回溯算法PPT课件
算法分析与设计回溯法ppt课件
问题求解的方法
硬性处理法
– 列出所有候选解,逐个检查是否为所需要的解 – 理论上,候选解数量有限,并且通过检查所有或部分
候选解能够得到所需解时,上述方法可行
– 实际中则很少使用,因为候选解的数量通常都非常大 (比如指数级,甚至是大数阶乘),即便采用最快的 计算机也只能解决规模较小的问题。
回溯或分枝限界法
这种以深度优先方式搜索问题的解的方法称为 回溯法
回溯法思想
第一步:为问题定义一个状态空间(state space)。这 个空间必须至少包含问题的一个解
第二步:组织状态空间以便它能被容易地搜索。典型 的组织方法是图或树
第三步:按深度优先的方法从开始结点进行搜索
– 开始结点是一个活结点(也是 E-结点:expansion node) – 如果能从当前的E-结点移动到一个新结点,那么这个新结点将
权衡:限界函数生成结点数和限界函数 本身所需的计算时间
效率分析
效率分析中应考虑的因素
– (1)—(3)与实例无关 – (4)与实例相关
有可能只生成O(n)个结点,有可能生成 几乎全部结点
最坏情况时间
– O(p(n)2n),p(n)为n的多项式 – O(q(n)n!),q(n)为n的多项式
Monte Carlo效率估计(1)
解空间
隐式约束描述了xi必须彼此相关的情况, 如0/1背包问题中的背包重量M
回溯法求解的经典问题(1) 8-皇后问题
在一个8*8棋盘上放置8个皇后,且使得每两个 之间都不能互相“攻击”,也就是使得每两个 都不能在同一行、同一列及同一条斜角线上。
8皇后问题的解可以表示为8-元组(x1,…,x8) , 其中其中xi是第i行皇后所在的列号。
回溯法求解的经典问题(2) 子集和数问题
回溯法_ppt课件
实 现 递 归
} }
if (Constraint(t) &&Bound(t) ) { if (Solution(t)) Output(x); else t ++; } else t --;
if (Constraint(t) &&Bound(t) ) { if (Solution(t)) Output(x); else t ++; } else t --; 分析:
算法设计与分析 >回溯法
5、回溯法解题步骤: 1).针对所给问题,定义问题的解空间 2).确定解空间结构. 3).以深度优先方式搜索解空间.
算法模式 Procedure BACKTRACK(n); {k:=l; repeat if TK (x1,x2,...xK-1 )中的值未取遍 then { xK:=TK (x1,x2,..., x K-1 )中未取过的一个值; if BK (x1, x2, ..., x K) then //状态结点(x1,...xk)被激活 if k=n then output(x1, x2, ..., xk) //输出度优先 e1se k:=k-l; //回溯 until k=0; end;{BACKTRACK}
if (Constraint(t)&&Bound(t) ) Backtrack(t + 1); if语句含义:Constraint(t)和Bound(t)表示当前扩展 节点处的约束函数和限界函数。 Constraint(t): 返回值为true时,在当前扩展节点处 x[1:t]的取值问题的约束条件,否则不满足问题的约束条 件,可剪去相应的子树 Bound(t): 返回的值为true时,在当前扩展节点处 x[1:t]的取值为时目标函数越界,还需由Backtrack(t+1) 对其相应的子树做进一步搜索。否则,当前扩展节点处 x[1:t]的取值是目标函数越界,可剪去相应的子树 for循环作用:搜索遍当前扩展的所有未搜索过的 子树。 递归出口:Backtrack(t)执行完毕,返回t-1层继续 执行,对还没有测试过的x[t-1]的值继续搜索。当t=1时, 若以测试完x[1]的所有可选值,外层调用就全部结束。
第5章回溯法PPT课件
二、回溯的一般描述
一旦某个j元组(x1,x2,…,xj)违反D中仅涉及 x1,x2,…,xj 的一个约束,就可以肯定,以(x1, x2,…,xj)为前缀的任何n元组
(x1,x2,…,xj,xj+1,…,xn)都不会是问题P 的解。
三、回溯的一般步骤
回溯法正是针对这类问题,利用这类问题的 上述性质而提出来的比枚举法效率更高的算 法。
由于这是第一次用计算机证明数学定理,所以哈肯 和阿佩尔的工作,不仅是解决了一个难题,而且从 根本上拓展了人们对“证明”的理解,引发了数学 家从数学及哲学方面对“证明”的思考。
实例—n皇后问题
在一个n×n的棋盘上放置n个国际象棋中 的皇后,要求所有的皇后之间都不形成攻 击。请你给出所有可能的排布方案数。
n
4
5
6
7
8
总数
2
10
4
40
92
n皇后问题
对于n皇后问题而言,我们很难找出很合适的方法 来快速的得到解,因此,我们只能采取最基本的枚 举法来求解。
但我们知道,在n×n的棋盘上放置n个棋子的所有
回溯算法(一)
什么是回溯
入口回溯
▪迷宫游戏
回溯
➢什么是回溯法
回溯
▪回溯法是一个既带
有系统性又带有跳跃
性的的搜索算法
回溯
▪回溯法是以深度优先的方式系统地搜索问题 出口 的解, 它适用于解一些组合数较大的问题。
回溯(Trackback)是什么?
为什么回溯?
怎样回溯?
What
Why
How
一、回溯的概念
解问题P的最朴素的方法就是枚举法,即对E 中的所有n元组逐一地检测其是否满足D的全 部约束,显然,其计算量是相当大的。
回溯PPT课件
➢教学要求
➢ 了解回溯算法的概念与回溯设计要领 ➢ 掌握应用回溯算法求解桥本分数式、素数环、
数码串珠以及情侣拍照等典型案例
➢本章重点
➢ 理解回溯法 “向前走,碰壁回头”的实现
5.1 回溯概述
1. 回溯的概念
(1) 回溯法(Backtracking method)有“通用解题法”之 美称,是一种比枚举“聪明”的效率更高的搜索技术。
void iterativeBacktrack () {
int t=1; while (t>0) {
if (f(n,t)<=g(n,t)) for (int i=f(n,t);i<=g(n,t);i++) { x[t]=h(i); if (constraint(t)&&bound(t)) { if (solution(t)) output(x); else t++;} }
宽度优先的问题状态生成法:在一个扩展结点变成死结 点之前,它一直是扩展结点
回溯法:为了避免生成那些不可能产生最佳解的问题状 态,要不断地利用限界函数(bounding function)来处 死那些实际上不可能产生所需解的活结点,以减少问题 的计算量。具有限界函数的深度优先生成法称为回溯法8
子集树与排列树
从解的角度理解,回溯法将问题的候选解按某种顺序进行枚举和 检验。当发现当前候选解不可能是解时,就选择下一个候选解。 在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回 溯。若当前候选解除了不满足问题规模要求外,满足所有其他要 求时,继续扩大当前候选解的规模,并继续试探。如果当前候选 解满足包括问题规模在内的所有要求时,该候选解就是问题的一 个解。
最大团问题-回溯法ppt课件
下图G中,子集{1,2}是G的大小为2的完全子图。这
个完全子图不是团,因为它被G的更大的完全子图{1,2,
5}包含。{1,2,5}是G的最大团。{1,4,5}和{2,3,5}
也是G的最大团。
1
2
3
4
5
01
问题描述
4
03 算法设计
无向图G的最大团问题可以看作是图G的顶点集V的子集选取问题。因此可 以用子集树表示问题的解空间。设当前扩展节点Z位于解空间树的第i层。在 进入左子树前,必须确认从顶点i到已入选的顶点集中每一个顶点都有边相连。 在进入右子树之前,必须确认还有足够多的可选择顶点使得算法有可能在右 子树中找到更大的团。
8
07 改进
•选择合适的搜索顺序,可以使得上界函数更有效的发挥作用。 例如在搜索之前可以将顶点按度从小到大排序。这在某种意义上 相当于给回溯法加入了启发性。 •定义Si={vi,vi+1,...,vn},依次求出Sn,Sn-1,...,S1的解。从 而得到一个更精确的上界函数,若cn+Si<=max则剪枝。同时注意 到:从Si+1到Si,如果找到一个更大的团,那么vi必然属于找到 的团,此时有Si=Si+1+1,否则Si=Si+1。因此只要max的值被更 新过,就可以确定已经找到最大值,不必再往下搜索了。
1
i=3 cn=2 bestn=0 2
i=4 tn=3
1
i=2 cn=0 bestn=3
2
2
i=3 cn=1 bestn=3
3
4
4
3
3
i=5 cn=2 bestn=0
4
4
回溯算法
刚才的方法为生成皇后的摆放方案再去判断是否符合 要求,效率比较低,我们能不能每摆放一个皇后就看 这个皇后摆放的位置对还是不对,这样可以节省很多 无效的搜索 procedure try(dep:longint); var i:longint; begin if dep>n then inc(total) else for i:=1 to n do begin a[dep]:=i; if pd(dep) then try(dep+1); end; end;
procedure search(dep:longint); var i:longint; begin if dep>n then print else for i:=1 to 4 do{每个城市有四种颜色} begin a[dep]:=i; if check(dep) then search(dep+1); end; end;
主要代码: procedure search(dep:longint); var i:longint; begin if dep>n then print else for i:=1 to n do begin a[dep]:=i; search(dep+1); end; end;
program pailie(input,output); var n:integer; a:array[1..20] of integer; procedure print; var i:integer; begin for i:=1 to n do write(a[i]); writeln; end;
代码实现: procedure try(dep:longint); var i:longint; begin if dep>n then print else for i:=1 to n do begin a[dep]:=i; try(dep+1); end; end;
计算机算法设计与分析第5章 回溯算法PPT课件
22.09.2020
15
5.1.1 问题的解空间
为了用回溯法求解一个具有n个输入的问题,一 般情况下,将其可能解表示为满足某个约束条 件的等长向量X=(x1, x2, …, xn),其中分量xi (1≤i≤n) 的取值范围是某个有限集合Si={ai1, ai2, …, airi}, 所有可能的解向量构成了问题的解空间。
22.09.2020
2
提纲
一、回溯法的算法框架 二、装载问题 三、n后问题 四、0-1背包问题 五、最大团问题 六、图的m着色问题 七、旅行售货员问题
22.09.2020
3
提纲
一、回溯法的算法框架 二、装载问题 三、n后问题 四、0-1背包问题 五、最大团问题 六、图的m着色问题 七、旅行售货员问题
17
2 旅行售货员问题
问题描述:某售货员 要到若干城市去推销 商品,一直各城市之 间的路程,他要选定 一条从驻地出发,经 过每个城市一遍,最 后回到住地的路线, 使总的路程最短。
(a) 二维搜索空间无解
(b) 三维搜索空间的解
错误的解空间将不能搜索到正确答案!
22.09.2020
13
5.1.1 问题的解空间
对于任何一个问题,可能解的表示方式和它相应的 解释隐含了解空间及其大小。
例如,对于有n个物品的0/1背包问题,其可能解的 表示方式可以有以下两种:
(1)可能解由一个不等长向量组成,当物品i(1≤i≤n)装入 背包时,解向量中包含分量i,否则,解向量中不包含分 量i,当n=3时,其解空间是:
计算机算法设计与分析
Design and Analysis of Computer Algorithms
算法设计与分析课件--回溯法-图的m着色问题
4
5
C
C
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
X3=3
D
9
5.6 图的m着色问题
GCP示例
1
A
AA
A
A X1=1
2
3
X1=1
X1=1 X1=1
B
B
B
B X2=2
4
5
X2=2
C
X2=2
C
C X3=3
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
7
5.6 图的m着色问题
GCP示例
1
AA
A
2
3
X1=1
X1=1
B
B
X2=2
4
5
C
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
8
5.6 图的m着色问题
GCP示例
1
AA
A
A
2
3
X1=1
X1=1 X1=1
B
B
B
X2=2 X2=2
A
X1=1
2
3
B
X2=2 X2=3
4
5
C
X3=3
G
X3=2
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
D
X4=1
E
X5=3
F
H
X4=1
回溯法ppt课件
可能解由一个等长向量(x1, x2, …, xn)组成, 其中
xi=1(1≤i≤n)表示物品i装入背包 xi=0(1≤i≤n)表示物品i没有装入背包
如:
当n=3时,其解空间是:
{ (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}
第5章 回溯法
学习要点
5.1 回溯法概述 5.2 回溯法的典型示例 5.3 回溯法的效率分析 本章小结
1
5.1 回溯法概述
5.1.1 问题的解空间 问题的解空间 两类典型的解空间
5.1.2 回溯法的基本思想 回溯法的基本思想 算法的框架 例:排列与组合 小结
15
排列树
分析
求赋权图G的具有最小权的Hamilton圈1
1解空间30:
2
2 34
64
5 10
3 42 4 2 3
3
4
20
4
34
23
2
当起点1固定时,上图有3!个周游路线(排列问题)
16
回溯法的基本思想
回溯法
回溯法是一种选优搜索法,按选优条件向前搜 索,以达到目标。
但当探索到某一步时,发现原先选择并不优或 达不到目标,就退回一步重新选择,这种走不 通就退回再走的技术为回溯法,而满足回溯条 件的某个状态的点称为“回溯点”。
若(x1, x2,… xi xi+1)满足约束条件, 则继续添加 xi+2 ;
若所有可能的xi+1 si+1均不满足约束条件,则去 掉xi , 回溯到(x1, x2,… xi-1), 添加尚未考虑过的xi;
第7讲-回溯法
– 显示约束:Si=(1,2,3,…4),1i4 – 隐示约束:没有两个xi(1i4)可以相同(在不同的
列上),且没有两个皇后在同一斜对角线上。
0
1
5
2
应用举例
a
b
c
f
d
e
应用回溯法求解3着色问题; 应用回溯法求解哈密顿回路问题。
两种形式的问题的解
问题的解是所搜索集合的子集,以达到某种优 化目标
问题的解是所搜索集合中元素的一个排列,以 达到某种约束要求
回溯法可以很方便地遍历一个集合的所有子集 或所有的排列
子集树
当问题是需要求n个元素的子集,以便达到某种优化
目标时,我们可以把这个解空间组织成一棵子集树。
若Si的大小为k,则有kn个子集。当n很大时,解空间 将非常巨大。
x1 第1层
S2 第2层
……
……
S1
S2 ……
……
第n层
Sn ……
子集树的回溯法伪码
Backtrack(i) 递归描述
1 if i > n then update(x)
2 else
7
×××× ×
××
1234 1
34
8
××
12
问题举例
子集和数问题:已知n+1个正整数: w1,w2,…,wn和M,要求找出wi的和数等于 M的所有子集。
– 解的表示1:用其和数为M的wi的下标来表示解向 量。则可以用k-元组(x1,x2,…,xk)来表示解,1kn。 不同的解可以是大小不同的元组。
3 for each a ∈Si do
回溯法 ppt课件
回溯法举例:
[旅行商问题] 在这个问题中 ,给出一个n 顶点网络(有向 或无向) ,要求找出一个包含所有n 个顶点的具有最小耗 费的环路 。任何一个包含网络中所有n 个顶点的环路被称 作一个旅行(t o u r )。在旅行商问题中 ,要设法找到一 条最小耗费的旅行。 [分析]图给出了一个四顶点网络 。在这个网络中 ,一些旅
Bound(t) : 返回的值为true时 , 在当前扩展节点处 x[1: t]的取值为时 目标函数越界 , 还需由Backtrack(t+1) 对其相应的子树做进一步搜索 。否则 , 当前扩展节点处 x[1: t]的取值是目标函数越界 ,可剪去相应的子树
for循环作用: 搜索遍当前扩展的所有未搜索过的 子树。
si+1均不满足约束条件,则去掉xi , 回溯到(x 1 , x 2 , … xi-1), 添加尚 未考虑过的xi , 如此反复进行,直到(x1 , x2 , … xk) k n满足所有的 约束条件或证明无解.
E= { (x1 , x2 , … xn), xi si , si为有限集 }称为问题的解空间.
5. 1 回溯法基本思想
穷举法技术建议我们先生成所有的候选解 , 然后找出那个 具有需要特性的元素
1 、 回溯法主要思想是每次只构造解的一个分量 ,然后按照 鲜明的方法来评估这个部分构造解 。如果一个部分构造解可以进一 步构造而不会违反问题的约束 , 我们就接受对下一个分量所作的第 一个合法选择 。如果无法对下一个分量进行合法的选择 , 就不对剩 下的任何分量再做任何选择了 。在这种情况下 ,该算法进行回溯 , 把部分构造解的最后一个分量替换为它的下一个选择。
算法模式 Procedure BACKTRACK (n); {k := l;
算法——回溯法
算法——回溯法回溯法回溯法有“通⽤的解题法”之称。
⽤它可以系统地搜索⼀个问题的所有解或任⼀解。
回溯法是⼀种即带有系统性⼜带有跳跃性的搜索算法。
它在问题的解空间树中,按深度优先策略,从根节点出发搜索解空间树。
算法搜索⾄解空间树的任⼀结点时,先判断该节点是否包含问题的解。
如果不包含,则跳过对以该节点为根的⼦树的搜索,逐层向其它祖先节点回溯。
否则,进⼊该⼦树,继续按照深度优先策略搜索。
回溯法求问题的所有解时,要回溯到根,且根节点的所有⼦树都已被搜索遍才结束。
回溯法求问题的⼀个解时,只要搜索到问题的⼀个解就可结束。
这种以深度优先⽅式系统搜索问题的算法称为回溯法,它是⽤于解组合数⼤的问题。
问题的解空间⽤回溯法解问题时,应明确定义问题的解空间。
问题的解空间⾄少包含问题的⼀个(最优)解。
例如对于有n种可选择物品的0-1背包问题,其解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有可能的0-1赋值。
例如n=3时,其解空间是{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}定义了问题的解空间后,还应该将解空间很好地组织起来,使得能⽤回溯法⽅便地搜索整个解空间。
通常将解空间组织成树或者图的形式。
例如,对于n=3时的0-1背包问题,可⽤⼀颗完全的⼆叉树表⽰其解空间,如下图。
解空间树的第i层到第i+1层边上的标号给出了变量的值。
从树根到叶⼦的任⼀路径表⽰解空间中的⼀个元素。
例如,从根节点到节点H的路径相当与解空间中的元素(1,1,1)。
回溯法的基本思想确定了解空间的组织结构后,回溯法从根节点出发,以深度优先搜索⽅式搜索整个解空间。
回溯法以这种⼯作⽅式递归地在解空间中搜索,直到找到所要求的解或解空间所有解都被遍历过为⽌。
回溯法搜索解空间树时,通常采⽤两种策略避免⽆效搜索,提⾼回溯法的搜索效率。
其⼀是⽤约束函数在当前节点(扩展节点)处剪去不满⾜约束的⼦树;其⼆是⽤限界函数剪去得不到最优解的⼦树。
第5章 回溯法ppt课件
2x3=2
x3=4 x3=2 x3=3
3
5
x4=4 x4=3
8 x4=4
10 13 15 x4=2 x4=3 x4=2
4
6
9
11 14 16
迷宫问题
演示
5.1 回溯法的算法框架
问题的解空间〔1)
1. 解向量:问题的解用向量表示
(x1, x2, …, xk) 模。 2. 约束条件
子树; 5. (2)限界函数:某个函数表达式或关系式。 6. 不真时,用于剪去得不到最优解的子树。 7. 回溯法:具有限界函数的深度优先搜索方法
回溯法的基本思想
1. 以深度优先方式搜索解空间。 2. 开始时,根结点为活结点,也是当前的扩展结点。 3. 对扩展结点,寻找儿子结点: 4. 如找到新结点,新结点成为活结点并成为扩展
子集树 void backtrack (int t){
if (t>n) output(x); else
for (int i=0;i<=1;i++) { x[t]=i; if (legal(t)) //若合法 backtrack(t+1);
} }
排列树 void backtrack (int t){
if (t>n) output(x); else
1装载问题2批处理作业调度3n后问题401背包问题5最大团问题6图的m着色问题7旅行售货员问题n皇后问题国际象棋中的皇后在横向直向和斜向都能走步和吃子问在nn格的棋盘上如何摆上n个皇后而使她们都不能相互吃掉
第5章 回溯法
上海大学计算机学院
学习要点与要求
• 掌握与理解回溯法的DFS搜索策略与方法
• (1〕掌握递归回溯
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
Backtrack(i+1)
7
xi ↔xj
16
剪枝函数
剪枝函数一般有两种:约束函数和限界函数 利用剪枝函数,剪除无效的分支,集中搜索最有用的分
支. 为了改进搜索,应用回溯法至少需要注意以下四点: ✓ 怎样选择约束函数. ✓ 怎样计算上界 (对最大化问题) ✓ 怎样计算下界 (对最小化问题) ✓ 怎样利用约束函数和限界函数来进行剪枝.
因此对扩展节点i进行剪枝.
.
L
18
通常, 极小值问题, 我们对扩展节点 i计算下界 B(i). 如果目前保存的最大目标函数值不比 B(i)大, 那么进 行剪枝,否则继续.
R i B(i)
从根节点R 到叶子 L 通过 i的任一决 策序列的目标函数值不能比B(i)小, 所以如果 B(i) ≥bestc, 那么它表明搜 索扩展节点 i 不会成功, 因此对扩展
回溯法列举出解空间中所有可能的情形来确保解的 正确性
5
假设我们已经确定部分解的集合 (x1,x2,…,xi) ,在此基 础上通过增加解元素 xi+1来扩展解,确定xi+1的值后, 我们要测试(x1,x2,…,xi+1)是否仍是可行解.
回溯算法的基本步骤如下 1. 定义问题的解空间. 这个空间必须包含一个问题的 最优解. 解的空间 如果Si 是 xi的范围, 那么 S1 × S2 × ... × Sn 是问题的 解空间
6
通常这个解空间是非常巨大的, 所以搜索一个目标解 的代价是很难想象的. 为了使回溯算法更有效率,我 们必须缩小搜索空间. 2.组织好解空间以便使搜索更容易 典型的组织方式是利用图或树的结构. 3.以深度优先方式搜索解空间,利用剪枝函数来避 免搜索进入不可能得到解的子空间.
7
解空间树(Solution Space Tree)
排列树
14
排列树(Permutation tree)
15
Program Template for Permutation tree
Backtrack(i)
1 if i>n then Update(x)
2 else
3 for j←i to n do
4
xi ↔xj
5
if C(i) and B(i) then
2
术语
一棵由节点构成的树. 有3个节点被用到
根节点 (开始节点) 内部节点 活动节点 扩展节点
死节点
叶子节点
回溯算法可以看作是为了找 某个特定的叶子节点而进行 系统搜索的一种方法
3
术语(Terminology)
在一棵树中,非叶子节点是其他一个或更多节点的父 节点 (它的子节点)
树中的每个节点(除了根节点) 都有一个父节点
节点i进行剪枝.
L
19
1.货箱装载问题
问题 给定n个货箱,货箱i 重为 wi. 船可以装载的货箱总重量 为 W. 货箱装载问题是在不使船翻的前提下装载尽可能多 的货箱.
解空间 假设解可以由向量 (x1,x2,…,xn)表示, xi∈{0,1}, xi =1 表示货箱 i 被装上船, xi =0表示货箱 i 不装上船.
20
货箱装载问题可以形式地描述如下:
n
max wi xi i 1
解空间树
有 2n 个叶子的子集树
在第 j层, 节点的展开由 xj+1的值决定.
21
Subtree: n=4
父节点
通常 我们都从下 画树.根节点在顶 部
子节点
parent children
4
回溯的思想 回溯是穷举方法的一个改进, 它在所有可行的选择中, 系统地搜索问题的解. 它假定解可以由向量形式 (x1,x2,…,xn) 来表示, 其中xi的值表示在第i次选择所作 的决策值,并以深度优先的方式遍历向量空间,逐步确 定xi 的值,直到解被找到.
回溯法可以很容易地被用来搜索一个集合的所有子 集合或是排列..
9
当我们要解决的问题是要求一个使问题最优的n个元 素的子集, 问题的解空间常可以组织成一棵子集树
构造所有的子集 n个元素的集合有多少个子集? 如果每个 Si 的大小是 k, 对每个 xi∈Si ,共有 kn 个子 集
子集树
10
子集树(Subtree)
17
通常, 对极大值问题, 我们对扩展节点 i计算上界 B(i). 如果目前保存的最大目标值不比 B(i)小, 那么进行剪 枝,否则继续.
R i B(i)
从根节点R通过 i 到叶子 L的任 一决策序列的目标函数值不能比 B(i)大,所以如果 B(i)≤bestc, 那么它 表明搜索扩展节点 i 不会成功,
Backtrack(i)
1 if i>n then Update(x)
2 else
3 for each a∈Si do
4
xi← a
5
if C(i) and B(i) then1)
13
当问题是求n个元素一个排列以使问题最优化时, 解 空间常可以组织成一棵排列树.
构造所有的排列 n个元素的集合有多少种的排列? n!
回溯算法
进行系统搜索的一种方法 尽可能的利用剪枝技术
回溯(Backtracking)
介绍 假如你要在许多不同的选择中做一系列的决策, 那么
你没有足够的信息来帮助做出选择 每个决策都将产生一些新的选择 一些决策的序列(可能不只一个)也许就是问题的解
回溯算法系统的尝试搜索各种决策序列, 直到 找到一个令你满意的决策序列
11
子集树的程序模版(Program Template for Subtree)
Backtrack(i)
1 if i>n then Update(x)
2 else
3 for each a∈Si do
4
xi← a
5
if C(i) and B(i) then
6
Backtrack(i+1)
12
子集树(Subtree)
dead end
?
dead end
dead end
?
start
?
?
dead end
dead end
?
success!
8
解空间的组织(Tree Organization Of Solution Space)
任何时候,在构造问题解的时候, 一系列的决策, 如果 我们将做出的决策画出来,这个图都包含做出就像一 棵树.建立一个树型结构, 使得树叶对应解空间的一 个解,而内部节点的一个分支,对应一个决策,这样,便 可以将解空间组织为一棵解空间树.