数列在生活中的应用
拓展资料数列在生活中的应用
数列在生活中的应用
在实际生活和经济活动中,很多问题都与数列紧密相关。
如分期付款、个人投资理财和人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。
与此同时,数列在艺术创作上也有突出的作用! 数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。
这是对数学与生活关系的出色描述。
第一, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。
(一)按揭货款中的数列问题
随着中央推行踊跃的财政政策,购买房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增加。
众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。
那个等额数是如何得来的,另外假设干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。
下面就来寻求这一问题的解决方法。
假设贷款数额a0元,贷款月利率为p,还款方式每一个月等额还本付息a元.设第n月还款后的本金为an,那么有:
a1=a0(1+p)-a,
a2=a1(1+p)-a,
a3=a2(1+p)-a,
......
an+1=an(1+p)-a,.........................(*)
将(*)变形,得(an+1-a/p)/(an-a/p)=1+p.
由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。
日常生活中一切有关按揭货款的问题,都可依照此式计算。
(二)有关数列的其他经济应用问题。
数列在日常生活中的应用
数列在日常生活中的应用储蓄与人们的日常生活密切相关,它对支援国家建设、安排好个人与家庭生活具有积极意义。
数列的知识在解决活期储蓄、分期存款及分期付款等问题时,充分体现了数列在生活中的广泛应用。
一、关于数列的理论数列是按一定的次序排成的一列数,数列中的每一个数都叫做数列的项。
如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就是等差数列。
德国著名数学家高斯在十岁时就已经用等差数列的思想解答了1+2+3+…+99+100=5050这个问题。
假设等差数列的首项为a1,第n项为an,那么数列前n项的和为Sn=n(a1+an)/2或者Sn=na1+n(n-1)d/2(其中d是等差数列的公差)。
二、数列在日常生活中的应用我们的生活离不开储蓄,计算储蓄所得利息的基本公式是:利息=本金×存期×利率。
根据国家的规定,个人取得储蓄存款利息应依法纳税,计算公式为:应纳税额=利息全额×税率。
其中的税率为20%。
1、差数列在分期存款中的应用分期存款是分期存入后一次取出的一种储蓄方式。
一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一出生就在孩子每年生日那天到银行储蓄5000元一年定期,若年利率为0.2%保持不变,当孩子十八岁上大学时,将所有存款(含利息)全部取回,那么取回的钱的总数是多少?第一期存款利息:a1=5000×0.2%×18;第二期存款利息:a2=5000×0.2%×17;……第十七期存款利息:a17=5000×0.2%×2;第十八期存款利息:a18=5000×0.2%×1。
于是,应该得的全部利息就是上面各期利息的和,因为a1至a18构成一个等差数列,所以把各期利息加起来就是:S18=a1+a2+……+a17+a18。
根据等差数列前n项和的公式Sn=n(a1+an)/2可知:S18=18×(5000×0.2%×18+5000×0.2%×1)×1/2=1710(元)。
日常生活具体数列的例子
日常生活具体数列的例子在我们的日常生活中,数列被广泛地应用于各种场合。
从购物、生物、运动到计算机科学,数列都被用来处理数据,辅助决策。
那么,日常生活中的具体数列有哪些呢?下面我将从不同角度为大家举出一些例子:一、购物中的数列我们在购物中经常遇到各种数列。
比如,我们买卫生纸时,店员告诉我们这款卫生纸一包有12卷,而一包又分为两层,每层有6卷。
那么,我们可以得到以下数列:12, 6, 6其中,第一项12表示一包卫生纸的总卷数,第二项6表示一层卫生纸的卷数,第三项6表示一包卫生纸的层数。
再比如,我们看到打折商品时,常常会看到“买3送1”的优惠条件。
这时,我们可以把这个优惠条件看作是一个等差数列,公差为1,首项为1,求n项和就是这个优惠条件的总价:S(n) = n∗a1 + n(n−1)2∗d其中,n表示买几件商品,a1表示第一件商品的价格,d表示优惠后每件商品的价格。
二、生物中的数列在生物学上,数列有非常重要的应用。
比如,DNA序列就是通过数列来描述的。
DNA不同的碱基可以用不同的数字代替,从而把DNA序列转化为数字序列。
这个数字序列就是数列。
除了DNA序列,还有一些其他生物现象也可以转化为数列。
比如,斐波那契数列是由兔子繁殖规律演化而来。
斐波那契数列中的每一项都是前两项之和。
当我们把兔子看做是生物现象时,这个数列就可以用来描述兔子的数量变化。
又比如,可以用格雷码来描述DNA中两个序列的差异。
格雷码是一个数列,在这个数列中,每一项与前一项只有一位不同。
通过比较两份DNA序列的格雷码,科学家可以找出这两份DNA序列的差异。
三、运动中的数列运动中也有很多数列应用。
比如,高中时我们学过的运动员跑圈问题。
题目大意是:两名运动员从同一起点同时起跑,一个运动员以每秒4米的速度匀速奔跑,另一个运动员以每秒5米的速度匀速奔跑。
如果要第一名运动员追上第二名运动员,需要跑多久?这道题的答案可以通过数列来解决。
定义第一个运动员跑了x秒,那么第一个运动员跑的路程就是4∗x,第二个运动员跑的路程就是5∗x。
数列在日常经济生活中的应用
跟踪训练3 解:(1)设林区原有的树木量为a,调整计划后, 第n年的树木量为an (n = 1,2,3, L), 则a1 = a (1 + 200 0 0 ) = 3a, a2 = a1 (1 + 100 0 0 ) = 2a1 = 6a, 1 a3 = a2 (1 + ) = 2 1 a4 = a3 (1 + ) = 4 3 a2 = 9a, 2 5 45 a3 = a. 4 4
例1、购买时先付5万元,余款20万元按题意分10次分期还清,每次 付款数组成数列{an }, 则a1 = 2 + (25 − 5) ⋅10 0 0 = (万元); 4 a2 = 2 + (25 − 5 − 2) ⋅10 0 0 = 3.8(万元) a3 = 2 + (25 − 5 − 2 × 2) ⋅10 0 0 = 3.6(万元) LL, n −1 an = 2 + [25 − 5 − (n − 1) ⋅ 2]⋅10 0 = (4 − )(万元)n = 1,2, L,10) ( 5 1 因而数列{an }是首项为4,公差为 - 的等差数列. 5 5 −1 a5 = 4 − = 3.2(万元) . 5 1 10 × (10 − 1) × (− ) 5 = 31(万元) S10 = 10 × 4 + 2 31 + 5 = 36(万元),
例2、设每年应付款x元,那么到最后一次付款时 (即购房十年后), 第一年付款及所生利息之和为x ×1.075 元,
9
第二年付款及所生利息之和为x ×1.0758 元, L 第九年付款及所生利息之和为x ×1.075元, 第十年付款为x元,而所购房余款的现价及
] 其利息之和为[1000 × 92 (28800 + 14400)×1.07510 (元) = 48800 ×1.07510 因此有x(1 + 1.075 + 1.0752 + L + 1.0759 ) = 48800 ×1.07510 , 1.075 − 1 ≈ 48800 × 2.061× 0.071 ∴ x = 48800 ×1.075 × 10 1.075 − 1 ≈ 7141(元) .故每年需交款7141元。
数列实际应用
数列实际应用
数列是按照一定规律排列的数的集合,它在数学中有广泛的应用,同时也在现实生活中有许多实际应用。
以下是一些数列在实际中的应用:
1.金融和经济学:在金融和经济学中,数列可以用于建模和分析投资回报、股票价格的变化、经济增长等。
例如,等差数列可以用来描述定期投资的增长,而等比数列可以用来建模复利效应。
2.工程:在工程领域,数列可以用于描述周期性变化。
例如,振动和波动的频率可以通过正弦或余弦函数的数列来表示。
这在机械工程、电子工程和声学等领域都有应用。
3.计算机科学:在计算机科学中,数列被广泛用于算法和数据结构。
例如,斐波那契数列常用于递归算法和动态规划,而等差数列和等比数列可以用于表示计算机内存中的数据结构。
4.统计学:在统计学中,数列可以用于建模和分析随机过程。
例如,随机游走模型中的数列描述了随机变量的变化。
这在风险管理、市场分析等方面有应用。
5.物理学:在物理学中,数列可以用于描述时间和空间中的变化。
例如,牛顿的运动定律中的等差数列描述了运动物体的位移随时间的变化。
6.生物学:在生物学中,数列可以用于描述生物体的生长、衰老和其他变化。
例如,菲波那契数列可以用于描述植物的分枝结构。
7.电信和通信:在通信领域,数列可以用于描述信号的变化。
例如,正弦数列可用于表示模拟信号,而二进制数列可用于表示数字信号。
8.交通规划:数列可以用于模拟交通流量的变化。
例如,等差数列可以用于描述车辆在道路上的运动,有助于交通规划和优化。
这些都只是数列在实际中的一些例子,数列的应用领域非常广泛,涵盖了几乎所有科学和工程领域。
数列在实际中的应用
数列在实际中的应用数列是数学中的重要概念,它是按照一定规律排列的一系列数字。
数列在实际生活中有着广泛的应用,从自然科学到社会科学,都离不开数列的运用。
本文将探讨数列在实际中的应用,并分析其在不同领域的具体应用案例。
一、自然科学中的数列应用1. 物理学中的数列应用物理学是研究物质和能量以及它们之间相互作用规律的学科。
数列在物理学中有着广泛的应用,例如在运动学中,常常会涉及到时间和位置、速度、加速度之间的关系。
当物体按照规律运动时,其位置、速度和加速度都可以表示为数列。
通过数列的分析,可以了解物体的运动规律和变化趋势。
2. 化学中的数列应用化学是研究物质的组成、结构、性质、变化以及它们之间的相互作用的学科。
数列在化学中的应用主要体现在化学反应的动力学研究上。
例如,在某些化学反应中,反应物的浓度随时间的变化可以用数列来表示。
通过数列的分析,可以研究反应速率、反应程度等化学动力学参数。
二、社会科学中的数列应用1. 统计学中的数列应用统计学是研究数据收集、整理、分析和解释的学科。
数列在统计学中的应用非常广泛,例如在人口统计研究中,常常会涉及到人口的年龄、性别、地区等信息。
这些信息可以通过数列进行统计和分析,从而得出人口结构、人口变化趋势等重要结果。
2. 经济学中的数列应用经济学是研究人类在有限资源下如何选择以满足无限需求的学科。
数列在经济学中的应用主要体现在经济指标的预测和分析上。
例如,国民经济中的GDP、通货膨胀率、失业率等指标的变化趋势可以用数列来表示和分析,通过数列的预测和分析,可以为经济决策提供参考。
三、数列在工程技术中的应用1. 电路中的数列应用在电子工程中,数列有着广泛的应用。
例如,在信号传输中,根据不同的调制方式,信号可以用二进制数列、多进制数列、矩阵数列等不同形式表示。
通过数列的编码和解码,可以实现信号的高效传输和正确解读。
2. 计算机科学中的数列应用数列在计算机科学中有着极为重要的应用。
数列在日常生活中的应用
运输成本控制
利用数列分析,可以精确 计算运输成本,为企业制 定合理的价格策略提供依 据。
运输安全保障
通过数列分析,可以发现 运输过程中的安全隐患, 采取有效措施保障运输安 全。
04
CATALOGUE
医学与健康
医学研究
疾病预测
药物研发
建筑材料
混凝土的配合比设计
混凝土是建筑工程中常用的建筑材料之一,其配合比设计对工程质量有着至关重要的影响。通过数列 的方法进行配合比设计,可以更加准确地确定各种材料的比例关系,提高混凝土的强度和耐久性。
钢材的规格与数列
在建筑工程中,钢材也是必不可少的建筑材料之一。不同规格的钢材具有不同的力学性能和适用范围 ,通过数列的方法可以对各种规格的钢材进行分类和排列,便于工程中选用合适的钢材规格。
药物副作用监测
通过收集和分析患者的用药数据,可以及时发现 药物的副作用和不良反应,保障患者安全。
05
CATALOGUE
教育与培训
课程设计
数学课程
数列是数学教育中的重要内容,用于教授学生数列的基本概念、 性质和计算方法。
编程课程
在编程中,数列常用于算法设计和数据结构,如数组和链表等。
经济学课程
在经济学中,数列用于描述经济数据的变化趋势和规律,如时间序 列分析。
物流管理
01
02
03
库存管理
利用数列表示不同商品的 销售量,可以预测商品的 库存需求,避免库存积压 和浪费。
配送路线优化
通过数列分析,可以找到 最优的配送路线,降低物 流成本和提高配送效率。
物流数据分析
利用数列分析,可以对物 流数据进行挖掘和可视化 ,帮助企业做出更科学的 决策。
数列在日常经济生活中的应用-北师大版必修5教案
数列在日常经济生活中的应用前言数学是一门广泛应用于各个领域的学科,其中数列是一种最基本的数学工具。
在生活中,我们可以看到数列的应用,比如在经济学中,数列被广泛应用于分析和预测市场走势。
本文将讨论数列在日常经济生活中的应用,希望能够帮助读者更好地理解和应用数列。
重点一:财务分析数列在财务分析中被广泛使用。
例如,人们可以使用等差数列来计算他们的银行账户余额。
如果一个人每个月存入相同金额的钱,则他/她的账户余额将形成一个等差数列。
通过使用数列的公式和时间价值,可以计算出银行账户的余额,帮助人们更好地管理他们的财务状况。
此外,在股票市场的分析和预测中也使用了数列,股票市场中的股票价格是一个会不断变化的数列。
通过找到股票价格中的模式和规律,可以根据数列的趋势预测股票的价格变化,从而使人们做出更好的投资决策。
重点二:生产和供应数列在生产和供应方面同样非常有用。
例如,供应商可以使用等比数列来确定价格的优惠程度。
通过确定价格的变化趋势,供应商可以调整商品的风险和利润水平。
此外,生产部门也可以使用数列来决定生产率的增长速度。
通过确定与公司生产率相关的因素并建立数列模型,生产部门可以更好地了解生产率变化的趋势和周期性,并进行相应的应对。
重点三:销售和营销数列在销售和营销过程中同样扮演着重要角色。
例如,销售人员可以使用等差数列来记录销售额和客户数量。
通过检查数字的模式和规律,销售人员可以预测未来销售和客户数量的变化情况,从而采取相关的策略和措施以维持或增加销售额和客户数量。
此外,营销部门还可以使用等比数列来确定不同市场中的客户数量和每个市场的市场份额。
这有助于营销部门更好地制定市场策略和推广计划。
总结综述以上,数列在日常经济生活中扮演着重要角色。
它可以帮助人们更好地了解和分析市场趋势,并进行决策。
通过建立数列模型和算法,人们可以更好地用数学工具解决实际问题。
数列在日常经济生活中的应用
元;第 2 期付款以及到最后一次付款时所生利息为 x(1+0.008)10 元;……;第 12 期付款(无
利息)为 x 元,所以各期付款连同利息之和为 x(1+0.008)11+x(1+0.008)10+…+x=
11.0.0008812--11x(元).
又所购电器的现价及其利息之和为
2000×1.00812
元
,
于
是
有
1.00812-1 1.008-1
x
=
2000×1.00812. 解得 x=116.0×081.102-08112≈175(元).即每期应付款 175 元.
递推关系型数列应用题 【例 3】 某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为 a1,以后每年交纳的数目均比上一年增加 d(d>0),因此,历年所交纳的储备金数目 a1,a2,… 是一个公差为 d 的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而 且计算复利.这就是说,如果固定年利率为 r(r>0),那么,在第 n 年末,第一年所交纳的储 备金就变为 a1(1+r)n-1,第二年所交纳的储备金就变为 a2(1+r)n-2,…,以 Tn 表示到第 n 年 末所累计的储备金总额. (1)写出 Tn 与 Tn-1(n≥2)的递推关系式; (2)求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.
链接一:等差数列{an}的通项公式 an=a1+(n-1)d 或 an=am+(n-m)d;前 n 项和公式 Sn=a1n+nn-2 1d 或 Sn=na1+ 2 an.
链接二:等比数列{an}的通项公式 an=a1qn-1 或 an=amqn-m;当 q=1 时,前 n 项和 Sn =na1,当 q≠1 时,前 n 项和 Sn=a111--qqn或 Sn=a11--aqnq.
数列概念的应用
数列概念的应用数列是数学中的一个基本概念,它在现实生活和各种科学领域中有着广泛的应用。
在此,我们将讨论数列的概念和一些应用。
一、数列的概念数列是由一系列按照一定规律排列的数所组成的有限或无限集合。
它通常用数列的第一个元素和通项公式表示。
其中,第一个元素称为首项,通项公式是指每个元素与其前一项之间的关系式。
数列按照通项公式的不同形式可以归为等差数列、等比数列、等差减通项数列等。
二、等差数列的应用在现实生活中,等差数列有着广泛的应用。
比如常见的电费、燃气费等属于等差数列的概念。
以电费为例,我们可以根据月度电费的规律建立一个等差数列。
比如,设第一个月电费为100元,每个月增加10元,则第二个月为110元,第三个月为120元,第四个月为130元。
通过这个规律,我们可以简单地预测未来任意时间的电费,并控制用电量。
三、等比数列的应用等比数列也有很多应用,例如货币的利息也可以看作是等比数列。
另外,计算机科学中的指数增长等现象也可以用等比数列的概念来描述。
以汇率为例,我们可以根据两种货币之间的汇率变化建立一个等比数列。
如设初始汇率为1:6,每3个月升值0.1,则3个月后汇率为1:6.66,6个月后为1:7.44,9个月后为1:8.26。
通过这个规律,我们可以预测货币汇率的变化,选择最佳的时间进行汇兑。
四、等差减通项数列的应用等差减通项数列也有广泛的应用。
以租房子为例,房价可能随时间递减,但每次递减的数量可能不一样。
设初始租金为1000元,每月递减150元,则第二个月的租金为850元,第三个月为700元,第四个月为550元,第五个月为400元。
我们可以使用等差减通项数列的方法来计算未来任意时间的租金,并进行预算和控制开支。
总之,数列作为数学中的基本概念,有着广泛的应用。
通过数列的模型和其中的规律性,我们可以预测和控制未来的各种变化,使得我们的生活和工作更加的精准和有效。
高一数学中的数列在实际问题中的应用有哪些
高一数学中的数列在实际问题中的应用有哪些在高一数学的学习中,数列作为一个重要的知识板块,不仅在数学理论中具有重要地位,还在实际生活中有着广泛的应用。
通过数列,我们可以更好地理解和解决许多现实世界中的问题,从经济领域的投资和贷款计算,到自然科学中的生物繁殖和放射性物质衰变,再到日常生活中的排队和资源分配等。
接下来,让我们深入探讨一下高一数学中数列在实际问题中的具体应用。
一、经济领域1、储蓄与利息计算在银行储蓄中,常常会涉及到利息的计算。
假设我们将一笔本金 P存入银行,年利率为 r,存期为 n 年。
如果按照单利计算,到期后的本息和 A 可以用数列公式表示为:A = P(1 + nr) ;而如果按照复利计算,到期后的本息和 A 则为:A = P(1 + r)^n 。
通过这样的数列公式,我们可以清楚地计算出不同储蓄方式下的最终收益,帮助我们做出更明智的理财决策。
2、分期付款在购买一些价格较高的商品时,如汽车、房屋等,我们可能会选择分期付款。
假设购买一件价格为 P 的商品,分 n 期付款,每期利率为 r。
每期的还款金额可以通过数列计算得出,从而帮助我们规划好每月的财务支出,避免逾期还款和额外的利息费用。
3、投资回报在投资领域,数列也发挥着重要作用。
例如,我们投资一项每年回报率为 r 的项目,初始投资为 P,经过 n 年后的投资总额可以用数列公式计算。
通过对不同投资项目的回报进行数列分析,我们可以评估其风险和收益,选择最适合自己的投资组合。
二、科学研究1、生物繁殖在生物学中,许多生物的繁殖现象可以用数列来描述。
比如,某种细菌每小时繁殖的数量是前一小时的 2 倍,如果初始时有 x 个细菌,经过 n 小时后的细菌数量就是一个等比数列。
通过数列的计算,我们可以预测生物种群的增长趋势,为生态保护和资源管理提供重要依据。
2、放射性物质衰变放射性物质的衰变过程也符合数列规律。
假设某种放射性物质的半衰期为 T,初始质量为 M,经过 n 个半衰期后的剩余质量可以用数列公式表示为:M(1/2)^(n/T) 。
数列知识在日常生活中的应用例谈
数列知识在日常生活中的应用例谈数列知识有着广泛的应用,如生物种群数量变化,银行中的利息计算,人口增长,粮食增长、住房建设等等问题,都会用到高中的数列知识。
本文举例说明,有助于学生认识和理解数列知识。
例1:在植物组织培养过程中,某细胞在培养基中按照1个分裂为2个,2个分裂为4个,依次分裂下去进行增加,而且每15分钟分裂一次。
那么,1小时后,这种细胞会增加到多少个?解析:这是生物学上的一个比较常见的问题(细菌的分裂已是如此)。
应用数列知识我们很快就会求得。
显然,a1=2,q=2,n=4,那么a4=a1 ×qn-1=2×23=16(个)例2:某房地产公司推出的售房有两套方案:一种是分期付款的方案,当年要求买房户首付3万元,然后从第二年起连续十年,每年付款8000元;另一种方案是一次性付款,优惠价为9万元,若一买房户有现金9万元可以用于购房,又考虑到另有一项投资年收益率为5%,他该采用哪种方案购房更合算?请说明理由.(参考数据1.059≈1.551,1.0510≈1.628)解析:如果分期付款,到第十一年付清后看其是否有结余,设首次付款后第n年的结余数为an,∵a1=(9-3)×(1+0.5%)-0.8=6×1.05-0.8a2=(6×1.05-0.8)×1.05-0.8=6×1.052-0.8×(1+1.05)……a10=6×1.0510-0.8(1+1.05+…+1.059)=6×1.0510-0.8×=6×1.0510-16×(1.0510-1)=16-10×1.0510≈16-16.28=-0.28(万元)所以一次性付款合算.例3:假如某市2010年新建住房面积为4000平方米,其中,250平方米为中低价房,预计在今后若干年内该市每年新建住房面积平均不上一年增长8%,加50平方米,问到哪一年底该市历年新建的中低价房的累计面积将首次不少于4750平方米?解析:设中低价房的面积构成数列{ an},由题意可以知道,an 为等差数列,a1=250,d=50sn =250×n +[n(n-1)/2] ×50=25n2 +225n令25n2 +225n≥4750,解之得到:n≥10或者n≤-19(不符合题意,舍去)由此可知,要到2020年底该市历年新建的中低价房的累计面积将首次不少于4750平方米。
浅析数列在日常生活中的应用
浅析数列在日常生活中的应用在实际生活和经济活动中, 很多问题都与数列密切相关.如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决. 与此同时,数列在艺术创作上也有突出的作用. 数学家华罗庚曾经说过:"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学. " 这是对数学与生活关系的精彩描述. 下面笔者将举几个生活中的小例子来浅谈一下数列在日常生活中的运用.一、在生产生活中在给各种产品的尺寸划分级别时, 当其中的最大尺寸与最小尺寸相差不大时, 常按照等差数列进行分级. 若为等差数列, 且有an=m,am=n. 则a(m+n)=0.其实等差数列生活中处处可见, 关键是发现它, 并用以解决实际问题. 在路灯的排列、银行的按揭贷款、银行的利息结算等等.例如1 台电脑售价为1 万元, 如果采取分期付款, 在1 年内将款全部还清的前提下,商家还提供下表所示的几种付款方案(月利率为1%). 假定你的父母为给你创建更好的学习条件,打算买台电脑,除一次性付款外商家还提供三种分期付款方式. 你能帮他们参谋选择一下吗?方案分几次付清付款方法每期所付款额方案1.分6 次付清. 购买后2 个月第1次付款, 再过2 个月第2 次付款……购买后12 个月第6 次付款方案2.分12 次付清. 购买后1 个月第1次付款, 再过1 个月第2 次付款……购买后12 个月第12 次付款方案3.分3 次付清. 购买后4 个月第1次付款,再过4 个月第2 次付款,再过4 个月第3 次付款分析:思路1: 本题可通过逐月计算欠款来处理,根据题意,到期还清即第12 个月的欠款数为0 元.设每次应付x 元,则:二、细胞分裂中的数列自然界是由许许多多的细胞组成的,细胞分裂产生新的生命, 人的孕育也是由细胞分裂开始的. 以某种细胞为例我们一起来分析一下细胞是如何分裂的.某种细胞每过30 分钟便由 1 个分裂成 2 个,经过 5 小时,这种细胞由 1 个分裂成几个?经过N 小时,细胞由1 个能分裂成几个?该细胞分裂数是公比为2 的等比数列方式增加.显然不用减去那最初的一个母细胞了,因为题目问的是:"经过5 小时, 这种细胞由一个分裂成几个,"当然是1024 了,又不是问由一个分裂"出"几个,那就要减去最初的母细胞了.显然N 时后,该细胞会由一个分裂"成"2(k-1)个(k为自然数,k=2N+1)即:N 时后,会有22N个细胞,(其中N 表示整时,单位为时,N=0,1,2,3,……)因此,经过N 时后,细胞由一个分裂成22N个(N=0,1,2,3,…)三、爬楼梯小明同学在小的时候喜欢爬楼梯, 不为什么,只是觉得这种阶梯状的建筑非常好玩,等到他长大了,可以一次跨上一级,也可以跨两级,所以,他想知道,有多少种不同的上到楼梯顶端的方案.首先假设楼梯只有一级,那么小明只有一种爬法;如果有 2 级,那么小明可以一级一级地往上爬,也可以一次就上两级,用算式表示为1+1 或2, 说明他上 2 级楼梯有 2 种不同的爬法;如果有 3 级,小明的第一步可以上一级,也可以上二级. 如果上一级,那么还剩下 2 级, 上面已经讨论过了有 2 种不同的爬法;如果上二级,那么还剩下 1 级,上面也已经讨论过了,只有 1 种爬法;合计起来就有2+1=3 种不同的爬法. 有算式表示为3=1+2(2 种不同的爬法)=2+1(1 种不同的爬法);如果有4 级,小明的第一步可以上一级,也可以上二级. 如果上一级, 那么还剩下3级,上面已经讨论过了有3 种不同的爬法;如果上二级,那么还剩下 2 级,上面也已经讨论过了,有 2 种不同的爬法;合计起来就有3+2=5 种不同的爬法. 用算式表示为4=1+3(3种不同的爬法)=2+2(2 种不同的爬法);……照这样推下去, 可以得一串斐波那契数列:1,2,3,5,8,13,21,34,55,89,……由此可知,爬上有10 级台阶的楼梯,一共有89 种不同的爬法.随着科学的进步,数学学科在我们的生活中扮演着一个不可忽视的重要角色,作为跨世纪的中学生, 我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题,这样才能更好地适应社会的发展和需要. 数学既不严峻,也不遥远,它既和所有的人类活动有关,又对每一个真正感兴趣的人有益. 数学研究、科学研究从身边的活动做起. 让我们从一个小小的数列开始,多思考,找规律,相信任何问题都可以迎刃而解的.。
数列在日常生活中的应用
教材P38 例3 分期付款模型 教材 另一解法: 另一解法: 每期付款产生的本利和的累加 = 一年后付款的总额 解:设每期还款x元,则 设每期还款 元 x(1+1.0082+1.0084+…+1.00810)= 5000*1.00812 (
பைடு நூலகம்
3、有若干台型号相同的联合收割机收割小麦,若 、有若干台型号相同的联合收割机收割小麦, 同时投入工作到收割完毕需24小时 小时, 同时投入工作到收割完毕需 小时,但它们是 每隔相同的时间按顺序投入工作的, 每隔相同的时间按顺序投入工作的,每一台投入 工作后都一直工作到小麦收割完毕。 工作后都一直工作到小麦收割完毕。如果第一台 收割时间是最后一台的5倍 收割时间是最后一台的 倍,求用这种方法收割 完毕需多少时间? 完毕需多少时间?
a1 = 5a n a1 a2 an 24n + 24n + ⋯ + 24n = 1
a1=40
1、小王每日节省100元,想以零存整取的方式存入 、小王每日节省 元 银行,攒足 元购买冰箱, 银行,攒足2625元购买冰箱,如果月利率为 元购买冰箱 P=0.0075,问存两年能否够购买冰箱的钱? ,问存两年能否够购买冰箱的钱? 2、现有1万元存入银行,存30年,年利率为 ,利息 、现有 万元存入银行 万元存入银行, 年 年利率为r, 税20%,以下列方式存储,则到期本息共多少? ,以下列方式存储,则到期本息共多少? 定期一年 定期二年 定期三年
1.4数列在日常经济生活中的应用(讲义+典型例题+小练)(原卷版)
1.4数列在日常经济生活中的应用(讲义+典型例题+小练)一、例述数列在生活中的应用数学不仅仅是我们生活中的工具,更大程度上是我们生活中的必需品,并影响着人们的生活。
以生活中的一个常见问题为例:例1:1.为了防止某种新冠病毒感染,某地居民需服用一种药物预防.规定每人每天定时服用一次,每次服用m毫克.已知人的肾脏每24小时可以从体内滤除这种药物的80%,设第n=).次服药后(滤除之前)这种药物在人体内的含量是n a毫克,(即1a mm=,求2a、3a;(1)已知12(2)该药物在人体的含量超过25毫克会产生毒副作用,若人需要长期服用这种药物,求m的最大值.举一反三:1.顾客采用分期付款的方式购买一件5000元的商品,在购买一个月后第一次付款,且每月等额付款一次,在购买后的第12个月将货款全部付清,月利率0.5%.按复利计算,该顾客每月应付款多少元(精确到1元)?二、银行储蓄与分期付款中的数列应用储蓄与贷款与国计民生、社会生活发展息息相关,大到支援国家建设,小到个人家庭的财政支出管理,处处都嵌套着数列的应用。
在人们日常的生活规划中,为未来进行资金储备的零存整取的存储模式是银行储蓄中常见的一种金融计算方式。
下面将以某一常见模式为例,进行数列在储蓄领域应用的解析。
(1)储蓄业务种类①活期储蓄②定期储蓄(整存整取定期储蓄、零存整取定期储蓄、整存零取定期储蓄、存本取息定期储蓄、定活两便储蓄)③教育储蓄④个人通知存款⑤单位协定存款(2)银行存款计息方式:①单利单利的计算是仅在原有本金上计算利息,对本金所产生的利息不再计算利息.其公式为:利息=本金×利率×存期以符号P代表本金,n代表存期,r代表利率,S代表本金和利息和(以下简称本利和),则有②复利把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的.复利的计算公式是(3)零存整取模型例1:1.复利是指一笔资金产生利息外,在下一个计息周期内,以前各计息周期内产生的利息也计算利息的计息方法,单利是指一笔资金只有本金计取利息,而以前各计息周期内产生的利息在下一个计息周期内不计算利息的计息方法.小闯同学一月初在某网贷平台贷款10000元,约定月利率为1.5%,按复利计算,从一月开始每月月底等额本息还款,共还款12次,直到十二月月底还清贷款,把还款总额记为x元.如果前十一个月因故不还贷款,到十二月月底一次还清,则每月按照贷款金额的1.525%,并且按照单利计算利息,这样的还款总额记为y元.则y-x的值为()(参考数据:1.01512≈1.2)A.0B.1200C.1030D.9002.银行有一种叫作零存整取的储蓄业务,即每月定时存入一笔相同数目的现金,这是零存;到约定日期,可以取出全部本利和,这是整取.规定每次存入的钱不计复利(暂不考虑利息税).(1)若每月存入金额为x元,月利率r保持不变,存期为n个月,试推导出到期整取是本利和的公式;(2)若每月初存入500元,月利率为0.3%,到第36个月末整取时的本利和是多少?(3)若每月初存入一定金额,月利率为0.3%,希望到第12个月末整取时取得本利和2000元.那么每月初应存入的金额是多少?举一反三:1.某企业在2013年年初贷款M万元,年利率为m,从该年年末开始,每年偿还的金额都是a万元,并恰好在10年间还清,则a的值为()A.()()1010111M mm++-B.()101Mmm+C.()()1010111Mm mm++-D.()()1010111Mm mm+++2.银行有一种叫作零存整取的储蓄业务,即每月定时存入一笔相同数目的现金,这是零存;到约定日期,可以取出全部本利和,这是整取.规定每次存入的钱不计复利.银行按国家规定到期扣除20﹪的利息税(应纳税额=应纳税利息额×税率).(1)若每月存入金额为x 元,月利率r 保持不变,存期为n 个月,试推导出到期整取时本利和的公式;(2)若每月初存入500元,月利率为0.3%,到第36个月末整取时的本利和是多少?三、 环境资源利用中的数列应用进入21世纪以来,能源的短缺成为困扰人类社会发展的主要问题之一,尤其是不可再生资源的合理有效利用问题,更是人类社会进一步发展需要解决的首要问题。
数列在日常经济生活中的应用
增长率公式:C A(1+ x )n
A表示第一年的量,C表示n年后的量,x表示年增长率。
某人选择存期为1年的“零存整取”,若每月存入金额为100 元,月利率0.3%保持不变,到期能取出多少钱? 第一月存入的100元到期有多少利息? 到期为: 100× 0.3%× 12=3.6 第二月存入的100元到期有多少利息? 到期为: 100× 0.3%× 11=3.3
你会如何选择呢?
如果你有1000元钱存入 银行,年利率为1%, 一年后你有多少钱? 二年后呢? …… Nhomakorabea年后呢?
这与利息的计算方式有关!
1、单利:单利的计算是仅在原有本金上 计算利息,对本金所产生的利息不再计算 利息.以符号P代表本金,n代表存期,r 代表利率,S代表本金与利息和,则有
S = p(1+nr)
• 1.某钢厂的年产值由1998年的40万吨,增加 到2008年的50万吨,经历了10年的时间,如果 按此年增长率计算,该钢厂2018年的年产值将 接近( ) • A.60万吨 B.61万吨 • C.62.5万吨 D.63.5万吨
解析: 设年增长率为 x,则 2008 年为: 5 40(1+x) =50,则(1+x) =4.
3.据某校环保小组调查,某区垃圾量的年增 长率为b,2010年产生的垃圾量为a吨,由此预 测,该区2011年的垃圾量为______吨,2015 年的垃圾量为______吨. 解析:由于2010年的垃圾量为a吨,年增 长率为b,故下一年的垃圾量为 a+ab=a(1+b) 吨, 同理可知2012年垃圾量为 a(1+b)2 吨,„, 2015年的垃圾量为a(1+b)5 吨. 答案: a(1+b) a(1+b)5
数列在现实生活中中的应用及其求解策略
数列在现实生活中的应用及其求解策略云南会泽县第一中学郭兴甫唐孝敬邮编:654200 数列是特殊的函数,其与方程、不等式联系紧密,在现实生活中应用广泛,在利用数列解决现实中的问题时,首先要认真审题,深刻理解问题的实际背景,弄清蕴含在问题中的数学关系,把应用问题转化为数学中的等差数列、等比数列问题,然后求解。
本文举例说明数列在现实生活中的应用及其求解策略,以期对同学们的学习有所帮助!一、方案设计型例1•某企业进行技术改造,有两种方案,甲方案:一次性贷款 10万元,第一年便可获利1万元,以后每年比前一年增加30%的利润;乙方案:每年贷款1万元, 第一年可获利1万元,以后每年比前一年增加5千元;两次方案的使用期都是10 年,到期一次性归还本息。
若银行两种形式的贷款都按年息 5%的复利计算,试比较两种方案中,那种获利更多?(参考数据 1.0510 1.6,1.31013.7,1.51055.6)分析:这是一道比较常见的数列应用问题,方案选择,由于本息与利润是熟知的概念,对甲方案,每年的获利满足等比数列;对乙方案,每年获利构成等差数列,因此只需建立通项公式,求和公式,并运用所学过的公式求解即可.1 310 1解:对甲种方案获利为:1 (1 30%) (1 30%)2(1 30%)942.30.3(万元)银行贷款本息和:10 (1 5%)1016 (万元)故甲种方案纯利:42.3 16 26.3 (万元)对乙种方案获利:1 (1 0.5) (1 2 0.5) (1 9 0.5)10 1 10 90.5 32.5(万元)银行贷款本息和:1.05 [1 (1 5%) (1 5%)2(1 5%)9]1.05 1.0510 10.0512.6 (万元)故乙种方案纯利:32.5-12.6 19.9(万元)综上由26.3 19.9可得,甲方案更好。
二、汽车保有量问题例2.为综合治理交通拥堵状况,缓解机动车过快增长势头,一些大城市出台了“机动车摇号上牌”的新规.某大城市2012年初机动车的保有量为600万辆,预计此后每年将报废本年度机动车保有量的5%,且报废后机动车的牌照不再使用,同时每年投放10万辆的机动车牌号,只有摇号获得指标的机动车才能上牌•经调研,获得摇号指标的市民通常都会在当年购买机动车上牌.(1)问:到2016年初,该城市的机动车保有量为多少万辆;(2)根据该城市交通建设规划要求,预计机动车的保有量少于500万辆时,该城市交通拥堵状况才真正得到缓解•问:至少需要多少年可以实现这一目标.(参考数据:0.9540.81,0.9550.77,|g0.75 0.13,lg 0.95 0.02)分析:(1 )首先将实际问题分析,得到关于各年年初机动车保有量的递推关系,然后结合数列的性质,构造得到等比数列,进而得到其通项公式(2)在第一问的基础上,解关于 n的不等式,进而估算法得到结论(1)设2012年年初机动车保有量为a1万辆,以后各年年初机动车保有量依次为a2万辆,a3万辆,.. ,每年新增机动车10万辆,则a1 600 , a n 1 0.95a n 10 . 又a n 1200 0.95(a n 200),且a1200 600 200 400所以数列{a n 200}是以400为首项,0.95为公比的等比数列.所以a n 200 400 0.95n 1,即a n 400 0.95n 1 200 .所以2016年初机动车保有量为a5 400 0.954 200 524万辆.(2)由(1 )题结论可知,a n 400 0.95n 1 200 500,即0.95n 1 0.75 ,所以n lg M 1 7.5,故至少需要8年时间才能实现目标lg 0.95评注:本试题主要是考查了数列在实际生活中的运用,借助于等比数列的概念,和等比数列的通项公式来表示机动车保有量,然后借助于不等式的相关知识,求解对数不等式,得到结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名师点睛
1.解答数列应用题的基本步骤 (1)审题——仔细阅读材料,认真理解题意. (2)建模——将已知条件翻译成数学(数列)语言,将实际问 题转化成数学问题,弄清该数列的特征,要求什么. (3)求解——求出该问题的数学解. (4)还原——将所求结果还原到原实际问题中. 具体解题步骤为下框图:
≈7 141(元).∴每年需付款 7 141 元.
课前探究学习 课堂讲练互动
规律方法 求解此类问题应先把实际问题转化为等比数列 问题,在建立等比数列模型后,运算中往往要运用指数运 算等,要注意运算的准确性,对于近似计算问题,答案要 符合题设中实际问题的需要.
课前探究学习
课堂讲练互动
【训练2】 某家庭打算以一年定期的方式存款,计划从2012年 起,每年年初到银行新存入a元,年利率p保持不变,并按复 利计算,到2022年年初将所有存款和利息全部取出,共取回 多少元?
a 1+p a 1+ p2 其中 b为首项, (1+p)为公比的等比数列, p p
a + 于是 bn= [(1+p)n 1-(1+p)]. 即这个家庭到 2022 年年初本利 p a 可达 [(1+p)11- (1+p)]元. p
课前探究学习
课堂讲练互动
马丁的测算,在近十年,人类 【训练3】 据美国学者詹姆斯· 知识总量已达到每三年翻一番,2020年甚至会达到每73天 翻一番的空前速度.因此,基础教育的任务已不是教会一 个人一切知识,而是让一个人学会学习.已知2000年底, 人类知识总量为a,假如从2000年底到2009年底是每三年 翻一番,从2009年底到2019年底是每一年翻一番,2020年 是每73天翻一番.试回答: (1)2009年底人类知识总量是多少? (2)2019年底人类知识总量是多少? (3)2020年按365天计算,2020年底人类知识总量是多少?
课前探究学习 课堂讲练互动
自学导引
1. 有关增长率、利率等的计算
增长量 增长前的量 ; (1)增长率=____________
购买商品获得的优惠额 商品标价 (2)优惠率=_______________________ ;
利息 存款额 (3)存款利率=_________.
课前探究学习
课堂讲练互动
试一试:什么情况下建立数列模型? 提示 根据解题经验,当应用问题中的变量的取值范围是正 整数时,该问题通常是数列问题,这时常常建立数列模型来 解决.例如存款、贷款、购物(房、车)分期付款、保险、资 产折旧等问题都属于数列问题模型. 2.有关储蓄的计算 储蓄与人们的日常生活密切相关,计算储蓄所得利息的基本 公式是:利息=本金×存期×利率. 根据国家规定,个人取得储蓄存款利息,应依法纳税,计算 公式为:应纳税额=利息全额×税率. (1)整存整取定期储蓄 一次存入本金金额为A,存期为n,每期利率为p,税率为q, nApq ,实际取出 nAp ,应纳税为______ 则到期时,所得利息为:_____ nAp(1-q)+A 金额为:_____________.
(2)等比模型:一般地,如果增加(或减少)的量是一个固定百 分数时,该模型是等比模型,增加(或减少)的百分数就是公 an+1-an 比,其一般形式是: ×100%=q(常数). an
课前探究学习
课堂讲练互动
例如:①银行储蓄复利公式 按复利计算利息的一种储蓄,本金为a元,每期利率为r,存期 为x,则本利和y=a(1+r)x. ②产值模型 原来产值的基础数为N,平均增长率为p,对于时间x的总产值y =N(1+p)x. (3)混合模型:在一个问题中,同时涉及到等差数列和等比数列 的模型. (4)生长模型:如果某一个量,每一期以一个固定的百分数增加 (或减少),同时又以一个固定的具体量增加(或减少),称该模型 为生长模型,如分期付款问题,树木的生长与砍伐问题等.
§4
数列在日常经济生活中的应用
【课标要求】 正确理解储蓄及利息的计算方法. 1. 了解并掌握购房贷款中的相关知识. 2. 明确现行银行的还款方式. 3.
【核心扫描】 能够利用等差数列、等比数列解决一些实际问题.(重点、 1. 难点) 了解“零存整取”,“定期自动转存”及“分期付款”等日常经 2. 济行为的含义.(重点)
课前探究学习 课堂讲练互动
(2)定期存入零存整取储蓄 每期初存入金额 A,连存 n 次,每期利率为 p,税率为 q,则到第 n 1 1 n(n+1)Ap n(n+1)Apq 2 期末时, 应得到全部利息为: __________ , 应纳税为: _____________ , 2
1 n(n+1)Ap(1-q) 2 实际受益金额为 _________________.
课前探究学习 课堂讲练互动
【解题流程】
[规范解答] (1)设中、低价房面积形成数列{an},由题意 可知{an}是等差数列, n n-1 其中 a1=250,d=50,则 Sn=250n+ ×50=25n2+ 2
225n,(2 分)
令25n2+225n≥4 750,即n2+9n-190≥0,而n是正整数, ∴n≥10.(4分) ∴到2021年底,该市历年所建中、低价房的累计面积将首次 不少于4 750万 m2.(5分)
课前探究学习
课堂讲练互动
解 购买时先付5万元,余款20万元按题意分10次分期还 清,每次付款数组成数列{an}, 则a1=2+(25-5)· 10%=4(万元); a2=2+(25-5-2)· 10%=3.8(万元); a3=2+(25-5-2×2)· 10%=3.6(万元); …;
n- 1 an= 2+[25- 5-(n- 1)· 2]· 10%=4- (万元)(n= 1,2, …, 5
课前探究学习
课堂讲练互动
题型一
等差数列模型(单利问题)
【例1】 用分期付款购买价格为25万元的住房一套,如果购 买时先付5万元,以后每年付2万元加上欠款利息.签订购 房合同后1年付款一次,再过1年又付款一次,直到还完后 为止.商定年利率为10%,则第5年该付多少元?购房款 全部付清后实际共付多少元? [思路探索] 先将实际问题转化为数学问题,这是一个等 差数列问题,用等差数列来解决.
课前探究学习
课堂讲练互动
2.数列应用问题的常见模型 (1)等差模型:一般地,如果增加(或减少)的量是一个固定 的具体量时,该模型是等差模型,增加(或减少)的量就是 公差,其一般形式是:an+1-an=d(常数). 例如:银行储蓄单利公式 利息按单利计算,本金为a元,每期利率为r,存期为x, 则本利和y=a(1+xr).
1 10).因而数列 {an}是首项为 4.公差为- 的等差数列. a5= 4 5 5- 1 - = 3.2(万元 ). 5
1 10× 10- 1×- 5
S10= 10× 4+
2
= 31(万元 ).
课前探究学习 课堂讲练互动
31+5=36(万元),因此第5年该付3.2万元,购房款全部付 清后实际共付36万元. 规律方法 按单利分期付款的数学模型是等差数列,解决 该类问题的关键是弄清楚: (1)规定多少时间内付清全部款额; (2)在规定的时间内分几期付款,并且规定每期所付款额 相同; (3)规定多长时间段结算一次利息,并且在规定时间段内 利息的计算公式.
课前探究学习 课堂讲练互动
(2)设新建住房面积形成数列{bn},由题意可知{bn}是等比数列, 其中b1=400,q=1.08,则bn=400×(1.08)n-1,(8分) 由题意可知an>0.85bn,有250+(n-1)50>400×(1.08)n-1×0.85.(10 分) 由计算器解得满足上述不等式的最小正整数n=6, ∴到2015年底,当年建造的中、低价房的面积占该年建造住房面 积的比例首次大于85%.(12分) 【题后反思】 解答等差、等比数列综合应用问题的关系是通过审 题,将实际问题转化为数列模型,运用等差数列和等比数列的知 识解决问题,因此在做题过程中必须明确建立的是等差数列模型 还是等比数列模型,明确是求n,还是求an,或是求Sn.
3.分期付款问题
贷款 a 元,分 m 个月将款全部付清,月利率为 r,各月所付款 额到贷款全部付清时也会产生利息,同样按月以复利计算,那
ar 1-r m m 1 + r -1 么每月付款款额为: ___________.
想一想:单利和复利分别与等差数列和等比数列中的哪一种 数列对应? 提示 单利和复利分别以等差数列和等比数列为模型,即单 利的实质是等差数列,复利的实质是等比数列.
课前探究学习 课堂讲练互动
[思路探索] 按复利分期付款,各期所付的款以及最后一 次付款时所生的利息合计,应等于个人负担的购房余额的 现价及这个款现价到最后一次付款时所生的利息之和. 解 设每年应付款x元,那么到最后一次付款时(即购房十 年后),第一年付款及所生利息之和为x×1.0759元,第二 年付款及所生利息之和为x×1.0758元,…,第九年付款及 其所生利息之和为x×1.075元,第十年付款为x元,而所 购房余款的现价及其利息之和为[1 000×92-(28 800+14 400)]×1.07510=48 800×1.07510(元).因此有x(1+1.075+ 1.0752+…+1.0759)=48 800×1.07510(元), 1.075-1 10 所以 x=48 800×1.075 × ≈48 800×2.061×0.071 10 1.075 -1
课前探究学习
课堂讲练互动
解 从2012年年初到2013年年初有存款b1=a(1+p)元,设 第n年年初本息有bn元,第n+1年年初有bn+1元,则有bn+1 =(bn+a)(1+p).将之变形为 a 1+p a 1+ p bn+1+ =(1+p)bn+ , p p
课前探究学习 课堂讲练互动
题型三
等差、等比数列的综合应用
【例3】 (本题满分12分)假设某市2012年新建住房400万 m2, 其中有250万 m2是中、低价房.预计在今后的若干年内, 该市每年新建住房面积平均比上年增长8%.另外,每年新 建住房中,中、低价房的面积均比上一年增加50万 m2.那 么,到哪一年底, (1)该市历年所建中、低价房的累计面积(以2012年为累计 的第一年)将首次不少于4 750万 m2? (2)到哪年,当年建造的中、低价房的面积占该年建造住房 面积的比例首次大于85%? 审题指导 第(1)问是等差数列求和问题;第(2)问由等比数 列通项公式求出bn表达式,解不等式an>0.85bn,求得n的 最小正整数解.