1.1.2___余弦定理(1)

合集下载

下学期高一数学第一章解三角形全章教案 必修5

下学期高一数学第一章解三角形全章教案 必修5

下学期高一数学第一章解三角形全章教案1.1第1课时 正弦定理(1)教学目标(1)要求学生掌握正弦定理及其证明;(2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点正弦定理的推导及其证明过程. 教学过程 一.问题情境在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢?探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ∆中,设90C =︒,则sin a A c =, sin b B c =, sin 1C =, 即:sin a c A =, sin b c B =, sin c c C =, sin sin sin a b cA B C==. 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法1 若C 为锐角(图(1)),过点A 作AD BC ⊥于D ,此时有sin AD B c =,sin ADC b=,所以sin sin c B b C =,即sin sin b c B C =.同理可得sin sin a cA C=, 所以sin sin sin a b cA B C ==. 若C 为钝角(图(2)),过点A 作AD BC ⊥,交BC 的延长线于D ,此时也有sin AD B c =,且sin sin(180)AD C C b =︒-=.同样可得sin sin sin a b cA B C==.综上可知,结论成立.证法 2 利用三角形的面积转换,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111sin sin sin 222ABC S ab C ac B bc A ∆===,每项同除以12abc 即得:sin sin sin a b cA B C==.探索4 充分挖掘三角形中的等量关系,可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具,因此能否从向量的角度来证明这个结论呢?在ABC ∆中,有BC BA AC =+.设C 为最大角,过点A 作AD BC ⊥于D (图(3)),于是BC AD BA AD AC AD ⋅=⋅+⋅.设AC 与AD 的夹角为α,则0||||cos(90)||||cos BA AD B AC AD α=⋅⋅︒++⋅,其中 ,当C ∠为锐角或直角时,90C α=︒-; 当C ∠为钝角时,90C α=-︒. 故可得sin sin 0c B b C -=,即sin sin b cB C=. 同理可得sin sin a cA C =. 因此sin sin sin a b c A B C==. 四.数学运用 1.例题:例1.在ABC ∆中,30A =︒,105C =︒,10a =,求b ,c .解:因为30A =︒,105C =︒,所以45B =︒.因为sin sin sin a b cA B C==, 所以sin 10sin 45102sin sin 30a B b A ︒===︒,sin 10sin1055256sin sin 30a C c A ︒===+︒.因此, b ,c 的长分别为102和5256+.例2.根据下列条件解三角形: (1)3,60,1b B c ==︒=; (2)6,45,2c A a ==︒=.解:(1)sin sin b cB C =,∴sin 1sin 601sin 23c B C b ⨯︒===, ,60b c B >=,∴C B <,∴C 为锐角, ∴30,90C A ==,∴222a b c =+=.(2)sin sin a cA C=,∴sin 6sin 453sin 22c A C a ⨯===,∴60120C =或, ∴当sin 6sin 756075,31sin sin 60c B C B b C =====+时,; ∴当sin 6sin1512015,31sin sin 60c B C B b C =====-时,; 所以,31,75,60b B C =+==或31,15,120b B C =-==.说明:正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题. 练习:在ABC ∆中,30a =,26b =,30A =︒,求c 和,B C .说明:正弦定理可以用于解决已知两角和一边求另两边和一角的问题. 2.练习: (1)在ABC ∆中,已知8b c +=,30B ∠=︒,45C ∠=︒,则b = ,c = . (2)在ABC ∆中,如果30A ∠=︒,120B ∠=︒,12b =,那么a = ,ABC ∆的面积是 .(3)在ABC ∆中,30bc =,1532ABC S ∆=,则A ∠= . (4)课本第9页练习第1题. 五.回顾小结:1.用两种方法证明了正弦定理:(1)转化为直角三角形中的边角关系;(2)利用向量的数量积.2.初步应用正弦定理解斜三角形. 六.课外作业:课本第9页练习第2题;课本第11页习题1.1第1、6题§1.1.1第2课时 正弦定理(2)教学目标(1)掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; (2)熟记正弦定理2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆的半径)及其变形形式.教学重点,难点利用三角函数的定义和外接圆法证明正弦定理. 教学过程 一.问题情境上节课我们已经运用两种方法证明了正弦定理,还有没有其他方法可以证明正弦定理呢? 二.学生活动学生根据第5页的途径(2),(3)去思考. 三.建构数学证法1 建立如图(1)所示的平面直角坐标系,则有(cos ,sin )A c B c B ,(,0)C a ,所以ABC ∆的面积为1sin 2ABC S ac B ∆=.同理ABC ∆的面积还可以表示为1sin 2ABC S ab C ∆=及1sin 2ABC S bc A ∆=,所以111sin sin sin 222ab C ac B bc A ==. 所以sin sin sin a b c A B C==. 证法2 如下图,设O 是ABC ∆的外接圆,直径2BD R =.(1)如图(2),当A 为锐角时,连CD ,则90BCD ∠=︒,2sin a R D =.又D A ∠=∠,所以2sin a R A =.(2)如图(3),当A 为钝角时,连CD ,则90BCD ∠=︒,2sin a R D =.又180A D ∠+∠=︒,可得sin sin(180)sin D A A =︒-=,所以2sin a R A =.(3)当A 为直角时,2a R =,显然有2sin a R A =.所以不论A 是锐角、钝角、直角,总有2sin a R A =.同理可证2sin b R B =,2sin c R C =.所以2sin sin sin a b cR A B C===. 由此可知,三角形的各边与其所对角的正弦之比是一个定值,这个定值就是三角形外接圆的直径. 由此可得到正弦定理的变形形式:(1)2sin ,2sin ,2sin a R A b R B c R C ===; (2)sin ,sin ,sin 222a b cA B C R R R===;(3)sin sin sin ::::A B C a b c =. 四.数学运用1.例题:例1.根据下列条件,判断ABC ∆有没有解?若有解,判断解的个数. (1)5a =,4b =,120A =︒,求B ; (2)5a =,4b =,90A =︒,求B ;(3)106a =,203b =45A =︒,求B ; (4)202a =203b =45A =︒,求B ;(5)4a =,33b =,60A =︒,求B . 解:(1)∵120A =︒,∴B 只能是锐角,因此仅有一解. (2)∵90A =︒,∴B 只能是锐角,因此仅有一解.(3)由于A 为锐角,而210632=,即A b a sin =,因此仅有一解90B =︒.(4)由于A 为锐角,而22032022031062>>=,即sin b a b A >>,因此有两解,易解得60120B =︒︒或.(5)由于A 为锐角,又1034sin 605<︒=,即sin a b A <,∴B 无解. 例2.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.解:令sin ak A=,由正弦定理,得sin a k A =,sin b k B =,sin c k C =.代入已知条件,得sin sin sin cos cos cos A B C A B C==,即tan tan tan A B C ==.又A ,B ,C (0,)π∈,所以A B C ==,从而ABC ∆为正三角形.说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角? (2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断.例3.某登山队在山脚A 处测得山顶B 的仰角为35︒,沿倾斜角为20︒的斜坡前进1000米后到达D 处,又测得山顶的仰角为65︒,求山的高度(精确到1米). 分析:要求BC ,只要求AB ,为此考虑解ABD ∆. 解:过点D 作//DE AC 交BC 于E ,因为20DAC ∠=︒, 所以160ADE ∠=︒,于是36016065135ADB ∠=︒-︒-︒=︒. 又352015BAD ∠=︒-︒=︒,所以30ABD ∠=︒. 在ABD ∆中,由正弦定理,得sin 1000sin13510002()sin sin 30AD ADB AB m ABD ∠︒===∠︒.在Rt ABC ∆中,sin 35235811()BC AB m =︒=︒≈. 答:山的高度约为811m .例4.如图所示,在等边三角形中,,AB a =O 为三角形的中心,过O 的直线交AB 于M ,交AC 于N ,求2211OM ON +的最大值和最小值. 解:由于O 为正三角形ABC 的中心,∴3AO =, 6MAO NAO π∠=∠=,设MOA α∠=,则233ππα≤≤,αβπβ-αACBD在AOM ∆中,由正弦定理得:sin sin[()]6OM OAMAO ππα=∠-+, ∴6sin()6OM πα=+,在AON ∆中,由正弦定理得:6sin()6ON πα=-,∴2211OM ON +22212[sin ()sin ()]66a ππαα=++-22121(sin )2a α=+, ∵233ππα≤≤,∴3sin 14α≤≤,故当2πα=时2211OM ON +取得最大值218a, 所以,当α=2,33or ππ时23sin 4α=,此时2211OM ON +取得最小值215a . 例5.在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BDAC DC=. 证明:设BAD α∠=,BDA β∠=,则CAD α∠=,180CDA β∠=︒-.在ABD ∆和ACD ∆中分别运用正弦定理,得sin sin AB BD βα=,sin(180)sin AC DC βα︒-=, 又sin(180)sin ββ︒-=,所以AB AC BD DC =,即AB BDAC DC=. 2.练习:(1)在ABC ∆中,::4:1:1A B C =,则::a b c = ( D )A .4:1:1 B .2:1:1 CD(2)在ABC ∆中,若sin :sin :sin 4:5:6A B C =,且15a b c ++=,则a = , b = ,c = . 五.回顾小结:1.了解用三角函数的定义和外接圆证明正弦定理的方法; 2.理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. 六.课外作业:课本第9页练习第3题;课本第11页习题1.1第2、8题.§1.1.2 第3课时 余弦定理(1)教学目标(1)掌握余弦定理及其证明;(2)使学生能初步运用余弦定理解斜三角形. 教学重点,难点(1)余弦定理的证明及其运用;(2)能灵活运用余弦定理解斜三角形. 教学过程 一.问题情境 1.情境:复习正弦定理及正弦定理能够解决的两类问题. 2.问题:在上节中,我们通过等式BC BA AC =+的两边与AD (AD 为ABC ∆中BC 边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理,还有其他途径将向量等式BC BA AC =+数量化吗?二.学生活动如图,在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵BC AB AC +=∴()()AC AC AB BC AB BC ⋅=+⋅+22cos 2a B ac c +-=, 即B ac a c b cos 2222-+=;同理可证:A bc c b a cos 2222-+=, C ab b a c cos 2222-+=. 三.建构数学 1. 余弦定理上述等式表明,三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的两倍.这样,我们得到余弦定理. 2.思考:回顾正弦定理的证明,尝试用其他方法证明余弦定理.方法1:如图1建立直角坐标系,则(0,0),(cos ,sin ),(,0)A B c A c A C b .所以2222222222(cos )(sin )cos sin 2cos 2cos a c A b c A c A c A bc A b b c bc A=-+=+-+=+-同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=注:此法的优点在于不必对A 是锐角、直角、钝角进行分类讨论.方法2:若A 是锐角,如图2,由B 作BD AC ⊥,垂足为D ,则cos AD c A =,所以即A bc c b a cos 2222-+=,类似地,可以证明当A 是钝角时,结论也成立,而当A 是直角时,结论显 然成立.同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=.图1 图2 3.余弦定理也可以写成如下形式:bc a c b A 2cos 222-+= , ac b c a B 2cos 222-+=, acc b a C 2cos 222-+=.4.余弦定理的应用范围:利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在ABC ∆中,(1) 已知3b =,1c =,060A =,求a ;A BCcab(2) 已知4a =,5b =,6=c ,求A (精确到00.1).解:(1)由余弦定理,得2222202cos 31231cos607a b c bc A =+-=+-⨯⨯⨯=,所以 a =(2)由余弦定理,得222222564cos 0.752256b c a A bc +-+-===⨯⨯, 所以,041.4A ≈.例2. ,A B 两地之间隔着一个水塘,现选择另一点C ,测得182,CA m =126,CB m =063ACB ∠=,求,A B 两地之间的距离(精确到1m ). 解:由余弦定理,得所以,168()AB m ≈答:,A B 两地之间的距离约为168m .例3.用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.证:当C 为锐角时,cos 0C >,由余弦定理,得222222cos c a b ab C a b =+-<+,即 222a b c +>.同理可证,当C 为钝角时,222a b c +<.2.练习:书第15页 练习1,2,3,4 五.回顾小结:1.余弦定理及其应用2.正弦定理和余弦定理是解三角形的两个有力工具,要区别两个定理的不同作用,在解题时正确选用;六.课外作业:书第16页1,2,3,4,6,7题§1.1.2 第4课时 余弦定理(2)教学目标(1)能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题. 教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题,牢固掌握两个定理,应用自如. 教学过程 一.问题情境1.正弦定理及其解决的三角形问题(1)已知两角和任一边,求其它两边和一角;(2)已知两边和其中一边的对角,求另一边的对角,从而进一步其它的边和角. 2.余弦定理及其解决的三角形问题 (1)已知三边,求三个角;(2)已知两边和他们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在长江某渡口处,江水以5/km h 的速度向东流,一渡船在江南岸的A 码头出发,预定要在0.1h 后到达江北岸B 码头,设AN 为正北方向,已知B 码头在A 码头的北偏东015,并与A 码头相距1.2km .该渡船应按什么方向航行?速度是多少(角度精确到00.1,速度精确到0.1/km h )?解:如图,船按AD 方向开出,AC 方向为水流方向,以AC 为一边、AB 为对角线作平行四边形ABCD ,其中 1.2(),50.10.5()AB km AC km ==⨯=.在ABC ∆中,由余弦定理,得2221.20.52 1.20.5cos(9015) 1.38BC =+-⨯⨯-≈, 所以 1.17()AD BC km =≈. 因此,船的航行速度为1.170.111.7(/)km h ÷=.在ABC ∆中,由正弦定理,得 0sin 0.5sin 75sin 0.41281.17AC BAC ABC BC ∠∠==≈, 所以 024.4ABC ∠≈所以 00159.4DAN DAB NAB ABC ∠=∠-∠=∠-≈.答:渡船应按北偏西09.4的方向,并以11.7/km h 的速度航行.例2. 在ABC ∆中,已知sin 2sin cos A B C =,试判断该三角形的形状.解:由正弦定理及余弦定理,得222sin ,cos sin 2A a a b c C B b ab+-==, 所以 22222a a b c b ab+-=,整理得 22b c =因为0,0b c >>,所以b c =.因此,ABC ∆为等腰三角形.例3.如图,AM 是ABC ∆中BC 边上的中线,求证:22212()2AM AB AC BC =+-.证:设AMB α∠=,则0180AMC α∠=-.在ABM ∆中,由余弦定理,得2222cos AB AM BM AM BM α=+-.在ACM ∆中,由余弦定理,得22202cos(180)AC AM MC AM MC α=+--.因为01cos(180)cos ,2BM MC BC αα-=-==, 所以2222122AB AC AM BC +=+,因此, 22212()2AM AB AC BC =+-. 例4.在ABC ∆中,BC a =,AC b =,,a b 是方程02322=+-x x 的两个根,且2cos()1A B +=,求:①角C 的度数; ②AB 的长度; ③ABC S ∆.解:①1cos cos(())cos()2C A B A B π=-+=-+=- ∴120C =;②由题设:232a b ab ⎧+=⎪⎨=⎪⎩,∴2222cos AB AC BC AC BC C =+-⋅⋅120cos 222ab b a -+=ab b a ++=22102)32()(22=-=-+=ab b a , 即10AB =;③ABC S ∆11133sin sin120222222ab C ab ===⋅⋅=.2.练习:(1)书第16页 练习1,2,3,4DCBA(2)如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=, 135BCD ∠=, 求BC 的长.(3)在ABC ∆中,已知()()()456::::b c c a a b +++=,求ABC ∆的最大内角;(4)已知ABC ∆的两边,b c 是方程2400x kx -+=的两个根,的面积是2cm ,周长是20cm ,试求A 及k 的值; 五.回顾小结:1.正弦、余弦定理是解三角形的有力工具,要区别两个定理的不同作用,在解题时正确选用;2.应用正弦、余弦定理可以实现将“边、角相混合”的等式转化为“边和角的单一”形式; 3.应用余弦定理不仅可以进行三角形中边、角间的计算,还可以判断三角形的形状. 六.课外作业:书第17页5,8,9,10,11题§1.3正弦定理、余弦定理的应用(1)教学目标(1)综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;(2)体会数学建摸的基本思想,掌握求解实际问题的一般步骤;(3)能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力. 教学重点,难点(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题; (2)掌握求解实际问题的一般步骤. 教学过程 一.问题情境 1.复习引入复习:正弦定理、余弦定理及其变形形式, (1)正弦定理、三角形面积公式:R CcB b A a 2sin sin sin ===; B acC ab A bc S ABC sin 21sin 21sin 21===∆.(2)正弦定理的变形:①C R c B R b A R a sin 2,sin 2,sin 2===;②RcC R b B R a A 2sin ,2sin ,2sin ===; ③sin sin sin ::::A B C a b c =.(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=.二.学生活动引导学生复习回顾上两节所学内容,然后思考生活中有那些问题会用到这两个定理,举例说明.三.建构数学正弦定理、余弦定理体现了三角形中边角之间的相互关系,在测量学、运动学、力学、电学等许多领域有着广泛的应用.1.下面给出测量问题中的一些术语的解释:(1)朝上看时,视线与水平面夹角为仰角;朝下看时,视线与水平面夹角为俯角. (2)从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角.(3)坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率.道路坡度100%所表示的可以这样理解:坡面与水平面的夹角为45度.45度几乎跟墙壁一样的感觉了. (4)科学家为了精确地表明各地在地球上的位置,给地球表面假设了一个坐标系,这就是经纬度线.2.应用解三角形知识解决实际问题的解题步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案. 四.数学运用 1.例题:例1.如图1-3-1,为了测量河对岸两点,A B 之间的距离,在河岸这边取点,C D ,测得85ADC ∠=,60BDC ∠=,47ACD ∠=,72BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离(精确到1m ).解:在ADC ∆中,85ADC ∠=,47ACD ∠=,则48DAC ∠=.又100DC =,由正弦定理,得()sin 100sin 85134.05sin sin 48DC ADC AC m DAC ∠==≈∠.在BDC ∆中,60BDC ∠=,72BCD ∠=, 则48DBC ∠=.又100DC =, 由正弦定理,得()sin 100sin 60116.54sin sin 48DC BDC BC m DBC ∠==≈∠.在ABC ∆中, 由余弦定理,得3233.95≈, 所以 ()57AB m ≈答,A B 两点之间的距离约为57m .本例中AB 看成ABC ∆或ABD ∆的一边,为此需求出AC ,BC 或AD ,BD ,所以可考察ADC ∆和BDC ∆,根据已知条件和正弦定理来求AC ,BC ,再由余弦定理求AB .引申:如果A ,B 两点在河的两岸(不可到达),试设计一种测量A ,B 两点间距离的方法.可见习题1.3 探究拓展 第8题.例2.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min ). 解:设舰艇收到信号后x h 在B 处靠拢渔轮,则21AB x =,9BC x =,又10AC =,()45180105120ACB ∠=+-=.由余弦定理,得2222cos AB AC BC AC BC ACB =+-⋅∠,即()()222211092109cos 120x x x =+-⨯⨯∠.化简,得2369100x x --=,解得()()240min 3x h ==(负值舍去).由正弦定理,得图1-3-1图1-3-2sin 9sin12033sin 2114BC ACB x BAC AB x ∠∠===, 所以21.8BAC ∠≈,方位角为4521.866.8+=.答 舰艇应沿着方向角66.8的方向航行,经过40min 就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A 到B 与渔轮从C 到B 的时间相同,所以根据余弦定理可求出该时间,从而求出AB 和BC ;再根据正弦定理求出BAC ∠. 例3.如图,某海岛上一观察哨A 在上午11时测得一轮船在海岛北偏东3π的C 处,12时20分测得轮船在海岛北偏西3π的B 处,12时40分轮船到达海岛正西方5km 的E 港口.如果轮船始终匀速前进,求船速. 解:设ABE θ∠=,船的速度为/km h υ,则43BC υ=,13BE υ=. 在ABE ∆中,153sin sin 30υθ=,15sin 2θυ∴=. 在ABC ∆中,()43sin120sin 180AC υθ=-, 4415sin 2033233322AC υθυυ⋅⋅∴===. 在ACE ∆中,22520202525cos150333υ⎛⎫⎛⎫⎛⎫=+-⨯⨯⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 22540077525100933υ=++=,293υ∴=, ∴船的速度93/km h υ=. 2.练习:书上P20 练习1,3,4题.五.回顾小结:1.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.2.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六.课外作业: 书上P21页习题1.3 第2,3,4题.§1.3 正弦定理、余弦定理的应用(2)教学目标(1)能熟练应用正弦定理、余弦定理解决三角形等一些几何中的问题和物理问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦、余弦定理及相关的三角公式解决这些问题;(3)通过复习、小结,使学生牢固掌握两个定理,应用自如.教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题。

#高中数学必修五:1.1.2-1《余弦定理》(人教A版必修5)

#高中数学必修五:1.1.2-1《余弦定理》(人教A版必修5)

∠B=120o,求 AC
A
B
120°
解:由余弦定理得
A 2 C A 2 B B 2 C 2 A B B cC B os C
3222232co1s2o0 19
AC 19
答:岛屿A与岛屿C的距离为 19 km.
例1、在△ABC中,已知a= 6 ,b=2,c= 3 ,1
解三角形。
cosA<0,A为钝角,△ABC为钝角三角形。 练习2:在锐角△ABC中,边长a=1,b=2,
求边长c的取值范围。
解:∵coCsa2b2c2 0
a2c2b2
coBs
0
2bc
2ac
3c 5

余弦定理:
推论:
a2b2c22bcco As
cos
b2 A
c2 a2 2bc
b2a2c22acco BscosBc2 a2 b2
例2、已知△ABC的三边为 7 、2、1,
求它的最大内角。
解:设三角形的三边分别为a= 7 ,b=2,c=1
则最大内角为∠A
由余弦定理得coAs b2 c2 a2
2bc
22 12
2
7
221
120
练习1:在△ABC中,已知a=12,b=8,c=6, 判断△ABC的形状。
a2b2c2

C a B ,C b A ,A c B
由向量减法的三角形法则得
c ab
c 2 cc (a b )(a b )

aa 2a b b2b22a ab bcoCs
a2b22ac bo C s
c2a2 b 22 acbo Cs
探 究: 若△ABC为任意三角形,已知角C,

1.1.2余弦定理课件人教新课标

1.1.2余弦定理课件人教新课标
岛C 屿C
用正弦定理能否直接求出 AC?
•1.1.2 余弦定理
分析转化: 实际问题数学化
一般化:
A
已知三角形两边分别为
a和b,这两边的夹角为C,角 C满足什么条件时较易求出 第三边c?
勾股定理
b
c
特殊化
c2 a2 b2
C a B 你能用向量证明勾股定理吗?
A 特殊化 c2 a2 b2
你能用向量证明勾股定理吗?
【解析】因为(a+b+c)(a-b+c)=ac,
所以a2+c2-b2=-ac.
由余弦定理,得cos B=a2+c2-b2 =-1,
2ac
2
所以B=120°.
全优第7页能力提升
1.在△ABC中,已知a=5,b=3,角C的余弦值是方 程5x2+7x-6=0的根,求第三边c的长.
【解析】 5x2+7x-6=0可化为(5x-3)(x+2)=0.
是____2_π_. 3
【解析】∵a2+ab+b2-c2=0,即a2+b2-c2=-ab,
∴cos C=a2+b2-c2=-ab=-1,
2ab
2ab 2
∵C为三角形的内角, ∴C=2π. 3
全优第7页基础夯实
5.(2013年全国大纲节选)设△ABC的内角A,B,C的 对边分别为a,b,c,(a+b+c)(a-b+c)=ac.求角B.
b
c
2
2
2
即证AB AC CB ,
A
Ca
B ∵ AB AC CB
c= ?
8
2
2
Hale Waihona Puke 2AB AC 2ACCB CB
800
c5
B
2
2
2

1.1.2余弦定理

1.1.2余弦定理

2.社会主义本质的关实于践正意确义处。理社人会民主内义2.社部本科会矛质学主盾理的义的论1本本问的.邓质质题提小是的》出平创科讲,提新学话为出,内中我“创涵提们社邓新。出寻始会小的邓(找终主平关小1一代义)坚键平种表的我2持在对能.1中本国把科人社9够国质社5发学才会从4先,会展社年,主更进是主作会,人义深生解义为主毛才本层产放制执义在的质次1力生度政理《成所.认社1的产还兴论论长作.识会 发发力刚国和十靠的社主 展展,刚的实大教概会义 才要发建第践关坚育括主本 是求展立一的系2持。,义质 硬、,生,要基》以人一,理 道发大产还务本重发才方从论 理展力力没是成要展资面而把 ,才促,有由果讲社的源强为我 把是进消完中,话会办是调中四们 发(硬先灭全国抓中主法第必国、对 展2道进剥建共住提三义解一)须的科社 生理生削立产“出、经决资采解社学会 产,产,党什(代济前源取放会技主 力是力消还的么1表基进。从和主术义 作)对的除不执是中础科低发义是1的 为吧社3发两完政社9国基的学级展.建第发认 社二国5会展极全地会先本问技到6生设一展识 会、内主,年分巩位主进建题术高产在生才提 主发外义是底化固所义生立,实级力改产是高 义1展一时中我,的决邓产的是力9,革力硬到 建是切间5国最思定怎小力同实和国另3开道了 设党积经共对终想年的样平的时行国家一放理一 的执极验产农达。1,建一发,改民资方中2,个 根政因教党业到(是设月再展我革教本面探是新 本兴素训站、共2对社,强要国开育主指索)适的 任国都的在手一同执会毛调求的放水义出出第创应科 务在的调深时工、富1政主泽,政以平的4了一三造.时学 ,社第动刻坚代.业发裕规义东中一治来,过2解条节性代水 符会一起总持前.和展。律”关社 国个领我始度放发、地主平 合阶要来结社列资才”认这于会 社公域们终形和展社提题。 马级务为。会,本是1识个总主 会有也党是式发更会9出变社 克二关中主保硬的根8路义 主制发的衡。展快主了化会 思6、系国义持道3深本线基 义占生一年量所生、义社.的主社发解用工现理化问的本 基主了条,综谓产人的会需义会生决和业金商,题1完制 本体重主邓合国力民根主要本 基.主变事所平化向业1也,整度 制,大要小国家的享本9义。质 本义化业有方建的是深5的度一变经平力资手受社任理 原6本的服问法设根社对刻表确 的个化验年提和本段到会 1务论 理第质同务题进与本会一党揭.述立 确共,。出社主社和社主基的 ,二理时的行社体主、实示:, 立同确苏“会义会目会3义本提 是节论,基关改会现义社现了.从为 ,富立共社文,社主的主一改矛出 巩、的我本键造主和改会其社中当 使裕了二会明就会义。义、造盾, 固对重国方是。义根造之所会华代 占,中十主程是主基建中的和为 和第社要针这改本基一承主人中 世这国大义度在义本设国基两进 发一会意。靠不造要本本担义民国 界是共以财的国基制内成特本类一 展节主义的(自仅同求完质的本共一 人我产后富重家本度涵果色完矛步 社、义主2己保时。成理历质和切 口们党毛属要直)制的包最伴社成盾推 会中本要的证并,论史,国发 四必领泽于标接正度确括大随会,的进 主国质矛发了举标第的这成展 分须导东人志控确的立(,着主是学改 义特理盾展2社。志五提需是立进 之坚的提民。制处确是1.能社义我说采革 制色论也。会实着章)出要对,步 一持人出,和理立中够会建国,取开 度社的发的践中把。马到奠 的民要社支经,国社充经设强积放 的会提生稳证国解克社定 东民“会配济是历会分济道调极和 必主出了定明历放思会了 方主以下建4广史主体制路要引社 然义变,.史和主主把制 大专苏义的设大上义现度初严导会 要二建化而党上发义义对度 国政为的资和劳最的出和步经格、主 求设。且坚长展的改企基 进党的鉴致本社动深本对社探济区逐义 。确道人极持达生重造业础 入在根社”富主会人刻质资会索结分步现立路民大社数产大基的。 了过本会,是义发民最和本经的构过代社的对的会千力逐发本改社渡原主探全经展真伟根主济理发正渡化会初于促主年概步展完造会时则义索民济中正大本义结论生确的建新主步经进义的括实,成和主期。基自共的成任优构成了处方设中义探济了改阶为现对,对义总本己同国一为社务越的果根理式提国基索文社造级国于这人制 社路政的致家系国会性根本两。供的本化会与剥家建是的度 会线治道富资列家变的一本变类中了成制迅主社削的设一改的 ,第制路。本重的革道、变化不国强立度速义会制社中个造建 这三主度。社大主,路社化,同这大,的发事主度的会国过结立 是节要。会义关人也,1会社性场的标重展业义的本主特.渡合极 世、内人主有系解和是奠主我会质巨思志大的的工结(质义色时起大 界社容民义初。决社2定义国主的大想着意需发业束30。工社期来地 社(会被民原级了会)世了基社义矛而武我义要展化,(业会。,提 会2主概则和3在生把纪理本会经盾深器国同),同实2化主党把高 主对义括专,高一产资中)论制的济,刻。新经遵改总时现新是义在对了 义手制为政第级个资本国强基度阶成在特的通民济循革之并了民党具这资工 运二七度“实一形以料主又调础的级分新别社过主文自4过,举由主在有个本人 动、届 业在一质是式农的.(义一消,初关已民是它会(没主化愿于和的新主过重过主阶 史新社二 的中化上发之民主1工次灭开步系占主要是变4收义不互集平方民()义渡大渡义级 上民会中 社国三已展)分为人商划剥阔确也绝主正中革官能利中改针主3用社时的时工和 又主全 会的改成生坚。主)业时削了立发对义确国,僚命满、的造,主和会期理期商广 一主义会确”为产持初题正者代,广2生优革处革不资阶足典计解对义平的论.的业大 个义改提立。无,积级资的确改的消阔了势命理命仅√本段人型划决于向赎五总和总搞劳 历革造出 改“产第极形本、分造历除前根,理人的没中而民示体了在社3买种路实路糟动 史命的使 造一阶二领式主落(.析成史两景本社论民具有国形基需党范制诸深会的经线践线成人 性理历中 ,化级是导的义后1农为巨极。√的会内体对革成本要的和如刻主)方济的意和为民 的论史国 党”专共、工的村自变分邓中主指部实生命的结建国初实的义积法成主义总自的 伟是经“ 和即政同稳家商半的食。化小国

高三数学余弦定理5

高三数学余弦定理5
2 2 2
c2 a2 b2 cos B 2ac
a2 b2 c2 cosC 2ab
应用: 1、已知两条边和一个夹角,求第三条边。
2、已知三条边,求三个角。判断三角形的形状。
四类解三角形问题: (1)已知两角和任意一边,求其他两边和一角; (2)已知两边和其中一边的对角,求其他的边 和角。 (3)已知两边和它们的夹角,求第三边和其他 两个角; (4)已知三边,求三个角。
必做题:等腰三角形的底边长为a,腰长 为2a,求腰上的中线长。 选做题:已知一钝角三角形的边长是三个连 续自然数,求该三角形的三边长。
(1)若三角形的三个角的比是1:2:3,最 大的边是20,则最小的边是_____.
(2)若A,B,C是⊿ABC的三个内角,则 sinA+sinB____sinC.
2 2 2 a b c 2bc cos A 即:
证明:在三角形ABC中,AB、BC、CA的长分别为c,a,b.
AB AC CB AB AB ( AC CB ) ( AC CB ) AC 2 AC CB CB
2 2 2 2
AC 2 AC CB cos(180 C ) CB
13
猜想:AB² =AC² +BC² -2AC×BC×cosC 对任意三角形是否成立?
研究:在三角形ABC中,AB=c,BC=a,CA=b, ∵ BC AC AB
BC
2
( AC AB ) 2
2 2
BC AC AB 2 AC AB
2
| AC |2 | AB |2 2 | AC | | AB | cos A
0
b 2 2ab cosC a 2 即c 2 a 2 b 2 2ab cosC

【优化方案】2012高中数学 第1章1.1.2第一课时余弦定理课件 新人教B版必修5

【优化方案】2012高中数学 第1章1.1.2第一课时余弦定理课件 新人教B版必修5

【解】 在△AOB 中,由余弦定理得 |AB|2=|OA|2+|OB|2-2·|OA|·|OB|·cos 60° =32+12-2×3×1×cos 60°=7. × × × = ∴|AB|= 7 km. = 即起初两人相距 7 km. (2)设甲、乙两人 t 小时后的位置分别是 P、Q, 设甲、 设甲 、 , 则|AP|=4t,|BQ|=4t. = , =
余弦定理的实际应用
例4 如图,有两条相交在 °的直线 ′与 如图,有两条相交在60°的直线xx′
yy′,交点是O,甲、乙分别在 、Oy上A、 ′ 交点是 , 乙分别在Ox、 上 、 B处,起初甲离O点3 km,乙离 点1 km,后 处 起初甲离 点 ,乙离O点 , 来两人同时用每小时4 km的速度,甲沿 ′的 的速度, 来两人同时用每小时 的速度 甲沿xx′ 方向,乙沿 ′ 的方向步行 的方向步行. 方向,乙沿y′y的方向步行.
【 解 】 将 a= 1, b= 2 代入 a2 = b2 + c2 - = , = 2bccosA, , 整理得 c2-4ccosA+3=0, + = , 的方程有实数解, 因为关于 c 的方程有实数解, 所以 ∆=16cos2A-12≥0, = - ≥ , 3 3 解得 cosA≥ ,或 cosA≤- . ≥ ≤ 2 2 3 为锐角, 但由于 a<b,所以 A 为锐角,只有 cosA≥ , < , ≥ 2 π 的取值范围是(0, . 故 A 的取值范围是 , ]. 6
例3 在△ABC中,边a=1,b=2,求A的取值 中 = , = , 的取值
范围. 范围. 【分析】 分析】 根据题意可联想到运用余弦定理, 根据题意可联想到运用余弦定理,
将已知条件代入余弦定理得到关于第三边的一 元二次方程,令其判别式不小于 即可求解 即可求解. 元二次方程,令其判别式不小于0即可求解.

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5

∴A=60°,C=180°-(A+B)=75°.
探究 2 已知三边(三边关系)解三角形 例 2 (1)在△ABC 中,若 a=7,b=4 3,c= 13,则 △ABC 的最小角为( )
πππ π A.3 B.6 C.4 D.12 (2)在△ABC 中,角 A,B,C 的对边分别为 a,b,c, 已知 a-b=4,a+c=2b,且最大角为 120°,求此三角形的 最大边长. 答案 (2)见解析
2.做一做
(1)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c, 5π
若 a=1,b= 7,c= 3,则 B=____6____. (2) 已知 △ABC 的 三边 分 别为 2,3,4 , 则此 三 角形是
___钝__角___三角形.
π (3)在△ABC 中,若 a2+b2-c2=ab,则角 C 的大小为 ___3_____.
解析 (1)因为 c<b<a,所以最小角为角 C. 所以 cosC=a2+2ba2b-c2=429×+74×8-4 133= 23, 所以 C=π6,故选 B.
(2)已知 a-b=4,且 a>b,且 a=b+4,又 a+c=2b, 则 b+4+c=2b,所以 b=c+4,则 b>c,从而 a>b>c,所以 a 为最大边,A=120°,b=a-4,c=a-8.
解 利用边的关系判断, 由正弦定理,得sinC=c,
sinB b 由 2cosAsinB=sinC,得 cosA=2ssininCB=2cb, 又 cosA=b2+2cb2c-a2,∴2cb=b2+2cb2c-a2,即 a=b.
又(a+b+c)(a+b-c)=3ab,∴(a+b)2-c2=3ab, ∴b=c, 综上 a=b=c,∴△ABC 为等边三角形.

人教版数学(理)必修五(普通班)同步练习:1.1.2余弦定理(1)(含解析)

人教版数学(理)必修五(普通班)同步练习:1.1.2余弦定理(1)(含解析)

1.1.2余弦定理(一)一、选择题1.在△ABC 中,已知13,34,8===c b a ,则△ABC 的最小角为( )A .3πB .4π C.4π D.12π2.在△ABC 中,如果bc a c b c b a 3))((=-+++,则角A等于( )A.030 B.060 C.0120 D.01503.在△ABC 中,根据下列条件解三角形,则其中有两个解的是( ) A.0075,45,10===C A b B.080,5,7===A b aC.060,48,60===C b a D.045,16,14===A b a 4在△ABC 中,已知)(2222444b a c c b a +=++则角C=( )A.030 B.060 C.0013545或 D.01205.某人朝正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好3km ,那么x 的值为( ) A. 3 B. 23 C. 23或3 D. 36.在△ABC 中,()()()6:5:4::=+++b a a c c b ,则△ABC 的最大内角的度数是( )A .90° B.120° C .135° D.150°二、填空题7.已知锐角三角形的边长为1、3、a ,则a 的取值范围是________8.在△ABC 中,三边的边长为连续自然数,且最大角是钝角,这个三角形三边的长分别为_______三、解答题9.在△ABC 中,已知030,35,5===A c b ,求C B a 、、及面积Sa、的长. 10.在△ABC中,已知A>B>C,且A=2C, 8b,求ca=c,4=+1.1.2余弦定理(一) 一、选择题1.B2.B3.D4.C5.C6.B二、填空题7.1022<a< 8. 32三、解答题 9. 解 由余弦定理,知A bc c b a cos 2222-+=2530sin 3552)35(5022=⨯⨯-+=∴5=a 又∵b a =∴030==A B∴00120180=--=B A C432530sin )35(521sin 210=⨯⨯==A bc S10. 解:由正弦定理,得C c A a sin sin = ∵A=2C ∴Cc C a sin 2sin = ∴C c a sin 2= 又8=+c a ∴ c c cocC 28-= ① 由余弦定理,得 C C c Cab b a c 222222cos 1616cos 4cos 2-+=-+= ②① 入②,得 )(44524516舍或⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧==a c a c ∴516524==c a ,。

天津市塘沽区紫云中学2014年高中数学 1.1.2 余弦定理课件(一)新人教A版必修5

天津市塘沽区紫云中学2014年高中数学 1.1.2 余弦定理课件(一)新人教A版必修5

=a· a+b· b-2a· b
=a2+b2-2|a||b|cos C.
所以 c2=a2+b2-2abcos C.
同理可以证明:a2=b2+c2-2bccos A, b2=c2+a2-2cacos B.
研一研· 问题探究、课堂更高效
1.1.2(一)
问题探究二 问题
利用坐标法证明余弦定理
如图,以 A 为原点,边 AB 所在直线为 x 轴建立直角坐
2
本 课 栏 目 开 关
设中线长为 x, 由余弦定理知: x 2 =4 +9 -2×4×9×3=49, 所以 x=7.
2 2
AC AC 2 2 = 2 +AB -2·2 · ABcos
A
所以 AC 边上的中线长为 7.
1.1.2(一)
1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.判断三角形的形状,当所给的条件是边角混合关系时,基 本解题思想: 用正弦定理或余弦定理将所给条件统一为角 之间的关系或边之间的关系.若统一为角之间的关系,再 利用三角恒等变形化简找到角之间的关系; 若统一为边之 间的关系,再利用代数方法进行恒等变形、化简,找到边 之间的关系.
∴a2-b2=± c2,即 a2=b2+c2 或 b2=a2+c2. 根据勾股定理知△ABC 是直角三角形.
本 课 栏 目 开 关
练一练· 当堂检测、目标达成落实处
1.1.2(一)
本 课 栏 目 开 关
1.在△ABC 中,已知 a=1,b=2,C=60° ,则 c 等于( A ) A. 3 B. 3 C. 5 D.5
解 由题意:a+b=5,ab=2.
由余弦定理得 c2=a2+b2-2abcos C=a2+b2-ab=(a+b)2- 3ab=52-3×2=19.∴c= 19.

高中数学《1.1.2 余弦定理》教案 新人教A版必修5

高中数学《1.1.2 余弦定理》教案 新人教A版必修5

课题:1.1.2余弦定理
高二数学教·学案
【学习目标】
1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。

2.利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题
【学习重点】余弦定理的发现和证明过程及其基本应用;
【学习难点】勾股定理在余弦定理的发现和证明过程中的作用。

【授课类型】新授课
【教具】课件、电子白板
高二数学教·学案
课后反思:。

1.1.2余弦定理

1.1.2余弦定理
B,C 的对边),判断△ABC 的形状.
解 法一 在△ABC 中,由 cos2A2=b+2cc, 得1+c2os A=b+2cc,∴cos A=bc. 根据余弦定理,得b2+2cb2c-a2=bc. ∴b2+c2-a2=2b2,即 a2+b2=c2.
∴△ABC 是直角三角形.
课前预习
课堂互动
课堂反馈
解析 ∵c2=a2+b2-2abcos C =16+36-2×4×6×-12 =76, ∴c= 76=2 19. 答案 D
课前预习
课堂互动
课堂反馈
2.在△ABC中,若a2-c2+b2=ab,则cos C=________.
解析 ∵a2-c2+b2=ab, ∴c2=a2+b2-ab. 又∵c2=a2+b2-2abcos C, ∴2cos C=1. ∴cos C=12.
又由 A∈(0°,180°),得 A=60°,故选 C.
答案 C
课前预习
课堂互动
课堂反馈
2.在△ABC 中,若 AB= 13,BC=3,∠C=120°,则 AC=( )
A.1
B.2
C.3
D.4
解析 在△ABC 中,若 AB= 13,BC=3,∠C=120°, AB2=BC2+AC2-2AC·BCcos C, 可得:13=9+AC2+3AC, 解得 AC=1 或 AC=-4(舍去).故选 A.
课前预习
课堂互动
课堂反馈
【迁移 2】 若三角形三边长之比是 1∶ 3∶2,则其所对角之比
是( A )
A.1∶2∶3
B.1∶ 3∶2
C.1∶ 2∶ 3
D. 2∶ 3∶2
解析 设三角形三边长分别为 m, 3m,2m(m>0),最大角为 A,
则 cos A=m2+( 32mm)· 32-m (2m)2=0,

人教版高中数学课件-高中数学必修五课件:1.1.2-2《余弦定理》(人教A版必修5)

人教版高中数学课件-高中数学必修五课件:1.1.2-2《余弦定理》(人教A版必修5)
[分析] 本题主要考查了余弦定理及大边对 大角等平面几何性质,要求出最大内角的 正弦值,须先确定哪条边最大(同时表达出 边a、b、c的长),然后应用余弦定理先求 出余弦值,再求正弦值.
[解] 设 b+c=4k,c+a=5k,a+b=6k,其中 k>0.易解得
a=72k,b=52k,c=32k,
3.在△ABC中,已知b=1,c=3,A= 60°,则a=________.
4.在△ABC中,若(a+b)2=c2+ab,则角 C等于________.
解析:∵(a+b)2=c2+ab,∴c2=a2+b2+ ab.
又c2=a2+b2-2abcosC.∴a2+b2+ab=a2 +b2-2abcosC.
由正弦定理sianA=sincC得
sinC=csianA=5×7
3 2 =5143,
∴最大角 A 为 120°,sinC=5143.
[例3] 在△ABC中,若b2sin2C+c2sin2B= 2bccosBcosC,试判断三角形的形状.
[分析] 由题目可获取以下主要信息:
① 边 角 之 间 的 关 系 : b2sin2C + c2sin2B = 2bccosBcosC;
利用余弦定理可以解决以下两类解斜三角 形的问题: 各角
(1)已知三边,求
第;三边和其他两个角
(2)已知两边和它们的夹角,求 .
1.在△ABC中,AB=5,BC=6,AC=8, 则△ABC的形状是
( )
A.锐角三角形 形
B.直角三角
C.钝角三角形
D.非钝角三角形
解 析 : 因 为 AB2 + BC2 - AC2 = 52 + 62 - 82<0,
[分析] 由条件知C为边a、b的夹角,故应 由余弦定理来求c的值.

1.1.2余弦定理-人教A版高中数学必修五课件

1.1.2余弦定理-人教A版高中数学必修五课件

试一试
若三角形的三边为7,8,3,试判断此三角形的形
状.
钝角三角形
四.小结
四类解三角形问题:
(1)已知两角和任意一边,求其他两边和一角; (2)已知两边和其中一边的对角,求其他的边和 角。 (3)已知两边和它们的夹角,求第三边和其他两 个角; (4)已知三边,求三个角。
五、题型探究
题型一 余弦定理的简单应用
解:由余弦定理知,有 cos B a 2 c 2 b2 , 2ac
代入c a cos B, 得c a a 2 c 2 b2 , b2 c 2 a 2 2ac
△ABC是以A为直角的直角三角形,sin C c a
又 b a sin C, b a c c. a
△ ABC也是等腰三角形
又 2cos Asin B sin C,且sin B 0 cos A sin C c . 2sin B 2b
由余弦定理,有 cos A b2 c 2 a 2 , 2bc
c b2 c 2 a 2 ,即c 2 b2 c 2 a 2 , a b
2b
2bc
又 (a b c)(a b c) 3ab,且a b
例3、在△ABC中,a2>b2+c2,那么A是( A )
A、钝角
B、直角
C、锐角
D、不能确定
结论:一般地,判断△ABC是锐角,直角还是钝角
三角形,可用如下方法.
设a是最长边,则由 cos
A
b2
c2
a2
可得
2bc
(1)A为直角⇔a²=b²+c²
(2)A为锐角⇔a²<b²+c²
(3)A为钝角⇔a²>b²+c²
又 2cos Asin B sin C,

第一部分 第一章 1.1 1.1.2 余弦定理

第一部分  第一章  1.1  1.1.2 余弦定理

=4+9-2×2×3cos 60°=7. ∴| AB |= 7 . 问题4:由问题3的推导方法,能否用b,c,A表示a?
提示:能.
返回
1.余弦定理 文字表述 三角形中任何一边的平方 等于其他两边的平方的和 公式表达 cosA a2= b2+c2-2bc· cosB b2= a2+c2-2ac· cosC c2= a2+b2-2ab·
1.1 第 一 章 解 三 角 形 正 弦 定 理 和 余 弦 定 理 1.1. 2
理解教材新知 考点一 把握热点考向 考点二 考点三
余 弦 定 理
应用创新演练
返回
返回
返回
返回
△ABC中,若AC=2,BC=3,C=60°.
问题1:这个三角形确定吗? 提示:确定. 问题2:能否直接利用正弦定理求得AB? 提示:不能.
返回
[精解详析]
(1)由余弦定理得
b2+c2-a2 2 22+ 6+ 22-2 32 1 cos A= 2bc = =2, 2×2 2× 6+ 2 a2+c2-b2 2 32+ 6+ 22-2 22 2 cos B= 2ac = =2, 2×2 3× 6+ 2 ∴A=60° ,B=45° , ∴C=180° -A-B=180° -60° -45° =75° .
返回
6+ 2 当 c= 2 时,由余弦定理得 6+ 2 2 b2+c2-a2 2+ 2 -3 1 cos A= 2bc = = . 6+ 2 2 2× 2× 2 ∵0° <A<180° ,∴A=60° .∴C=75° . 6- 2 当 c= 2 时,由余弦定理得
返回
6- 2 2 b2+c2-a2 2+ 2 -3 1 cos A= 2bc = =-2. 6- 2 2× 2× 2 ∵0° <A<180° ,∴A=120° ,C=15° . 6+ 2 6- 2 故 c= 2 ,A=60° ,C=75° c= 2 ,A=120° 或 , C=15° .

必修五1.1.2余弦定理(强烈推荐,公开课)

必修五1.1.2余弦定理(强烈推荐,公开课)
0
问:怎么样算AB的长度?
A
B
C
复习回顾:
1.正弦定理的内容 在一个三角形中,各边和它所对角的正弦的比相等。 a b c 即在ABC中, 2R sin A sin B sinC
2.用正弦定理解三角形需要已知哪些条件?
(1)已知三角形的两角和一边
(2)已知两边和其中一边的对角。
若已知三角形的三边,或者是两边及其 夹角,能否用正弦定理来解三角形呢?
练一练:会用才是硬道理
例1、在△ABC中,已知a =1 , c = 2 ,
B =150 ,求b. 变式1、已知△ABC的三边为 7 、2、1, 求它的最大内角.
变式2、在三角形ABC中,已知 a=7,b=10,c=6,判定三角形ABC的形状
b 2 a 2 c 2 B (90 ,180 )


思考:已知三角形三边长为a,b,c,怎样判断 △ABC是锐角三角形,直角三角形还是钝角三角 形?
归纳:设a是最长边,则 △ABC是直角三角形 <=> a2=b2+c2
△ABC是锐角三角形<=> a2<b2+c2
△ABC是钝角三角形<=> a2>b2+c2
13 例2 在△ABC中,已知a=7,b=8,cosC= , 14 求最大角的余弦值. 分析:求最大角的余弦值,最主要的是判断哪 个角是最大角.由大边对大角,已知两边可求 出第三边,找到最大角. 2 a2 b2 2abcosC c 解:
一、已知三角形的两边及夹角求解三角形
例1、在ABC中,已知b 3, c 2 3 , A 30 ,

求角B、C和边a的值
解:由余弦定理知, a b c 2bc cos A

高中数学必修五第一章《正弦定理和余弦定理》1.1.2 第1课时余弦定理及其直接应用

高中数学必修五第一章《正弦定理和余弦定理》1.1.2 第1课时余弦定理及其直接应用

1.1.2 余弦定理第1课时 余弦定理及其直接应用学习目标 1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法.2.会运用余弦定理解决两类基本的解三角形问题.知识点一 余弦定理思考1 根据勾股定理,在△ABC 中,C =90°,则c 2=a 2+b 2=a 2+b 2-2ab cos C .① 试验证①式对等边三角形还成立吗?你有什么猜想? 答案 当a =b =c 时,C =60°,a 2+b 2-2ab cos C =c 2+c 2-2c ·c cos 60°=c 2,即①式仍成立,据此猜想,对一般△ABC ,都有c 2=a 2+b 2-2ab cos C .思考2 在c 2=a 2+b 2-2ab cos C 中,ab cos C 能解释为哪两个向量的数量积?你能由此证明思考1的猜想吗? 答案 ab cos C =|CB →||CA→CB →,CA →=CB →·CA →.∴a 2+b 2-2ab cos C =CB →2+CA →2-2CB →·CA →=(CB →-CA →)2=AB →2=c 2. 猜想得证.梳理 余弦定理的公式表达及语言叙述特别提醒:余弦定理的特点(1)适用范围:余弦定理对任意的三角形都成立.(2)揭示的规律:余弦定理指的是三角形中的三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量. 知识点二 适宜用余弦定理解决的两类基本的解三角形问题思考1 观察知识点一梳理表格第一行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案 每个公式右边都涉及三个量,两边及其夹角.故如果已知三角形的两边及其夹角,可用余弦定理解三角形.思考2 观察知识点一梳理表格第三行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案 每个公式右边都涉及三个量,即三角形的三条边,故如果已知三角形的三边,也可用余弦定理解三角形.梳理 余弦定理适合解决的问题:(1)已知两边及其夹角,解三角形;(2)已知三边,解三角形.1.勾股定理是余弦定理的特例.(√)2.余弦定理每个公式中均涉及三角形的四个元素.(√)3.在△ABC 中,已知两边及夹角时,△ABC 不一定唯一.(×)类型一 余弦定理的证明例1 已知△ABC ,BC =a ,AC =b 和角C ,求c 的值. 考点 余弦定理及其变形应用 题点 余弦定理的理解解 如图,设CB →=a ,CA →=b ,AB →=c ,由AB →=CB →-CA →,知c =a -b , 则|c |2=c ·c =(a -b )·(a -b ) =a ·a +b ·b -2a ·b =a 2+b 2-2|a ||b |cos C . 所以c 2=a 2+b 2-2ab cos C , 即c =a 2+b 2-2ab cos C .反思与感悟 所谓证明,就是在新旧知识间架起一座桥梁.桥梁架在哪儿,要勘探地形,证明一个公式,要观察公式两边的结构特征,联系已经学过的知识,看有没有相似的地方. 跟踪训练1 例1涉及线段长度,能不能用解析几何的两点间距离公式来研究这个问题? 考点 余弦定理及其变形应用 题点 余弦定理的理解解 如图,以A 为原点,边AB 所在直线为x 轴建立直角坐标系,则A (0,0),B (c ,0), C (b cos A ,b sin A ),∴BC 2=b 2cos 2A -2bc cos A +c 2+b 2sin 2A , 即a 2=b 2+c 2-2bc cos A . 同理可证b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C . 类型二 用余弦定理解三角形 命题角度1 已知两边及其夹角例2 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,cos(A +B )=13,则c 等于( ) A.4 B.15 C.3D.17考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 D解析 由三角形内角和定理可知 cos C =-cos(A +B )=-13,又由余弦定理得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×⎝⎛⎭⎫-13=17, 所以c =17.反思与感悟 已知三角形两边及其夹角时,应先从余弦定理入手求出第三边,再利用正弦定理求其余的角.跟踪训练2 在△ABC 中,已知a =2,b =22,C =15°,求A . 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形解 由余弦定理,得c 2=a 2+b 2-2ab cos C =8-43, 所以c =6- 2.由正弦定理,得sin A =a sin C c =12,因为b >a ,所以B >A , 所以A 为锐角,所以A =30°. 命题角度2 已知三边例3 在△ABC 中,已知a =26,b =6+23,c =43,求A ,B ,C . 考点 用余弦定理解三角形 题点 已知三边解三解形解 根据余弦定理,cos A =b 2+c 2-a 22bc=(6+23)2+(43)2-(26)22×(6+23)×(43)=32. ∵A ∈(0,π),∴A =π6,cos C =a 2+b 2-c 22ab=(26)2+(6+23)2-(43)22×26×(6+23)=22, ∵C ∈(0,π),∴C =π4.∴B =π-A -C =π-π6-π4=7π12,∴A =π6,B =7π12,C =π4.反思与感悟 已知三边求三角,可利用余弦定理的变形cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =b 2+a 2-c 22ba 先求一个角,求其余角时,可用余弦定理也可用正弦定理.跟踪训练3 在△ABC 中,sin A ∶sin B ∶sin C =2∶4∶5,判断三角形的形状. 考点 用余弦定理解三角形 题点 已知三边解三角形解 因为a ∶b ∶c =sin A ∶sin B ∶sin C =2∶4∶5, 所以可令a =2k ,b =4k ,c =5k (k >0). c 最大,cos C =(2k )2+(4k )2-(5k )22×2k ×4k <0,所以C 为钝角,从而三角形为钝角三角形.1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-35,则三角形的第三边长为( )A.52B.213C.16D.4 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 B解析 设第三边长为x ,则x 2=52+32-2×5×3×⎝⎛⎭⎫-35=52,∴x =213. 2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12考点 用余弦定理解三角形 题点 已知三边解三角形 答案 B解析 ∵a >b >c ,∴C 为最小角且C 为锐角, 由余弦定理,得cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32. 又∵C 为锐角,∴C =π6.3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A.518 B.34 C.32 D.78 考点 用余弦定理解三角形 题点 已知三边解三角形 答案 D解析 设顶角为C ,周长为l ,因为l =5c ,所以a =b =2c , 由余弦定理,得cos C =a 2+b 2-c 22ab =4c 2+4c 2-c 22×2c ×2c =78.4.在△ABC 中,a =32,b =23,cos C =13,则c 2= .考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 30-4 6解析 c 2=a 2+b 2-2ab cos C =(32)2+(23)2-2×32×23×13=30-4 6.5.在△ABC 中,若b =1,c =3,C =2π3,则a = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案 1解析 ∵c 2=a 2+b 2-2ab cos C , ∴(3)2=a 2+12-2a ×1×cos 2π3,∴a 2+a -2=0,即(a +2)(a -1)=0.∴a =1或a =-2(舍去).∴a =1.1.利用余弦定理可以解决两类有关三角形的问题 (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角.2.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角. (2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角. (3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角.一、选择题1.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A.1 B. 2 C.2 D.4 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ca =2a 22a =a =2.2.在△ABC 中,已知B =120°,a =3,c =5,则b 等于( ) A.4 3 B.7 C.7 D.5 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 ∵b 2=a 2+c 2-2ac cos B =32+52-2×3×5×cos 120°=49,∴b =7. 3.边长为5,7,8的三角形的最大角与最小角的和是( ) A.90° B.120° C.135° D.150° 考点 用余弦定理解三角形 题点 已知三边解三角形答案 B解析 设中间角为θ,则θ为锐角,cos θ=52+82-722×5×8=12,θ=60°,180°-60°=120°为所求.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2, ∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ×2a=34.5.若△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A.19 B.14 C.-18 D.-19 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 D解析 设三角形的三边分别为a ,b ,c , 依题意得,a =5,b =6,c =7.∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=-ac ·cos B . 由余弦定理得b 2=a 2+c 2-2ac ·cos B ,∴-ac ·cos B =12(b 2-a 2-c 2)=12(62-52-72)=-19,∴AB →·BC →=-19.6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若a =4,b =5,c =6,则sin 2A sin C 等于( )A.1B.2C.12D.34考点 用余弦定理解三角形 题点 已知三边解三角形 答案 A解析 由余弦定理得cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin 2A sin C =2sin A cos A sin C =2a cos Ac=4cos A3=1.7.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,小区里有一条平行于AO 的小路CD .已知某人从点O 沿OD 走到点D 用了2 min ,从点D 沿DC 走到点C 用了3 min.若此人步行的速度为50 m/min ,则该扇形的半径为( ) A.50 m B.45 m C.507 m D.47 m 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 依题意得OD =100 m , CD =150 m , 连接OC ,易知∠ODC =180°-∠AOB =60°, 因此由余弦定理,得OC 2=OD 2+CD 2-2OD ×CD ×cos ∠ODC , 即OC 2=1002+1502-2×100×150×12,解得OC =507(m).8.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43B.8-4 3C.1D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 A解析 (a +b )2-c 2=a 2+b 2-c 2+2ab =4, 又c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ∴a 2+b 2-c 2=ab ,∴3ab =4,∴ab =43.二、填空题9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2<c 2,且sin C =32,则C = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案2π3解析 因为a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab <0,所以三角形是钝角三角形,且C >π2.又因为sin C =32,所以C =2π3. 10.在△ABC 中,A =60°,最大边长与最小边长是方程x 2-9x +8=0的两个实根,则边BC 的长为 .考点 余弦定理及其变形应用题点 余弦定理与一元二次方程结合问题 答案57解析 设内角B ,C 所对的边分别为b ,c .∵A =60°,∴可设最大边与最小边分别为b ,c .由条件可知b +c =9,bc =8,∴BC 2=b 2+c 2-2bc cos A =(b +c )2-2bc -2bc cos A =92-2×8-2×8×cos 60°=57,∴BC =57.11.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是 . 考点 余弦定理解三解形 题点 已知三边解三角形 答案3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC=22,∵C ∈⎝⎛⎭⎫0,π2,∴sin C =22.∴AD =AC ·sin C =3. 三、解答题12.在△ABC 中,已知A =120°,a =7,b +c =8,求b ,c . 考点 余弦定理及其变形应用 题点 余弦定理的变形应用解 由余弦定理,得a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ),所以49=64-2bc ⎝⎛⎭⎫1-12,即bc =15, 由⎩⎪⎨⎪⎧ b +c =8,bc =15,解得⎩⎪⎨⎪⎧ b =3,c =5或⎩⎪⎨⎪⎧ b =5,c =3. 13.在△ABC 中,a 2+c 2=b 2+2ac .(1)求B 的大小;(2)求2cos A +cos C 的最大值.考点 用余弦定理解三角形题点 余弦定理解三角形综合问题解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac ,由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22. 又0<B <π,所以B =π4. (2)A +C =π-B =π-π4=3π4,所以C =3π4-A,0<A <3π4. 所以2cos A +cos C =2cos A +cos ⎝⎛⎭⎫3π4-A=2cos A +cos3π4cos A +sin 3π4sin A =2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎫A +π4. ∵0<A <3π4,∴π4<A +π4<π, 故当A +π4=π2, 即A =π4时,2cos A +cos C 取得最大值1. 四、探究与拓展14.已知a ,b ,c 是△ABC 的三边长,若直线ax +by +c =0与圆x 2+y 2=1无公共点,则△ABC 的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定考点 判断三角形形状 题点 利用余弦定理判断三角形形状答案 B解析 ∵直线ax +by +c =0与圆x 2+y 2=1无公共点,∴圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2>1,即a 2+b 2-c 2<0,∴cos C =a 2+b 2-c 22ab <0, 又C ∈(0,π),∴C 为钝角.故△ABC 为钝角三角形.15.在△ABC 中,已知BC =7,AC =8,AB =9,则AC 边上的中线长为 . 考点 用余弦定理解三角形题点 已知三边解三角形答案 7解析 由条件知cos A =AB 2+AC 2-BC 22×AB ×AC =92+82-722×9×8=23, 设中线长为x ,由余弦定理,知x 2=⎝⎛⎭⎫AC 22+AB 2-2×AC 2×AB cos A =42+92-2×4×9×23=49, 所以x =7.所以AC 边上的中线长为7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.△ABC 的内角 A,B,C 的对边分别为 a,b,c.已知 a= 5,c=2,cos A=23,则 b=( ). A. 2 B. 3 C.2 D.3
4.在△ABC 中,a=3,b=4,c= 37,求最大角的度数.
5.在△ABC 中,已知 a∶b∶c=2∶ 6∶( 3+1),求△ABC 各角的度数.
2
同理,cos B 2 A 30, B 45, C 105 2
练习:
1.在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,若 a= 7,b=3,c=2,则 A=( ).
A.30°
B.45°
C.60°
D.90°
2.△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 a= 3,b=2,A=60°,则 c=( ). A.12 B.1 C. 3 D.2
6.在△ABC 中,若 sin A∶sin B∶sin C=7∶3∶5,则∠BAC 的大小为
.
课后作业
1.教材P8练习(本子) 2.教材P10习题1.1A组3、4B组2(本上)
a : b : c sin A : sin B : sin C
问题:
隧道工程设计,经常要测算山脚的长度, 工程技术人员先在地面上选一适当的位置A,量 出A到山脚B、C的距离,再利用经纬仪测出A对 山脚BC(即线段BC)的张角,最后通过计算求 出山脚的长度BC。
已知:AB、 AC、角A (两条边、一个夹角)
【方法指导】已知角 B 及其对边,使用余弦定理,获得边 c 的一元二次方程,解出 c 的值;再使用 余弦定理及三角形内角和公式计算剩余两角的大小.
法一:由余弦定理得 b2=c2+a2-2cacos B, 即 c2-9c+18=0,解得 c=3 或 c=6.
当 c=3 时,cos A=
=- ,
当 c=6 时,cos A=
2ab
应用:已知三条边求角度.
问题:隧道工程设计,经常要测算山脚的长度,工程
技术人员先在地面上选一适当的位置A,量出A到山
脚B、C的距离,再利用经纬仪测出A对山脚BC(即
线段BC的张角),最后通过计算求出山脚的长度BC。
已测的:AB=1千米,
AC=
3 2
千米
角A=60O
求山脚BC的长度.
解:BC2 | AB |2 | AC |2 2 | AB | AC | cos A
思考:若三角形ABC为锐(钝)角三角形时,
有类似的结论吗?
△ABC是锐角三角形 a 2 b2 c 2
△ABC是钝角三角形 a 2 b2 c 2
应用:判定三角形形状.
探究一 已知三角形三边解三角形
探究 1:已知三角形的三边解三角形
【例 1】在△ABC 中,AB=5,AC=3,BC=7,则∠BAC 的大小为( A ).
1.1.2 余弦定理(1)
知识回顾
A
正弦定理: a b c 2R
sin A sin B sinC
利用正弦定理,可以解决两类问题: B
C
①已知两角和任一边,求其它两边和一角.
②已知两边和其中一边的对角,求另一边的 对角(进而可求出其它的角和边).
变型: a 2Rsin A,b 2Rsin B,c 2Rsin CA.23πFra bibliotekB.56π
C.34π
D.π3
【解析】由余弦定理得 cos∠BAC=
2+A 2-B 2·
2=522+×352×-372=-12
且∠BAC∈(0,π), 故∠BAC=23π,选 A.
探究 2:已知三角形的两边及其中一边的对角(或两边的夹角)解三角形 【例 2】在△ABC 中,a=3 3,b=3,B=30°,解这个三角形.
当a 3时,a b 3, ABC为等腰三角形
A2 30,C2 120
(1) b 3,c 3 3,B 30;
(2) a 2, b 2 2,c 6 2
解 2由余弦定理,得 cos A b2 c2 a2
2bc
2
2
2 2 6 2 22 3
22 2 6 2
新课讲解
研究:在三角形ABC中,AB=c,BC=a,CA=b,
∵ BC AC AB
2
BC
(AC
AB) 2
2
2
2
BC AC AB 2AC AB
| AC |2 | AB |2 2 | AC | | AB | cosA
即: a 2 b2 c2 2bc cos A
余弦定理
三角形任一边的平方等于其他两边平方的 和减去这两边与它们夹角的余弦的积的两倍.
b
3
31 2
3
3 2
,C1
60, C1
120
当C1 60时,A1 90 a1 6
当C1 120时,A1 30 a2 3
解:(1)法2 由余弦定理,得 b2 a2 c2 2ac cos B
解得a 当a
6
或 a3 6时,由正弦定理,得 sin
A
a sin
B
=
6
1 2
1
b
3
A1 90, C1 60
a2 b2 c2 2bc cos A
b2 a2 c2 2ac cosB
c2 a2 b2 2ab cosC
应用:已知两边和一个夹角,求第三边.
由余弦定理变型得:
cos A b 2 c 2 a 2 2bc
a2 c2 b2 cos B
2ac cos C a 2 b 2 c 2
12 ( 3)2 21 3 1 7
2
22 4
BC 7 2
用余弦定理,可解决两类问题:
A
b
c
C
a
B
①已知两边和它们的夹角, 求 第三边和其它两个角;
②已知三边,求三个角.
思考:余弦定理的使用范围是什么?
若三角形ABC为直角三角形, 则余弦定理的表达式有怎样的变化?
△ABC是直角角三角形 a 2 b2 c 2
=,
∴A=60°,故 C=180°-60°-30°=90°.
法二:(正弦定理)
a b sin A 3
sin A sin B
2
a b, A B,
A 60或120
变式训练:已知在△ABC中
(1) b 3,c 3 3,B 30;
(2) a 2, b 2 2,c 6 2
解:(1)由正弦定理,得 sin C c sin B
相关文档
最新文档