《勾股定理》典型例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《勾股定理》典型例题分析
一、知识要点:
1、勾股定理
勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果
直角三角形的两直角边为a 、b ,斜边为c ,那么 a 2 + b 2= c 2。公式的变形:a 2 = c 2
- b 2, b 2= c 2-a 2
。
2、勾股定理的逆定理
如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2 + b 2= c 2
,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理.
该定理在应用时,同学们要注意处理好如下几个要点: ① 已知的条件:某三角形的三条边的长度.
②满足的条件:最大边的平方=最小边的平方+中间边的平方.
③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角
. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数
满足a 2 + b 2= c 2
的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有:
(3,4,5)(5,12,13) (6,8,10) (7,24,25) (8,15,17 )(9,40,41 )
4、最短距离问题:主要运用的依据是两点之间线段最短。 二、考点剖析
考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.
2. 如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3<
S 1 D. S 2- S 3=S 1
3、如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.
4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。
S 3
S 2
S 1
5、在直线l 上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、
34S S 、,1234S S S S +++则=___________。
考点二:在直角三角形中,已知两边求第三边
1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边的平方为 . 2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是
3、已知直角三角形两直角边长分别为5和12, 求斜边上的高.
4、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的( )A . 2倍 B . 4倍 C . 6倍 D . 8倍
5、在Rt △ABC 中,∠C=90°
①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。
6、如果直角三角形的两直角边长分别为1n 2
-,2n (n>1),那么它的斜边长是( ) A 、2n
B 、n+1
C 、n 2
-1
D 、1n 2
+
7、在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )
A. 222a b c +=
B. 222a c b +=
C. 222
c b a += D.以上都有可能
8、已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242
c m
B 、36 2
c m
C 、482
c m
D 、602
c m
9、已知x 、y 为正数,且│x 2
-4│+(y 2
-3)2
=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )
A 、5
B 、25
C 、7
D 、15
考点三:应用勾股定理在等腰三角形中求底边上的高 例、如图1所示,等腰
中,
,
是底边上的高,若
,求 ①AD 的长;②ΔABC 的面积.
考点四:勾股数的应用、利用勾股定理逆定理判断三角形的形状、最大、最小角的问题
1、下列各组数据中的三个数,可作为三边长构成直角三角形的是( )
A. 4,5,6
B. 2,3,4
C. 11,12,13
D. 8,15,17 2、若线段a ,b ,c 组成直角三角形,则它们的比为( )
A 、2∶3∶4
B 、3∶4∶6
C 、5∶12∶13
D 、4∶6∶7 3、下面的三角形中:
①△ABC 中,∠C=∠A -∠B ;②△ABC 中,∠A :∠B :∠C=1:2:3; ③△ABC 中,a :b :c=3:4:5;④△ABC 中,三边长分别为8,15,17. 其中是直角三角形的个数有( ).A .1个 B .2个 C .3个 D .4个 4、若三角形的三边之比为
2:122
,则这个三角形一定是( ) A.等腰三角形 B.直角三角形
C.等腰直角三角形
D.不等边三角形
5、已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2
)=0,则它的形状为( ) A.直角三角形 B.等腰三角形
C.等腰直角三角形
D.等腰三角形或直角三角形 6、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )
A . 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形 7、若△ABC 的三边长a,b,c 满足222a b c 20012a 16b 20c +++=++,试判断△ABC 的形状。
8、△ABC 的两边分别为5,12,另一边为奇数,且a+b+c 是3的倍数,则c 应为 ,此三角形为 。 例3:求