2014年湖北省恩施州中考适应性考试数学试卷及答案
湖北省恩施州2014届九年级上期末数学试卷及答案
22.(8 分)已知:关于 x 的方程 x2﹣ (k+2)x+2x=0 (1)求证:无论取任何实数值,方程总有实数根; (2)若等腰三角形 ABC 的一边长 a=1,另两边长 b,c 恰好是这个方程的两个根,求△ABC 的周 长. 23.(9 分)小明的爸爸下岗后,自谋职业,做起了经营水果的生意.一天,他先去批发市场,用 100 元购买甲种水果,用 150 元购乙种水果,乙种水果比甲种水果多 10 千克,乙种水果的批发价 比甲种水果的批发价每千克高 0.5 元,然后到零售市场,按每千克 2.80 元零售,结果,乙种水果很 快售完,甲种水果售出 时,出现滞销,他按原零售价的 5 折售完剩余水果,请你帮小明的爸爸算
. 8.如图,⊙O 的直径 CD 过弦 EF 的中点 G,∠EOD=40°,则∠DCF 等于( )
A.80°
B.50°
C.40°
D 20°
.
9.方程(x+1)(x﹣ 2)=x+1 的解是( )
A.x=2
B.x=3
C.x1=﹣ 1,2x =3
D x1=﹣ 1,2x =2 .
10.如图,四边形 ABCD 是正方形,△ADE 绕着点 A 旋转 90°后到达△ABF 的位置,连接 EF,则
湖北省恩施州 2014 届九年级(上)期末数学试卷
一、选择题(共 12 小题,每小题 3 分,满分 36 分)
2014年初中毕业班适应性考试数学试题附答案
2014年初中毕业班适应性考试数学试题(满分:150分;考试时间:120分钟)★友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;② 可以携带使用科学计算器,并注意运用计算器进行估算和探究; ③ 未注明精确度、保留有效数字等的计算问题不得采取近似计算;一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.2014-的绝对值是A .2014-B .2014C .2014±D .201412.下列图案中,既不是中心对称图形也不是轴对称图形的是A .B .C .D . 3.小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数是61700000,这个数用科学记数法表示为 A .71017.6⨯ B .61017.6⨯ C .510617⨯ D .810617.0⨯ 4.下列调查方式合适的是A .对载人航天器“嫦娥二号”零部件的检查,采用抽样调查的方式.B .了解炮弹的杀伤力,采用全面调查的方式.C .对电视剧《来自星星的你》收视率的调查,采用全面调查的方式.D .对建阳市食品合格情况的调查,采用抽样调查的方式.5.某同学参加射击训练,共射击了六发子弹,击中的环数分别为3,4,5,7,7,10.则下列说法错误..的是 A .其平均数为6 B .其众数为7 C .其中位数为7 D .其中位数为6 6.下列运算,正确的是A .43a aa =+ B .632a a a =∙C .632)(a a =D .5210a a a=÷7.已知关于x 的一元二次方程0122=-+x mx 有两个不相等的实数根,则m 的取值范围是 A .1-<m B .1>m C .1<m 且0≠m D .1->m 且0≠m 8.明明用纸(如下图左)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混 放在一起,只凭观察,墨水所在的盒子是A .B .C .D .9200平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面xA B C D 10.),(1y x p ,),(),1y x y x y -+=;且规定)),((),(11y x P P y x P n n -=(n 为大于1的整数).例如:)1,3()2,1(1-=p ,)4,2()1,3())2,1(()2,1(1112=-==p p p p ,)2,6()4,2())2,1(()2,1(1213-===p p p p . 则=-)1,1(2014pA .)2,0(1006B .)2,2(10071007-C .)2,0(1006- D .)2,2(10061006-二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡...的相应位置)11.计算:16-= .12.已知21O O ⊙与⊙的半径分别为3和5,且21O O ⊙与⊙相切,则21O O 等于 . 13.分解因式:=+-a ab ab 962.14.甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表:则这四位选手中,成绩发挥最稳定的是 .15.不等式x x ≥-32的解集是 .16.从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数xm y 25-=中m 的值,恰好使函数的图象经过第二、四象限的概率是 .17.已知扇形的面积为12π,半径等于6,则它的圆心角等于 度.18.如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH .现给出以下四个命题(1)∠APB =∠BPH ; (2)当点P 在边AD 上移动时,△PDH 的周长不发生变化;(3)∠PBH =450 ; (4)BP=BH. 其中正确的命题是 .三、解答题(本大题共8小题,共86分.请在答题卡...的相应位置作答)E B C OF D A AB Ey 19.(每小题7分,共14分)(1)(7分)计算:1)21(3127)22(-+----(2)(7分)先化简,再求值:22)1(ba ab a b -÷+-,其中a =2,b =﹣1. 20.(8分)解方程组:⎩⎨⎧=+=-②①1321134y x y x21.(8分)如右图,矩形ABCD ,E 是AB 上一点,且DE =AB ,过C 作CF ⊥DE 于F . (1)猜想:AD 与CF 的大小关系; (2)请证明上面的结论.22.(10分)小红为了了解本班全体同学在阅读方面的情况,采取全面调查的方法,从喜欢阅读“科普常识、小说、漫画、营养美食”等四类图书中调查了全班学生的阅读情况(要求每位学生只能选择一种自己喜欢阅读的图书类型)根据调查的结果绘制了下面两幅不完整的统计图:请你根据图中提供的信息解答下列问题:(1)该班的学生人数为________人,并把条形统计图补充完整;(2)在扇形统计图中,表示“漫画”类所对圆心角是________度,喜欢阅读“营养美食”类图书的人数占全班人数的百分比为________;(3)如果喜欢阅读“营养美食”类图书的4名学生中有3名男学生和1名女学生,现在打算从中随机选出2名学生参加学校组织的“营养美食”知识大赛,请用列表或画树状图的方法,求选出的2名学生中恰好有1名男生和1名女生的概率.23.(10分)如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,OE ∥BD ,交BC 于点F ,交AE 于点E . (1)求证:∠E =∠C ;(2)当⊙O 的半径为3,tanC =52时,求BE 的长.24.(10分)如图,将一矩形OABC 放在直角坐标系中,O 为坐标原点,点A 在y 轴正半轴上,点E 是边 ABCDFE 营养 美食 漫画小说30% 科普常识40% 人数/人图书 类型 营养 美食 小说 科普 常识 漫画 16 12 41612 4 8AB 上的一个动点(不与点A 、B 重合),过点E 的反比例函数(0)ky x x=>的图像与边BC 交与点F . (1)(4分)若△OAE 、△OCF 的面积分别为S 1、S 2,且S 1+S 2=2,求k 的值; (2)(6分)在(1)的结论下,当OA =2,OC =4时,求三角形OEF 的面积. 25.(12分)已知:四边形ABCD 中,对角线的交点为O ,E 是OC 上的一点,过点A 作AG BE ⊥于点G ,AG 、BD 交于点F .(1)如图1,若四边形ABCD 是正方形,求证:OE OF =;(2)如图2,若四边形ABCD 是菱形,120ABC ∠=°.探究线段OE 与OF 的数量关系,并说明理由;(3)如图3,若四边形ABCD 是等腰梯形,ABC α∠=,且AC BD ⊥.结合上面的活动经验,探究线段OE 与OF 的数量关系为 .(直接写出答案).图1O G F E DCBA图2AB CDEFG O图3ABCDEFGO26.(14分)已知抛物线y =ax 2+bx +c (a >0)的图象经过点B (12,0)和C (0,-6),对称轴为x =2.(1)求该抛物线的解析式;(2)点D 在线段AB 上且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C 出发沿线段CB 匀速运动,问是否存在某一时刻,使线段PQ 被直线CD 垂直平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度;若不存在,请说明理由;(3)在(2)的结论下,直线x =1上是否存在点M 使,△MPQ 为等腰三角形?若存在,请写出所有点M 的坐标(请直接写出答案),若不存在,请说明理由. 【提示:抛物线c bx ax y ++=2(a ≠0)的对称轴是,a b x 2-=顶点坐标是⎪⎪⎭⎫⎝⎛--a b ac a b 4422,】数学试题参考答案及评分说明说明:A B CP QDO x y(1) 解答右端所注分数,表示考生正确作完该步应得的累计分数,全卷满分150分. (2) 对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3) 如果考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4) 评分只给整数分.一、选择题(本大题共10小题,每小题4分,共40分)1.B ; 2.D ; 3.A ; 4.D ; 5.C ; 6.C ; 7.D ; 8.B ; 9.A ; 10.B . 二、填空题(本大题共8小题,每小题3分,共24分) 11.-4;12.2或8;13.2)3(-b a ; 14.乙; 15.3≥x ; 16.52; 17.120; 18.(1)(2)(3).三、解答题(本大题共8小题,共86分) 19.(1)原式=21-3-33-1+)( …………………4分 =213-331++-…………………5分=34-4…………………7分(2)原式=))((b a b a ab a b b a -+÷+-+…………………3分=ab a b a b a a ))((-+∙+…………………4分 =b a -…………………5分当a =2,1-=b 时,原式3)1(2=--= ………………7分20.解:②×2-①得:5y =15y =3 ………………4分把y=3代人②得:x =5…………………6分∴方程组的解是⎩⎨⎧==35y x ……… 8分21.解:(1)AD =CF .…………………2分(2) 证法一四边形ABCD 是矩形,AB DC =∴ 090=∠A ……4分AB DE =DC DE =∴ …………………5分90=∠∴⊥DFC F DE CF 于090=∠=∠∴DFC A ………6分 FCD ADE ∆≅∆∴…………7分 AD CF ∴=…………………8分证法二:四边形ABCD 是矩形,∴AB =CD AB ∥CD 090=∠A ……3分 ∴FDC AED ∠=∠………………… 4分AB DE =DC DE =∴………………………… 5分90=∠∴⊥DFC F DE CF 于090=∠=∠∴DFC A ………………6分 FCD ADE ∆≅∆∴…………………7分 AD CF ∴=………………………… 8分22.解:(1)40; …………………2分;直方图正确补全 …………………3 分(2)72,10%; …………………7 分(3)列表或画树状图正确……9分∴P (1男生1女生)=21……10分23.解:(1) 证明:连接OB ……………1分CD 为⊙O 的直径∴ ︒=∠+∠=∠90OBD CBO CBD ……………2分 AE 是⊙O 的切线. .∴︒=∠+∠=∠90OBD ABD ABO ……………3分 ∴CBO ABD ∠=∠……………4分OB 、OC 是⊙O 的半径∴OB=OC ∴CBO C ∠=∠……………5分 OE ∥BD ,∴ABD E ∠=∠ ……………6分∴C E ∠=∠……………7分(2) C E ∠=∠∴ tanE = tanC =52……………8分在Rt △OBE 中, OB =3∴215523tan ===E OB BE ……………10分 24.解:(1)∵点E 、F 在函数y=(0)kx x>的图象上∴设111(,)(0)kE x x x >,222(,)(0)........1kF x x x >分∴1111S 22k kx x =⋅⋅=,2221S ........322k k x x =⋅⋅=分∵1222 2 (422)k kS S k +=∴+=∴=分 (2)∵四边形OABC 为矩形,OA=2,OC=4∴E (1,2),F (4,21)……………6分∴AE =1,BE =3,BF =23,CF =21……………8分 ∴415=---=H ∆∆∆BEF OCF AOE AOCBOEF S S S S S 矩形……………10分25.(1)证明:∵四边形ABCD 是正方形,∴OA =OB AC ⊥BD …………………1分∴∠AOF =∠BOE =90° ∴∠OAF +∠AFO =90° ∵AG ⊥BF , ∴∠AGE =90° ∴∠OAF +∠AEG =90°∴∠AFO =∠BEO …………………3分 ∴△AFO ≌△BEO∴OE OF =…………………4分 (2)答:3=OEOF…………………5分 理由如下:∵四边形ABCD 是菱形, ∴ AC ⊥BD∴∠AOF =∠BOE =90° ∴∠OAF +∠AFO =90° ∵AG ⊥BF , ∴∠AGE =90° ∴∠OAF +∠AEG =90° ∴∠AFO =∠BEO ∴△AFO ∽△BEO ∴BOAOOE OF =…………………7分 ∵120ABC ∠=° ∴∠ABO =ABC ∠21=60° ∴3tan ==∠BOAOABO …………………8分 ∴3=OEOF…………………9分 (3)OEOF=︒-)45tan(α…………………12分 26.解:(1)∵抛物线过C (0,-6)∴c =-6, 即y=ax 2+bx -6…………………1分…………………2分解得:a=161 ,b=-41∴该抛物线的解析式为6411612--=x x y …………4分 (2)存在…………………5分 设直线CD 垂直平分PQ ,在Rt △AOC 中,AC =2268+=10=AD …………………6分 ∴点D 在对称轴上,连结DQ 显然∠PDC =∠QDC , 由已知∠PDC =∠ACD , ∴∠QDC =∠ACD ,∴DQ ∥AC , …………………7分∴CQBQAD BD = ∵AB =20,AD =10∴DB =AB -AD =20-10=10=AD∴1=CQBQ∴CQ BQ =∴DQ 为△ABC 的中位线,…………………8分∴DQ=21AC =5. AP =AD -PD=AD -DQ =10-5=5∴t =5÷1=5(秒) …………………9分 ∴存在t =5(秒)时,线段PQ 被直线CD 垂直平分,在Rt △BOC 中, BC =5612622=+…………………10分∴CQ =53∴点Q 的运动速度为每秒553单位长度. …………………11分 (本小题还可以连接DQ ,PC ,证明△APC ≌△DQB ,得到PA=PD=DQ ,步骤参照上述标准给分)(3)存在这样的五点:M 1(1, -3), M 2(1,74), M 3(1,-74),M 4(1, 653+-),M 5((1, 653--)…………………14分(少一点扣1分,少三个点不得分)。
2014届中考适应性考试数学试题及答案
2014年中考数学模拟试题一、选择题:(本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答。
) 1.若a 与2互为相反数,则2+a 等于( )A .0B .4C .25 D .232.如图,AE ∥BD ,︒=∠︒=∠40220 C ,则1∠的度数是( )A.︒110B.︒120C.︒130D.︒140 3.在“百度”搜索引擎输入“马航飞机失踪”,能搜索到与之相关的结果个数约为32300000,这个数用科学记数法表示为( ) A .3.23×108 B .3.23×107 C .32.3×106 D .0.323×1084.四中九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )A .4,5B .5,4C .4,4D .5,5 5. 下列三个函数:①2y x =+;②4y x=;③221y x x =-+.其图象既是轴对称图形,又是中心对称图形的个数有( )A .0B .1C .2D .3 6.下列各运算中,正确的是( )A. 6239)3(a a =- B. 624a a a =÷ C. 2523a a a =+ D. 4)2(22+=+a a7.下列四个命题:(1)对角线相等的梯形是等腰梯形;(2)对角线互相垂直且相等的四边形是正方形;(3)顺次连接矩形四边中点得到的四边形是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.其中真命题的个数有 ( )A .1个B .2个C .3个D .4个8.将不等式组⎪⎩⎪⎨⎧-≤--<-x x xx 23421241的解集在数轴上表示出来,正确的是( )9.一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为( )A.2个B.3个C.5个D.10个10. 若⊙O 1和⊙O 2的圆心距为3,两圆半径分别为r 1、r 2,且r 1、r 2是方程组的解,则两圆的位置关系( )A.外离B.外切C.相交D.内切11.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为( )A. 32.5°B. 57.5°C. 32.5°或57.5D. 65°或57.5°12.如图是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y 1),(2,y 2)是抛物线上两点,则y 1>y 2.其中说法正确的是( ) A . ①②B . ②③C . ②③④D . ①②④二、填空题(本大题共5道小题,每小题3分,共15分.把答案填在题中的横线上.)13.计算:212138-+= . 14. 随着国家抑制房价政策的出台,某楼盘房价连续两次下跌,由原来的每平方米5000元降至每平方米4050元,设每次降价的百分率相同,则降价百分率为 . 15.抛物线y =2x 2+3上有两点A (x 1,y 1)、B (x 2,y 2),且x 1≠x 2,y 1=y 2,当x=x 1+x 2时,y = . 16.在正方形ABCD 中,点E 是对角线BD 上一点,且AE BD 3=,则∠BAE= .17.如图,⊙O 与⊙O 1内切于点A ,⊙O 的弦BC 与⊙O 1相切于点D ,且BC ∥O 1O ,BC =4,则图中阴影部分的面积为_____ _. 三、解答题(9小题,共69分)18.(6分)已知222=-y x ,求x y x x y x y x 4)](2)()[(222÷-++-+的值.19.(6分)反比例函数xn y 7+=的图象的一支在第一象限, A (-1,a )、B (-3,b )均在这个函数的图象上.(1)图象的另一支位于什么象限?常数n 的取值范围是什么? (2)试比较a 、b 的大小;(3)作AC ⊥x 轴于点C ,若△AOC 的面积为5,求这个反比例函数的解析式.20.(6分)“六•一”快到了,质检部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品。
2014 2014年中招考试数学试卷及答案
2014年数学试卷及答案一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是()7.如图, ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )118.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。
设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( )二、填空题(每小题3分,共21分) 9.计算:2-= . 10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC,则图中阴影部分的面积为 .15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 .三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中117.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形; ②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。
7)2014年恩施州初中数学复习效果检测题(七)三角形相似 解直角三角形
图3图2图12014年恩施州初中数学复习效果检测题(七)(三角形相似、解直角三角形)一、选择题(下列各小题都给出了四个选项,其中只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在下面的答题栏内。
本大题共12个小题,每小题3分,共1.下列说法正确的是 A .矩形都是相似图形 B .菱形都是相似图形C .各边对应成比例的多边形是相似多边形D .等边三角形都是相似三角形 2.(2013•怀化)如图1,为测量池塘边A 、B 两点的距离,小明在池塘的一侧选取一点O ,测得OA 、OB 的中点分别是点D 、E ,且DE=14米,则A 、B 间的距离是 A .18米 B .24米 C .28米 D .30米 3.(2013•无锡)如图2,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O ,AD=1,BC=4,则△AOD 与△BOC 的面积比等于 A .21 B .41 C .81 D .161 4.如图3,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为 A .35 B .552 C .25 D .32 5.(2013•南通)如图4,Rt △ABC 内接于⊙O ,BC 为直径,AB=4,AC=3,D 是⌒AB 的中点,CD 与AB 的交点为E ,则DECE等于 A .4B .3.5C .3D .2.86.如图5,△ABC 中,cos B =22,sin C =53,AC =5,则△ABC 的面积是图4图9图8图7图10A .221 B 7.在正方形网格中,△A .21 B 8.在R t △ABC 中,∠C=90°,若将各边长度都扩大为原来的3倍,则∠A 的正弦值 A .扩大3倍 B .缩小3倍 C .扩大9倍 D .不变 9.(2013•无锡)如图7,平行四边形ABCD 中,AB ∶BC=3∶2,∠DAB=60°,E 在AB 上,且AE ∶EB=1∶2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于 A .3∶4B .13∶52C .13∶62D .32∶1310.(2012四川乐山)如图8,在Rt △ABC 中,∠C =90°,AB =2BC ,则sinB 的值为 A .21B .22 C .23 D .111.(2013•荆州)如图9,在△ABC 中,BC >AC ,点D 在BC 上,且DC=AC ,∠ACB 的平分线CE 交AD 于E ,点F 是AB 的中点,则S △AEF :S 四边形BDEF 为 A .3∶4 B .1∶2 C .2∶3 D .1∶312.如图10,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB =4,BC =5,则tan ∠AFE 的值为A .34B .53C .43D .54图14E图13二、填空题(请将答案填写在题中的横线上。
2014年中考网上阅卷适应性考试测试卷参考答案
2014年中考网上阅卷适应性考试测试卷(B 卷)初三数学参考答案一、选择题:(本大题共10小题,每小题3分,共30分)1.B 2.A 3.D 4.C 5.B 6.D 7.D 8.B 9.C 10.C二、填空题:(本大题共8小题,每小题3分,共24分)11.58.9610⨯ 12.31 13.55 14.b >a>c15.35 161718.② ③ ④ 三、解答题:(本大题共11小题,共76分) 19.3, 20.32x =, 21.8场, 22.(1)略,(2)1323.(1)(2)15-.(1)略,(2)2+25.解:(1)()112(03)2.5 4.53x y x x <≤⎧=⎨+>⎩,()210(0 2.5)3 2.5 2.5x y x x <≤⎧=⎨+>⎩, (2)略,(3)当04x <≤时,乘坐纯电动出租车更合算.26.解:(1)过点P 作PG OB ⊥于点G ,则1522OB PG =,5OB =,1PG ∴=, 过点A 作AH OB ⊥于点H ,则,AH BH PG BG = 42,1BG = 12BG ∴=, ∴点P 的坐标为9(,1)2,∴反比例函数的解析式92y x=. (2)(方法一)过点E 作EM OB ⊥于点M , 设OE a =,由OEM ∆∽OAH ∆得OM EM OE OH AH OA ==,,35O M a ∴=,45EM a =,216225OEM S OM EM a ∆∴=⨯⨯=,//PC OE 且12PC OE =,213450PGC OEM S S a ∆∆∴==, 由OEM OPG S S ∆∆=知 2263325250a a =+,解得a =,OE. (方法二)//PC OE 且12PC OE =,14PGC OEM S S ∆∆∴=由OEM OPG S S ∆∆=知3124OEM OEM S S ∆∆=+,2OEM S ∆∴=,∴反比例函数的解析式4y x=.直线OA 的方程为43y x =,由434y x y x ⎧=⎪⎪⎨⎪=⎪⎩得点E的坐标为, OE ∴. 27.解:(1)2, (2)MN 2s =或1s =或6s =-1A MN ∆是等腰三角形.(3)略.28∴△DEF 的面积=12×QF ×(DC +BE )=12×2(6-t )×.∴△DEF 的面积为48.29.解:128AB x x =-=,∴⊙M 的半径为4, 连接ME ,在Rt MEN ∆中,2ME MO MN =,即24(6)MO MO =+解得:2MO =, ∴(2,0)A -、(6,0)B . 设(2)(6)y a x x =+-,则 2(02)(06)a -=+-,16a =, ∴抛物线的解析式为1(2)(6)6y x x =+-,即212263y x x =--,顶点D 的坐标为8(2,)3-.(2)由抛物线的对称性知,AD BD =,DAB DBA ∠=∠,若在抛物线对称轴的右侧图象上存在点P ,使得△ABP 与△ADB 相似, 必须有BAP BPA BAD ∠=∠=∠,设AP 与抛物线的对称轴交于1D ,则1D 的坐标为8(2,)3, ∴直线AP 的解析式为2433y x =+, 由2122426333x x x --=+得 1210,2x x ==-(舍去) ∴点P 的坐标是(10,8),但是,此时PB AB ==≠,△ABP 与△ADB 不相似.同理可以说明在抛物线对称轴的左侧图象上也不存在点P ,使得△ABP 与△ADB 相似,所以, 抛物线上不存在点P ,使得△ABP 与△ADB 相似. (3) 连接BG ,过H 作HK x ⊥轴于K ,则 Rt AGB ∆∽Rt AHK ∆ ∴AG AKAB AH= ∴8(2)AG AH AB AK m ⋅=⋅=+当8m =时, 10(8,)3H ,AH =80AG AH == GH AH AG ∴=-=图1图2l。
2014年适应性考试数学试题答案
2014年适应性数学试题注意事项:1.本卷共有4页,共有25小题,满分120分,考试时限120分钟.2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对条形码上的准考证号和姓名,在答题卡规定的位置贴好条形码.3.考生必须保持答题卡的整洁,考试结束后,请将本试卷和答题卡一并上交. 一、选择题:(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.A .±3B .3C .-3D .92.如图,AB ∥CD ,E 在AB 上,F 在CD 上,EG ⊥GF ,若∠BEG=120°,A .20°B .30°C .40°D . 60° 3.下列计算正确的是:A 、a 2+a 3=a 5B 、a 6÷a 2=a 3C 、(a 2)3=a 6D 、2a 2×3a =6a 2 4. 如图,是一个旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的度数至少为:A.30° B .60° C.120° D.180°5. 为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为:A 、25.6 26B 、26 25.5C 、26 26D 、25.5 25.56.左下图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是:7. 将图1所示的正六边形进行分割得到图2,再将图2中最小的某一个正六边形按同样的方式进行分割得到图3,再将图3中最小的某一个正六边形按同样的方式进行分割……,则第2014个图形中,共有_________个正六边形。
A .4027B .6040C .10066D .以上都不对从左面看(A) (D)(C) B CD8. 一条排水管的截面如图所示.已知排水管的截面圆半径10OB =,水面宽AB 是16,则截面水深CD 是:A. 3 B .4 C.5 D.6(7题) (8题) (9题)9. 如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则四边形AECF 的周长为:A .12 cmB .16 cmC .20 cmD .24 cm 10.如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交, 其顶点坐标为1,12⎛⎫⎪⎝⎭,下列结论:①ac <0;②a+b =0; ③a =4c -4;④方程ax 2+bx+c -2=0无实数根.其中正确的个数是: A . 4 B. 3 C. 2 D. 1二、填空题(共6小题,每小题3分,本大题满分18分)11.为做好房地产市场调控工作,同时为中低收入阶层提供基本住房保障,住建部通知,2014年全国将新开工保障房6000000套以上,将数字6000000用科学记数发表示为6×106。
湖北省恩施州2014年中考数学试题(解析)
湖北省恩施州2014年中考数学试题(解析)
一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,恰有一项是符合要求的。
)
1.(3分)(2013•恩施州)的相反数是()
C.3D.﹣3
A.B.
﹣
考点:相反数.
分析:根据只有符号不同的两个数互为相反数求解后选择即可.
解答:
解:﹣的相反数是.
故选A.
点评:本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.
2.(3分)(2013•恩施州)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科学记数法表示为(保留三位有效数字)()
A.3.93×104B.3.94×104C.0.39×105D.394×102
考点:科学记数法与有效数字.
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于39360有5位,所以可以确定n=5﹣1=4.
有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.
用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.
解答:解:39360=3.936×104≈3.94×104.
故选:B.
点评:此题考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.
3.(3分)(2013•恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()
A.70°B.80°C.90°D.100°
考点:平行线的判定与性质.。
湖北省恩施州2014年中考适应性考试数学试卷及答案
湖北省恩施州2014年中考适应性考试数学试卷一、选择题(共12小题,每小题3分,满分36分).D.2.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()3.如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()36.已知圆锥侧面展开图的扇形半径为2cm,面积是,则扇形的弧长和圆心角的度数分别为().B.C.D.7.不等式组的解集在数轴上表示正确的是().B.C.D.8.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为().B.C.D.9.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1),将△ABC绕点A按顺时针方向旋转90°,得到△AB′C′,则点B′的坐标为()10.如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,﹣7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有()11.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()12.如图,矩形ABCD的面积为20,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于O1,以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为().B.C.D.二、填空题(共4小题,每小题3分,满分12分)13.81的平方根是_________.14.使代数式有意义的x的取值范围是_________.15.已知不等臂跷跷板AB长4m.如图①,当AB的一端碰到地面时,AB与地面的夹角为α;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为β.则跷跷板AB的支撑点O到地面的高度OH是_________.(用含α、β的式子表示)16.有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请你观察它们的结构规律,用你发现的规律写出第10个等式为_________.三、解答题(共8小题,满分72分)17.先化简(﹣)÷,然后从不等式﹣5≤x<6的解中,选取一个你认为符合题意的x的值代入求值.18.在平行四边形ABCD中,AE⊥BC,AF⊥DC,且AE=AF.求证:(1)△ABE≌△ADF;(2)平行四边形ABCD是菱形.19.我市公安部门加大对“酒后驾车”的处罚力度后,某记者在某区随机选取了几个停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:A、醉酒后开车;B、喝酒后不开车或请专业司机代驾;C、少量饮酒,但体内酒精含量未达到酒驾标准;D、从不喝酒.将这次调查情况整理并绘制了如下尚不完整的统计图1和图2,请根据相关信息,解决下列问题.(I)该记者本次一共调查了_________名司机;(II)图1中情况D所在扇形的圆心角为_________°;(III)补全图2;(IV)若该区有3万名司机,则其中不违反“酒驾”禁令的人数约为_________人.20.如图,已知直线l分别与x轴、y轴交于A、B两点,与双曲线y=(a≠0,x>0)分别交于C(4,1)、D(1,4)两点.(1)分别求直线l和双曲线的解析式;(2)若将直线l向下平移m(m>0)个单位,当m为何值时,直线l与双曲线有且只有一个交点?21.如图,小明在大楼45米高(即PH=45米,且PH⊥HC)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处得俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:.(点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上)(1)∠PBA的度数等于_________度;(直接填空)(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.414,≈1.732).22.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?23.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD 于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.24.如图所示,已知抛物线y=x2﹣1与x轴交于A、B两点,与y轴交于点C.(1)求A、B、C三点的坐标;(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G 三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.。
2014年湖北省恩施州中考数学试卷附详细答案(原版+解析版)
2014年湖北省恩施州中考数学试卷一、选择题(共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项前的字母代号填在答卷相应位置上)1.(3分)-3的倒数是()A. 3B. 1 C J D. - 33 32.(3分)目前全球海洋面积约为36100万平方公里,用科学记数法将数36100 万表小为()A. 3.61X108B. 361X 106C. 3.61X104D. 361 X 1023.(3分)下列运算中,正确的是()A. a (a+1) =a2+1B. (a2)3=a6C. a3+4a3=5a6D. a6- a2=a34.(3分)如图,AB// CD, EF交AB、CD于点E、F、EG平分/ BEF交CD于点G.若/1=40°,贝U/ EGF=()C/F g FA. 20°B, 40°C, 70°D, 110°5.(3分)把ax2-4axy+4ay2分解因式正确的是()A. a (x2-4xy+4y2)B. a (x-4y)2C. a (2x-y)2D. a (x-2y)26.(3分)函数y J^+dT两的自变量x的取值范围是()x-2A. -4<x<2 B, x>2 C, xw2 D. x>-4且x*27.(3分)正方体的六个面分别标有1, 2, 3, 4, 5, 6六个数字,如图是其三种不同的放置方式,与数字”附对的面上的数字是()8. (3分)关于x 的不等式-x+a>1的解集如图所示,则a 的值为(III *[ I >■-4 -3 -2 -1 0 1 2 3 4 59. (3分)如图,在 RtzXABC 中,/ C=90°, AB 的垂直平分线交 AC 于点D,交 AB 于点 E.若 BC=2, AC=4,则 BD=(10. (3分)六一 ”期间,某商店将单价标为130元的书包按8折出售可获利30%, 该书包每个的进价是(11. (3分)如图,线段AB 放在边长为1个单位的小正方形网格中,点 A 、B 均 落在格点上,先将线段AB 绕点。
3)2014年恩施州初中数学复习效果检测题(三)函数及图象测试题
图2图32014年恩施州初中数学复习效果检测题(三)(函数及其图象)一、选择题(下列各小题都给出了四个选项,其中只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在下面的答题栏内。
本大题共12个小题,每小题3分,共36分)1.函数y 中,自变量x 的取值范围是( ) A .x >2 B .x ≥2 C .x ≠2 D .x ≤2 2.若ab <0,则正比例函数y =ax 与反比例函数y =b x在同一坐标系中的大致图象可能是( )3.如图2,点A 、B 、C 在一次函数y =-2x +m 的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( ) A .1 B .3 C .3(m -1) D .32(m -2) 4.如图3,正△AOB 的顶点A 在反比例函数y =3x(x >0)的图象上,则点B 的坐标为( ) A .(2,0) B .(3,0) C .(23,0) D .(32,0)5.如图4,点P (3a ,a )是反比例函y =k x(k >0)与⊙O 的一个交点,图中两阴影部分的面积之和为10π,则反比例函数的解析式为( )A .y =3xB .y =5xC .y =10xD .y =12x6.如图5,直线y =-2x +4与x 轴,y 轴分别相交于A 、B 两点,C 为OB 上一点,且∠1=∠2,则S △ABC =( ) A.1 B .2 C .3 D .4 7.如图6,甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( ) A . ①②③ B .仅有①② C . 仅有①③ D.仅有②③xxxxB .8.飞机着陆后滑行的距离s (单位:m )与滑行的时间 t (单位:s )的函数关系式是s=60t-1.5t 2,飞机着陆后滑行的最远距离是( )A.300mB.400mC.600mD.1200m9. 如图7,已知抛物线与x 轴的一个交点A (1,0),对称轴是x=-1。
2014年中考适应性考试数学试题及答案
2014年中考适应性考试数学试题及答案2014年初中学业考试适应性训练数学试题考⽣注意:1、考试时间120分钟;全卷共三道⼤题,总分120分2、请将答案写在答题卡上,答在试卷上⽆效。
⼀、填空题(每题3分,满分30分)1. 前⼏年甲型H1N1流感在墨西哥爆发并在全球蔓延,研究表明甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,保留两个有效数字,⽤科学记数法表⽰这个数是 . 2、函数y=x 31-中,⾃变量x 的取值范围是。
3、如图所⽰,E 、F 是矩形ABCD 对⾓线AC 上的两点,试添加⼀个条件:_______________,使得△ADF ≌△CBE .4、把抛物线y=2x 2-3向右平移1个单位,再向上平移4个单位,则所得抛物线的解析式是 . 5、如图,Rt ABC △的斜边10AB cm =,3cos 5A =, 则_____.BC =6、从编号为1到10的10张卡⽚中任取1张,所得编号是 3的倍数的概率为 .7、过平⾏四边形 ABCD 对⾓线交点O 作直线m,分别交直线AB 于点E ,交直线CD 于点F ,若AB = 4,AE = 6 ,则DF 的长是 .8、分式112+-x x 的值为0 ,则 x 的值为 .9、已知圆锥的底⾯直径为4,母线长为6,则它的侧⾯展开图的圆⼼⾓为__ _____度 . 10.如图,有⼀系列有规律的点,它们分别是以O 为顶点,边长为正整数的正⽅形的顶点,A 1(0,1)、A 2(1,1)、A 3(1,0)、 A 4(2,0)、A 5(2,2)、A 6(0,2)、A7(0,3)、A 8(3,3)……,依此规律,点A 20的坐标为 . ⼆、选择题(每题3分,满分30分) 11、下列运算正确的是()A .236·a a a = B .11()22-=- C .164=± D .|6|6-=第5题图ABC12、在下列美丽的图案中,既是轴对称图形⼜是中⼼对称图形的个数是().(A )1个(B )2个(C )3个(D )4个 13、某班数学学习⼩组8名同学在⼀节数学课上发⾔的次数分别为 1、5、6、7、6、5、6、6则这组同学发⾔次数的众数和中位数分别是()A .6和6B .5和5C .6和5D .5和614、⼩明外出散步,从家⾛了20分钟后到达了⼀个离家900⽶的报亭,看了10分钟的报纸然后⽤了15分钟返回到家.则下列图象能表⽰⼩明离家距离与时间关系的是()15、如图,⼀个由若⼲个相同的⼩正⽅体堆积成的⼏何体,它的主视图、左视图和俯视图都是⽥字形,则⼩正⽅体的个数是()A .6B .6、7或8C .7 或8D .816、点P (-2,1)关于x 轴对称的点的坐标是()A .(-2,-1)B .(2,-1)C .(1,-2)D .(2,1)17、顺次连接对⾓线互相垂直的四边形的各边中点,所得图形⼀定是() A .直⾓梯形 B .矩形 C .菱形 D .正⽅形18.若x ,y 为实数,且1x ++1y -=0,则2011()x y的值是( ) A .0B .1C .-1D .-201119、某城市计划⽤两年时间增加全市绿化⾯积,若平均每年绿化⾯积⽐上⼀年增长20%,则两年后城市绿化⾯积是原来的()A1.2倍B1.4倍C1.44倍D1.8倍20、.如图,矩形ABCD 中,AB=3,AD=4,△ACE 为等腰直⾓三⾓形,∠AEC=90°,连接BE 交AD 、AC 分别于F 、N ,CM 平分∠ACB 交BN 于M ,下列结论:①AB=AF ;②AE=ME ;10 20 30 40 50 900 0 A .时间/分距离/⽶ 900 距离/⽶ 900 距离/⽶ 900 距离/⽶ 10 20 30 40 0 时间/分10 20 30 40 50 0 时间/分10 20 30 40 50 0 时间/分B .C .D .(第15题图)③BE ⊥DE ;④52=??CEN CMN S S ,其中正确的结论的个数有().A.1个B.2个C.3个D.4个(第20题图)三、解答题(满分60分) 21.(本⼩题满分5分)先化简,再选⼀个你喜欢的值代⼊求值。
1)2014年恩施州初中数学复习效果检测题(一)数与式答案
2014年恩施州初中数学复习效果检测题(一)(数与式参考答案)一、1.D 2.B 3.D 4.A 5.B 6.B 7.C 8.C 9.A 10.C 二、11.±2 12.23)(b a a - 13.5≥x14.22- 15. 32 16.(202,5) 三、17.12+ 18.-1519.原式=x -2,∵x 只能取4,∴原式=x -2=4-2=220.(1)ab ab b a =++2;.ab b a =+ (2)证明:,2,222ab abab b a ab a b b a =++∴=++ .,0,0,0,0,)()(,)(222222ab b a ab b a b a ab b a ab ab b a =+∴>>+>>=+∴=++∴ 21.∵a a a ++-221=a a +-2)1(=| a -1 |+a当 a ≥1 时,上式=2a -1 2a -1= 12 时,a = 34(不合题意)当 a <1 时,上式=1∴该同学答案不对。
22.(1) 图2:2232)2)((b ab a b a b a ++=++图3:22252)2)(2(b ab a b a b a ++=++ (2)略23.(1)109 (2)13+n n (3)① 9=x② 原式=165)161131131101101717141411(31=-+-+-+-+- 24.(1)奶厂建在线段AB 上的任何位置均可,最小距离是10千米; (2)送奶员应在乙处租房,最小距离是2千米; 送奶员应在乙、丙之间或乙、丙处租房,最小距离是3.8千米;(3)当n 为偶数时,P 应设在2n 台和)12(+n 台之间的任何地方【含2n 台和)12(+n 台处】;当n 为奇数时,P 应设在21+n 台处; (4)根据绝对值的几何意义:求2011321-++-+-+-x x x x 的最小值,就是在数抽上找出表示x 的点,使它到表示1,2,3,……,2011各点的距离之和最小。
数学答案
(
)
数学试题参考答案及评分说明第 5页 ( 共6 页)
12 5 5 1 5 5 + x + = 时, + - - x ②当 - x 4 4 2 2 2 2
(
)
2 ∴x - 7 x - 1 0= 0
7+槡 8 9 7-槡 8 9 解得 x , x 1= 2= 2 2 7+槡 8 9 12 5 5 - 7-槡 8 9 当x = 时, - x + x + = , 4 4 2 2 4 Q D F是平行四边形; 此时四边形 P 8 9- 7-槡 8 9 ∴P 7+槡 , 2 4 7-槡 8 9 12 5 5 - 7+槡 8 9 当x = 时, - x + x + = , 2 4 4 2 4 此时四边形 P Q D F是平行四边形. 8 9- 7+槡 8 9 ∴P 7-槡 , 2 4 5 8 9- 7-槡 8 9 或 P 7-槡 8 9- 7+槡 8 9 , 或 P 7+槡 ∴P 5 1 2分) ( , , 2 2 4 2 4
(
)
(
)
当P Q F且 P Q= D F时, 以P 、 D 、 Q 、 F为顶点的四边形为平行四边形. ∥D 1 5 12 5 5 5 + + - - x = 时, ①当 - x + x 2 2 4 4 2 2
(
)
2 ∴x - , x 5 1= 2= 当x = 2时, P 、 D重合, 此时四边形 P D F Q不存在; 当x = 5时, P 、 B重合, 此时四边形 P D F Q是平行四边形. 5 , ∴P 5 2
二、 填空题( 本大题共 4个小题, 每小题 3分, 共1 2分) 1 3 1 3 . 4 1 4 . 1 5 . 1 5 1 6 . π 4 1 3 三、 解答题( 本大题共 8个小题, 共7 2分)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省恩施州2014年中考适应性考试数学试卷
一、选择题(共12小题,每小题3分,满分36分)
..
2.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法
3.如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()
3
6.已知圆锥侧面展开图的扇形半径为2cm,面积是,则扇形的弧长和圆心角的度
....
7.不等式组的解集在数轴上表示正确的是()
....
8.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()
....
9.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1),将△ABC绕点A按顺时针方向旋转90°,得到△AB′C′,则点B′的坐标为()
10.如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,﹣7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有()
11.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:
①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,
正确的是()
12.如图,矩形ABCD的面积为20,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于O1,以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()
....
二、填空题(共4小题,每小题3分,满分12分)
13.81的平方根是_________.
14.使代数式有意义的x的取值范围是_________.
15.已知不等臂跷跷板AB长4m.如图①,当AB的一端碰到地面时,AB与地面的夹角为α;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为β.则跷跷板AB的支撑点O到地面的高度OH是_________.(用含α、β的式子表示)
16.有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请你观察它们的结构规律,用你发现的规律写出第10个等式为_________.
三、解答题(共8小题,满分72分)
17.先化简(﹣)÷,然后从不等式﹣5≤x<6的解中,选取一个你认为符合题意的x的值代入求值.
18.在平行四边形ABCD中,AE⊥BC,AF⊥DC,且AE=AF.求证:
(1)△ABE≌△ADF;
(2)平行四边形ABCD是菱形.
19.我市公安部门加大对“酒后驾车”的处罚力度后,某记者在某区随机选取了几个停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:A、醉酒后开车;B、喝酒后不开车或请专业司机代驾;C、少量饮酒,但体内酒精含量未达到酒驾标准;D、从不喝酒.将这次调查情况整理并绘制了如下尚不完整的统计图1和图2,请根据相关信息,解决下列问题.
(I)该记者本次一共调查了_________名司机;
(II)图1中情况D所在扇形的圆心角为_________°;
(III)补全图2;
(IV)若该区有3万名司机,则其中不违反“酒驾”禁令的人数约为_________人.
20.如图,已知直线l分别与x轴、y轴交于A、B两点,与双曲线y=(a≠0,x>0)分别交于C(4,1)、D(1,4)两点.
(1)分别求直线l和双曲线的解析式;
(2)若将直线l向下平移m(m>0)个单位,当m为何值时,直线l与双曲线有且只有一个交点?
21.如图,小明在大楼45米高(即PH=45米,且PH⊥HC)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处得俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:
.(点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上)
(1)∠PBA的度数等于_________度;(直接填空)
(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.414,≈1.732).
22.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
23.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD 于点F.
(1)求证:DP∥AB;
(2)若AC=6,BC=8,求线段PD的长.
24.如图所示,已知抛物线y=x2﹣1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G 三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.。