达到压缩 编码的目的。
根据哈夫曼编码过程图所给出的结果,可以求出它的平 均码字长度:
L lK PK 0.40 1 0.18 3 0.10 3 0.10 4 0.07 4
K 1 M
0.06 4 0.05 5 0.04 5 2.61
7.2.1、哈夫曼编码(Huffman coding)
3. 哈夫曼(Huffman)编码的特点 (1)Huffman编码所构造的码并不是唯一的,但其编码效率是唯一的。 (2)对不同信源,其编码效率是不同的。 (3)实现电路复杂,且存在误码传播问题。 (4)Huffman编码只能用近似的整数而不是理想的小数来表示单个符号, 这也是Huffman编码无法达到最理想的压缩效果的原因.
7.2 无失真图像压缩编码 (Lossless image compression)
无失真失真图像压缩编码就是指图像经过压缩、编码后恢复的图像与原 图像完全—样,没有任何失真 . 常用的无失真图像压缩编码有许多种。如哈夫曼(Huffman)编码、游程 编码和算术编码。
7.2.1、哈夫曼编码(Huffman coding)
编码效率:
H / L 2.55 / 2.61 97.8%
压缩比: 压缩之前8个符号需3个比特量化,经压缩之后的平均码字长度为2.61, 因此压缩比为:
C 3 / 2.61 1.15
冗余度为:
1 2.2%
7.2.1、哈夫曼编码(Huffman coding)
k
L p(c k )l (c k )
k 1
m
单位为bit
3.编码效率 在一般情况下,编码效率往往可用下列简单公式表示:
H L
7.1.4、压缩技术的性能指标(Evaluation Index of Image compressionapproaches)
4.冗余度
r 1
R越小,说明可压缩的余地越小。
图7.2是一幅图像,其中心部分为 一个灰色的方块,在灰色区域中的所有 像素点的光强和彩色以及饱和度都是相 同的,因此该区域中的数据之间存在很 大的冗余度。
图7.2 空间冗余
空间冗余是图像数据中最基本的冗余。要去除这种冗余, 人们通常将其视为一个整体,并用极少的数据量来表示,从 而减少邻近像素之间的空间相关性,已达到数据压缩的目的 。
数字图像处理
第7章 图像压缩编码(Image Compression Coding Technology)
7.1 概述(Introduction)
7.2 无失真图像压缩编码(Lossless image compression)
7.3 有限失真图像压缩编码(Lossy image compression)
7.1.1、图像的信息量与信息熵 (Information Content and Entropy) 1. 信息量
设信息源X可发出的消息符号集合为
并设X发出符号 ai 的概率为
A ai | i 1,2, , m
p(ai ) ,则定义符号出现的自信息量为:
I (ai ) log p(ai )
哈夫曼编码是根据可变长最佳编码定理,应用哈夫曼算法而产生的一 种编码方法。 1. 可变长最佳编码定理 对于一个无记忆离散信源中每一个符号,若采用相同长度的不同码 字代表相应符号,就叫做等长编码。若对信源中的不同符号用不同长度 的码字表示就叫做不等长或变长编码 。
7.2.1、哈夫曼编码(Huffman coding)
(0) 0.60 符号y1 概率 (1) 0.40 (1) 0.40 (1) 0.40 (1) 0.40 (1) 0.40 (1) 0.40 (00) 0.37 (01) 0.23 (000) 0.19 符号y2 (001) 0.18 (001) 0.18 (001) 0.18 (010) 0.13 符号y3 符号y4 概率 概率 (011) 0.10 (0000) 0.10 (011) 0.10 (0000) 0.10 (0001) 0.09 符号y5 符号y6 符号y7 概率 概率 概率 (0100) 0.07 (0101) 0.06 (00010) 0.05 (00011) 0.04 (0100) 0.07 (0101) 0.06 (011) 0.10 (0000) 0.10 (0001) 0.09 (001) 0.18 (010) 0.13 (011) 0.10