七年级数学《平面直角坐标系》对称点的坐标
人教版七年级数学下册第七章第一节平面直角坐标系试题(含答案) (71)
人教版七年级数学下册第七章第一节平面直角坐标系习题(含答案)一、单选题1.在平面直角坐标系中,点P(﹣2,﹣3)到y轴的距离为()A.3 B.﹣3 C.2 D.﹣2【答案】C【解析】【分析】根据点到直线的距离的定义即可解答.【详解】解:点到y轴的距离即是点的横坐标的绝对值,则点P(−2,−3)到y轴距离是2.故选择C..【点睛】本题考查点的坐标的几何意义,解题的关键是知道到x轴的距离就是纵坐标的绝对值,到y轴的距离就是横坐标的绝对值.2.点P(﹣5,﹣3)在平面直角坐标系中所在的位置是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】根据点在各个坐标的特点进行解答即可.解:因为点P(﹣5,﹣3)的横坐标是负数,纵坐标是负数,所以点P在平面直角坐标系的第三象限.故选:C.【点睛】本题考查点的坐标,解题的关键是掌握四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.在平面直角坐标系中,以A(0,2),B(﹣1,0),C(0.﹣2),D 为顶点构造平行四边形,下列各点中,不能作为顶点D的坐标是()A.(﹣1,4)B.(﹣1,﹣4)C.(﹣2,0)D.(1,0)【答案】C【解析】【分析】根据平行四边形的判定,可以解决问题.【详解】若以AB为对角线,则BD∥AC,BD=AC=4,∴D(-1,4)若以BC为对角线,则BD∥AC,BD=AC=4,∴D(-1,-4)若以AC为对角线,B,D关于y轴对称,∴D(1,0)故选C.本题考查了平行四边形的判定,关键是熟练利用平行四边形的判定解决问题.4.在平面直角坐标系中,点()P 3,6-关于y 轴的对称点的坐标为( )A .()3,6--B .()3,6C .()3,6-D .()6,3-【答案】B【解析】【分析】利用关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数,∴点()3,6P -关于y 轴的对称点的坐标为()3,6, 故选B .【点睛】本题考查关于y 轴对称的点的坐标,解题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.如图所示,在平面直角坐标系中,平行四边形ABCD 的顶点A 、D 的坐标分别是(0,0),(2,3),AB=5,则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2)【答案】C【分析】分别过点D ,点C 作垂线垂直于x 轴于E ,F ,如解析中的图所示,证明三角形ADE 与三角形BCF 全等,得到BF 的值,则点C 的横坐标的值即为AB+BF=AF 的长度.又因为DC ∥AB ,所以点C 的纵坐标与D 的纵坐标相等.【详解】如图所示:过点D ,C 分别作x 轴的垂线于点E ,F∵四边形ABCD 是平行四边形∴AD=BC ,DAE CBF ∠=∠∵DE x CF x ⊥⊥轴轴∴DEA CFB ∠=∠90=在DEA △与CFB 中DAE CBF DEA CFB AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴DEA CFB ≅∴AE=BF∵AE 是点D 横坐标的值,AE=2∴AF=AB+BF=7∴点C 的横坐标的值为7又∵ DC ∥AB∴点C 的纵坐标的值等于点D 纵坐标的值,即为3∴点C 的坐标为(7,3)故答案为C【点睛】本题解题主要注意的是点D 点C 的纵坐标是相等的,而横坐标可以通过找线段的关系进行分析解答.所以涉及到做垂线构造三角形全等,来找到点D 点C 横坐标的数量关系.6.在平面直角坐标系中,点(-3,-3m +1)在第二象限,则m 的取值范围是( )A .13m < B .13m <- C .13m > D .13m > 【答案】A【解析】【分析】 由题意可知,点在第二象限,则该点的横坐标为负数,纵坐标为正数.即-3m +1大于 0,解不等式,可得到m 的取值范围.【详解】点(-3,-3m +1)在第二象限,则-3m +1 > 0解不等式-3m +1 > 0得-3m > -1 即13m <故答案应为A.【点睛】本题考查了点所在的象限,务必清楚是是平面直角坐标系的四个象限横纵坐标的正负情况,从第一象限到第四象限横纵坐标的正负情况分别为:正正,负正,负负,正负.7.平面直角坐标系中,点P(3,-4)位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】首先清楚的是,平面直角坐标系的四个象限横纵坐标的正负情况,从第一象限到第四象限横纵坐标的正负情况分别为:正正,负正,负负,正负. 然后根据p点横纵坐标正负判断所在象限.【详解】因为平面直角坐标系中,从第一象限到第四象限横纵坐标的正负情况分别为:正正,负正,负负,正负.点p(3,-4),横纵坐标正负情况为正负,所以位于第四象限.故选D.【点睛】本题考查了点的象限,解题关键是知道直角坐标系每个象限点的横纵坐标正负情况,通过横纵坐标的正负情况,判断所在象限.P,则点P在()8.在平面直角坐标系中,已知点()1,2A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据第一象限内点的坐标特征:横坐标大于零,纵坐标大于零,即可解答.【详解】解:点(1,2)P在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限+-.--;第四象限(,)(,)-+;第三象限(,)9.在平面直角坐标系中,点(﹣5,2)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点(﹣5,2)在第二象限.故选:B.【点睛】此题考查象限及点的坐标的有关性质,解题关键在于掌握其性质.10.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2019秒时,点P 的坐标是( )A .(2018,0)B .(2019,-1)C .(2019,1)D .(2018,-1) 【答案】B【解析】【分析】 由题意可算出P 点1秒所走的长度,再算出P 点所走的路径也就是每个半圆的长度,然后求出运动时间为1秒、2秒时点P 的坐标,找出规律即可求出答案.【详解】解:半径为1个单位长度的半圆的周长为1π2π2=, ∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度, ∴点P 每秒走12个半圆, 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,−1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,以上可以得出P点横坐标每秒加1,纵坐标4个一循环分别是:1,0,﹣1,0∵2019÷4=5043,∴第2019秒时P点坐标是(2019,−1),故选:B.【点睛】本题考查了平面直角坐标系下的规律探究题目,做此类题目时,可先将前几个点P的坐标求解出来,之后根据这几个点的坐标寻找规律,注意考虑点的坐标所在的象限.。
七年级下册数学《平面直角坐标系》坐标点 知识点整理
七年级下册数学《平面直角坐标系》坐标
点知识点整理
七年级下册数学《平面直角坐标系》坐标点知识点整理
一、坐标点的定义和表示方法
- 坐标点是指平面上的一个点,由x和y两个数值表示。
- 常用的表示方法是将x值和y值以括号的形式写在一起,如(3, 5)。
二、确定坐标点的方法
1. 线段法
- 通过线段在坐标轴上的位置确定坐标点。
- 在x轴上移动x个单位,在y轴上移动y个单位。
2. 有向线段法
- 在坐标轴上画出有向线段,确定起点和终点的坐标。
- 起点坐标和终点坐标分别表示为(x1, y1)和(x2, y2)。
3. 分量法
- 将向量的水平和垂直分量分别表示为x和y的值,得到坐标点的坐标。
三、坐标点的位置关系
1. 同一象限
- 如果两个坐标点的x和y的值都具有相同的符号,则这两个点在同一象限。
2. 不同象限
- 如果两个坐标点的x和y的值具有不同的符号,则这两个点在不同象限。
3. 坐标点的位置关系
- 坐标点A(x1, y1)与坐标点B(x2, y2)的x和y的值的比较结果决定了点A和点B的位置关系,
如A在B的左边、右边、上面或下面。
四、坐标点的运算
1. 坐标点之间的加法运算
- 将两个坐标点的x和y值分别相加,得到新的坐标点。
2. 坐标点的相反数
- 一个坐标点的x和y值分别取相反数得到的坐标点与原坐标点关于原点对称。
以上是关于七年级下册数学《平面直角坐标系》坐标点的知识点整理,希望对学生们的研究有所帮助。
最新人教版七年级数学下册第7章平面直角坐标系复习教学设计
平面直角坐标系复习教学目标:1.能准确画出平面直角坐标系,由点的位置写出坐标,由点的坐标确定点的位置.掌握特殊位置点的坐标特征,并能用坐标表示平移变换.2.会建立适当的平面直角坐标系,用坐标表示地理位置.3.通过观察、尝试、交流,提高学生数形结合思想,培养学生归纳,整理所学知识和应用数学的意识.教学重点:1.准确确定平面内点的位置和坐标,并能进行综合应用.2.根据实际问题建立适当的平面直角坐标系,并解决实际问题教学难点:1.正确运用坐标特征解决实际问题.2.平面直角坐标系的实际应用.教学方法:启发、讨论、交流.教具准备:多媒体课件.教学过程:一、创设情景,导入新课这是一张某市旅游景点示意图,我们以中心广场所在水平线为横轴,以中心广场所在铅垂线为纵轴建立平面直角坐标系,你们能说出各景点的坐标吗?平面直角坐标系是确定平面内点的坐标的重要工具,用它可以解决很多实际问题,本节课我们大家一起来复习“平面直角坐标系”这一章.(由一个具体实例引出课题,可激发学生的兴趣,创造积极的求知氛围)二、师生互动,构建知识框架1.有序数对:有序数对是指______的两个数组成的数对,它的表示形式是(a,b).2.平面直角坐标系的意义:在平面内,两条具有、并且______的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴叫做______或_______,取向______方向为正方向,竖直的数轴叫做______或_______,取向______方向为正方向,横轴与纵轴的交点叫做平面直角坐标系的______,平面直角坐标系的两条数轴把坐标平面分成四个象限,这两条数轴的正方向的所夹的象限叫做第______象限,其它三个象限按逆时针方向依次叫做第______、______、______象限,坐标轴不属于任何象限.注意:(1)组成平面直角坐标系的四个要素:①在同一平面内;②两条数轴;③互相垂直;④有公共原点.(2)两个规定:①正方向的规定:横轴取向右为正方向,纵轴取向上为正方向;②两条数轴单位长度规定:一般情况下,横轴与纵轴单位长度相同,为了实际需要有时横轴与纵轴单位长度可以不同.3.坐标平面内点的坐标的符号特征(填“+”或“-”):4.特殊点的坐标性质:(1)平行于坐标轴直线上的点的坐标:平行于x轴的直线上的各点的________相同,_______不同;平行于y轴的直线上的各点的_________相同,__________不同;(2)点P(x,y)在第一、三象限的角平分线上,则,P(x,y)在第二、四象限的角平分线上,则;(3)对称点的坐标:点P(a,b)关于x轴对称的点为_________,点P(a,b)关于y轴对称的点为__________;(4)点到两轴的距离的意义:点P(x,y)到x轴的距离为_____,到y轴的距离为____;(5)点的坐标与图形平移的关系:一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化,可以简单地理解为:左、右平移纵坐标,横坐标,变化规律是,上下平移横坐标,纵坐标,变化规律是.5.用坐标表示地理位置的一般过程:(1);(2);(3).(学生独立思考后与同伴交流各自的答案,学生代表发言,教师纠正学生出现的问题.)评析:复习时以点的坐标特征为主线,把全章知识系统化,条理化,全面化,以便于应用,同时也培养了学生的归纳概括能力.三、运用知识,进行基础训练例1在已给的平面直角坐标系中描出下列各点,并指出各点所在的象限或坐标轴.A(2,3),B(-2,-3),C(4,-3),D(1.5,0),E(-1,5),F(0,-2),G(0,0).练习1:1.点A(-3,4)在第象限,点B(2,-5)在第象限;2.如果点A( a,b)在第四象限,那么点B(b,-a)在第象限;若C(x,y)满足xy=0,则点C一定在;(根据点的坐标特征确定点的位置)(学生通过描点,加深了对平面直角坐标系和坐标的认识,为解决后面的问题作好铺垫)3.已知点P(1+2a,3-a)在x轴上,则点P的坐标为;4.已知线段AB∥y 轴,且A(-2,3),AB =5,那么点B的坐标是;5.若点P( 2a+5,4a-3)在第一、三象限的角平分线上,则点P的坐标为;6.已知点P( a-4,2-3a)在二、四象限的角平分线上,则点P的坐标为;(根据特殊位置点的坐标特征确定点的坐标)7.在平面直角坐标系中,若点P在第二象限,点P到x轴的距离是3,到y轴的距离是2,则点P的坐标是;(根据点的坐标的几何意义确定点的坐标)8.已知点P(2,-3)先向左平移3个单位长度,再向上平移5个单位长度得到点P′,则点P′坐标为;(根据点的平移变换与坐标变化规律确定点的坐标)9.点P(3,-2)关于y 轴对称点的坐标是.(根据对称点坐标的规律确定点的坐标)评析:这些题型不仅对所学知识能进一步理解和应用,而且也提高了学生用数学知识解决问题的能力.例2如图是某市部分平面简图(图中小正方形的边长代表100 m长),请建立适当的平面直角坐标系,并写出各地的坐标.(学生在自己设计的活动中体验怎样建立平面直角坐标系,训练学生数学表达能力,也给学生极大的创造空间,有利于学生个性发展)四、拓宽知识,实现知识迁移师:平面直角坐标系是建立图形和数量关系的桥梁,反映了数学中重要的思想方法——数形结合,下面我们以图形面积为例说明怎样用数形结合思想、转化思想解决有关问题.例3在平面直角坐标系中,△ABC的顶点都在网格点上.(1)平移△ABC,使得点C与坐标原点O重合,请画出平移后的△A′B′C′;(2)写出A、B两点对应点A′、B′的坐标;(3)求△A′B′C′的面积.(学生自己动手画图,作适当的辅助线,将所求图形的面积转化为规则图形的面积差来求,然后同伴相互交流)评析:学生在做数学的过程中掌握了一些数学思想方法,积累了数学解题经验,感受到了数学的应用价值.练习21.在平面直角坐标系中,点P(m2+1,-4)在象限.2.已知点A(a,-5),B(8,b),根据下列要求,确定a,b的值:(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB∥x轴;(4)A,B两点在第一,三象限的平分线上.3.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.4.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(2,1),图书馆位置坐标为B(﹣1,﹣2),解答以下问题:(1)在图中试找出坐标系的原点,并建立直角坐标系;(2)若体育馆位置坐标为C(1,﹣3),请在坐标系中标出体育馆的位置;(3)顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.五、师生小结,概括本章内容通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会.(通过学生自己总结,加强学生对复习课的认识和学习方法的掌握)六、布置作业,拓展思维空间1.书本P84第1,2,4题;2.请你绘制一幅学校平面分布图,并用坐标表示.(强化用坐标表示地理位置的实际应用).。
关于原点对称点的坐标特点
关于原点对称点的坐标特点原点对称点是在平面直角坐标系中存在的一种特殊点,其特点可以通过以下几个方面进行描述:1.定义:原点对称点是指与原点关于其中一直线对称的点。
对于平面直角坐标系来说,原点是指坐标轴的交点,即(0,0)。
2.坐标特点:设原点对称点的坐标为(x,y),则可以得出以下关系:对于任意一点(x,y),其对称点为(-x,-y)。
也就是说,原点对称点的坐标的横坐标和纵坐标分别与原点对称点的横坐标和纵坐标相反。
3.图形特点:原点对称点对于图形的对称性起到了重要的作用。
以平面直角坐标系为例,如果一个图形是对称的,那么它的每个点都可以找到一个与之关于原点对称的点。
对称性可以体现在几何图形的对称轴上,如直线、平面、曲线等。
4.函数特点:在数学的函数中,原点对称点具有一些特殊性质。
例如,对于一个函数f(x),若f(x)在x=a处取值为b,则f(-x)在x=-a处也取值为b。
这意味着函数的图像关于y轴对称时,也会关于原点对称。
5.性质特点:原点对称点还具有一些其他的性质特点。
首先,由于原点对称点的坐标的横坐标和纵坐标相反,所以它们之间的距离是相等的。
其次,它们之间的直线斜率也是相等的。
此外,两点连线与坐标轴之间的夹角和其对称点连线与坐标轴之间的夹角也是相等的。
6.应用特点:原点对称点的性质在实际应用中具有重要意义。
例如,在物理学中,物体的质心是各个质点的平均位置,质心关于原点对称点的坐标就是物体的质心。
在工程中,了解原点对称点的特点可以帮助我们设计对称的结构,提高结构的稳定性。
总之,原点对称点是平面直角坐标系中一种特殊的点,具有一系列独特的坐标特点。
通过对原点对称点的特点进行深入地了解,我们可以更好地用数学的语言描述图形的对称性,进一步分析函数的性质,并在实际应用中灵活运用这些性质。
七年级下册数学《平面直角坐标系》坐标系 知识点整理
平面直角坐标系一、本节学习指导本节把重点放在几个象限内点的表示方法上,把四个象限里点的的符号牢牢的记在脑子里。
然后做一些相关练习题就可以掌握,这一节属于比较简单的章节。
二、知识要点1、坐标数轴:规定了原点、正方向、单位长度的直线叫数轴。
注意:1、数轴上的点可以用一个数来表示,这个数叫这个点在数轴上的坐标。
2、数轴上的点与实数(包括有理数与无理数)一一对应,数轴上的每一个点都有唯一的一个实数与之对应。
平面直角坐标系:由互相垂直、且原点重合的两条数轴组成。
横向的是x轴,纵向的是y轴。
说明:平面直角坐标系上的任一点,都可用一对有序实数对来表示,这对有序实数对就叫这点的坐标,如上图点A的坐标用(2,2)这有序实数来表示,(即是用有顺序的两个数来表示,注:x在前,y在后,不能更改),坐标平面内的点与有序实数对是一一对应的,每一个点,都有唯一的一对有序实数对与之对应。
【重点】2、象限及坐标平面内点的特点四个象限:如图,平面直角坐标系把坐标平面分成四个象限,从右上部分开始,按逆时针方向分别叫第一象限、第二象限、第三象限和第四象限。
【重点】注:1、坐标轴(x轴、y轴)上的点不属于任何一个象限。
如上图,点B(4,0)和点C(0,-2)不在任何象限。
坐标平面内点的位置特点:①、坐标原点的坐标为(0,0);②、第一象限内的点,x、y同号,均为正;③、第二象限内的点,x、y异号,x为负,y为正;④、第三象限内的点,x、y同号,均为负;⑤、第四象限内的点,x、y异号,x为正,y为负;⑥、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0 (表示一条直线)【重点】⑦、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0 (表示一条直线)【重点】例:若P(x,y),已知xy>0,则P点在第______象限;已知xy<0,则P点在第_____象限。
分析:xy>0说明x,y同号,所以是在第一或第三象限,xy<0说明x,y异号,所以是在第二或第四象限点到坐标轴的距离:坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离。
平面直角坐标系找规律技巧
平面直角坐标系找规律技巧在平面直角坐标系中,我们经常需要找出一些规律或者数学关系。
这些规律和关系可以帮助我们解决各种数学问题,如求解方程、求导、求极值等等。
下面将介绍一些常用的找规律技巧,帮助大家更好地理解和应用平面直角坐标系。
1. 求点的对称点在平面直角坐标系中,我们可以通过找出点的对称点来确定一些规律。
对称点的概念是指平面上的两个点关于某一直线对称,也就是说,如果点A关于直线L对称于点B,那么点B也关于直线L对称于点A。
例如,在坐标系中,点A(2, 3)关于x轴对称于点C(2, -3),关于y 轴对称于点D(-2, 3),关于原点对称于点E(-2, -3)。
通过找出点的对称点,我们可以发现一些规律,例如对称点的横坐标相等,纵坐标互为相反数等等。
2. 利用直线的性质在平面直角坐标系中,直线是一个重要的概念,我们可以通过直线的性质来找出一些规律。
例如,两条平行线的斜率相等,两条垂直线的斜率互为相反数。
对于一条直线的方程y = kx + b,其中k为斜率,b为截距。
我们可以通过观察斜率k的值来得到一些规律。
例如,当k>0时,直线向右上方倾斜;当k<0时,直线向右下方倾斜;当k=0时,直线平行于x轴等等。
3. 利用图形的对称性在平面直角坐标系中,图形的对称性也可以帮助我们找出一些规律。
例如,一个图形关于某一直线对称,那么该直线也是该图形的对称轴。
通过观察图形的对称性,我们可以发现一些规律。
例如,正方形的对角线相等,矩形的对边相等,圆的任意两条半径相等等等。
利用图形的对称性,我们可以更好地理解和应用平面几何的知识。
4. 利用坐标系的旋转在平面直角坐标系中,我们可以通过旋转坐标系来找出一些规律。
旋转坐标系是指将整个坐标系绕某一点或某一直线旋转一定角度,从而改变坐标系的方向和位置。
通过旋转坐标系,我们可以将一些复杂的问题简化为更简单的问题。
例如,如果一个图形在旋转坐标系中变为一个直线,那么我们可以通过直线的性质来求解问题。
七年级数学平面直角坐标系典型例题及答题技巧
七年级数学平面直角坐标系典型例题及答题技巧单选题1、点A(−3,−5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,−8)B.(1,−2)C.(−6,−1)D.(0,−1)答案:C解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.解:点A的坐标为(−3,−5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:−3−3=−6,纵坐标为:−5+4=−1,即(−6,−1).故选:C.小提示:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.2、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为()A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)答案:D解析:点P在y轴上则该点横坐标为0,据此解答即可.∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.3、在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)答案:B解析:在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选B.小提示:本题运用了点平移的坐标变化规律,关键是把握好规律.4、下面四个点位于第四象限的是()A.(−1,2)B.(−2,−2)C.(2,5)D.(6,−2)答案:D解析:根据直角坐标系中,不同象限内点的坐标特点,依次对四个选项进行判断即可求解.A.(−1,2),因为-1<0,2>0,所以(−1,2)在第二象限,故A不符合题意B.(−2,−2),因为-2<0,所以(−2,−2)在第三象限,故B不符合题意C.(2,5),因为2>0,5>0,所以(2,5)在第一象限,故C不符合题意D.(6,−2),因为6>0,-2<0,所以(6,−2)在第四象限,故D符合题意本题考查了直角坐标系中不同象限内点的坐标特点,第四象限内的点,横坐标大于零,纵坐标小于零.5、以下能够准确表示宣城市政府地理位置的是()A.离上海市282千米B.在上海市南偏西80°C.在上海市南偏西282千米D.东经30.8°,北纬118°答案:D解析:根据点的坐标的定义,确定一个位置需要两个数据解答即可.解:能够准确表示宣城市政府地理位置的是:东经30.8°,北纬118°.故选:D.小提示:本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.6、在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)答案:A解析:点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.7、某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是( )A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排答案:C解析:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.故某班级第3组第4排位置可以用数对(3,4)表示,则数对(1,2)表示的位置是第1组第2排,故选C.8、观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按这些规律,第50个有序数对是()A.(3,8)B.(4,7)C.(5,6)D.(6,5)答案:C解析:不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,根据此规律即可知第50个有序数对.观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,∵1+2+3+4+5+6+7+8+9=45,∴第46、47、48、49、50个有序数对依次是(1,10)、(2,9)、(3,8)、(4,7)、(5,6).所以C选项是正确的.小提示:本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.填空题9、如图是中国象棋棋盘的一部分,如果我们把“馬”所在的位置记作(2,1),“卒”所在的位置就是(3,4),那么“相”所在的位置是____________.答案:(5, 3) .解析:马在第2列第1行,表示为(2,1),“卒”所在的位置就是(3,4),可知数对中前面的数表示的是列,后面的数表示的是行.据此进行解答.故答案为(5, 3)由已知可得:数对中前面的数表示的是列,后面的数表示的是行.所以,“相”所在的位置是(5, 3).小提示:本题主要考查了学生用数对表示位置的知识.10、点A的坐标是(2,﹣3),将点A向上平移4个单位长度得到点A',则点A'的坐标为_____.答案:(2,1).解析:将点A的纵坐标加4,横坐标不变,即可得出点A′的坐标.解:将点A(2,﹣3)向上平移4个单位得到点A′,则点A′的坐标是(2,﹣3+4),即(2,1).故答案为(2,1).小提示:本题考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.11、与点(2,−7)关于y轴对称的点的坐标为_______,关于y=−1对称的点的坐标为_______.答案:(−2,−7)(2,5)解析:关于y轴对称的点的坐标特征是:纵坐标不变,横坐标变为原数的相反数;关于y=−1对称的点的坐标特征是:横坐标不变,纵坐标关于y=−1对称,据此解题.解:点(2,−7)关于y轴对称的点的坐标为(−2,−7),关于y=−1对称的点的坐标为(2,5),所以答案是:(−2,−7);(2,5).小提示:本题考查直角坐标系、关于y轴对称的点的坐标等知识,是基础考点,掌握相关知识是解题关键.12、对于两个非零实数x,y,定义一种新的运算:x∗y=ax +by.若1∗(−1)=2,则(−2)∗2的值是__.答案:-1解析:根据新定义的运算法则即可求出答案.∵1*(-1)=2,∴a1+b−1=2,即a-b=2∴原式=a−2+b2=−12(a-b)=-1故答案为-1.小提示:本题考查代数式运算,解题的关键是熟练运用整体的思想.13、请写出一个在第三象限内的点的坐标:__________(只写一个).答案:(−1,−1)解析:根据第三象限内的点的横坐标和纵坐标都是负数直接写出即可.解:因为第三象限内的点的横坐标和纵坐标都是负数,故坐标可以是(−1,−1)(答案不唯一).小提示:本题考查了平面直角坐标系内点的坐标的特征,解题关键是熟知在不同象限的点的坐标的符号特征.解答题14、已知点P(2a−2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ//y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2020+2020的值.答案:(1)P(−12,0);(2)P(4,8);(3)2021解析:(1)根据x轴上点的坐标特征:纵坐标为0,列出方程即可求出结论;(2)根据与y轴平行的直线上两点坐标关系:横坐标相等、纵坐标不相等即可求出结论;(3)根据题意可得:点P的横纵坐标互为相反数,从而求出a的值,即可求出结论.解:(1)若点P在x轴上,∴a+5=0解得:a=-5∴P(−12,0);(2)∵点Q的坐标为(4,5),直线PQ//y轴∴2a−2=4解得:a=3∴P(4,8);(3)∵点P在第二象限,且它到x轴、y轴的距离相等∴2a−2+a+5=0解得:a=-1∴a2020+2020=(−1)2020+2020=2021小提示:此题考查的是根据题意,求点的坐标,掌握x轴上点的坐标特征、与y轴平行的直线上两点坐标关系和点到x 轴、y轴的距离与坐标关系是解题关键.15、适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.(1)看图案像什么?(2)作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?答案:(1)“鱼”;(2)向左平移2个单位.解析:(1)描点根据顺序连线即可.(2)根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.解:(1)像“鱼”.(2)纵坐标不变,横坐标减2,即向左平移两个单位,根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.小提示:本题考查直角坐标系中描点,平移作图,细心画图即可.。
第七章 平面直角坐标系 核心素养整合与提升-2022-2023学年七年级下册初一数学(人教版)
第七章平面直角坐标系核心素养整合与提升-2022-2023学年七年级下册初一数学(人教版)1. 引言在初中数学中,学习平面直角坐标系是非常重要的一部分。
平面直角坐标系是用来描述平面上点的位置关系的一种工具,它由两个数轴组成,分别称为x轴和y 轴,它们相交于一个点,该点被称为原点。
平面直角坐标系可以帮助我们更好地理解和解决各种与平面上点的位置有关的问题。
本文将对第七章的内容进行整合与提升,旨在帮助初一学生提高核心素养,并更好地应用平面直角坐标系解决实际问题。
2. 平面直角坐标系的基本概念平面直角坐标系由x轴和y轴组成,相交于原点O。
x轴和y轴上的点分别称为x轴上的点和y轴上的点。
平面上的任意一个点都可以用一个有序数对来表示,该数对称为坐标。
在平面直角坐标系中,x轴上的点的坐标只有一个数,即x坐标;y轴上的点的坐标也只有一个数,即y坐标。
3. 坐标的表示方法3.1 笛卡尔坐标表示法在平面直角坐标系中,使用笛卡尔坐标表示法来表示一个点的坐标。
例如,点A的坐标是(2, 3),其中2表示x坐标,3表示y坐标。
3.2 齐次坐标表示法除了笛卡尔坐标表示法外,还可以使用齐次坐标表示法来表示一个点的坐标。
齐次坐标表示法中,一个点的坐标由三个数字表示,分别是x坐标、y坐标和z坐标。
4. 平面直角坐标系的性质4.1 对称性平面直角坐标系具有对称性。
例如,x轴上一点的坐标是(x, y),那么它关于原点的对称点的坐标是(-x, y);y轴上一点的坐标是(x, y),那么它关于原点的对称点的坐标是(x, -y)。
4.2 距离公式在平面直角坐标系中,两个点A(x₁, y₁)和B(x₂, y₂)之间的距离可以使用距离公式来计算。
距离公式如下:AB = √((x₂ - x₁)² + (y₂ - y₁)²)5. 平面直角坐标系的应用5.1 点的坐标确定在平面直角坐标系中,可以根据题目给出的条件确定一个点的坐标。
课件 平面直角坐标系(2)——《关于直线x=a,y=b和任意点对称的点的坐标特征》
析式; (3)若该抛物线在-2<x<-1这一段位于直线 l 的上方,并且在
2<x<3这一段位于直线AB的下方,求该抛物线的解析式.
难点突破
解决坐标系中和对称有关的问题。
难点突破
;(3, 2)
. (3,0)
重点讲解
总结已知点关于直线x=a、y=b或点(a,b)对称的点 的坐标变化规律。
重点讲解
1.已知点P(1,2),则
①点P关于直线 x a 对称的点的坐标是
②点P关于直线 y b 对称的点的坐标是
③点P关于 Q(a,b) 对称的点的坐标是
(2;a 1,2) (1,;2b 2)
B, C’,P’ 所构成的多边形的周长最短?若存在,求t的值,并
说明抛物线平移的方向;若不存在,请说明理由.
归纳提升
掌握已知点关于直线x=a、y=b或点(a,b)对称的
点的坐标特征;解决坐标系中和对称有关的问题。
归纳提升
P( x,y )
关于直线 x 对a 称的点: (2a x,y)
关于直线 y 对b 称的点: (x,2b y) 关于点 (a,b对) 称的点: (2a x,2b y)
1. 已知抛物线 y 1 x2 与3 xx轴 2交于A、B两点(点A在点B的左边),与y轴交
22
于点D,顶点为C,点P与点D关于抛物线的对称轴对称. (1)求点A、B、C、D、P的坐标; (2)现将该抛物线向左或向右平移t(0 t 5) 个单位,点C、P平移后
2
对应的点分别记为C’,P’.问是否存在 t ,使得首尾依次连接 A,
初中数学重难点微课
(易错题)初中数学七年级数学下册第三单元《平面直角坐标系》测试卷(有答案解析)
一、选择题1.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1- 2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- 3.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 4.已知点A 的坐标为(2,1)--,点B 的坐标为(0,2)-,若将线段AB 平移至A B ''的位置,点A '的坐标为(3,2)-,则点B '的坐标为( )A .(3,2)--B .(0,1)C .(1,1)-D .(1,1)- 5.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上6.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .12507.点(),A m n 满足0mn =,则点A 在( ) A .原点 B .坐标轴上 C .x 轴上 D .y 轴上8.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-,D .(0,4)- 9.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .(2021,0)B .(2020,1)C .(2021,1)D .(2021,2) 10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 11.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为( )A .44B .45C .46D .47 12.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 二、填空题13.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________.14.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.15.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __16.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .17.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 18.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.19.在平面直角坐标系中,点A (2,0)B (0,4),作△BOC ,使△BOC 和△ABO 全等,则点C 坐标为________20.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,-1),…,按照这样的运动规律,点P 第17次运动到的点的坐标为__________.三、解答题21.(1)已知点()23,47P x x +-的横坐标减纵坐标的差为6,求这个点到x 轴、y 轴的距离;(2)已知点()23,6A x x --到两坐标轴的距离相等,且在第二象限,求点A 的坐标; (3)已知线段AB 平行于y 轴,点A 的坐标为()2,3-,且4AB =,求点B 的坐标. 22.国庆假期到了,八年级(1)班的同学到某梦幻王国游玩,在景区示意图前面,李强和王磊进行了如下对话:李强说:“魔幻城堡的坐标是()4,2-.”王磊说:“丛林飞龙的坐标是()2,1--.”若他们二人所说的位置都正确.(1)在图中建立适当的平面直角坐标系xOy ;(2)用坐标描述西游传说和华夏五千年的位置.23.如图,在平面直角坐标系中,三角形ABC?的顶点坐标分别是()()A 4,1B 1,1?--,,()C 1,4?-,点()11P x ,y ?是三角形 ABC?内一点,点()11 P x ,y ?平移到点()111 P x 3,1?y +-时;(1)画出平移后的新三角形111?A B C 并分别写出点111?A B C 的坐标;(2)求出三角形111?A B C 的面积24.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()6,6-,()3,0-,()0,3.(1)画出三角形ABC ,并求它的面积.(2)在三角形ABC 中,点C 经过平移后的对应点为()5,4C ',将三角形ABC 做同样的平移得到三角形A B C ''',画出平移后的三角形A B C ''',并写出点A ',B '的坐标. 25.如图,在平面直角坐标系中,△ABC 的顶点都在格点上,点B 的坐标是(1,2).(1)将△ABC 先向右平移3个单位长度,再向下平移2个单位长度,得到△A 'B 'C '.请画出△A 'B 'C '并写出A ',B ′,C '的坐标;(2)在△ABC 内有一点P (a ,b ),请写出按(1)中平移后的对应点P ″的坐标. 26.如图1,在平面直角坐标系中,A (a ,0),C (b ,4),且满足(a+5)2+5-b =0,过C 作CB ⊥x 轴于B .(1)a = ,b = ,三角形ABC 的面积= ;(2)若过B 作BD //AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】直接利用关于x 轴对称点的性质得出答案.【详解】解:点(2,-1)关于x 轴对称的点的坐标为(2,1).故选:A .【点睛】本题考查了关于x 轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键. 2.B解析:B【分析】根据点A 、B 的坐标建立平面直角坐标系,由此即可得.【详解】因为(2,1),(2,3)A B ---,所以将A 向右移2个单位,向下移动1个单位即为坐标原点,建立平面直角坐标系如图所示:由图可知,点C 距x 轴1个单位,距离y 轴2个单位,则(2,1)C -,故选:B .【点睛】本题考查了点坐标,根据已知点的坐标正确建立平面直角坐标系是解题关键.3.A解析:A【分析】过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,运用AAS 证明ACE CBF ∆≅∆得到AE CF =,CE BF =即可求得结论.【详解】解:过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,90AEC CFB ∴∠=∠=︒90A ACE ∴∠+∠=︒,90ACB ∠=︒90ACE BCF ∴∠=∠=︒A BCF ∴∠=∠,在ACE ∆和CBF ∆中,90A BCF AEC CFB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()ACE CBF AAS ∴∆≅∆AE CF ∴=,CE BF =,(2,0)C -,(1,4)B4BF ∴=,1(2)3CF =--=,3AE CF ∴==,4CE BF ==,426OE CE OC ∴=+=+=,()6,3A ∴-故选A .【点睛】此题考查了坐标与图形,证明ACE CBF ∆≅∆得到AE CF =,CE BF =是解决问题的关键.4.C解析:C【分析】根据平移的性质,以及点A ,B 的坐标,可知点A 的横坐标加上了1,纵坐标加上了1,所以平移方法是:先向左平移1个单位,再向上平移3个单位,根据点B 的平移方法与A 点相同,即可得到答案.【详解】∵A (-2,-1)平移后对应点A '的坐标为(-3,2),∴A 点的平移方法是:先向左平移1个单位,再向上平移3个单位,∴B 点的平移方法与A 点的平移方法是相同的,∴B (0,-2)平移后B '的坐标是:(0-1,-2+3)即(-1,1).故选:C .【点睛】本题考查了坐标与图形的变化-平移,解决问题的关键是运用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.5.B解析:B【解析】分析:首先根据勾股定理得出公园A 到超市B 的距离为500m ,再计算出∠AOC 的度数,进而得到∠AOD 的度数.本题∵∠AOB=90°,∴3002+4002=5002,∴公园A 到超市B 的距离为500m∵超市在医院的南偏东25°的方向,∴∠COB=90°−25°=65°,∴∠AOC=90°−65°=25°,∴∠AOD=90°−25°=65°,故选B.6.A解析:A【分析】 根据图形计算发现:第一个三角形的面积是11212⨯⨯=,第二个三角形的面积是12332⨯⨯=,第三个图形的面积是13462⨯⨯=,即第n 个图形的面积是1(1)2n n +,即可求得,△n 的面积.【详解】由题意可得规律:第n 个图形的面积是1(1)2n n +, 所以当n 为50时, n 的面积()150********=⨯⨯+=. 故选:A .【点睛】此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.7.B解析:B【分析】应先判断出所求的点的横纵坐标的可能值,进而判断点所在的位置.【详解】∵点A (m ,n )满足mn=0,∴m=0或n=0,∴点A 在x 轴或y 轴上.即点在坐标轴上.故选B .【点睛】本题主要考查了平面直角坐标系中点在坐标轴上时点的坐标的特点:横坐标或纵坐标为0.8.A解析:A【分析】直接利用关于x 轴上点的坐标特点得出m 的值,进而得出答案.【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选A .【点睛】此题主要考查了点的坐标,正确得出m 的值是解题关键.9.C解析:C【分析】分析点P 的运动规律找到循环规律即可.【详解】解:点P 坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位, 因为2021=505×4+1所以,前505次循环运动点P 共向右运动505×4=2020个单位,剩余一次运动向右走1个单位,且纵坐标为1.故点P 坐标为(2021,1)故选:C .【点睛】本题是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题. 10.B解析:B【分析】根据图象可得移动4次图象完成一个循环,从而可得出42n OA n =,20201010OA =,据此利用三角形的面积公式计算可得.【详解】由题意得:12345(1,0)(1,1)(2,1)(2,0)(3,0),A A A A A 、、、、∴图象可得移动4次图象完成一个循环∴42n OA n =,20201010OA =3202034202011==11010=50522OA A S A A OA ⨯⨯⨯⨯△ 故选B【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.11.B解析:B【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n 时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2016个点是(45,9),所以,第2016个点的横坐标为45.故选:B .12.D解析:D【分析】由点M 、N 的坐标得出点M 、N 的纵坐标相等,据此知直线MN ∥x 轴,继而得出直线MN ⊥y 轴,从而得出答案.【详解】解:∵点M (12,-5)、N (-7,-5),∴点M 、N 的纵坐标相等,∴直线MN ∥x 轴,则直线MN ⊥y 轴,故选:D .【点睛】本题主要考查坐标与图形性质,熟记纵坐标相同的点在平行于y 轴的直线上是解题的关键.二、填空题13.或8【分析】根据点P 到两坐标轴的距离相等得到计算即可【详解】∵点P 到两坐标轴的距离相等∴∴2-a=6或2-a=-6解得a=-4或a=8故答案为:-4或8【点睛】此题考查点到坐标轴的距离:点到x 轴距离解析:4-或8【分析】根据点P 到两坐标轴的距离相等,得到26a -=,计算即可. 【详解】∵点P 到两坐标轴的距离相等, ∴26a -=,∴2-a=6或2-a=-6,解得a=-4或a=8,故答案为:-4或8.【点睛】此题考查点到坐标轴的距离:点到x 轴距离是点纵坐标的绝对值,点到y 轴的距离是点横坐标的绝对值.14.【分析】先分别求出的坐标再归纳类推出一般规律由此即可得【详解】由题意得:观察可知归纳类推得:的坐标为其中n 为正整数∵∴的坐标为即故答案为:【点睛】本题考查了点的坐标的规律性正确归纳类推出一般规律是解 解析:()2016,1【分析】先分别求出123,,,P P P 的坐标,再归纳类推出一般规律,由此即可得.【详解】由题意得:()12,1P ,()23,0P ,()33,0P ,()44,1P ,()56,1P ,()67,0P ,()77,0P ,()88,1P ,,观察可知,()()484,1(0,18,),1,P P P ,归纳类推得:4n P 的坐标为()4,1n ,其中n 为正整数,∵20164504=⨯,∴2016P 的坐标为()4504,1⨯,即()2016,1,故答案为:()2016,1.【点睛】本题考查了点的坐标的规律性,正确归纳类推出一般规律是解题关键.15.1【分析】先根据点坐标关于y 轴对称的变换规律求出ab 的值再代入计算有理数的乘方即可得【详解】点坐标关于y 轴对称的变换规律:横坐标变为相反数纵坐标不变则因此故答案为:1【点睛】本题考查了点坐标关于y 轴 解析:1【分析】先根据点坐标关于y 轴对称的变换规律求出a 、b 的值,再代入计算有理数的乘方即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标变为相反数,纵坐标不变,则5,4b a =-=,因此()()()2020202020204511a b =+=--=, 故答案为:1.【点睛】本题考查了点坐标关于y 轴对称的变换规律、有理数的乘方,熟练掌握点坐标关于y 轴对称的变换规律是解题关键. 16.【分析】根据平移的性质得到对应点的变化即可得到答案【详解】解:的坐标为向右平移了2个单位长度点的坐标为点的坐标为:故答案是:【点睛】此题主要考查了坐标与图形变化正确得出平移距离是解题关键解析:()3,2【分析】根据平移的性质,得到对应点的变化,即可得到答案【详解】解:B 的坐标为(3,0),3OB ∴=,1DB =,312OD ∴=-=,CDE ∴∆向右平移了2个单位长度,点A 的坐标为(1,2),∴点C 的坐标为:(3,2).故答案是:(3,2).【点睛】此题主要考查了坐标与图形变化,正确得出平移距离是解题关键.17.-7或9【分析】根据纵坐标相同可知MN∥x轴然后分点N在点M的左边与右边两种情况求出点N的横坐标即可得解【详解】∵点M(13)与点N(x3)的纵坐标都是3∴MN∥x轴∵MN=8∴点N在点M的左边时x解析:-7或9【分析】根据纵坐标相同可知MN∥x轴,然后分点N在点M的左边与右边两种情况求出点N的横坐标,即可得解.【详解】∵点M(1,3)与点N(x,3)的纵坐标都是3,∴MN∥x轴,∵MN=8,∴点N在点M的左边时,x=1−8=−7,点N在点M的右边时,x=1+8=9,∴x的值是-7或9.故答案为:-7或9.【点睛】本题考查了坐标与图形性质,注意分情况讨论求解.18.(-31)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门建立直角坐标系即可求解【详解】根据右安门的点的坐标为(−2−3)可以确定直角坐标系中原点在正阳门∴西便门的坐标为(−31)故答案解析:(-3,1)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.【详解】根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,∴西便门的坐标为(−3,1),故答案为(−3,1);【点睛】此题考查坐标确定位置,解题关键在于建立直角坐标系.19.(-20)或(24)或(-24)【分析】根据全等三角形的判定和已知点的坐标画出图形即可得出答案【详解】如图所示:有三个点符合∵点A(20)B(04)∴OB=4OA=2∵△BOC与△AOB全等∴OB=解析:(-2,0)或(2,4)或(-2,4)【分析】根据全等三角形的判定和已知点的坐标画出图形,即可得出答案.【详解】如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(-2,0),C2(-2,4),C3(2,4).故答案为(2,4)或(-2,0)或(-2,4).【点睛】本题考查了坐标与图形性质,全等三角形的判定与性质,难点在于根据点C的位置分情况讨论.20.【分析】令P点第n次运动到的点为Pn点(n为自然数)列出部分Pn点的坐标根据点的坐标变化找出规律P4n(4n0)P4n+1(4n+11)P4n+2(4n+20)P4n+3(4n+3-1)根据该规律即17,1解析:()【分析】令P点第n次运动到的点为P n点(n为自然数).列出部分P n点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1) ”,根据该规律即可得出结论.【详解】令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).∵17=4×4+1,∴P 第17次运动到点(17,1).故答案为:(17,1).【点睛】本题考查了规律型中的点的坐标,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键.三、解答题21.(1)这个点到x 轴的距离是1,到y 轴的距离是7;(2)()9,9A -;(3)()2,7-或()2,1--【分析】(1)根据题意列出方程,求解得到x 值,进而得到点P 坐标,即可求出点P 到x 轴、y 轴的距离;(2)根据第二象限的点的坐标特征,表示出点A 到坐标轴的距离,再列方程求解即可; (3)分点B 在A 的上方和点B 在A 的下方讨论求解即可.【详解】解:(1)根据题意得,()()23476x x +--=,解得,2x =,∴()7,1P ,∴这个点到x 轴的距离是1,到y 轴的距离是7;(2)∵()23,6A x x --在第二象限,∴230x -<,60x ->,根据题意得,()236x x --=-,解得,3x =-,∴()9,9A -;(3)∵线段AB 平行于y 轴,点A 的坐标为()2,3-,∴点B 点的横坐标是2-,又∵4AB =,∴当B 点在A 点上方时,B 点的纵坐标是347+=,当B 点在A 点下方时,B 点的纵坐标是341-=-,∴B 点坐标是()2,7-或()2,1--.【点睛】本题考查直角坐标系中点的坐标特征、平行于坐标轴的点的坐标特点、解一元一次方程,解答的关键是理解点的坐标与坐标轴的距离关系,结合图形理解平行于y 轴的点的横坐标相同,灵活运用方程思想和分类讨论的思想.22.(1)见解析;(2)西游传说(3,3),华夏五千年(1,4)--.【分析】(1)以太空飞梭为坐标原点建立平面直角坐标系即可;(2)根据平面直角坐标系中点的坐标的写法写出即可.【详解】解:(1)如图所示:(2)西游传说(3,3),华夏五千年(1,4)--.【点睛】本题考查了坐标确定位置,根据已知条件确定出坐标原点的位置是解题的关键.23.(1)1A 为(1-,2-),1B 为(4,0),1C 为(2,3);图见详解;(2)192. 【分析】(1)根据点P 平移前后的坐标,可得出平移的规律,继而可得出△A 1B 1C 1三个顶点的坐标;(2)利用构图法,求解△A 1B 1C 1的面积.【详解】解:(1)∵点()11P x ,y 平移到点()111 P x 3,1y +-, ∴平移的规律为:向右平移3个单位,向下平移1个单位,∴1A 为(1-,2-),1B 为(4,0),1C 为(2,3); 平移后的三角形如图所示:(2)面积为:111A B C 11119 S 555253322222=⨯-⨯⨯-⨯⨯-⨯⨯=; 【点睛】 本题考查了平移的性质,坐标与图形的变化,要求同学们能根据点平移前后的坐标得出平移规律.24.(1)画△ABC 见解析,△ABC 的面积为272;(2)平移后的△A′B′C′见解析,A′(-1,7),B′(2,1)【分析】(1)直接利用△ABC 所在矩形面积减去周围三角形面积进而得出答案;(2)直接利用平移的性质得出各对应点位置,进而得出答案.【详解】(1)△ABC 如图所示:△ABC 的面积为:ABC 11127666333362222S=⨯-⨯⨯-⨯⨯-⨯⨯=; (2)如图所示:△A′B′C′即为所求,A′(-1,7),B′(2,1);故答案为:A′(-1,7),B′(2,1).【点睛】本题考查了作图-平移变换,熟知图形平移不变性的性质以及正确得出对应点位置是解答此题的关键.25.(1)图见解析,点A',B′,C'的坐标分别为(﹣1,1),(4,0),(2,﹣3);(2)(a+3,b﹣2)【分析】(1)利用点平移的坐标变换规律写出A',B′,C'的坐标,然后描点即可;(2)利用(1)中的平移规律,把P点的横坐标加3,纵坐标减2得到P′点的坐标.【详解】解:(1)如图,△A'B'C'为所作,点A',B′,C'的坐标分别为(﹣1,1),(4,0),(2,﹣3);(2)点P(a,b)平移后的对应点P″的坐标为(a+3,b﹣2).【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.平移中点的坐标变化规律:横坐标左减右加,纵坐标上加下减.26.(1)﹣5,5,20;(2)45°;(3)存在,P (0,6)或(0,﹣2)【分析】(1)根据非负数的性质求出a 、b ,得A 、B 、C 坐标即可解决问题.(2)如图2,过E 作EF ∥AC ,根据平行线的性质和角平分线的定义得结论;(3)存在两种情况:点P 在y 轴的正半轴和负半轴上,设P (0,t ),根据面积差列方程可得t 的值,可得对应点P 的坐标.【详解】(1)∵(a +5)2+5-b =0,又∵(a +5)2≥0,5-b ≥0,∴a =﹣5,b =5,∵CB ⊥x 轴,∴点A 坐标(﹣5,0),点B 坐标(5,0),点C 坐标(5,4),∴S △ABC =12×10×4=20, 故答案为:﹣5,5,20;(2)∵BD ∥AC ,∴∠CAB =∠ABD ,过E 作EF ∥AC ,如图2,∵BD ∥AC ,∴BD ∥AC ∥EF ,∵AE ,DE 分别平分∠CAB ,∠ODB ,∴∠CAE =12∠CAB =12=∠AEF ,∠DEF =∠BDE =12∠ODB , ∴∠AED =∠AEF +∠DEF =12(∠CAB +∠ODB )=1()2ABD ODB ∠+∠=45°; (3)存在,设P (0,t ),分两种情况:①当P 在y 轴正半轴上时,如图3,过P 作MN ∥x 轴,AN ∥y 轴,BM ∥y 轴,则NA=t ,MC=t-4,MN=AB=10,∵S △APC =S 梯形MNAC ﹣S △ANP ﹣S △CMP =S △ABC =20, ∴10(4)55(4)20222t t t t +----=, 解得t =6,②当P 在y 轴负半轴上时,如图4,过P 作MN ∥x 轴,AN ∥y 轴,BM ∥y 轴,则NA=-t ,MC=4-t ,MN=AB=10,∵S △APC =S 梯形MNAC ﹣S △ANP ﹣S △CMP =20∴10(4)5()5(4)20222t t t t -+-----=, 解得t =﹣2,∴P (0,6)或(0,﹣2).【点睛】 本题考查了坐标与图形的性质、非负数的性质、平行线的性质、角平分线的定义、三角形的面积等知识,解题的关键是添加常用辅助线,灵活运用这些知识,学会利用方程的思想思考并解决问题.。
杭州第十四中学七年级数学下册第七单元《平面直角坐标系》基础练习(含答案解析)
一、选择题1.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1- 2.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3 B .()1,3-- C .()1,3- D .()1,3- 3.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 4.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5) 5.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 6.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上 7.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303D .(303038.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3- 9.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2)B .(3,0)C .(0,3)D .(﹣2,0) 10.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( ) A .(2,-4) B .(4,-2) C .(-2,4) D .(-4,2) 11.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 12.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .886 13.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)14.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 15.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒二、填空题16.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.17.在x 轴上方的点P 到x 轴的距离为3,到y 轴距离为2,则点P 的坐标为________. 18.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.19.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.20.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.21.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______22.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.23.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 24.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.25.已知点()24,1P m m +-.()1若点P 在x 轴上,则点P 的坐标为________;()2若点P 在第四象限,且到y 轴的距离是2,则点P 的坐标为________.26.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______.三、解答题27.在平面直角坐标系中,已知(0,1)A ,(2,0)B ,(4,3)C .(1)在给出的平面直角坐标系中画出ABC ∆;(2)已知P 为x 轴上一点,若ABP ∆的面积为2,求点P 的坐标.28.在平面直角坐标系中,有点(),1A a -,点()2,B b .(1)当A ,B 两点关于直线1x =-对称时,求AOB 的面积;(2)当线段//AB y 轴,且3AB =时,求-a b 的值.29.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 4a -﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.(1)a= ,b= ,点B 的坐标为 ;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.30.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N ,则点N 的坐标为(______,______)(用含m ,n 的式子表示)。
「初中数学」轴对称求对称点的坐标.doc
「初中数学」轴对称求对称点的坐标轴对称的妙用之对称点坐标求法在平时的练习或考试中,同学们或许时常遇到这样的问题:在平面直角坐标系中,将某点关于一直线对称(或图形沿直线翻折),求对称点坐标。
本文将此类问题归结为对称点坐标求法,并介绍两种解决此类问题的通法。
【例1】如图,在平面直角坐标系中,已知A(-1,2),B(2,0),C(0,4),求点A关于直线BC的对称点A的坐标.【解法一】(构造K字型)第1步:过点A分别作x轴,y轴的平行线,交对称轴于点F, E,连接AE,AF。
(这样做的目的是构造一个“斜直角”,即∠A‘=90°)第2步:过点A’作y轴的平行线,交AF的延长线于H,过点E作AH的垂线,垂足为K。
(这样做的目的是构造矩形,并在矩形内构造“K字型”相似,即矩形大法)第3步:构图完毕后,接下来是一番计算,首先求出直线BC 的解析式:y=-2x+4,其次分别求出E点,F点坐标,令x=-1,解得y=6,即E(-1,6);令y=2,解得x=1,即F(1,2),接着计算出AF=1+1=2,EA=6-2=4, 且EA:FA=EA’:FA=1:2.(这样做的目的是为“K字型”计算做准备)第4步:万事俱备,只欠东风了。
接下来对“K字型”进行字母表示。
∵△EKA∽△AHF,且相似比为2,∴设FH=a, 则KA’=2a,∵KH=EA=4,∴AH=4-2a,∵EK=2AH,∴EK=8-4a∵EK=AH,且AH=1+1+a∴8-4a=1+1+a,解得a=1.2∴A’的横坐标=1+1.2=2.2 ,A‘的纵坐标为6-2a=3.6 即A’(2.2,3.6)【解法二】(解析法)第1步:求出BC的解析式:y=-2x+4第2步:因为两直线垂直, k1·k2 =–1,这里k1=-2, 所以k2 =0.5,所以设直线AA‘的解析为y=0.5x+m,将A(-1,2)代入,解得m=2.5.即直线AA的解析式为y=0.5x+2.5 第3步:求直线BC与直线AA’的交点P的坐标。
坐标表示轴对称数学知识点归纳
坐标表示轴对称数学知识点归纳坐标表示轴对称数学知识点归纳大家要熟知三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
用坐标表示轴对称小结:1.在平面直角坐标系中①关于x轴对称的点横坐标相等,纵坐标互为相反数;②关于y轴对称的点横坐标互为相反数,纵坐标相等;③关于原点对称的点横坐标和纵坐标互为相反数;④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;⑤关于与直线X=C或Y=C对称的坐标点(x, y)关于x轴对称的点的坐标为_ (x, -y)_____.点(x, y)关于y轴对称的点的坐标为___(-x, y)___.知识点总结:上面的内容要求大家掌握三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
部优:《_平面直角坐标系中的轴对称》教学设计
《平面直角坐标系中的轴对称》教学设计一、教学内容分析我们知道在平面直角坐标系中利用坐标研究图形,要转化为研究图形上的特殊点的坐标,所以要研究轴对称图形,也要先从坐标系中的对称点开始研究. 教师应设置相应的教学活动,引导学生从平面直角坐标系中各象限的坐标符号特征和轴对称的性质两个方面,切实理解点关于x轴或y轴对称的点的坐标,乃至点关于平行于坐标轴的直线对称的点的坐标的变化规律.二、学生分析请看示例:这位学生列出的第(1)问的方程式出现明显的错误,按照他所列的两个等式,可以看出,他认为A,B两点若关于x轴对称,则横纵坐标均互为相反数,与本节课所学的“关于x轴对称的点的横坐标相等,纵坐标互为相反数”相违背. 造成这种错误的原因可能是学生混淆“关于x轴对称”和“关于原点对称”两个不同的图形变换;也有可能是单纯的记忆错误. 但如果在课堂探究环节能够认真地画图和总结,即使记不住结论,也可以在做题的过程中自己操作验证. 这种结论性的命题在数学学习中有很多,只靠记忆并不现实,掌握正确的探究方法才是最关键的,这也是设置本课时的最终目的.三、目标确定1.能够探究并归纳出点关于坐标轴对称的点的坐标变化规律,并能够在坐标系中画出已知图形关于坐标轴对称的图形.2.能够求出点关于平行于坐标轴的直线对称的点的坐标.四、重点难点1.探索点关于x轴或y轴对称的点的坐标变化规律.2.求出点关于平行于坐标轴的直线对称的点的坐标.五、评价设计平面直角坐标系中的轴对称学习评价量表标准等级会求点关于坐标轴对称的点的坐标 A会在坐标系中画出已知图形关于坐标轴的轴对称图形 A会求点关于平行于坐标轴的直线对称的点的坐标 B 六、活动设计教学环节教学活动设计意图教师活动学生活动探究思考教师提问:已知点A(1,2),在平面直角坐标系中确定点A分别关于x轴和y轴对称的点的位置.教师提问:请同学们用上述方法,分别确定B(2,-3), C(-1,4),D(-6,-5),E(0,3),F(2,0)各点关于x轴和y轴对称的点的位置. 并将这些点的对称点的坐标填入下面的表格中.观察表格中这些对称学生思考:如图,设点A关于x轴对称的点为A',根据轴对称的定义,A'的位置可以这样确定:过点A作x轴的垂线,在这条垂线上截取一点A',使x轴恰好是线段AA'的垂直平分线. 则A'的坐标为(1,-2).设点A关于y轴对称的点为A",按同样的方法,我们可以得到A"的坐标为(-1,2).教师在教学的过程中要给学生足够的时间和空间,探索点关于x轴或y轴对称的点的坐标的变化规律,先通过画已知点关于坐标轴的对称点,得出对称点的坐标,并把得到的点的坐标填在表格中,从中发现并总结规律. 学生自己归纳出规律,感受数学的类比思想,的点的坐标特征,我们发现:在平面直角坐标系中,点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y).也就是说,关于x轴对称的点的横坐标相等,纵坐标互为相反数;关于y轴对称的点的横坐标互为相反数,纵坐标相等. 最后由师生一起梳理知识,加深理解.提出问题教师提问:当研究了关于轴和轴对称的点后,我们改变对称轴的位置,看有没有新的发现.问题1:已知下列各点的坐标,A(2,3),B(4,-3),C(1,4),D(-6,-5),E(0,1),F(5,0). 在平面直角坐标系中,分别确定这些点关于直线m:=1的对称点,并将这些点的对称点的坐标填入下面的表格中.学生经过探究发现:在平面直角坐标系中,已知点P(,)与点Q(,).若点P和点Q关于直线=2对称,则1222x x+=,12y y=.若点P和点Q关于直线=3对称,则1232x x+=,12y y=.若点P和点Q关于直线=-1对称,则1212x x+=-,12y y=.若点P和点Q关于直在探索完点关于x轴或y轴对称的点的坐标的变化规律的基础之上,继续通过画已知点关于平行于x轴或y轴的直线的对称点,得出对称点的坐标,并把得到的点的坐标填在表格中,从中发现并总结规律,让学生继续感受数学观察这些对称点的坐标和给定的直线m :=1有什么关系呢?我们发现:在平面直角坐标系中,若点P (,)与点Q (,)关于直线m :=1对称,则1222x x+=,12y y =.也就是说,关于直线m :=1对称的两点的横坐标之和的一半等于1,纵坐标不变.若将对称轴改为直线=2,=3,=-1,=-2,请你确定上面各点关于这些直线的对称点的坐标.观察各对称点的坐标和给定的直线=2,=3,线=-2对称,则1222x x +=-,12y y =.的类比思想.=-1,=-2有什么关系呢?可以得到更为一般性的结论:在平面直角坐标系中,若点P (,)与点Q (,)关于直线对称,则122x x a +=,12y y =.仿照问题1的研究方法,探究出问题2的结论.教师提问:由这个结论,我们把“直线x a =”改为“直线y b =”,就可以提出新的问题.问题2:在平面直角坐标系中,若点P (,)与点Q (,)关于直线y b =对称,则P ,Q 两点的坐标有什么特征呢?学生发现结论: 在平面直角坐标系中,若点P (,)与点Q (,)关于直线y b =对称,则12x x =,122y y b +=. 典例分析 例1 △ABC 的三个顶点的坐标分别为A (-4,1),B (-2,-2),C (1,3),分别作出与△ABC 关于x 轴和y 轴对称的图形.学生解答例1:解:如图1,A (-4,1),B (-2,-2),C (1,3)关于x 轴对称的点分别为A'(-4,-1),B'(-2,2),C'(1,-3),依次连接A'B',B'C',C'A',△A'B'C'即为所求.让学生巩固本节课所学的新知,加深对变化规律的理解.教师分析:设△ABC关于x轴对称的图形为△A'B'C',要想确定△A'B'C'的位置,只需要确定A'点,B'点,C'点的位置即可. 所以,我们要先作出A,B,C各点关于x轴对称的点.例2已知点A(2a+b,-1)与点B (5,b-a),在下列条件下求a和b的值. (1)点A,B关于x轴对称;(2)点A,B关于y轴对称;(3)点A,B关于x=3对称;(4)点A,B关于y=2对称.如图2,A(-4,1),B(-2,-2),C(1,3)关于y轴对称的点分别为A"(4,1),B"(2,-2),C"(-1,3),依次连接A"B",B"C",C"A",△A"B"C"即为所求.学生解答例2:学生根据自己的归纳,自主得出结论,并在小组间核对答案并释疑.练习巩固1.如图1,阴影部分组成的图案既是关于x轴对称的图形,又是关于y轴对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别为()通过课堂练习,反馈学生对所学内容是否掌握. 建议用时15分钟.以上均达成者根据本课时量表可以得到C等级.通过检测,评估学生对本课时学习目标和重难点的把握程度,同时以第4题为例,帮助学生回顾A.M(1,-3),N(-1,-3)B.M(-1,-3),N(-1,3)C.M(-1,-3),N(1,-3)D.M(-1,3),N(1,-3)2.已知点A(2x+y,-7)与点B(4,4y-x)关于x轴对称,求x和y的值.3.已知点A(2x+y,-7)与点B(4,4y-x)关于直线x=-1对称,求x,y,AB的值.4.如图,在平面直角坐标系中,直线是第一和第三象限的角平分线. ①由图观察易知点A(0,2)关于直线的对称点A'的坐标为(2,0). 请在图中分别标明B(5,3),C (-2,5)关于直线的对称点B',C'的位置,并写出点B',C'的坐标;本课时的学习方法,类比探究,得到新的结论,形成新的技能.②结合图形观察以上三组点的坐标,你会发现:平面直角坐标系内任一点P (a,b)关于第一和第三象限的角平分线的对称点P'的坐标为______(不证明);归纳总结1.点关于坐标轴对称的点的坐标的变化规律是什么?2.说一说画一个图形关于x轴或y轴对称的图形的方法和步骤.3.点关于平行于坐标轴的直线对称的点的坐标的变化规律是什么?4.点关于坐标轴的角平分线所在的直线对称的点的坐标的变化规律是什么?在本课时的学习过程中,请同学们总结探究的历程,为下一阶段“一次函数”的学习过程中,如何探究点在教师的引导下,学生回顾反思本节课所掌握的知识、技能和思想方法.通过问题,评估学生对本节课知识的落实情况,同时引导学生体会研究问题的策略和知识背后反映的数学思想.七、板书设计平面直角坐标系中的轴对称例1结论:……结论:……八、练习诊断A级1.若点(5,4)关于x轴对称的点的坐标是(5,m),则m的值是_________.2.点(2,b)与点(a,-4)关于y轴对称,则a的值是_________,b的值是_________.3.已知点A(3,1),B(-1,2),C(0,4),分别写出这三个点关于x轴和y轴对称的点的坐标.4.已知点A(2a+b,-1)与点B(5,3b-a),在下列条件下求a和b的值.(1)点A,B关于x轴对称;(2)点A,B关于y轴对称.5.已知点A(-m+3,2m+1),在下列条件下求m的取值范围.(1)关于x轴对称的点在第三象限;(2)关于y=1对称的点在第四象限.6.△ABC的三个顶点的坐标分别为A(0,3),B(-3,1),C(2,0),作出与△ABC关于x轴对称的图形.B级1.已知点A(3,1),B(-1,2),C(0,4),分别写出这三个点关于直线x=-3,直线y=4对称的点的坐标.2.已知点A(2a+b,-1)与点B(5,3b-a),在下列条件下求a和b的值.(1)点A,B关于x=3对称;(2)点A,B关于y=2对称.3.分别作出△PQR关于直线x=1和直线y=-1对称的图形.4.如图所示,在正方形网格上有一个三角形ABC.(1)作△ABC关于直线MN对称的图形(不写作法);(2)若网格上的最小正方形的边长为1.求△ABC的面积.C级1.如图,在平面直角坐标系中,已知点A(8,0),点B(3,0),点C是点A关于点B 的对称点.(1)求点C的坐标;(2)如果点P在y轴上,过点P作直线∥x轴,点A关于直线对称的点是点D.那么当△BCD的面积等于10时,求点P的坐标.2.如图,在平面直角坐标系中,直线过点M(3,0),且平行于轴.(1)如果△ABC的三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于轴对称的图形是△,△关于直线对称的图形是△. 写出△的三个顶点的坐标;(2)如果点P的坐标是(-,0),其中0<<3,点P关于轴对称的点是点,点关于直线对称的点是. 求的长.九、反思与改进本课时从观察和实验入手,归纳得出平面直角坐标系中,一个点关于x轴或y轴对称所引起的点的坐标的变化规律,并进一步探讨了如何利用这种坐标的变化规律,在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形;在此基础上,进一步探究一个点关于特殊位置的直线对称的点的坐标的变化规律,体现了轴对称在平面直角坐标系中的应用,以及数形结合的数学思想. 通过本课时的学习,让学生感受图形轴对称变换之后的坐标的变化,从而体验数和形的紧密结合,把坐标思想和图形变换的思想联系起来,为后面函数的学习打下坚实的基础,同时让学生在应用规律的过程中,进一步加深对规律的理解,形成善于总结和归纳的良好习惯.。
平面直角坐标系如何在平面直角坐标系中进行点的坐标计算
平面直角坐标系如何在平面直角坐标系中进行点的坐标计算在平面直角坐标系中进行点的坐标计算是数学中的基础操作之一。
通过平面直角坐标系,我们可以准确地描述和定位平面上的点的位置。
本文将介绍平面直角坐标系的基本概念和使用方法,以及点的坐标计算的步骤和技巧。
一、平面直角坐标系的基本概念平面直角坐标系是由两条相互垂直的坐标轴组成,一般分别称为x轴和y轴。
它们的交点称为原点O,位于原点O的x轴正方向称为正向,y轴正方向也称为正向。
x轴和y轴的正向是可以任意选择的,通常选择向右和向上为正向。
二、点的坐标表示方法在平面直角坐标系中,每个点都可以通过一个有序数对(x,y)表示,其中x表示点在x轴上的投影位置,y表示点在y轴上的投影位置。
坐标的取值可以是实数,也可以是整数或分数。
三、点的坐标计算方法在进行点的坐标计算时,可以使用以下基本运算规则:1. 两点之间的距离公式:设两点A(x1, y1)和B(x2, y2),则AB的距离d等于√[(x2-x1)² + (y2-y1)²]。
2. 点的对称性:如果点A(x, y)关于x轴对称,则对称点为A'(x, -y);如果点A(x, y)关于y轴对称,则对称点为A'(-x, y);如果点A(x, y)关于原点对称,则对称点为A'(-x, -y)。
3. 平移:点A(x, y)沿x轴方向平移a个单位,y坐标不变,新点为A'(x+a, y);点A(x, y)沿y轴方向平移b个单位,x坐标不变,新点为A'(x, y+b)。
4. 缩放:点A(x, y)的坐标同时乘以k,则新点的坐标为A'(kx, ky)。
四、点的坐标计算示例下面通过几个示例说明如何在平面直角坐标系中进行点的坐标计算。
示例1:已知点A(3, 4),求点A的对称点B关于x轴、y轴和原点的坐标。
解:对称点B关于x轴的坐标为B(3, -4);关于y轴的坐标为B(-3, 4);关于原点的坐标为B(-3, -4)。
数学平面直角坐标系的知识点
数学平面直角坐标系的知识点数学平面直角坐标系是我们学习数学中的一个重要概念,它为我们解决各种几何和代数问题提供了强大的工具。
在这篇文章中,我们将深入探讨数学平面直角坐标系的基本概念及其应用。
一、数学平面直角坐标系的定义数学平面直角坐标系是由平面上的两条相互垂直的直线所确定的。
我们将这两条直线分别称为x轴和y轴,并将它们交点的位置定义为原点O。
这个坐标系能够将平面上的每个点唯一地表示为一个有序的数对(x, y),其中x代表点在x轴上的位置,y代表点在y轴上的位置。
二、数学平面直角坐标系的要素数学平面直角坐标系包括原点、x轴、y轴以及四个象限。
原点是坐标系的起点,位于坐标系的中心。
x轴沿着水平方向延伸,正方向是从左向右。
y轴沿着垂直方向延伸,正方向是从下向上。
四个象限分别是第一象限、第二象限、第三象限和第四象限,右上方为第一象限,右下方为第四象限,左上方为第二象限,左下方为第三象限。
三、数学平面直角坐标系的性质1. 对称性:数学平面直角坐标系是关于原点O对称的。
即,如果一个点的坐标为(x, y),那么与它关于原点的对称点的坐标为(-x, -y)。
2. 距离公式:在坐标系中,两点之间的距离可以使用距离公式来计算。
假设点A的坐标为(x1, y1),点B的坐标为(x2, y2),那么点A和点B之间的距离d可以用下面的公式表示:d = √[(x2 - x1)² + (y2 - y1)²]3. 圆方程:在坐标系中,圆的方程可以表示为(x - a)² + (y - b)² = r²,其中(a, b)为圆心的坐标,r为半径的长度。
四、数学平面直角坐标系的应用1. 几何应用:数学平面直角坐标系可以用来解决各种几何问题,例如计算两点之间的距离、判断两条线段是否相交等。
2. 代数应用:数学平面直角坐标系可以用来解决各种代数问题,例如表示线性方程、二次方程等。
我们可以通过在坐标系中绘制方程的图像来观察方程的性质和解的情况。
平面直角坐标系x轴对称直线方程
平面直角坐标系x轴对称直线方程平面直角坐标系中,直线是几何学中的基本概念之一。
直线是由无数个点组成的,这些点在坐标系中呈现出一条连续的轨迹。
而直线方程则是用来描述直线在坐标系中的位置和性质的数学表达式。
本文将围绕直线方程展开讨论,重点介绍以平面直角坐标系x轴对称的直线方程。
我们来看一下什么是平面直角坐标系x轴对称的直线。
在平面直角坐标系中,x轴对称的直线指的是直线关于x轴对称,即直线上的任意一点(x,y)关于x轴的对称点也在直线上。
简单来说,如果直线上存在点(x,y),那么直线上也一定存在点(x,-y)。
针对x轴对称的直线,我们可以得出一般的直线方程形式为y=f(x),其中f(x)是关于x的函数表达式。
在x轴对称的情况下,f(x)中不含有y的项,即f(x)只与x有关。
这样的直线方程也可以称为关于x的显式方程,因为通过该方程可以直接得到直线上任意一点的坐标。
接下来,我们来看一些具体的例子。
例1:直线过原点的情况当直线过原点(0,0)时,直线方程可以简化为y=f(x)。
由于直线是x 轴对称的,所以在直线上存在点(1,1),那么直线上也存在点(1,-1)。
因此,直线方程可以写为y=x或y=-x。
例2:直线不过原点的情况当直线不过原点时,可以通过直线上的一点以及直线的斜率来确定直线方程。
由于直线是x轴对称的,所以可以选择直线上的一点为(1,a),其中a为常数。
这样,直线上也存在点(1,-a)。
假设直线的斜率为k,根据直线的斜率公式可以得到直线方程为y-a=k(x-1)或y+a=k(x-1)。
例3:直线平行于x轴的情况当直线平行于x轴时,我们可以通过直线上的一点来确定直线方程。
假设直线上的一点为(1,b),其中b为常数。
由于直线是x轴对称的,所以直线上也存在点(1,-b)。
因此,直线方程可以写为y=b或y=-b。
平面直角坐标系x轴对称的直线方程可以总结为以下几种形式:1. y=x2. y=-x3. y-a=k(x-1) 或 y+a=k(x-1)4. y=b 或 y=-b需要注意的是,直线方程中的参数a和b可以是任意实数,而斜率k可以是任意有理数或无理数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
简称为直角坐标系。 坐标原点 注意: 坐标轴上的点 不属于任何象限.
第二象限
4 3 2 1
第一象限
-4 -3 -2 -1 O -1 -2 第三象限 -3 -4 -5
1 2 3
4 5 x
第四象限
2、坐标: 在平面直角坐标系中,一对有序实数可以 确定一个点的位置;反之,任意一点的位置 都可以用一对有序实数来表示。这样的有序 实数对叫做点的坐标。 y
5
注意:
坐标轴上的点不 属于任何象限。
第二象限
4 3 2 1
第一象限
4 5 x
-4 -3 -2 -1 O -1 -2 第三象限 -3 -4 -5
1 2 3
第四象限
1、点P(x,y)在第一象限 x>0,y>0。 2、点P(x,y)在第二象限 x<0, y>0。 3、点P(x,y)在第三象限 x<0, y<0。 4、点P(x,y)在第四象限 x>0,y<0。
想一想:分别写出图中点A、B、C、D的坐标。观察图
形,并回答问题 点A与点B的位置有什么特点? (-3,2) C 点A与点B的坐标有什么关系?
y
3
A(3,2)
2
1
点A与点C的位置有什么特点? 点A与点C的坐标有什么关系?-4 点B与点C的位置有什么特点? 点B与点C的坐标有什么关系?
-3
-2 -1
A、平行于 (2,-3) (1 3) x轴的直线上 B (0 (2,-3) -1) 1 C (-2 (2, , 4) -3) D (2,0 -3 ) ) 的点,其纵坐标相同, E (-4 (2, , -5) -3) F (5 (2,-3) -4)
y 5 4 3 2 1 -4 -3 -2 -1 O -1 -2
0 -1 -2 -3 -4
1
2
3
4
x
小结:
D(-3,-2)
B (3,-2)
1、关于x轴对称的点的横坐标相同,纵坐标互为相反数。
2、关于y轴对称的点的纵坐标相同,横坐标互为相反数。 3、关于原点对称的点的横坐标、纵坐标都互为相反数。
动一动
在方格纸上分别描出下列点,看看这些点在什么 位置上,由此你有什么发现?
巩固练习: 1 ,到y 2、点A(3,1)到x轴的距离是 3 ,原点的距离是 轴的距离是 10 。 3、点B(a,b)到原点的距离是
a2 b2
。
4、到x轴的距离为2,到y轴的距离是3的点 (3,2), (3,-2), 有 4 个,它们是: 。 (-3,2), (-3,-2)
巩固练习: 5、细心选一选。
(5,-5)
试一试: 正方形ABCD中,正方形边长为7,点A的坐标 为(-2,-1),写出 B、C 、D的坐标. 解:如图所 示建立直角 坐标系,
则点B的坐标为 (5,-1),点 C的坐标为(5,6), 点D的坐标为 (-2,6)。
y
(-2,6) D
C
(5,6)
O
x
B
A
(5,-1)
点拨:
• 同一点在不同的平面直角坐标系中,其坐 标不同。 • 根据实际需要,可以建适当的平面直角坐 标系。
巩固练习: 1、找出图中各
3
A
y
2 1 -3 -2 -1 O -1 B -2 -3 1 2 D 3 4 x
点的坐标:
A ( -2 , 2)
B ( -3 , -2 ) -3 ) C (2 ,
D ( 3 ,1 ) 结论:
x2 y2
C
思考:
点 P(x,y)到x轴的距离为 y ,到y轴的 各点到坐标轴的距离分别是多少?到原 2 2 距离为 ,到原点的距离是 。 x x y 点的距离是多少?从中你有何收获?
试一试: 正方形ABCD中,A为坐标原点,点B的横坐标为3, 写出B、C、D的坐标. y
解:以点A为坐 标原点,AB所在 的直线为x轴, AD所在的直线为 y轴,如图所示 建立直角坐标系。 则点B的坐标为(3, 0),点C的坐标为 (3,3),点D的 坐标为(0,3)
D(0,3) C
(3,3)
A(O)
B (3,0)
x
试一试:
正方形ABCD中,以正方形的中心O为坐标原点, 点D的坐标为(-5,5),写出A 、B、C的坐标.
y
解:以点0为坐 标原点,如图所 示建立直角坐标 系。 则点A的坐标为 (-5,-5),点B的坐 标为(5,-5),点C 的坐标为(5,5)
D
C
(5,5)
x
O
(-5,-5)
A
B
●
●C ●
两点间的距离=
x1 x2
A
2、平行于y轴的直线上 的点,其横坐标相同,
1
2 D3 4
●B
●
●
5 x
两点间的距离= y1 y2
E
C
●
-3● ● A B -4 -5
●F ●
D
●
F
E
试一试:
各写出5个满足下列条件的点, 并在坐标系中描出它们: (1)横坐标与纵坐标相等; (2)横坐标与纵坐标互为相反数。
小结:
1、点P(x,y)到x轴的距离为 y ,到y轴的距离为 x , 到原点的距离是 x 2 y 2。 2、关于x轴对称的点的横坐标相同,纵坐标互为相反数。 关于y轴对称的点的纵坐标相同,横坐标互为相反数。 关于原点对称的点的横坐标、纵坐标都互为相反数。
反之亦然。 3、平行于x轴的直线上的点,其纵坐标相同,两点间的
距离=
x1 x2
平行于y轴的直线上的点,其横坐标相同,两点间的 距离= y1 y2
3、各象 限坐标 的符号
第二象限
y 5 4 3 2 1
原点的坐标 为(0,0)
第一象限
( -, +)
(+,+)
1 2 3
4 5 x
-4 -3 -2 -1 O -1 -2 第三象限 -3 -4 -5
第四象限
(-,-)(+源自-)注意:x轴上的点的纵坐标 为0,表示为(x,0) y轴上的点的横坐标 为0,表示为(0,y)
(1)下列点中位于第四象限的是( A ) A.(2,-3)B.(-2,-3) C.(2,3)D.(-2,3)
(2)如xy>0,且x+y<0,那么P(x,y)在( C ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 (3)如点P(a,2)在第二象限,那么点Q(-3,a)在( C ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 (4)M(-1,0)、N(0,-1)、P(-2,-1)、Q(5,0)、R(0,-5)、 S(-3,2),其中在x轴上的点的个数是( B ) A.1 B.2 C.3 D.4
y 5 4 3 2 1 1 2 3 4 5 x
小结:
1、一、三象限的角平分线 上的点横坐标等于纵坐标, 可记作:(m,m)
2、二、四象限的角平分线上的 点横坐标与纵坐标互为相反数, 可记作:(m,-m)
-4 -3 -2 -1 O -1 -2 -3 -4 -5
练一练
(1)点M(x,y)在第四象限,且 x 3, y 4 求M点的坐标。 (2)点M(x,y)的坐标满足 x 3, y 4 ,求 M点的坐标。 (3)点M(x,y)的坐标满足到x轴的距离为4, 到y轴的距离为3 ,求M点的坐标。 (4)点M(x,y)在第二象限,且x+y=2,请写出 两个符合条件的M点的坐标。