七年级数学轴对称

合集下载

初中数学轴对称图形知识点加习题总结

初中数学轴对称图形知识点加习题总结

知识点1 轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;这时,我们也说这个图形关于这条直线的轴对称。

知识点2 对称轴的性质1.对称轴是一条直线。

2.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

3.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

4.图形对称例1下面哪些图形是轴对称图形?画出轴对称图形的对称轴。

例2.推理游戏:下面应该是什么图形?知识点3线段垂直平分线定义及其性质定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

性质1.垂直平分线垂直且平分其所在线段。

2.垂直平分线上任意一点,到线段两端点的距离相等。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

例3.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=6,则线段PB的长度为〔〕A.3 B.5 C.6 D.8解析:∵直线CD是线段AB的垂直平分线,∴PB=PA,∵PA=6,∴PB=6.答案C.例4如以下图,DE是线段AB的垂直平分线,以下结论一定成立的是〔〕A.ED=CDB.∠DAC=∠BC.∠C>2∠BD.∠B+∠ADE=90°分析:∵DE是线段AB的垂直平分线,∴AD=BD.∴∠B=∠BAD,∠ADE=∠BDE.∴∠B+∠ADE=90°答案D课堂练习11.点A,B关于直线a对称,P是直线a上的任意一点,以下说法不正确的选项是〔〕A.直线AB与直线a垂直B.直线a是点A和点B的对称轴C.线段PA与线段PB相等D.假设PA=PB,则点P是线段AB的中点2.三角形中到三边的距离相等的点是〔〕A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点3.已知A和B两点在线段EF的中垂线上,且∠EAF=100°,∠EBF=70°,则∠AEB等于( )A、95°B、15°C、95°或15°D、170°或30°4.已知:如图,线段AB垂直平分线段CD则AC=。

初中数学 什么是轴对称点

初中数学 什么是轴对称点

初中数学什么是轴对称点轴对称点是指在轴对称图形中,关于轴对称线对称的两个点中的一个点。

轴对称图形具有一个轴对称线,使得图形的每个点关于这个轴对称线对称。

轴对称点具有以下特征和性质:1. 关于轴对称线对称:轴对称点是指关于轴对称线对称的两个点中的一个点。

换句话说,如果一个点与轴对称线对称,那么它就是轴对称点。

2. 相对坐标关系:轴对称点与轴对称线上的点之间具有相对的坐标关系。

对于直角坐标系中的轴对称图形,轴对称点和轴对称线上的点的横坐标相等,而纵坐标则关于轴对称线取相反数。

3. 沿轴对称线对称性质:轴对称点和轴对称线上的点之间具有沿轴对称线对称的性质。

也就是说,如果将轴对称点沿着轴对称线对折,那么得到的点将与轴对称线上的点重合。

4. 存在于轴对称图形中:轴对称点只存在于轴对称图形中。

轴对称图形是指具有特定对称性质的图形,图形中的每个点与轴对称线上的点关于轴对称线对称。

5. 轴对称点的数量:轴对称图形中,轴对称点的数量取决于轴对称线的位置和图形的形状。

如果轴对称线通过图形的一个顶点,那么这个顶点就是唯一的轴对称点。

如果轴对称线通过图形的中点或其它位置,那么图形中可能有多个轴对称点。

需要注意的是,轴对称点是轴对称图形的一个重要概念,它与轴对称性密切相关。

通过理解轴对称点的概念和性质,我们可以更好地理解轴对称图形的对称性质,推导出图形的性质和关系。

总之,轴对称点是指在轴对称图形中,关于轴对称线对称的两个点中的一个点。

它具有关于轴对称线对称、相对坐标关系、沿轴对称线对称等性质。

希望以上内容能够帮助你理解轴对称点的概念和性质。

如果你还有其他问题,请随时提问。

七年级数学下册第五章生活中的轴对称知识归纳

七年级数学下册第五章生活中的轴对称知识归纳

第五章生活中的轴对称轴对称图形轴对称分类轴对称角平分线轴对称实例线段的垂直平分线等腰三角形等边三角形生活中的轴对称轴对称的性质轴对称的性质镜面对称的性质图案设计轴对称的应用镶边与剪纸一、轴对称图形1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2、理解轴对称图形要抓住以下几点:(1)指一个图形;(2)存在一条直线(对称轴);(3)图形被直线分成的两部分互相重合;(4)轴对称图形的对称轴有的只有一条,有的则存在多条;(5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形;二、轴对称1、对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。

可以说成:这两个图形关于某条直线对称。

2、理解轴对称应注意:(1)有两个图形;(2)沿某一条直线对折后能够完全重合;(3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形;(4)对称轴是直线而不是线段;三、角平分线的性质1、角平分线所在的直线是该角的对称轴。

2、性质:角平分线上的点到这个角的两边的距离相等。

四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。

2、性质:线段垂直平分线上的点到这条线段两端点的距离相等.五、等腰三角形1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形。

5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。

6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴。

7、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。

8、“三线合一”是等腰三角形所特有的性质,一般三角形不具备这一重要性质。

初中七年级数学轴对称

初中七年级数学轴对称

轴对称一、知识点1、关于“轴对称图形”与“轴对称”的认识⑴轴对称图形:如果_____个图形沿某条直线折叠后,直线两旁的部分能够________,那么这个图形叫轴对称图形,这条直线叫做____________。

⑵轴对称:对于____个图形,如果沿着一条直线对折后,它们能完全重合,那么称这两个图形成________,这条直线就是对称轴。

两个图形中的对应点叫做__________2、线段垂直平分线的性质⑴线段是轴对称图形,它的对称轴是__________________⑵线段的垂直平分线上的点到______________________相等3、角平分线的性质⑴角是轴对称图形,其对称轴是_______________⑵角平分线上的点到______________________________相等4、等腰三角形的特征和识别⑴等腰三角形的两个_____________相等(简写成“________________”)⑵等腰三角形的_________________、_________________、_________________互相重合(简称为“________________”)⑶如果一个三角形有两个角相等,那么这两个角所对的________也相等(简称为“____________________”)5、等边三角形的特征和识别⑴等边三角形的各____相等,各____相等并且每一个角都等于________⑵三个角相等的三角形是__________三角形⑶有一个角是60°的____________三角形是等边三角形一、选择题1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有()A.1个B.2个C.3个D.4个2.图9-19中,轴对称图形的个数是()A.4个B.3个C.2个D.1个3.下列判断正确的是()A.经过线段中点的直线是该线段的对称轴B.若两条线段相等,那么这两条线段关于某直线对称C.若两条线段关于某直线对称,那么这两条线段相等D.锐角三角形都是轴对称图形4.下列图形中不是轴对称图形的是()A.有两个角相等的三角形;B.有一个角是45°的直角三角形.C.有两个角分别是50°和80°的三角形D.平行四边形.5.一个等腰三角形的一个角是50°,它的一腰上的高与底边的夹角是( ) A.25°B.40°C.25°或40°D.不确定.6.有一个等腰三角形的周长为25,一边长为11,那么腰长为( ) A.11 B.7 C.14 D.7或117.若三角形中最大内角是60°,那么这个三角形是()CBDAA .等腰三角形B .等边三角形C .不等边三角形D .不确定 8.等边三角形的两条高线相交所成钝角的度数是( ) A .105° B .120° C .135° D .150°9.若△ABC 两边的垂直平分线的交点在三角形的外部,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .都有可能10.若三角形一边上的高也平分这条边, 那么这个三角形是( ) A .直角三角形 B .有两条边相等 C .等边三角形 D .锐角三角形 11.图9-12中,点D 在BC 上,且D E ⊥AB ,DF ⊥AC 。

初中数学知识点:轴对称

初中数学知识点:轴对称

初中数学知识点:轴对称轴对称知识点一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。

说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。

北师大版七年级数学下册课件:轴对称现象

北师大版七年级数学下册课件:轴对称现象

A
B
C
D
4.【例2】下列四个图形:
其中是轴对称图形,且对称轴的条数为2的图形有( C )
A.1个
B.2个
C.3个
D.4个
.下列“数字”图形中,有且仅有一条对称轴的是( A )
A
B
C
D
ቤተ መጻሕፍቲ ባይዱ
5.【例3】下列图形中,△A'B'C'与△ABC关于直线MN成轴对 称的是( B )
A
B
C
D
如图,(1)属于轴对称图形的有 ①③④⑧⑩; (2)两个图形成轴对称的有 ②⑤⑥⑦⑨ .(填序号)
(2)找出如图所示的轴对称图形的对称轴.是否有些图形的对 称轴不止一条呢?
画对称轴略.一个轴对称图形的对称轴可以有1条,也可以有多 条,还可以有无数条.
对点训练 1.(1)下列是轴对称图形的是( D )
A
B
C
D
(2)(传统文化)甲骨文是我国的一种古代文字,下面是 “北”“比”“鼎”“射”四个字的甲骨文,其中不是轴对称图形的 是( B )
第五章 生活中的轴对称
轴对称现象
学习目标
1.(课标)了解轴对称图形的概念,认识并欣赏自然界和现实生 活中的轴对称图形. 2.通过具体实例了解轴对称的概念(课标).理解成轴对称的图 形的意义,能够识别这些图形并能指出它们的对称轴.
知识要点
知识点一:轴对称图形 (1)如果一个平面图形沿一条直线折叠后,直线两旁的部分能 够互相 重合 ,那么这个图形叫做轴对称图形,这条直线叫 做 对称轴 . 注意:对称轴是一条直线,不是射线或线段.
6.【例4】(北师7下P117改编)下面四个图形中,哪些是轴对称 图形?如果是轴对称图形,各有几条对称轴?分别画出来.

七年级数学 第五章 生活中的轴对称 1 轴对称现象 2 探索轴对称的性质教学

七年级数学 第五章 生活中的轴对称 1 轴对称现象  2 探索轴对称的性质教学

A
D B
C m C'
1
2
3
4
F F'
E
E'
A'
D' B'
12/6/2021
打开
A
D B
C
m C'
1
2
3
4
F F'
E
E'
A'
D' B'
如果连接C、C′,F、F′,那么所构造的线段与直线m有 什么关系? 对应点所连接的线段被对称轴垂直平分.
12/6/2021
【做一做】
如图是一个轴对称图形:
(1)你能找出它的对称轴吗?
12/6/2021
【练一练】
l
1.如何画线段AB关于直线l 的对称线段A′B′?
A
A′
找关键点A,B作出其对称点A',B',
然后连接A'B'即可.
B
B′
12/6/2021
2.如何画 △ABC关于直线 l 的 对称△ A′B′C′?
l
A
A′
B
找关键点作出其对称点,
C C′
B′
然后首尾顺次连接线段构成三角形.
A'
(4)∠1与∠2与∠4呢?说
说你的理由.
∠1= ∠2 ∠3=∠4 对应角相等.
12
12/6/2021
归纳:轴对称的性质
1.对应点所连接的线段被对称轴垂直平分. 2.对应线段相等,对应角相等.
12/6/2021
【跟踪训练】
1.在下列图形中,找出轴对称图形,并画出其对称轴.
主球 A
M

七年级数学轴对称

七年级数学轴对称
详细描述
从蝴蝶的翅膀到海螺的外壳,再到人体的结构,轴对称在自 然界中随处可见。这种对称性有助于生物保持平衡,增强结 构的稳定性,提高生存概率。
艺术中的轴对称
总结词
在绘画、雕塑和摄影等艺术形式中,轴对称被广泛运用以创造美感和动态感。
详细描述
艺术家可以通过轴对称来平衡画面,营造出稳定、和谐的视觉效果。同时,他们 还可以利用轴对称来表现动态感,如旋转、爆炸等效果,增强作品的视觉冲击力 。
找出对称点
对于原图形上的任意一 点,找出对称轴另一侧
的对称点。
连接对称点
使用直线连接对称点, 得到轴对称图形。
作轴对称图形的注意事项
对称轴的位置
确保对称轴的位置正确,不要画 错或遗漏。
对称点的确定
对于原图形上的任意一点,要准确 找出对称轴另一侧的对称点。
图形完整性
确保所画的轴对称图形完整、准确, 不要有遗漏或多余的部分。
THANKS FOR WATCHING
感谢您的观看
七年级数学轴对称
目 录
• 轴对称的定义 • 轴对称的性质 • 轴对称的判定 • 轴对称的作图 • 轴对称的实际应用
01 轴对称的定义
什么是轴对称
01
轴对称是指一个图形关于一条直 线(对称轴)折叠后,能够与另 一个图形完全重合的状态。
02
轴对称图形是具有轴对称性质的 图形,其关于某条直线对称,两 侧图形对称分布。
从而得出图形是轴对称的。
轴对称的判定应用
在几何证明中,常常需要利用 轴对称的性质来证明一些几何 命题。
在建筑设计、艺术创作和自然 界中,轴对称的应用广泛,如 建筑物、花朵、雪花等。
在解决实际问题时,可以利用 轴对称的性质来简化问题,如 最短路径问题、面积问题等。

初中数学 轴对称PPT课件

初中数学 轴对称PPT课件
某条直线成轴对称,你能作出这条直线吗?
C A
D
∴直线CD即为所求
分析:我们只要连接点A和点B,画 出线段AB的垂直平分线,就可以得 到点A和点B的对称轴. 而由两点确 定一条直线和线段垂直平分线的性 B 质,只要作出到点A、B距离相等的 两点即可.
作法: 1.分别以点A、B为圆心,以大于1/2AB的 长为半径作弧,两弧交于C、D两点; 2.作直线CD.
B′
将△ABC和 △A′B′C′沿直线
MN折叠后,点A与A′重
N
合,于是有:
第21页/共43页
AP=PA′,∠MPA= ∠MPA′=90°
对称轴所在的直线经过对称点所连线段的中点,
并且垂直于这条线段。
M
p
A
A′
P.
.Q
Q
C
C′
B
G
B′
N
第22页/共43页
定义:
经过线段的中点并且垂直于 这条线段的直线,就叫这条线段 的垂直平分线,也叫中垂线。 A
的直线垂直平分线段AB.其中正确的个C数有( )
A.1个 B.2个 C.3个 D.4个
第33页/共43页
4如图,若AC=12,BC=7,AB的垂直平 分线交AB于E,交AC于D,求△BCD的周 长。
解:∵ED是线段AB的垂直平分线
E
∴ BD=AD
∵ C△BCD=BD+DC+BC
B
∴ C△BCD=AD+DC+BC
= AC+BC = 12+7=19
第34页/共43页
A D C
M
1.垂直平分线的定义:
P
∵MN是AB的垂直平分线
∴ MN⊥AB , AD=BD ;

七年级数学 第五章 生活中的轴对称 2 探究轴对称的性质同步

七年级数学 第五章 生活中的轴对称 2 探究轴对称的性质同步
第二十六页,共三十一页。
2.如图5-2-10,四边形ABCD中,点M,N分别(fēnbié)在AB,BC上,将△BMN沿MN翻
折,得△FMN,若MF∥AD,FN∥DC,则∠B =
°.
答案(dáàn) 95
图5-2-10
12/7/2021
第二十七页,共三十一页。
解析 ∵MF∥AD,∠DAM=100°,∴∠FMB=100°.
知1识2详/7解/2021 (3)成轴对称的两个图形全等,但全等的两个图形不一定成轴对称.
(4)作用:①如果两个图形关于某一条直线成轴对称,那么对应点所连线段的垂直平分线就是这两个图形的对称轴,我们可以利用这一性质画对称轴.②由于对应线段、对应
角相等,我们可以利用这一性质说明两条线段相等或两个角相等
第二十五页,共三十一页。
1.如图5-2-9,P是∠AOB内一点,分别作点P关 于直线(zhíxiàn)OA,OB的对称点P1,P2,连接OP1,OP2,则
下列结论正确的是 ( )
A.OP1⊥OP2
B.OP1=OP2 C.OP1⊥OP2且OP1=OP2 D.OP1≠OP2
图5-2-9
答案 B ∵点P关于(guānyú)直线OA,OB的对称点分别为P1,P2,∴OP1=OP2= OP,∠AOP=∠AOP1,∠BOP=∠BOP2,∴∠P1OP2=∠AOP+∠AOP1+ ∠BOP+∠BOP2=2(∠AOP+∠BOP)=2∠AOB,∵∠AOB的度数任意,∴OP1 ⊥O1P2/72不/20一21 定成立.故选B.
12/7/2021
图5-2-2
第五页,共三十一页。
解析 (1)所画图形(túxíng)如图5-2-3所示:
图5-2-3

北师大数学七年级下册第五章-轴对称及性质

北师大数学七年级下册第五章-轴对称及性质

第01讲_变量之间的关系知识图谱轴对称知识精讲轴对称将一个图形沿着一条直线折叠,如果能够与另一个图形重合,则这两个图形关于这条直线成轴对称(1)△ABC 与△A ´B ´C ´关于直线l 成轴对称,l 为对称轴,A 与A ´,B 与B ´,C 与C ´是对应点(2)将△ABC 、△A ´B ´C ´与直线l 看做一个整体,则它是一个轴对称图形轴对称图形 如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形垂直平分线经过线段中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线l 为线段AB 的垂直平分线轴对称图形、图形成轴对称的性质(1)△ABC △A ´B ´C ´(2)l 为线段AA ´、BB ´、CC ´的垂直平分线(3)对称轴l 是任何一对对应点连线的垂直平分线易错点:1.对称轴是一条直线,而不是线段或者射线 2.注意轴对称和轴对称图形的区别三点剖析一.考点:1.轴对称基本概念和性质;2.轴对称图形.二.重难点:轴对称的两个图形是全等的,对应点的连线被对称轴垂直平分.三.易错点:1.对称轴是一条直线,而不是线段或者射线.2.把成轴对称的两个图形看成一个整体,它就是一个轴对称图形. 把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条对称轴对称.轴对称基本概念和性质例题1、 下列说法中错误的是( )A.两个三角形关于某条直线对称,那么这两个三角形全等B.两个图形关于某直线对称,对应点的连线段被对称轴垂直平分C.若直线l 同时垂直平分'AA 、'BB ,则线段''AB A BD.两个图形关于某直线对称,则对应线段相等且平行 【答案】 D【解析】 若两个图形按照某条直线折叠后重合,则称这两个图形关于这条直线对称,这两个图形全等,对应点的连线段被对称轴垂直平分,对应线段相等,因此A 、B 、C 选项正确,D 选项两个图形关于某直线对称,对应线段相等,不一定平行,故选D . 考点:图形轴对称的性质.例题2、 试找出如图所示的每个正多边形的对称轴的条数.请就正n 边形对称轴的条数作一猜想.正n 边形有________条对称轴. 【答案】 n【解析】 ∵正三角形有3条对称轴, 正方形有4条对称轴, 正五边形有5条对称轴, 正六边形有6条对称轴, ∴正n 边形有n 条对称轴.例题3、 如图,是一个风筝的图案,它是轴对称图形,EF 是对称轴,∠A =90°,∠AED =120°,∠C =50°,则∠BFC 的度数为________.【答案】160°【解析】如图:,轴对称图形,EF是对称轴,∠A=90°,∠AED=120°,∠C=50°,得∠D=∠A=90°,∠ABF=∠DCF=50°,AE=DE,BF═CF.由三角形的内角和,得∠EAD+EDA=180°-∠AED=60°.由四边形的内角和定理,得∠ABC+∠DCB=360°-(∠BAD+∠CDA)=360°-(90+90°+60°)=120°.∠FBC+∠FCB=∠ABC+∠DCB-(∠ABF+DCF)=120°-(50°+50°)=20°.由三角形的内角和,得∠BFC=180°-(∠FBC+∠FCB)=180°-20°=160°.例题4、如图所示,五边形ABCDE关于过点A的直线l轴对称,若∠DAE=40°,∠ADE=60°,则∠B的度数为()A.60°B.40°C.80°D.100°【答案】C【解析】∵∠DAE=40°,∠ADE=60°,∴∠E=180°-∠DAE-∠ADE=180°-40°-60°=80°,∵五边形ABCDE关于过点A的直线l轴对称,∴∠B=∠E=80°.例题5、如图,已知等腰△ABC,AB=BC,D是AC上一点,线段BE与BA关于直线BD对称,射线CE交射线BD于点F,连接AE,AF.则下列关系正确的是()A.∠AFE+∠ABE=180°B.12AEF ABC ∠=∠C.∠AEC+∠ABC=180°D.∠AEB=∠ACB 【答案】B【解析】由轴对称的性质可得,四边形ABEF中,AB=EB,AF=EF,∴∠BAF=∠BEF,∵等腰△BCE中,∠BEC<90°,∴∠BEF>90°,∴∠BAF>90°,∴四边形ABEF中,∠AFE+∠ABE<180°,故A错误;∵△ABE中,1802ABE AEB-∠∠=,△BCE 中,1802CBEBEC -∠∠=,∴∠AEF =180°-∠AEB -∠BEC180********ABE CBE-∠-∠=--=12(∠ABE +∠CBE ) =12∠ABC ,故B 正确; ∵AB =CB =EB ,∴∠AEB =∠EAB ,∠BEC =∠BCE ,∴∠AEC =∠EAB +∠ECB >∠CAB +∠ACB ,∴∠AEC +∠ABC >∠CAB +∠ACB +∠ABC =180°,故C 错误; ∵∠AEB =∠EAB ,∠BAC =∠BCA ,∠BAE >BAC , ∴∠AEB >ACB ,故D 错误;随练1、 在平面镜里看到背后墙上,电子钟示数如图所示,这时的时间应是_______.【答案】 21:05【解析】 由图分析可得题中所给的“20:15”与“21:05”成轴对称,这时的时间应是21:05.随练2、 如图,直线MN 是四边形AMBN 的对称轴,点P 是直线MN 上的点,下列判断错误的是( )A.AM=BMB.AP=BNC.∠MAP=∠MBPD.∠ANM=∠BNM 【答案】 B【解析】 直线MN 是四边形AMBN 的对称轴, ∠点A 与点B 对应,∠AM=BM ,AN=BN ,∠ANM=∠BNM , ∠点P 时直线MN 上的点, ∠∠MAP=∠MBP ,∠A ,C ,D 正确,B 错误,随练3、 将一张矩形纸片叠成如图所示的图形,若AB=6cm ,则AC=_____cm .【答案】 6【解析】如图,延长原矩形的边,∵矩形的对边平行,∴∠1=∠ACB,由翻折变换的性质得,∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=6cm,∴AC=6cm.随练4、如图,在△ABC中,AB=8,BC=6,AC=5,点D在AC上,连结BD,将△ABC沿BD翻折后,若点C 恰好落在AB边上的点E处,则△ADE的周长为__________.【答案】7【解析】∵由翻折的性质可知:DC=DE,BC=EB=6.∴AD+DE=AD+DC=AC=5,AE=AB﹣BE=AB﹣CB=8﹣6=2.∴△ADE的周长=5+2=7.随练5、如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()A.8+2aB.8+aC.6+aD.6+2a【答案】D【解析】暂无解析轴对称图形例题1、下列图案中,是轴对称图形的有()A. B. C. D.【答案】B【解析】A不是轴对称图形,故本选项错误;B是轴对称图形,故本选项正确;C不是轴对称图形,故本选项错误;D不是轴对称图形,故本选项错误.例题2、在镜子中看到时钟显示的是,则实际时间是.【答案】16:25:08..【解析】实际时间是16:25:08.例题3、你们见过这种形状的风筝吗?如图,在四边形ABCD中,如果有AB=AD,BC=DC,则我们称这个四边形ABCD为筝形.连接AC和BD交于点F,下列结论中成立的有()①筝形ABCD为轴对称图形;②AC平分∠BAD和∠BCD;③BD平分∠ABC和∠ADC;④AC⊥BD于点F;⑤∠BAD=∠BCD;⑥AC平分BD;⑦BD平分AC;⑧∠ABC=∠ADC.A.4个B.5个C.6个D.7个【答案】B【解析】暂无解析例题4、如图,在4×4的正方形方格式中,阴影部分是涂黑5个小正方形所形成的图案.(1)若将方格内空白的两个小正方形涂黑,使得到的新图案成为一个轴对称图形,涂法共有________种.(2)请在下面的备用图中至少画出具有不同对称轴的三个方案,并画出对称轴.【答案】(1)5(2)【解析】暂无解析随练1、图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C 在小正方形的顶点上,请图1、图2中各画一个四边形,满足以下要求:(1)在图1中,以AB、BC为边画四边形ABCD,点D在小正方形的顶点上,且此四边形有两组角互补且是非对称图形;(2)在图2中以以AB、BC为边画四边形ABCD,点D在小正方形的顶点上,且此四边形有两组角互补且是轴对称图形.【答案】暂无答案【解析】(1)如图1所示:(2)如图2所示:随练2、在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个4×4的方格内限画一种)要求:(1)5个小正方形必须相连(有公共边或公共顶点式为相连)(2)将选中的小正方行方格用黑色签字笔涂成阴影图形.(每画对一种方案得2分,若两个方案的图形经过反折、平移、旋转后能够重合,均视为一种方案)【答案】【解析】利用轴对称图形的性质用5个小正方形组成一个轴对称图形即可.随练3、如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【答案】5 13【解析】如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:5 13.故答案为:5 13.拓展1、如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔果一个球按图中所示的方向被击出(球可以经过多反射),那么该球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋【答案】B【解析】根据轴对称的性质可知,台球走过的路径为:2、如图,六边形ABCFED是轴对称图形,CD所在的直线是它的对称轴,若130ADC BCD∠+∠=︒,则E F∠+∠的大小是()A.130°B.220°C.260°D.230°【答案】D【解析】∵六边形ABCFED是轴对称图形,CD所在的直线是它的对称轴,∴130FCD EDC ADC BCD∠+∠=∠+∠=︒,∴230E F∠+∠=︒3、图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l4【答案】C【解析】该图形的对称轴是直线l3.4、如图是一个风筝的图案,它是轴对称图形,量得∠B=30°,则∠E的大小为()A.30°B.35°C.40°D.45°【答案】A【解析】∵∠B与∠E是对应角,∠B=30°,AF为对称轴,∴∠E=∠B=30°.5、如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在边BC、DE上分别找一点M、N,使得△AMN周长最小,则∠AMN+∠ANM=________.【答案】120°【解析】如图,取点A关于BC的对称点P,关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,则AM=PM,AN=QN,所以,∠P=∠PAM,∠Q=∠QAN,所以,△AMN周长=AM+MN+AN=PM+MN+QN=PQ,由轴对称确定最短路线,PQ的长度即为△AMN的周长最小值,∵∠BAE=120°,∴∠P+∠Q=180°-120°=60°,∵∠AMN=∠P+∠PAM=2∠P,∠ANM=∠Q+∠QAN=2∠Q,∴∠AMN+∠ANM=2(∠P+∠Q)=2×60°=120°.6、如图,△ABC中AB=AC,AB的垂直平分线交BC于E,EC的垂直平分线交DE延长线于M,若∠FMD=40°,则∠BAC等于()A.120°B.110°C.100°D.90°【答案】C【解析】∵EC的垂直平分线交DE延长线于M,若∠FMD=40°,∴∠MEF=90°-40°=50°,∴∠BED=∠MEF=50°,∵AB的垂直平分线交BC于E,∴∠B=90°-∠BED=90°-50°=40°,∵AB=AC,∴∠B=∠C,∴∠BAC=180°-∠B-∠C=180°-40°-40°=100°.7、如图图中的阴影部分是由5个小正方形组成的一个图形,若在图中的方格里涂黑两个正方形,使整个阴影部分成为轴对称图形,涂法有几种()A.2种B.4种C.5种D.7种【答案】D【解析】如图所示:一共有7种,故选:D.8、如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两种方法分别在下图方格内填涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.【答案】如图所示,答案不唯一.【解析】暂无解析9、如图是4×4正方形网格,其中已有3个小方格涂成了阴影.现在要从其余13个白色小方格中选出一个也涂成阴影,使整个涂成阴影的图形成为轴对称图形,请在图中补全图形,并画出它们各自的对称轴.(要求画出3种不同方法)【答案】【解析】如图所示:10、如图,在正方形网格上有一个△DEF.(1)画△DEF关于直线HG的轴对称图形;(2)画△DEF的EF边上的高;(3)若网格上的最小正方形边长为1,求△DEF的面积.【答案】(1)见解析;(2)见解析;(3)3【解析】(1)如图,△D′E′F′即为所求;(2)如图,DH即为所求;(3)S△DEF=12×3×2=3.。

华师大版七年级数学下册课件 第十章 小结与复习

华师大版七年级数学下册课件 第十章 小结与复习

CD
A O 图a B
5. 下列图形中,既是轴对称图形,又是中心对称图形 的是( D )
A
B
C
D
6. 如图,某居民小区有一长方形地,居民想在长方形 地内修筑同样宽的两条小路(图中画线的是两条小 路),余下部分绿化,道路的宽为 2 米,则绿化的 面积为多少平方米?
解:32×20 − 32×2 − 20×2 + 2×2 = 540(平方米)
轴对称图形
两个图形成轴对称
2. 轴对称和轴对称图形的性质
轴对称图形(或关于某条直线对称的两个图形) 沿对称轴对折后的两部分是完全重合的,所以它的 对应线段相等,对应角相等.
如果一个图形是轴对称图形,那么连结对称点 的线段的垂直平分线就是该图形的对称轴.
(1)线段是轴对称图形,它的对称轴是线段 的垂直平分线.
(3)旋转前后对应线段、对应角分别相等,图形的 大小、形状不变.
5. 中心对称
把一个图形绕着某一个点旋转 180°,如果 它能与另一个图形重合,那么,我们就说这两个 图形成中心对称,这个点叫做对称中心,这两个 图形中的对应点叫做关于中心的对称点.
6. 中心对称的特征及中心对称的判定
中心对称的特征: 在成中心对称的两个图形中,连结对称点的线
)
A
B 图 10-1C
D
3. 如图所示,下列四组图形中,有一组中的两个图形 经过平移其中一个能得到另一个,这组图形是( D )
A
B
C
D
4. 如图 a,将△AOB 绕点 O 按逆时针方向旋转 60°
后得到△COD,若∠AOB = 15°,则∠AOD 的度
数是( C ) A. 15° C. 45°
B. 60° D. 75°

湘教版数学七年级下册5.1 轴对称(49页)

湘教版数学七年级下册5.1 轴对称(49页)
课堂中要使学生体验数学与现实生活与其他学科的联系,锻炼了表达 和解决问题的能力;培养了学生运用数学思维进行表达与交流的能力,发 展应用意识与实践能力。课堂教学要让学生有充分的独立思考的时间,有 丰富的动手操作活动,培养学生学会观察,学会表达。只有坚持学习,与 时俱进,真正做到以培养学生的核心素养为目标,我们才能提高教学质量 。
第5章 轴对称与旋转 5.1轴对称
湘教版·七年级数学下册
第5章 轴对称与旋转 5.1.1轴对称图形
湘教版·七年级数学下册
情境导入 观察下列图片和图形,它们有什么共同特点?
折一折,剪一剪素材
观察图中一组生肖剪纸, 你能发现它们有什么共同的特征吗?
如果一个平面图形沿一条直线折叠后, 直线两侧的部分能够互相重合,那么这个图形 叫做轴对称图形,这条直线叫做它的对称轴.
点 P 与点 P′ 重合
PD = _P_′_D__,∠1=_∠__2_ = __9_0_° 成轴对称的两个图形中,对应点 的连线被对称轴垂直平分.
如果两个图形的对应点的连线被同一条直线垂直平分, 那么这两个图形关于这条直线对称.
已知直线 l 及直线外一点 P,求作点 P′, 使它与点 P 关于直线 l 对称.
[选自教材P114 练习]
随堂演练 1.如图所示的几个图案中,是轴对称图形的是( A )
2.如图所示,下面的 5 个英文字母中是轴对称图形 的有( B )
是轴对称图形的有( B )
A. 1个
B. 2个
C. 3个
D. 4个
4. 如图所示,从轴对称的角度来看,你觉得下面 哪一个图形比较独特?简单说明你的理由.
已知三角形 ABC 和直线 l,作出与
三角形 ABC 关于直线 l 对称的图形.

北师大版七年级数学(下)轴对称现象说课稿(通用7篇)

北师大版七年级数学(下)轴对称现象说课稿(通用7篇)

北师大版七年级数学(下)轴对称现象说课稿(通用7篇)七年级数学下轴对称现象说课稿篇1教学目标:1、经历观察、分析现实生活实例和典型图案的过程,认识轴对称和轴对称图形培养学生探索知识的能力与分析问题、思考问题的习惯。

2、会找出简单对称图形的对称轴。

了解轴对称和轴对称图形的联系与区别。

教学重点难点:本节课的重点是通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴。

找出简单轴对称图形的对称轴与理解轴对称和轴对称图形的联系与区别是难点。

教学方法:教学用具:活动准备:收集各类有关对称的图案和各种现实生活中有关对称的实例,作为教学时互相交流的资料。

教学过程:一、看一看:1、投影或演示各类具有轴对称特点的图案(如课本上所绘的图象或由学生课前收集的各类具有对称特点的图案)2、分析各类图案的特点,让学生经历观察和分析,初步认识轴对称图形。

二、议一议1、试举例说明现实生活中也具有轴对称特征的物体,发展学生想象能力。

2、让学生感到具有轴对称特征的物体,它们都是关于一条直线形成对称。

三、做一做1、把具有轴对称特征的图形沿某一条直线对折,使直线两旁的部分能够互相重合把具有轴对称特征的图形沿某一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

让学生说出以前学习过的轴对称图形,并找出它的对称轴2、弄清楚轴对称与轴对称图形的区别对于两个图形,如果沿一条直线对折后,它们能完全重合,那么这两个图形成轴对称,这条直线就是对称轴。

轴对称是指两个图形之间的形状和位置关系。

而轴对称图形是对一个图形而言的,轴对称图形是一个具有特殊形状的图形。

它们都有没某条直线对折使直线两旁的图形能重合的特征。

小结:今天我们经历观察和分析了现实生活实例和图案,了解了现实生活中存在许多有关对称的事例,认识了轴对称与轴对称图形,并能找出一些简单轴对称图形的对称轴。

教后记:学生对于判断是否轴对称图形较清楚,但是对轴对称图形和两个图形成轴对称这两个概念较难掌握,在举例的过程中学生的积极性被完全调动起来,上课的气氛较好。

(湘教版)七年级数学下册:5.1.1《轴对称图形》教案

(湘教版)七年级数学下册:5.1.1《轴对称图形》教案

(湘教版)七年级数学下册:5.1.1《轴对称图形》教案一. 教材分析湘教版七年级数学下册第五章第一节《轴对称图形》是学生继学习平面几何后,进一步深入研究几何图形的性质和特点的重要内容。

本节内容主要让学生掌握轴对称图形的概念,理解轴对称图形的性质,学会寻找轴对称图形的方法,并能够运用轴对称图形的性质解决一些实际问题。

教材通过丰富的图片和实例,引导学生探究和发现轴对称图形的特征,培养学生的观察能力、操作能力和推理能力。

二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本知识,具备了一定的观察、操作和推理能力。

但是,对于轴对称图形的概念和性质,学生可能较为抽象,难以理解和运用。

因此,在教学过程中,需要教师通过丰富的实例和引导,帮助学生建立起轴对称图形的直观形象,从而更好地理解和掌握相关知识。

三. 教学目标1.了解轴对称图形的概念,理解轴对称图形的性质。

2.学会寻找轴对称图形的方法,能够判断一个图形是否为轴对称图形。

3.能够运用轴对称图形的性质解决一些实际问题。

4.培养学生的观察能力、操作能力和推理能力。

四. 教学重难点1.轴对称图形的概念和性质。

2.寻找轴对称图形的方法。

3.运用轴对称图形的性质解决实际问题。

五. 教学方法1.情境教学法:通过展示丰富的图片和实例,引导学生观察和操作,让学生在实际情境中感受和理解轴对称图形的特征。

2.问题驱动法:教师提出问题,引导学生思考和探究,激发学生的学习兴趣和动力。

3.合作学习法:学生分组讨论和操作,培养学生的团队协作能力和沟通能力。

4.归纳总结法:教师引导学生总结轴对称图形的性质和寻找方法,帮助学生形成系统的知识结构。

六. 教学准备1.准备相关的图片和实例,用于展示和引导学生观察。

2.准备一些轴对称图形的道具,让学生实际操作和感受。

3.准备一些实际问题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称图形,如剪纸、建筑等,引导学生观察和思考:这些图形有什么共同的特点?你想不想知道轴对称图形的定义呢?从而激发学生的学习兴趣。

七年级数学下册 第10章 轴对称、平移与旋转10.1 轴对称 1生活中的轴对称课件 华东师大版

七年级数学下册 第10章 轴对称、平移与旋转10.1 轴对称 1生活中的轴对称课件 华东师大版

三、轴对称图形和两个图形成轴对称的性质 1.轴对称图形(或成轴对称的两个图形)沿对称轴对折后的两 部分_完__全__重__合__. 2.轴对称图形(或成轴对称的两个图形)的_对__应__线__段__相等, _对__应__角__相等.
(打“√”或“×”) (1)大写英文字母T是一个轴对称图形. ( √ ) (2)轴对称图形只有一条对称轴. ( × ) (3)两个能完全重合的图形任意放置都能成轴对称. ( × ) (4)成轴对称的两个图形中相等的角叫对应角. ( × ) (5)等边三角形是有三条对称轴的轴对称图形. ( √ )
二、两个图形成轴对称的有关概念
【思考】1.以上四幅图片中的两个图形有什么关系? 提示:存在一条直线,如果沿这条直线对折,两个图形会重合. 2.它们是不是轴对称图形? 提示:不是.轴对称图形对折能重合是一个图形所具有的性质, 而它们对折能重合是两个图形之间的关系.
【总结】把一个图形沿着某一条直线翻折过去,如果它能够与 _另__一__个__图__形__重合,那么就说这两个图形成轴对称,这条直线 叫做_对__称__轴__,折叠后互相重合的点是对应点,叫做_对__称__点__.
1 2
×4
×4=8(cm2).
ห้องสมุดไป่ตู้
答案:8
5.判断下面每组图形是否关于某条直线成轴对称.
【解析】图(1)中左边的小狗没画后腿,两图不关于某条直线 成轴对称;图(2)关于某条直线成轴对称.
6.如图,P在∠AOB内,点M,N分别是点P关于 AO,BO的对称点,且MN与AO,BO相交于点E, F,若△EFP的周长为15,求MN的长. 【解析】∵点M,N分别是点P关于AO,BO的对 称点, ∴ME=PE,NF=PF, ∴PE+PF+EF=ME+NF+EF=MN. ∵PE+PF+EF=15,∴MN=15.

鲁教版七年级数学上【课件】2 探索轴对称的性质

鲁教版七年级数学上【课件】2 探索轴对称的性质
系?∠3与∠4呢?
答:分别相等
合作交流探究新知
做一做:
右图是一个轴对称图形:
对称轴
(1)你能找出它的对
A
称轴吗?
(2)连接点A与点A1的 线段与对称轴有什么关 系?连接点B与点B1的 线段呢?
连接的线段被对称轴垂直平分
合作交流探究新知
(3)线段AD与线段A1D1有 什么关系?线段BC与B1C1呢? 为什么?
答:相等
(4)∠1与∠2有什么关 系? ∠ 3与∠4呢?说说 你的理由?
答:相等
合作交流探究新知
综合以上问题,你能得到什么结论?
1.对应点所连的线段被对称轴垂直平分
A'
2.对应线段相等
C'
A C
3.对应角相等
B' B
课堂小结布置作业 小结:
通过这堂课的学习,你掌握了轴对称的哪些性质?
1.对应点所连的线段被对称轴垂直平分 2.对应线段相等,对应角相等
这条直线就是对称轴
合作交流探究新知
如图:将一张长方形形的纸对折,然后用笔 尖扎出“14”这个数字,将纸打开后铺平:
合作交流探究新知
(1)两个“14”有什么关系? 答:关于直线l对称 (2)设折痕所在直线为l,连结点E和E′的
线段和l有什么关系?点F和F′呢?都被直线l
垂直平分
(3)线段AB与A′B′,CD与C′D′有什么关系?
第二章 轴对称
2 探索轴对称的性质
课堂导入
思考:
温故 知新
轴对称图形:如果一个图形沿某条直线对折后,直线两
旁的部分能够完全重合,那么这个图形叫做轴对称图形。
这条直线叫这个图形的对称轴。
轴对称:对于两个图形,把一个图形沿着某一条直线对 折,如果它能够与另一个图形完全重合,那么就说这

鲁教版(五四制)初中数学七年级上册_《轴对称现象》知识点解读

鲁教版(五四制)初中数学七年级上册_《轴对称现象》知识点解读

《轴对称现象》知识点解读知识点1轴对称图形(重点)如果一个平面图形沿着一条直线折叠后,直线两侧的图形能够互相重合,那么这个图形是轴对称图形。

这条直线叫做图形的对称轴。

解读:(1)对称轴是一条直线,而不是射线,更不是线段。

(2)一个轴对称图形的对称轴可以有一条,也可以有两条,还可以有无数条,要视图形具体分析判断。

(3)判断一个图形是否为轴对称图形的方法:利用轴对称图形的定义,将图形对折,看折痕两边是否能完全重合,能够完全重合则该图形是轴对称图形,反之则不是。

例1 指出下列图形中的轴对称图形,并指出轴对称图形的对称轴。

(1)正方形;(2)长方形;(3)圆;(4)平行四边形。

分析:判断一个图形是否是轴对称图形,关键是能否找到一条直线使该图的两部分沿这条直线对折后完全重合。

解:(1)、(2)、(3)都是轴对称图形,(4)不是轴对称图形。

正方形的对称轴是两条对边中点所在的直线和正方形对角线所在的直线;长方形的对称轴是两条对边中点所在的直线;圆的对称轴是任意一条直径所在的直线。

说明:对称轴是一条直线,不是线段。

拓展:轴对称图形一定有对称轴,而且至少有1条对称轴,常见的例如:等腰三角形、等腰梯形、线段、角;有两条对称轴的常见图形有长方形;有三条对称轴的常见图形有等边三角形;正方形有4条对称轴;五角星和正五边形有5条对称轴;圆有无数条对称轴。

知识点2成轴对称(重点)如果两个平面图形沿一条直线对折后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴。

例2 观察中(1)~(5),它们是不是轴对称图形?有什么共同特点?分析:本题主要考查两个图形成轴对称图形的理解.可以利用轴对称的概念加以判断,但不能把两个图形成轴对称与一个图形是轴对称图形的概念相混淆.解:它们都是轴对称图形,每一组中都有两个图形.可以沿某一条直线对折使两个图形能完全重合在一起,所以每幅图中的两个图形成轴对称.轴对称图形是一个图形.可以有一条或许多条对称轴.(1)~(5)两个图形成轴对称,一般来说只有一条对称轴.知识点3 轴对称图形和成轴对称的区别和联系(难点)轴对称图形成轴对称区别只有一个图形有两个图形至少有一条对称轴只有一条对称轴联系1.沿一条直线折叠,直线两旁的部分能够完全重合。

初中数学 什么是轴对称图形

初中数学 什么是轴对称图形

初中数学什么是轴对称图形
轴对称图形是指一个图形中存在一条直线,将图形分成两个完全对称的部分。

这条直线被称为轴对称线,也被称为对称轴。

对称轴上的任意一点到图形上的一点,与对称轴上的对应点到该图形上的对称点的距离相等。

轴对称图形具有以下特点:
1. 对称性:轴对称图形的两个部分是完全对称的,即它们在形状、大小和位置上完全一致,只是相对于轴对称线的位置互换。

2. 轴对称线:轴对称图形必须有一条直线作为轴对称线,使得图形的两侧是对称的。

3. 对称点:轴对称图形中,每个点都有一个对称点,它们在轴对称线上对称。

对称点的坐标可以通过对称轴上的点的坐标进行计算。

4. 对称中心:轴对称图形的对称中心即为轴对称线上的任意一点。

对称中心是图形的一个重要特征。

5. 对称操作:轴对称图形可以通过对称操作来生成。

例如,通过将图形绕轴对称线旋转180度,或将图形沿轴对称线折叠,可以得到与原图形完全对称的图形。

常见的轴对称图形有正方形、长方形、圆形、心形等。

这些图形在轴对称线上都有明显的对称性。

通过了解轴对称图形的特点和性质,可以帮助我们更好地理解几何学中的对称性和图形的性质。

掌握轴对称图形的概念对于解决与对称性和图形变换相关的问题非常重要。

希望以上内容能够帮助你理解轴对称图形。

如果你还有其他问题,请随时提问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

手机现金打鱼
[填空题]DCS现场控制装置的功能是();();() [单选]()是指经济运作过程中繁荣与衰退的周期性交替。A.经济规律B.经济交替C.经济周期D.经济变动 [问答题,简答题]使用维护过程中遇到难于解决的问题或出现异常情况如何和厂家取得联系? [单选,A2型题,A1/A2型题]急性心肌梗死病人最早出现、最突出的症状是()。A.心源性晕厥B.心律失常C.心前区撕裂样剧痛或烧灼痛D.焦虑、濒死感E.胃肠道症状 [单选]下列各项属于集体资产的是()。A.农户承包经营的土地B.家庭生产资料C.农户家庭生活资料D.农户承包经营中除土地以外的其它生产资料 [填空题]CHP的化学名称为(),N-70的化学名称为()。 [单选]女,50岁,颈部无痛性肿块,逐渐增大,听诊可闻及杂音,DSA检查如图所示,最可能诊断()A.颈动脉体瘤B.假性动脉瘤C.颈动脉夹层D.颈动脉硬化E.动静脉瘘 [单选,A1型题]第一类精神药品每次处方()A.不得超过1日常用量B.不得超过2日常用量C.不得超过3日常用量D.不得超过5日常用量E.不得超过7日常用量 [单选]规定采矿许可证制度的法律是()。A.煤炭法B.矿产资源法C.矿山安全法D.安全生产法 [单选,A2型题,A1/A2型题]2000年6月,美、英、日、法、德、中六国公布:人类基因组序列图的"工作框架图"绘出。2001年2月12日,六国又联合公布了经过整理、分类和排序后更加准确、清晰、完整的人类基因组图谱。这一成就将为解释人类疾病的本原、新药的设计、新治疗方法的产生提供重 [单选]守时守信、()、勤奋好学、精益求精,是家政服务员的职业道德之一。A、自作主张B、得过且过C、马虎应付D、尊老爱幼 [单选]流行性腮腺炎的传染期是()A.腮腺开始肿大至消退B.腮腺肿大前7日至肿大后7日C.腮腺开始肿大至肿大后7日D.腮腺肿大前9日至肿大后7日E.腮腺肿大前7日至肿大后9日 [单选,A1型题]医疗机构对限于设备或者技术条件不能诊治的患者,应当依法采取的措施是()A.立即抢救B.及时转诊C.继续观察D.提请上级医院派人会诊E.请示当地卫生局依法处理 [单选]环境污染物对人体健康产生慢性危害的根本原因是A.低浓度的环境污染物对机体损害的逐渐积累B.环境污染物的毒性高C.环境污染物之间的联合作用D.低浓度的环境污染物可经口吸收E.低浓度的环境污染物可经呼吸道吸收 [单选]按拣货方式分区是根据各货品的出货量大小及拣取频率分类,()。A.再确定适宜的持货程序B.再决定运输工具C.再确定相应的拣货设备及方式D.再决定拣选路线及作业时间 [单选]工程造价的确定要根据不同的建设阶段,分次进行。这种计价特点被称为()。A.单件性计价B.分部组合计价C.多次性计价D.按构成计价 [填空题]国际单位规定重力的单位是()时间的单位是()单位符号分别为N和()。 [单选]高血压脑出血最常见的部位是()。A.豆状核和丘脑B.内囊和术语、冰区操作、冰区导航等冰区航行知识,可阅()。A.英版《世界大洋航路》B.英版《无线电信号表》C.英版《航路指南》D.英版《航海员手册》 [单选,A2型题,A1/A2型题]下列疾病需采用严密隔离的是()A.疟疾B.破伤风C.霍乱D.肺结核E.新生儿脓疱疮 [填空题]温度影响开花的原因是有些观赏植物必须经过一个低温周期才能形成花芽,这个低温周期叫()。 [单选]根据火场残留物被烧的轻重程度,一般将()初步确定为起火点。A、局部出现灰化区或炭化区的部位B、局部烧得重的部位C、现场破坏最严重的部位D、局部烧得重,并有以此为中心向周围连续蔓延痕迹的部位 [填空题]三种常用的钢筋混凝土高层结构体系是指()、()、()。 [单选]根据合同成立是否需要特定的法律形式,合同可分为()。A.诺成合同与实践合同B.要式合同与不要式合同C.有名合同与无名合同D.双务合同与单务合同 [单选]双务合同与单务合同是以()为标准进行划分的。A.合同当事人双方权利义务的分担方式B.法律上是否规定一定的名称C.是否以交付标的物为成立要件D.合同的成立是否需要特定的形式 [单选]“夫人”是对某些贵族妻子的尊称,用英语表示是“()”。A、sonB、sisterC、ladyD、Mrs [单选]某县人民政府做出有关规范该县集贸市场秩序的决定,这一行为属于()。A.行政立法行为B.抽象行政行为C.具体行政行为D.行政执法行为 [单选,A2型题,A1/A2型题]癌与肉瘤的最主要区别是()A.组织来源不同B.发生的年龄不同C.肿瘤内血管多少不同D.瘤细胞的分布方式不同E.转移的途径不同 [单选]在财产保险合同中,保险事故发生后造成被保险人死亡的,保险金请求权由()行使。A.被保险人指定受益人B.投保人指定受益人C.被保险人的债权人D.被保险人的继承人 [单选]颅脑外伤侧位平片显示鼻咽腔顶软组织肿胀常提示()A.前颅窝骨折B.中颅窝骨折C.后颅窝骨折D.额骨骨折E.斜坡骨折 [单选]“计算机集成制造系统”英文简写是()。A.CADB.CAMCIMSD.ERP [单选,共用题干题]患者女,55岁,因“双膝关节肿痛3年,加重1个月”来诊。查体:双侧膝关节肿胀,伴双侧腘窝囊肿,关节局部无红,浮髌试验阳性。双膝关节X线检查呈退行性变。骨关节炎滑液的特性不包括()。A.关节液呈淡黄色、透明B.关节液呈淡黄色、浑浊C.关节液微混,有飘絮物D [单选]会计法律是指由()制定的会计法律规范。A.全国人民代表大会及其常务委员会B.全国人民代表大会及国务院C.国务院D.财政部 [单选]下列各项中,不会影响营业利润金额增减的是()。A.资产减值损失B.财务费用C.投资收益D.营业外收入 [单选]最易并发咯血的疾病是()A.支气管扩张B.支气管内异物C.良性支气管瘤D.慢性支气管炎E.支气管哮喘 [单选]在三相异步电动机正反转控制线路中,接触器联锁触头应是对方接触器的()。A.主触头B.辅助常开触头C.辅助常闭触头D.延时触头 [名词解释]地壳元素丰度 [单选]经络的临床应用不包括()A.说明病理变化B.指导辨证归经C.指导针灸治疗D.说明气血状态E.指导药物归经 [单选,A型题]患者男性,48岁,因突然发作心悸半小时就诊,听诊心率约为150次/分,急查心电图如图3-16-1所示,最可能的诊断是()。A.室上性心动过速伴室内差异性传导B.心房颤动合并室内差异性传导C.预激综合征合并心房颤动D.室性心动过速E.预激综合征合并心房扑动 [单选]凡保留膀胱的膀胱癌手术后患者,均需严密随诊,其中最重要的内容是()A.CTB超C.IVPD.尿常规E.定期膀胱镜检查
相关文档
最新文档