数学分析课本(华师大三版)-习题及答案02

合集下载

华东师大数学分析答案完整版

华东师大数学分析答案完整版

!!第一章实数集与函数内容提要!一!实数!"实数包括有理数和无理数!有理数可用分数"#!""#为互质整数##"#$表示#也可用有限十进小数或无限十进循环小数表示!!$是首先遇到的无理数#它与古希腊时期所发现的不可公度线段理论有直接联系#且可以表示为无限十进不循环小数!实数的无限十进小数表示在人类实践活动中被普遍采用#我们是由无限十进小数表示出发来阐述实数理论的!$"若$%%#%%!%$&%&&为非负实数#称有理数$&%%#%%!%$&%&为实数$的&位不足近似#而有理数$&%$&&!!#&称为$的&位过剩近似#&%##!#$#&!’"在数学分析课程中不等式占有重要的地位#在后继课程中#某些不等式可以成为某个研究方向的基础!数学归纳法是证明某些不等式的重要工具!二!数集"确界原理!"邻域是数学分析中重要的基本概念!某点的邻域是与该点靠近的数的集合#它是描述极限概念的基本工具!在无限区间记号!()#%’#!()#%$#(%#&)$#!%#&)$#!()#&)$中出现的()与& )仅是常用的记号#它们并不表示具体的数!在数学分析课程范围内#不要把&)#()#)当作数来运算!%!%!!数学分析同步辅导及习题全解#上册$$"有界集和无界集是本章中关键的概念!要熟练掌握验证某个数集’是有界集或无界集的方法#其中重要的是证明数(不是数集’的上界!或下界$的方法!’"确界是数学分析的基础严格化中的重要的概念!上!下$确界是最大!小$数在无限数集情况下的推广!确界概念有两种等价的叙述方法#以上确界为例)设’是)中一个数集#若数!满足!!$!!$对一切$#’#有$$!#则!是’的上界*!"$对任意"%!#存在$##’#使得$#&"#则!又是’的最小上界’()!或!$$!!$对一切$#’#有$$!#则!是’的上界*!"$对任意#&##存在$##’#使得$#&!(##则!又是’的最小上界’()!这两种定义是等价的!!$$中的!(#相当于!!$中的"!在上述定义中可以限定#%###其中##为充分小的正数!定义!$$在某些证明题中使用起来更方便些!*"确界原理)设’是非空数集#若’有上界#则’必有上确界*若’有下界#则’必有下确界!确界原理是实数系完备性的几个等价定理中的一个!三!函数及其性质!"邻域!!$*!%#$$%!%($#%&$$称为%的$邻域#其中$&#!!$$*+!%*$$%!%($#%$*!%#%&$$%+$+#%+$(%+%$,称为%的空心$邻域#其中$&#!!’$*+&!%$%!%#%&,$和*+(!%$%!%(,#%$分别称为%的右邻域和左邻域#其中,&#!$"确界设给定数集’!!!$上确界!若存在数!#满足!$!$$!#,$#’*$$,$%!#都存在$##’#使$#&$#则称!为’的上确界#记为!%+,-$#’$!!$$下确界!若存在数%#满足!$$-%#,$#’*$$,&&%#都存在-##’#使-#%&#则称%为’的下确界#记为!%./0$$#’!!’$确界原理!#非空有上!下$界的数集#必有上!下$确界!$若数集有上!下$确界#则上!下$确界一定是惟一的!’"函数!!$函数定义给定两个非空实数集.和(#若有一个对应法则,#使.内每一个数$#都有惟一的一个数-#(与它对应#则称,是定义在.上的一个函数#记为-%,!$$#$#.#并称.为函数的定义域#称,!.$%+-+-%,!$$#$#.,!.($为函数的值域!!$$几个重要的函数#分段函数函数在其定义域的不同部分用不同公式表达的这类函数#常称为分段函数!$符号函数%"%第一章!实数集与函数+1/!$$%!#!!$&###$%#(!#$%’()#%狄利克雷函数.!$$%!#当$为有理数##当$+为无理数&黎曼函数)!/$%!##当$%"##"###0&"#为既约分数##当$%##!和!##!$’()中的无理数’复合函数-%,!1!$$$#$#2/其中-%,!3$#3#.#3%1!$$#$#2#2/%+$+1!$$#.,&2#2"4!’$反函数已知函数3%,!$$#$#.!若对,-##,!.$#在.中有且只有一个值$##使得,!$#$%-##则按此对应法则得到一个函数$%,(!!-$#-#,!.$#称这个函数,(!2,!.$0.为,的反函数!!*$初等函数#基本初等函数!常量函数"幂函数"指数函数"对数函数"三角函数"反三角函数这六类函数称为基本初等函数!$初等函数!由基本初等函数经过有限次四则运算与复合运算所得到的函数#统称为初等函数!%凡不是初等函数的函数#都称为非初等函数!*"有界性设-%,!$$#$#.!!$若存在数(#使,!$$$(#,$#.#则称,是.上的有上界的函数!!$$若存在数5#使,!$$-5#,$#.#则称,是.上的有下界的函数!!’$若存在正数6#使+,!$$+$6#则称,是.上的有界函数!!*$若对任意数(#都存在$##.#使,!$#$&(#则称,是.上的无上界函数#类似可定义无下界及无界函数!3"单调性设-%,!$$#$#.#若对,$!#$$#.#$!%$$#有!!$,!$!$$,!$$$#则称,在.上是递增函数!!$$,!$!$%,!$$$#则称,在.上是严格递增函数!类似可定义递减函数与严格递减函数!4"奇偶性设.是对称于原点的数集#-%,!$$#$#.!!!$若,$#.#都有,!($$%,!$$#则称,!$$是偶函数!!$$若,$#.#都有,!($$%(,!$$#则称,!$$是奇函数!%#%!!数学分析同步辅导及习题全解#上册$!’$奇函数图象关于原点对称#偶函数图像关于纵轴对称!5"周期性!!$设-%,!$$#$#.#若存在正数7#使,!$67$%,!$$#,$#.!则称,!$$为周期函数#7称为,的一个周期!!$$若,的所有周期中#存在一个最小周期#则为,的基本周期!典型例题与解题技巧%例!&!设,!$$在((%#%’上有定义#证明,!$$在((%#%’上可表示为奇函数与偶函数的和!分析!本题主要考察奇函数"偶函数的定义#采用构造法解题!证明!设,!$$%8!$$&9!$$#其中8!$$#9!$$分别为奇"偶函数#于是,!($$%8!($$&9!($$%(8!$$&9!$$而,!$$%8!$$&9!$$由之可得!!!8!$$%,!$$(,!($$$#9!$$%,!$$&,!($$$这里8!$$#9!$$分别是奇函数和偶函数!%例"&!求数集’%&!&$&!(!$!&&#0+,&的上"下确界!解题分析!当&%$7时#$7!&$$!7%$$7!&!$$!7#容易看出7%!时#$!&!$!$是偶数项中的最大数!当&%$7&!时#$7&!!&$(!$7&!!$%$7&!!&!$$7!&!&!#当7充分大时#奇数项与数!充分靠近!因为$!&!$!$!%3是’中最大数#于是+,-’!%3#由上面分析可以看出./0’%!!解题过程!因为!3是’中最大数#于是+,-’!%3!再证./0’%!#这是因为!!$,&#&!&$&!(!$!&-!*!"$设%%$7&!!&!$$7!&!#由等式%&(!%!%(!$!%&(!&%&($&&&!$可知$7&!!&!$$7!&!(!%!$$7&!%$7&%$7(!&&&!$!$$7&!于是,#&##17##0&只要7#&!$781$!#(!!$!$$#使得$7#&!!&!$$7#!&!(!$!$$7#&!%#即$7#&!!&!$$7#!&!%!&#%例#&!设函数,!$$定义在区间:上#如果对于任何$!#$$#:#及’#!##!$#恒有,(’$!&!!(’$$$’$’,!$!$&!!(’$,!$$$!证明)在区间:的任何闭子区间上,!$$有界!分析!本题主要考察函数的有界性#要充分利用已知条件给出的不等式#积极构造出类似的不等%$%第一章!实数集与函数式#以证出结论!证明!,(%#;’.:#,$#!%#;$#则存在’#!##!$#使$%%&’!;(%$有!$%’;&!!(’$%由已知不等式有,!$$%,(’;&!!(’$%’$’,!;$&!!(’$,!%$$’(&!!(’$(%(#其中(%9:;,!$$#,!;+,$,$#(%#;’#令-%!%&;$($#那么%&;$%$&-$,!%&;$$%,!$$&-$$$!$,!$$&!$,!-$$!$,!$$&!$(<,!$$-$,!%&;$$((%<!$由##$两式可知<!$,!$$$(#,$#!%#;$再由(的定义#可知,!$$$(#,$#(%#;’若令!<%9./+,!%$#,!;$#<!,#则<$,!$$$(#,$#(%#;’即,!$$在(%#;’上有界!历年考研真题评析!%题!&!!北京大学#$##3年$设,!$$在(%#;’上无界#求证)16#(%#;’#使得对,#&##,!$$在!#(##=&#$2(%#;’上无界!分析!本题采用闭区间套定理证明!证明!取%#;中点%&;$#则(%#%&;$’#(%&;$#;’中至少有一个区间使,!$$无界!如果两个都是可任取一个$#记为(%!#;!’!再取中点%!&;!$#又可得区间(%$#;$’#使,!$$在其上无界#这样继续下去有(%#;’3(%!#;!’3(%$#;$’3&3(%&#;&’3&使,!$$在每个区间上无界!由区间套原理#存在6%7.9&0)%&%7.9&0);&#则6#(%#;’#而对,#&##当&充分大时#有!=(##=&#$2(%#;’3(%&#;&’故,!$$在!=(##=&#$2(%#;’上无界!%题"&!!甘肃工业大学#$##4年$有下列几个命题)!!$任何周期函数一定存在最小正周期!!$$($’是周期函数!!’$+./!$不是周期函数!!*$$=8+$不是周期函数!其中正确的命题有!!!$!>"!个!!!?"$个!!!@"’个!!!A "*个%%%!!数学分析同步辅导及习题全解#上册$解题分析!本题主要考察周期函数的定义B 解题过程!选?!其中)!!$错B 比如,!$$%#B 那么任何正实数都是它的周期#而无最小正实数B !$$错B 设,!$$%($’的周期为C &##并设(C ’%9-#当9%#时#则C%!(%#其中#%%%!#那么(%&C ’%!#(%’%#!!!<(%&C ’"(%’这与C 为周期矛盾B !!!<9"#当9&#时#(C&!’%9&!#(!’%!!!!<(!&C ’"(!’#也矛盾B <($’不是周期函数B !’$对B D 若,!$$是定义域.上周期函数#那么存在函数>#使,$#.都有,!$6>$%,!$$!这必须有$6>#.!而本题定义域.%(##&)$#若是周期函数#则##.#必须(>#.#但(>4.#故不是周期函数!!*$对B 用反证法#设,!$$%$=8+$的周期为>&##则,!#$%#%,!>$%>=8+><=8+>%##>%&#(&($#&##E #且&#-#,!($&>$%,!(&&#($%!&#&!$(=8+(!&#&!$(’,!($$%($=8+($%##由,!($&>$%,!($$<=8+!&#&!$(%##矛盾B 即$=8+$不是周期函数!课后习题全解!!!F !!实数5!!设%为有理数#$为无理数!证明)!!$%?$是无理数*!!!!!!$$当%"#时#%$是无理数!!分析!根据有理数集对加"减"乘"除!除数不为#$四则运算的封闭性#用反证法证!!证明!!!$假设%?$是有理数#则!%?$$@%A $是有理数#这与题设$是无理数相矛盾#故%?$是无理数!!$$假设%$是有理数#则当%"#时#%$%A $是有理数#这与题设$为无理数相矛盾!故%$是无理数!6$!试在数轴上表示出下列不等式的解)!!$$!$$@!$&#*!!$$B $@!B %B $@’B *!’$$@!!@$$@!!-’$@!$!解!!!$由原不等式有$&#$$@!&+#!或!$%#$$@!%+#前一个不等式组的解集是C A +$B $&!,#后一个不等式组的解集是D A +$B @!%$%#,!故!!$的解集是C *D !如图!E !!%&%第一章!实数集与函数图!E !!$$由原不等式有$@!$@’%!#于是!?$$@’%!!所以@!%!?$$@’%!#即#%!’@$%!#则’@$&!#$%$!故!$$的解集为!@)#$$!如图!E $!图!E $!’$由原不等式应有’$@!$-##$@!!@$$@!!-##从而对原不等式两端平方有$@!?$$@!@$!$@!$!$$@!!$-’$@$因此有$!$@!$!$$@!!$$##所以!$@!$!$$@!!$A ##由此得$A !#或$A !$!但检验知$A !和$A !$均不符合原不等式!所以原不等式的解集为7!!小结!在!$$中是将绝对值不等式转化为不含绝对值的不等式去解!若直接利用绝对值的几何意义#其解集就是数轴上到点!的距离小于到点’的距离的点集#即数轴上点$左侧的点集!若直接考虑!’$的解$应使不等式中三个二次根式有意义#则必有$-!#但这时不等式左端为负而右端为正#显然不成立#故其解集为7!5’"设%";#$!证明)若对任何正数#有B %@;B %##则%A ;!!分析!用反证法#注意到题设中#的任意性#只要设法找到某一正数#使条件不成立即可!!证明!假设%";#则根据实数集的有序性#必有%&;或%%;!不妨设%&;#令#A %@;&##则B %@;B A %@;A ##但这与B %@;B A %@;%#矛盾#从而必有%A ;!5*"设$"##证明$?!$-$#并说明其中等号何时成立!!分析!由!%@;$$A %$@$%;?;$-##有%$?;$-$%;!!证明!因$"##则$与!$同号#从而有$?!$A B $B ?!B $B -$B $B %!B $!BA $等号当且仅当B $B A !B $B#即$AF !时成立!83"证明)对任何$#$有!!$B $@!B ?B $@$B -!*!!!!!$$B $@!B ?B $@$B ?B $@’B -$!!证明!直接由绝对值不等式的性质#对任意的$#$有!!$B $@!B ?B $@$B -B !$@!$@!$@$$B A B !B A !!$$B $@!B ?B $@$B ?B $@’B -B $@!B ?B $@’B -B !$@!$@!$@’$B A $64"设%";"=#$?!$?表示全体正实数的集合$!证明B %$?;!$@%$?=!$B $B;@=B !%’%!!数学分析同步辅导及习题全解#上册$你能说明此不等式的几何意义吗-!分析!用分析法证明!!证明!欲证B %$?;!$@%$?=!$B $B;@=B 只需证!%$?;!$@%$?=!$$$$!;@=$$即证!$%$@$!%$?;$$!%$?=$!$$@$;=只需证%$?;=$!%$?;$$!%$?=$!$只需证!!%$?;=$$$!%$?;$$!;$?=$$即证$%$;=$%$!;$?=$$由于%";"=#$?#所以$;=$;$?=$#%$&##所以有$%$;=$%$!;$?=$$成立!所以原不等式成立!其几何意义为)当;"=时#平面上以点C !%#;$"D !%#=$"G !###$为顶点的三角形中#B B C G B @B D G B B %B C D B *当;A =时#此三角形变成以点G !###$#C !%#;$为端点的线段!如图!@’!图!E ’!小结!利用分析法找到证题思路#再用综合法证明#过程更为简捷!65"设$&##;&##%";#证明%?$;?$介于!与%;之间!!分析!本题实质是要比较两数的大小#且该数符号不定#可用作差法!!证明!因$&##;&##%";#则由!@%?$;?$A ;@%;?$#%;@%?$;?$A $!%@;$;!;?$$得当%&;时#!%%?$;?$%%;*当%%;时#%;%%?$;?$%!!故总有%?$;?$介于!与%;之间!!小结!通常要证某数%介于另两数;与=之间#可转化为证!=@%$!;@%$%##这种方法在;与=大小关系不完全确定时#也不必分情况讨论#较为简捷!例如本题中)因为$&##;&##%";#则有!@%?$;?!$$%;@%?$;?!$$A @$!;@%$$;!;?$$$%#所以%?$;?$必介于!与%;之间!6G "设"为正整数!证明)若"不是完全平方数#则!"是无理数!!分析!本题采用反证法#联想到互质"最大公约数以及辗转相除法的有关知识点#可得结论!!证明!用反证法!假设!"为有理数#则存在正整数<"&使!"A<&#且<与&互质!于是<$A %(%第一章!实数集与函数"&$#<$A &%!"&$#可见&能整除<$!由于<与&互质#从而它们的最大公约数为!#由辗转相除法知)存在整数3"H 使<3?&H A !#则<$3?<&H A <!因&既能整除<$3又能整除<&H #故能整除其和#于是&能整除<#这样&A !#所以"A <$!这与"不是完全平方数相矛盾!!小结!本题证明过程比较独特#先假设有理数为互质的两个数的商#利用这两个数与"之间的关系#运用辗转相除法得出结论#注意知识点之间的内在联系!F $!数集"确界原理8!"用区间表示下列不等式的解)!!$B !@$B @$-#*!!$$$?!$$4*!’$!$@%$!$@;$!$@=$&#!%#;#=为常数#且%%;%=$*!*$+./$-!$$!!解!!!$原不等式等价于下列不等式组$%!!!@$$@$-+#!或!$-!!$@!$@$-+#前一个不等式组的解为$$!$*后一个不等式组的解集为空集#所以原不等式的解集为@)#!’!$!!$$绝对值不等式$?!$$4等价于@4$$?!$$4!这又等价于不等式组$&#@4$$$$?!$4+$!或!$%#4$$$$?!$@4+$而前一个不等式组的解集为(’@!$$#’?!$$’#后者的解集为(@’@!$$#@’?!$$’!因此原不等式的解集为(@’@!$$#@’?!$$’*(’@!$$#’?!$$’!’$作函数,!$$A !$@%$!$@;$!$@=$#$#$!则由%%;%=知,!$$%##当$#!@)#%$*!;#=$A ##当$A %#;#=&##当$#!%#;$*!=#?)’()$因此,!$$&##当且仅当!!!!$#!%#;$*!=#?)$故原不等式的解集为!%#;$*!=#?)$!*$若#$$$$(#则当且仅当$#(*#’*(’(时#+./$-!$$!再由正弦函数的周期性知)+./$-!$$的解集是$7(?(*#$7(?’*(’(#其中7为整数!8$"设’为非空数集!试对下列概念给出定义)!!$’无上界*!!!!!$$’无界!%)%!!数学分析同步辅导及习题全解#上册$!解!!!$设’是一非空数集!若对任意的(&##总存在$##’#使$#&(#则称数集’无上界!!$$设’是一非空数集!若对任意的(&##总存在$##’#使B $#B &(#则称数集’无界!8’"试证明由!’$式所确定的数集’有上界而无下界!!证明!由!’$式所确定的数集’A +-B -A $@$$#$#$,#对任意的$#$#-A $@$$$$#所以数集’有上界$!而对任意的(&##取$#A ’?!(#$#存在-#A $@$$#A $@’@(A@!@(#’#而-#%@(#因此数集’无下界!8*"求下列数集的上"下确界#并依定义加以验证)!!$’A +$B $$%$,*!!$$’A +$B $A &.#&#%?,*!’$’A +$B $为!##!$内的无理数,*!*$’A +$B $A !@!$&#&#%?,!!解!!!$+,-’A !$#./0’A@!$#下面依定义加以验证!因$$%$#等价于@!$%$%!$#所以对任意的$#’#有$%!$且$&@!$#即!$"@!$分别是’的上"下界!又对任意的正数##不妨设#%!$$#于是存在$#A !$@#$"$!A@!$?#$#使$#"$!#’#使$#&!$@##$!%@!$?##所以由上"下确界的定义+,-’A !$#./0’A@!$!!$$+,-’A?)#./0’A !#下面依定义验证!对任意的$#’#!$$%?)#所以!是’的下界!因为对任意的(&##令&A ((’?!#则&.&(#故’无上界#所以+,-’A?)*对任意的#&##存在$!A !.A !#’#使$!%!?##所以./0’A !!!’$+,-’A !#./0’A ##下面依定义验证!对任意的$#’#有#%$%!#所以!"#分别是’的上"下界!又对任意的#&##不妨设#%!#由无理数的稠密性#总存在无理数!#!###$#则有无理数$#A !@!#’#使$#A !@!&!@#*有无理数$!A !#’#使$!A !%#?##所以+,-’A !#./0’A #!!*$+,-’A !#./0’A !$#下面依定义验证!对任意的$#’#有!$$$%!#所以!"!$分别是’的上"下界!对任意的#&##必有正整数&##0/使!$&#%##则存在$#A !@!$&##’#使$#&!@##所以+,-’A !!又存在$!A !@!$A !$#’#使$!%!$?##所以./0’A !$!83"设’为非空有下界数集#证明)./0’A %#’9%A 9./’!!证明!:$!设./0’A %#’#则对一切$#’有$-%#而%#’#故%是数集’中最小的数#即%A 9./’!;$!设%A 9./’#则%#’*下面验证%A ./0’)!!$对一切$#’#有$-%#即%是’的下界*!"$对任何&&%#只需取$#A %#’#则$#%&!从而满足%A ./0’的定义!%*!%84"设’为非空数集#定义’@A +$B @$#’,!证明)!!$./0’@A@+,-’*!!$$+,-’@A@./0’!!证明!!!$%A ./0’@#由下确界的定义知#对任意的$#’@#有$-%#且对任意的&&%#存在$##’@#使$#%&!由’@A +$B @$#’,知#对任意的@$#’#@$$@%#且对任意的@&%@%#存在@$##’#使@$#&@&#由上确界的定义知+,-’A@%#存在@$##’#使@$#&@&#即./0’@A@+,-’!同理可证!$$成立!85"设C "D 皆为非空有界数集#定义数集C ?D A +I B I A $?-#$#C #-#D ,!证明)!!$+,-!C ?D $A +,-C ?+,-D *!!$$./0!C ?D $A ./0C ?./0D !!证明!!!$设+,-C A !!#+,-D A !$!对任意的I #C ?D #存在$#C #-#D #使I A $?-!于是$$!!#-$!$!从而I $!!?!$!对任意的#&##必存在$##C #-##D #使$#&!!@#$#-#&!$@#$#则存在I #A $#?-##C ?D #使I #&!!!?!$$@#!所以+,-!C ?D $A !!?!$A +,-C ?+,-D !同理可证!$$成立!6G"设%&##%"!#$为有理数!证明%$A+,-+%JB J 为有理数#J %$,#当%&!#./0+%JBJ 为有理数#J %$,#当%%!+!!分析!利用指数函数的单调性#把指数函数化归为对数函数讨论#并运用有理数的稠密性概念来证此题!!证明!只证%&!的情况#%%!的情况可以类似地加以证明!设C A +%J BJ 为有理数#J %$,!因为%&!#%J 严格递增#故对任意的有理数J %$#有%J%%$#即%$是C 的一个上界!对任意的"%%$#由%$&#及有理数的稠密性#不妨设"&#且为有理数!于是必存在有理数J #%$#使得"%%J #%%$!事实上#由781%$严格递增知)#%"%%$等价于781%"%781%%$A $#由有理数的稠密性#存在有理数J #使得781%"%J #%$#所以"A %781%"%%J #%%$!故%$A +,-C A +,-+%JB J 为有理数#J %$,#%&!!!小结!关于求数集的确界或证明数集确界的有关命题#主要利用确界的定义#进一步加深读者对数集上"下确界概念的理解#这对进一步学习极限理论及实数的完备性#使整个数学分析建立在坚实的基础上是十分重要的!F ’!函数概念8!"试作下列函数的图象)!!$-A $$?!*!!!!!!!$$-A !$?!$$*!’$-A !@!$?!$$*!*$-A +1/!+./$$*!3$-A ’$#B $B &!#$’#B $B %!#’#B $B A !’()!!解!利用描点作图法#各函数的图象如图!E *至图!E G !5$"试比较函数-A %$与-A 781%$分别当%A $和%A !$时的图象!%!!%图!E *!!!!!!!!!!图!E 3图!E 4!!!!!!!!!!图!E 5图!E G!分析!利用指数函数与对数函数性质#注意$在-A %$与-A 781%$的定义域上的取值范围是不同的!!解!当%A $时#-A %$是单调递增函数#当%A !$时#它是单调递减函数*当$A #时#!$!$$A $$A !#即两函数的图象都过点!##!$*当$&#时#!$!$$%!%$$#-A $$的图象在-A !$!$$的图象上方*当$%#时#!$!$$&!&$$#-A !$!$$的图象在-A $$的图象上方*对任意的$#$?#两函数值都大于##即函数的图象都在$轴上方#且-A $$的图象与-A!$!$$的图象关于-轴对称!%"!%-A 781%$是-A %$的反函数!当%A $时#是单调递增的#当%A !$时#是单调递减的*当#%$%!时#781!$$&#&781$$*当$A !时#781!$$A 781$$A #*当$&!时#781!$$%#%781$$*当$$#时#两个函数无定义#因此函数图象在-轴右方#且过点!!##$!-A 781!$$与-A 781$$的图象关于$轴对称!-A $$与-A 781$$的图象"-A!$!$$与-A 781!$$的图象皆关于直线-A $对称!如图!E H!图!E H !!!!!!!!!!!!!图!E !#8’"根据图!E !#写出定义在(##!’上的分段函数,!!$$和,$!$$的解析表达式!!解!利用直线的两点式方程或点斜式方程容易得到,!!$$A *$##$$$!$*@*$#!$%$$’()!,$!$$A !4$##$$$!*G @!4$#!*%$$!$##!$%$$’()!8*"确定下列初等函数的存在域)!!$-A +./!+./$$*!!!!!$$-A 71!71$$*!’$-A :I =+./71$!$!#*!*$-A 71:I =+./$!$!#!!解!!!$因为+./$的存在域为$#所以-A +./!+./$$的存在域为$!!$$因71$&#等价于$&!#所以-A 71!71$$的存在域是!!#?)$!!’$因为-A :I =+./3的存在域是(@!#!’#而@!$71$!#$!等价于!$$$!###所以-A :I =+./71$!$!#的存在域是(!#!##’!!*$因-A 713的存在域是!##?)$#而3A :I =+./$!#的值域为@($#((’$#由#%3$($%#!%有#%$!#$!#即#%$$!##所以-A 71:I =+./$!$!#的存在域是!##!#’!83"设函数,!$$A $?$#$$##$$#$&#+!求)!!$,!@’$#,!#$#,!!$*!!$$,!)$$@,!#$#,!@)$$@,!#$!)$&#$!!解!!!$,!@’$A $?!@’$A@!,!#$A $?#A $,!!$A $!A $!$$因为)$&##所以有,!)$$@,!#$A $)$@!$?#$A $)$@$,!@)$$@,!#$A $?!@)$$@!$?#$A@)$84"设函数,!$$A !!?$#求,!$?$$#,!$$$#,!$$$#,!,!$$$#,!,!$!$$!!解!,!$?$$A !!?!$?$$A!’?$,!$$$A !!?$$*,!$$$A !!?$$,!,!$$$A !!?!!?$A $?!$?$,!,!$!$$A !!?!,!$$A!!?!!?$$A !$?$85"试问下列函数是由哪些基本初等函数复合而成)!!$-A !!?$$$#*!!$$-A !:I =+./$$$$*!!’$-A 71!!?!?$!$$*!!*$-A $+./$$!!解!!!$-A 3$##3A H !?H $#H !A !#H $A $!$$-A 3$#3A :I =+./H #H A $$!’$-A 713#3A H !?H $#H !A !#H $A !’#’A H !?K #K A $$!*$-A $3#3A H $#H A +./$5G"在什么条件下#函数-A%$?;=$?L的反函数就是它本身-!分析!先把反函数求出#分别讨论原函数与反函数的定义域#再讨论参数!!解!首先;="%L #由-A %$?;=$?L #解得$A ;@L -=-@%#交换$与-得-A ;@L $=$@%!当="#时#原函数的定义域为$"@L =#反函数的定义域为$"%=!因此#要使二函数相同#必须%A@L #这时原函数为%$?;=$?L A;@L $=$@%#即为反函数!另外#当;A =A ##且%A L "#时亦满足!故当/;="%L 且%A@L 0或/;A =A #且%A L "#0时#该函数的反函数就是其本身!8H"试作函数-A :I =+./!+./$$的图象!%$!%!解!-A :I =+./!+./$$是以$(为周期的函数#其定义域为$#值域为@($#((’$的分段函数#其在一个周期区间(@(#(’上的表达式为-A (@$#($%$$($#@($$$$($@!(?$$#@($$%@(’()$其图象如图!E!!!图!E !!8!#"试问下列等式是否成立)!!$J :/!:I =J :/$$A $#$#$*!$$:I =J :/!J :/$$A $#$"7(?($#7A ##F !#F $#&!!解!!!$由J :/$与:I =J :/$的定义知#!!$式成立!!$$因为J :/$的定义域为$"7(?($#7A ##F !#F $#&#而:I =J :/$的值域仅为@($#(!$$!所以!$$式不成立!例如当$A ’*(时#:I =J :/!J :/$$A :I =J :/!@!$A@(*"$!8!!"试问-A B $B 是初等函数吗-!解!因-A B $B A $!$是由-A !3与3A $$复合而成的#所以-A B $B 是初等函数!8!$"证明关于函数-A ($’的如下不等式)!!$当$&#时#!@$%$!(’$$!*!$$当$%#时#!$$!(’$%!@$!!证!由定义知!(’$是不超过!$的最大整数#故有#$!$@!(’$%!所以!!!!!!!!!!!!$@!%!(’$$!$#%%!%!!$当$&#时#给#两端同乘以$得!@$%$!(’$$!!$$当$%#时#给#两端同乘以$得!$$!(’$%!@$ F*!具有某些特性的函数8!"证明,!$$A$$$?!是$上的有界函数!!证明!利用不等式$B$B$!?$$有#对一切$#$都有B,!$$B AB$B$$?!A!$$B$B$$?!$!$成立#故,!$$是$上的有界函数!8$"!!$叙述无界函数的定义*!$$证明,!$$A!$$为!##!$上的无界函数*!’$举出函数,的例子#使,!$$为闭区间(##!’上的无界函数!!解!!!$设,!$$为定义在.上的函数#若对任意的正数(#都存在$##.#使B,!$#$B&(#则称函数,!$$为.上的无界函数!!$$证明)对任意的正数(#存在$#A!(?!!#!##!$#使B,!$#$B A!$$#A(?!&(#所以,!$$A!$$是!##!$上的无界函数!!’$设,!$$A!$$#$#!##!’!#$A’()#!由!$$的证明知,!$$为(##!’上的无界函数!8’"证明下列函数在指定区间上的单调性) !!$-A’$@!在!@)#?)$上严格递增*!$$-A+./$在@($#((’$上严格递增*!’$-A=8+$在(##(’上严格递减!!分析!!$$"!’$两小题都是三角函数#要牢记三角函数的半角"倍角公式!后面讨论周期性以及傅里叶级数时都会用到!!证明!!!$任取$!"$$#!@)#?)$#$!%$$#则有,!$!$@,!$$$A’!$!@!$@!’$$@!$A’!$!@$$$%#可见,!$!$%,!$$$#所以,!$$A’$@!在!@)#?)$上严格递增!!$$任取$!#$$#@($#((’$#$!%$$#则有@($%$!?$$$%($#!@($$$!@$$$%#因此=8+$!?$$$&##!+./$!@$$$%#%& !%从而,!$!$@,!$$$A +./$!@+./$$A $=8+$!?$$$+./$!@$$$%##,!$!$%,!$$$!所以,!$$A +./$在@($#((’$上严格递增!!’$任取$!#$$#(##(’#$!%$$#则有#%$!?$$$%(#!@($$$!@$$$%##从而有+./$!?$$$&##+./$!@$$$%##故,!$!$@,!$$$A =8+$!@=8+$$A@$+./$!?$$$+./$!@$$$&##从而,!$!$&,!$$$#所以,!$$在(##(’上严格递减!8*"判别下列函数的奇偶性)!!$,!$$A !$$*?$$@!*!!!$$,!$$A $?+./$*!’$,!$$A $$K @$$*!*$,!$$A 71!$?!?$!$$!!解!!!$因为,!@$$A !$!@$$*?!@$$$@!A !$$*?$$@!A ,!$$#故,!$$A !$$*?$$@!是偶函数!!$$对任意的$#!@)#?)$有#,!@$$A !@$$?+./!@$$A@$@+./$A@!$?+./$$A@,!$$#故,!$$A $?+./$为!@)#?)$上的奇函数!!’$,!$$A $$K @$$在!@)#?)$上有定义#对任意的$#!@)#?)$有#,!@$$A !@$$$K @!@$$$A $$K @$$A ,!$$#故,!$$为!@)#?)$上的偶函数!!*$,!$$A 71!$?!?$!$$在!@)#?)$上有定义#对每一个$#!@)#?)$有#,!@$$A 71!@$?!?!@$$!$$A 71!@$?!?$!$$A@71!$?!?$!$$A@,!$$#所以,!$$A 71!$?!?$!$$为!@)#?)$上的奇函数!53"求下列函数的周期)!!$=8+$$*!!$$J :/’$*!!’$=8+$$?$+./$’!!分析!求三角函数周期时#应先转化为一次函数#再求周期#如!!$!如果有两个或两个以上的函数#分别求出它们各自的周期#再求最小公倍数#如!’$!!解!!!$,!$$A =8+$$A !$!!?=8+$$$#而!?=8+$$的周期是(#所以,!$$A =8+$$的周期是(!!$$因为J :/$的周期是(#所以,!$$A J :/’$的周期是(’!!’$因+./$"=8+$的周期是$(#所以=8+$$的周期是*(#+./$’的周期是4(#故,!$$A =8+$$?$+./$’的周期是!$(!84"设函数,!$$定义在(@%#%’上#证明)!!$M !$$A ,!$$?,!@$$#$#(@%#%’为偶函数*!$$8!$$A ,!$$@,!@$$#$#(@%#%’为奇函数*%’!%!’$,可表示为某个奇函数与某个偶函数之和!!证明!!!$因(@%#%’关于原点对称#M !$$在(@%#%’上有定义#对每一个$#(@%#%’有M !@$$A ,!@$$?,!$$A ,!$$?,!@$$A M !$$!故M !$$为(@%#%’上的偶函数!!$$因(@%#%’关于原点对称#8!$$在(@%#%’上有定义#对每一个$#(@%#%’有8!@$$A ,!@$$A@,!$$A@(,!$$@,!@$$’A@8!$$!故8!$$为(@%#%’上的奇函数!!’$由!!$"!$$得M !$$?8!$$A $,!$$#从而有,!$$A M !$$?8!$$$A !$M !$$?!$8!$$#而!$M !$$是偶函数#!$8!$$是奇函数!从而,!$$可表示为一个奇函数!$8!$$与一个偶函数!$M !$$之和!85"设,"1为定义在.上的有界函数#满足,!$$$1!$$#$#.!证明)!!$+,-$#.,!$$$+,-$#.1!$$*!!$$./0$#.,!$$$./0$#.1!$$!!证明!!!$记!A +,-$#.1!$$#则对任意的$#.有#1!$$$!#又因,!$$$1!$$#所以,!$$$1!$$$!!因此!是,!$$的上界#而+,-$#.,!$$是,!$$的最小上界#故+,-$#.,!$$$!A +,-$#.1!$$!!$$同理可证!8G"设,为定义在.上的有界函数#证明)!!$+,-$#.+@,!$$,A@./0$#.,!$$*!!$$./0$#.+@,!$$,A@+,-$#.,!$$!!证明!!!$记./0$#.,!$$A %!由下确界的定义知#对任意的$#.#,!$$-%#即@,!$$$@%#可见@%是@,!$$的一个上界*对任意的#&##存在$##.#使,!$#$&%?##即@,!$#$%@%@##可见@%是@,!$$的上界中最小者!所以+,-$#.+@,!$$,A@%A@./0$#.,!$$!!$$同理可证结论成立!也可直接用!!$的结论来证!事实上#在!!$中换,!$$为@,!$$得#+,-$#.,!$$A +,-$#.+@!,!$$$,A@./0$#.+@,!$$,#两边同乘以@!得./0$#.+@,!$$,A@+,-$#.,!$$6H"证明)J :/$在@($#(!$$上无界!而在@($#(!$$内任一闭区间(%#;’上有界!!分析!要证J :/$在!@($#($$上无界#只需在$##!@($#($$取一点#使J :/$#&(即可!证在!@($#($$上#存在区间(%#;’使J :/$有界#只需证J :/$$(##且有J :/%%J :/$%J :/;!!证明!对任意的(&##取$#A :I =J :/!(&!$#(($#(!$$#有+J :/$#+%+J :/!:I =J :/!L&!$$+%L&!&L #所以,!$$%J :/$在(($#(!$$内是无界函数!但任取(%#;’.@($#(!$$#由于J:/$在(%#;’上严格递增#从而当$#(%#;’时#J :/%%(!%$J:/$$J :/;#记(A 9:;+B J :/%B #B J :/;B ,#则对一切$#(%#;’有B J :/$B $(#所以J :/$是(%#;’上的有界函数!!小结!证明函数的有界性#往往要利用函数的单调性#同时往往利用放缩法#这是极限理论的基础#也是今后学习分析学的基础!6!#"讨论狄利克雷函数.!$$A !#当$为有理数###当$’()为无理数的有界性"单调性与周期性!!分析!狄利克雷函数由定义可证得有界性#单调性也比较明显#对周期性分有理数与无理数讨论!!解!由.!$$的定义知#对任意的$#$#有B .!$$B $!#所以.!$$是$上的有界函数!由于对任意的有理数$!与无理数$$#无论$!%$$还是$$%$!#都有.!$!$&.!$$$!所以.!$$在$上不具有单调性!对任意的有理数J 有$?J A 有理数#当$为有理数时无理数#当$’()为无理数时于是对任一$#$#有.!$?J $A !#当$为有理数时##当$’()为无理数时A .!$$所以#任意有理数J 都是.!$$的周期!但任何无理数都不是.!$$的周期!事实上#对任一无理数"#对无理数@"#.!@"$A ##而.!"?!@"$$A .!#$A !".!@"$!!小结!狄利克雷函数与黎曼函数是一类特殊函数#在以后的连续性以及极限理论中具有重要地位#要特别注意!8!!"证明),!$$A $?+./$在$上严格增!!证明!任取$!"$$#!@)#?)$#$!%$$#则,!$$$@,!$!$A !$$@$!$?!+./$$@+./$!$A !$$@$!$?$=8+$!?$$$+./$$@$!$-!$$@$!$@$=8+$!?$$$%+./$$@$!$&!$$@$!$@$%$$@$!$A #D +./$$@$!$%B $$@$!B !$$即,!$!$%,!$$$#所以,!$$A $?+./$在!@)#?)$上严格增!6!$"设定义在(%#?)$上的函数,在任何闭区间(%#;’上有界!定义(%#?)$上的函数)<!$$A ./0%$-$$,!-$#(!$$A +,-%$-$$,!-$!试讨论<!$$与(!$$的图象#其中!!$,!$$A =8+$#$#(##?)$*!!$$,!$$A $$#$#(@!#?)$!%)!%!分析!在讨论上述两个函数时#首先应分割区间#在区间内讨论其单调性然后再讨论有界性!!解!!!$由<!$$及(!$$的定义知#对%%$#当,!-$在(%#$’上为递增函数时#<!$$A ,!%$#(!$$A ,!$$!当,!-$在(%#$’上为减函数时#<!$$A ,!$$#(!$$A ,!%$!由此可知)对,!$$A =8+$#当#$$$(时#<!$$A =8+$#(!$$A !!而$#((#?)$时#由于@!$=8+$$!#所以#<!$$A@!#(!$$A !#即有<!$$A =8+$##$$$(@!#($$%?)+!!(!$$<!#$#(##?)$其图象见图!E !$!图!E !$!!!!!!!!!!图!E!’!$$同上理#当$#(@!##’时#(!$$A !#<!$$A $$*当$#!##?)$时#<!$$<#*当$#(@!#!’时#(!$$<!*当$#!!#?)$时#(!$$A $$!即有<!$$A $$#$#(@!##’##当$#!##?)+’(!$$A!#$#(@!#!’时$$#当$#!!#?)$+时其图象见图!E !’!!小结!确界理论是学习数学分析的基础#对后面学习连续"微分"积分等都具有重要作用!总练习题8!"设%#;#$#证明)!!$9:;+%#;,A !$!%?;?B%@;B $*!$$9./+%#;,A !$!%?;@B%@;B $!!证明!因为!$!%?;?B %@;B $A%#当%-;时;#当%%;+时!$!%?;@B%@;B $A %#当%%;时;#当%-;+时所以!9:;+%#;,A !$!%?;?B%@;B $9./+%#;,A !$!%?;@B %@;B $%*"%第一章!实数集与函数8$"设,和1都是.上的初等函数!定义(!$$A 9:;+,!$$#1!$$,#<!$$A 9./+,!$$#1!$$,#$#.!试问(!$$和<!$$是否为初等函数-!解!由习题!得(!$$A!$(,!$$?1!$$?B ,!$$@1!$$B ’A!$(,!$$?1!$$?(,!$$@1!$$’!$’<!$$A !$(,!$$?1!$$@B ,!$$@1!$$B ’A!$(,!$$?1!$$@(,!$$@1!$$’!$’所以#(!$$与<!$$都是由.上的初等函数,!$$"1!$$经四则运算和有限次复合而成的函数!所以#(!$$和<!$$都是初等函数!8’"设函数,!$$A !@$!?$#求),!@$$#,!$?!$#,!$$?!#,!!$$#!,!$$#,!$$$#,!,!$$$!!解!,!@$$A !?$!@$*!,!$?!$A @$$?$*!,!$$?!A !@$!?$?!A $!?$*,!!$$A !@!$!?!$A $@!$?!*!!,!$$A !?$!@$*!,!$$$A !@$$!?$$*,!,!$$$A !@!@$!?$!?!@$!?$A $$$A $5*"已知,!!$$A $?!?$!$#求,!$$!!分析!本题采用倒代换的方法#即!$A K #但是根号中移出的数要加绝对值!!解!令!$A K #则$A !K !所以,!K $A !K?!?!!$K!$A!K ?!?K !$B K B#故,!$$A !$?!?$!$B $B #故,!$$A !$?!?$!$B $B!83"利用函数-A ($’求解)!!$某系各班级推选学生代表#每3人推选!名代表#余额满’人可增选!名!写出可推选代表数-与班级学生数$之间的函数关系!假设每班学生数为’#)3#人$*!$$正数$经四舍五入后得整数-#写出-与$之间的函数关系!!解!!!$因余额满’人可补选一名#即就是可在原来基础上增加$人后取整#于是-A $?$(’3!!$A ’##’!#&#3#$!$$由($’的定义知!-A ($?#"3’#$&#%!"%!!数学分析同步辅导及习题全解#上册$54"已知函数-A ,!$$的图象#试作下列各函数的图象)!!$-A@,!$$*!!$$-A ,!@$$*!!’$-A@,!@$$*!*$-A B ,!$$B *!!3$-A +1/,!$$*!4$-A !$(B ,!$$B ?,!$$’*!!5$-A!$(B ,!$$B @,!$$’!!分析!作函数图象找出函数关于原函数的对称点"对称中心!有绝对值号的要分类讨论!!解!!!$-A@,!$$和-A ,!$$的图象关于$轴对称!!$$-A ,!@$$的图象与-A ,!$$的图象关于-轴对称!!’$-A@,!@$$的图象与-A ,!$$的图象关于原点对称!!*$-A B ,!$$B A ,!$$#!!$#.!A +$B ,!$$-#,@,!$$#$#.$A +$B ,!$$%#’(),!3$-A +1/,!$$A !#!!!$#.!A +$B ,!$$&#,##$#.$A +$B ,!$$A #,@!#$#.’A +$B ,!$$%#’(),!4$-A !$(B ,!$$B ?,!$$’A ,!$$#$#.!A +$B ,!$$-#,##$#.$A +$B ,!$$%#’(),!5$-A !$(B ,!$$B @,!$$’A ##$#.!A +$B ,!$$-#,@,!$$#$#.$A +$B ,!$$%#’(),其图象如图!E !*至图!E!5!图!E !*!!!!!!!!!!!图!E!3图!E !4!!!!!!!!!!!图!E !555"已知函数,和1的图象#试作下列函数的图象)!!$*!$$A 9:;+,!$$#1!$$,*!!$$+!$$A 9./+,!$$#1!$$,!%""%第一章!实数集与函数!分析!将9:;+,#1,与9./+,#1,转化为分段函数再讨论!!解!!!$*!$$A 9:;+,!$$#1!$$,A ,!$$#$#.!A +$B ,!$$-1!$$,1!$$#$#.$A +$B ,!$$%1!$+$,!$$+!$$A 9./+,!$$#1!$$,A 1!$$#$#.!A +$B ,!$$-1!$$,,!$$#$#.$A +$B ,!$$%1!$+$,其图象如图!E !G 和图!E !H !!!!图!E !G !!!!!!!!!!!图!E !H 5G "设,"1和N 为增函数#满足,!$$$1!$$$N !$$#$#$!证明),!,!$$$$1!1!$$$$N !N !$$$!!分析!本题己经给出了,"1"N 为增函数#把1!$$与N !$$看成中间变量!利用复合函数及其单调性质#可证得结论!!证明!因对任意的$#$#有,!$$$1!$$$N !$$#且,!$$"1!$$和N !$$均为增函数#所以#有,!,!$$$$,!1!$$$$1!1!$$$$1!N !$$$$N !N !$$$即,!,!$$$$1!1!$$$$N !N !$$$8H"设,和1为区间!%#;$上的增函数#证明第5题中定义的函数*!$$和+!$$也都是!%#;$上的增函数!!证明!对任意的$!"$$#!%#;$#$!%$$#由,!$$"1!$$在!%#;$上递增知,!$$$-,!$!$#1!$$$-1!$!$#因此*!$$$-,!$$$-,!$!$#*!$$$-1!$$$-1!$!$#所以*!$$$-9:;+,!$!$#1!$!$,A *!$!$#故*!$$在!%#;$上是增函数!同理可证+!$$是!%#;$上的增函数!8!#"设,为(@%#%’上的奇!偶$函数!证明)若,在(##%’上增#则,在(@%##’上增!减$!!证明!任取$!"$$#(@%##’#$!%$$#有@$!"@$$#(##%’且@$!&@$$!由,!$$为(@%#%’上的奇函数及在(##%’上递增得#,!$!$A@,!@$!$%@,!@$$$A ,!$$$!所以,!$$在(@%##’上是递增的!同理可证,!$$为偶函数时的相应结论成立!8!!"证明)!!$两个奇函数之和为奇函数#其积为偶函数*!$$两个偶函数之和与积之都为偶函数*!’$奇函数与偶函数之积为奇函数!!分析!对于!!$来说#./0$#.,!$$$,!$$#然后利用,!$$?1!$$@1!$$A ,!$$以及@./0$#.+@,!$$,A +,-$#.+,!$$,证得结论!%#"%。

数学分析课本(华师大三版)-习题及答案20+22

数学分析课本(华师大三版)-习题及答案20+22

习 题 二十、二十二1.计算下列第一型曲线积分.(1) ,其中L 是的上半圆周. ()x y ds L +∫x y R 22+=2 (2) x y d L 22+∫s 2,其中L 是的右半圆周. x y R 22+= (3) e d x y L 22+∫s 2,其中L 是圆,直线x y a 22+=y x =以及x 轴在第一象限中所围成图形的边界. (4) xyds L ∫,其中L 是由所构成的矩形回路.x y x y ====004,,,2(5) ,其中: xds L∫ (a) L 是上从原点O 到点y x =2(,)00B (,)11间的一段弧.(b) L 是折线OAB 组成,A 的坐标为(,,B 的坐标为.)10(,)11(6),其中∫L ds y 2L 为曲线)cos 1()sin (t a y t t a x −=−=,,其中,0>a π20≤≤t .(7) ,其中L 是螺旋线弧段(x y z d L 222++∫)s cos sin ,,x a t y a t z bt ===)(π20,0≤≤>t a .(8) ,其中∫L yzds x 2L 为折线,这里依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2)ABCD D C B A ,,,2.计算下列第二型曲线积分.(1),其中∫−L ds y x )(22L 为在抛物线上从点(0,0)到点(2,4)的一段弧.2x y =(2) ,其中L 为xdy ydx L −∫① 沿直线从点(,到点(,;)00)12② 沿抛物线x y =24从点到点; (,)00(,)12③ 沿折线从点(,经点(,到点(,.)00)02)12(3) xydx L ∫,其中L 是由所构成的沿逆时针方向的矩形回路.x y x y ====004,,,2(4) x dy y dxx y L 225353−+∫,其中L 是沿星形线在第一象限中从点(,x R t y R t ==cos sin 33,)R 0到(,)0R 的弧段(R >0).(5) ,其中L 是从点到xdx ydy zdz L ++∫A (,,)111B (,,)234的直线段. (6) ,其中L 为曲线∫−+Lydz zdy dx x 2θθκθsin cos ,a z a y x ===,上对应θ从0到π的一段弧.3.设质点受力F 作用,力的方向指向原点,大小等于质点到原点的距离.(1) 计算当质点沿椭圆在第一象限中的弧段从(,到(,时,F 所作的功;x a t y b t ==cos sin ,)a 0)0b (2) 计算当质点沿椭圆逆时针方向运动一圈时,力F 所作的功.4.利用格林公式计算下列积分.(1) ()()x y dx x y dy L +++∫222,L 是沿逆时针方向,以为顶点的三角形. A B C (,)(,)(,)113125,, (2)()()x y dx x y dy L ++−∫,L 是方程x y +=1所围成的顺时针方向的闭路.(3) []e ydx y y x L (cos (sin )1−−−∫dy x ,L 是沿y =sin 上从点(,)π0到点的一段弧.(,)00(4) dy ye x x dx e y x xy x y x x x L )2sin ()sin 2cos (222−+−+∫,其中L 为正向星形线)0(323232>=+a a yx . (5) dy y x x y dx x y xy x L )3sin 21()cos 2(223+−+−∫,其中L 为在抛物线上由点(0,0)到22y x π=)1,2(π的一段弧. (6) ,其中dy y x dx y x L ∫+−−)sin ()(22L 为在圆周22x x y −=上由点(0,0)到点(1,1)的一段弧.5.验证下列曲线积分与路径无关,并求它们的值.(1) ,L 是从点经圆周上半部到点的弧段.()()12222++−∫xe dx x e y dy y y L O (,)00+−2)2(x 42=y A (,)40 (2),L 是从点到点的任意弧段. e ydx ydy x L (cos sin )−∫(,)00(,)a b (3) ydx xdy x −∫22112(,)(,)沿右半平面的任意路线.(4) ,L 是从点经抛物线到点的弧段.()(x y xdx ydy L22++∫)(,)00y x =2(,)11 (5) ∫++L y x xcdxydy 322)(,L 是从点到点的不经过原点的弧段.(,)11(,)22 6.求椭圆所围图形的面积.x a t y b t ==cos sin , 7.求下列微分方程的通解.(1) .()()x xy y dx x xy y dy 222222+−+−−=0 (2) [][]e e x y y dx e e x y dy x y x y ()()−+++−+=1100=.(3) .()()x xy dx x y y dy 43224465++− 8.下列各式是否为某函数的全微分,若是,求出原函数.(1) ; (2)x dx y dy 22+xdx ydy x y ++22. 9.求下列第一型曲面积分.(1),其中S 是球面:. zds S ∫∫x y z R 222++=2 (2)(243x y z d S ++∫∫)s ,其中S 是平面x y z 2341++=在第一卦限的部分. (3) ,其中S 是锥面(xy z d S 222++∫∫)s z x y =+22)介于之间的部分.z z ==01、 (4) ,其中S 是由曲面和平面所围立体的表面.∫∫+Sds y x )(22x y z 2220+−=z h h =>(0(5) ,其中S 是锥面(xy yz zx dsS ++∫∫)z x y =+22x 被柱面所截得的部分.x y a 222+=(6) ∫∫SxyzdS ,其中S 是由平面0,0,0===z y x 及1=++z y x 所围成的四面体的整个边界曲面.(7) ,其中S 为锥面∫∫++S ds zx yz xy )(z x y =+22x )0被柱面所截得的有限限部分.x y a 222+= 10.计算下列第二型曲面积分.(1) , 其中S 是三个坐标平面与平面所围成的正方体的表面的外侧.()()()x yz dydz y zx dzdx z xy dxdy S222−+−+−∫∫x a y a z a a ===>,,(0(2) ,其中S 是由平面 xydydz yzdzdx xzdxdy S++∫∫x y z ===00,,与平面x y z ++=1所围成的四面体表面的外侧.(3),其中S 是上半球面yzdzdx S ∫∫z a x y =−−222的下侧. (4) e x y dxdy z S 22+∫∫,其中S 是锥面z x y =+22与平面所围成立体边界曲面的外侧.z z ==12, 11.利用奥-高公式计算下列第二型曲面积分. (1) x dydz y dzdx z dxdy S333++∫∫,其中S 是球面:的外侧.x y z a a 22220++=>() (2) xdydz y dzdx z dxdy S 222++∫∫,其中S 是锥面与平面所围成的立体表面的外侧.x y z 22+=2)z h =(h >0 (3) ()()x y dxdy x y z dydz S−+−∫∫,其中S 为柱面及平面所围立体的表面外侧.x y 221+=z z ==0,1(4) ,其中S 为三个坐标平()()()x y z dxdy y z z dzdx S+++++−∫∫23212面与平面x y z ++=1所围成的四面体的外侧.(5)∫∫++S yzdxdy dzdx yxzdydz 24,其中为平面S 0,0,0===z y x ,所围成的立方体的表面外侧.1,1,1===z y x 12.利用斯托克斯公式计算下列第二型曲线积分. (1) x y dx dy dz L 23++∫,其中L 为坐标平面上圆周,并取逆时针方向. Oxy x y a 22+=2 (2) ()()()y z dx x z dy x y d L 222222+++++∫z ,其中L 是x y z ++=1与三个坐标平面的交线. (3) x yzdx x y dy x y d L 2221+++++∫()(z ),其中L 为曲面与曲面的交线,且从面对z 轴正向看去取顺时针方向.x y z 2225++=z x y =++221 13.验证下列的空间曲线积分与路径无关,并求它们的值.(1) . 22000xe dx z x e dy y zdz y y x y z −−+−−∫(cos )sin (,,)(,,) (2) . xdx y dy z dz +−∫23111234(,,,)(,,) 14.求下列各式的原函数.(1) yzdx xzdy xydz ++.(2) . ()()(x yz dx y xz dy z xy dz 222222−+−+−)15.计算,其中为圆周 ∫L ds x 2S ⎩⎨⎧=++>=++.0),0(2222z y x a a z y x 16. 若dy cx Y dy ax X +=+=,,且L 为包围坐标原点的简单的封闭曲线,计算∫+−=L YX YdX XdY I 2221π. 17.证明:若L 为封闭的曲线且l 为任意的方向,有∫=Lds l 0),cos(. 18.若半径为的球面上每点的密度等于该点到球的某一直径上距离的平方,求球面的质量.a 19.为了使线积分()F x y ydx xdy L (,)+∫与积分路径无关,可微函数F x y (,)应满足怎样的条件?20.设磁场强度为E x y z (,,),求从球内出发通过上半球面的磁通量.x y z a z 22220++=≥,。

数学分析课本(华师大三版)-习题及答案第三章

数学分析课本(华师大三版)-习题及答案第三章

第三章第三章函数极限 一、填空题一、填空题 1.若[]2)(1ln lim20=+®x x f x ,则=®20)(lim xx f x _________ 2.=--+-®xxe e x x x x x 340sin 21sin lim _______________ 3.设xx x x f ÷øöçèæ+-=11)(,则=+¥®)1(lim x f x ____________ 4.已知ïîïíì>-=<+=2,12,02,1)(x x x x x x f ,1)(+=xe x g ,[]=®)(lim 0x gf x ________ 5.()x x x x ln cos arctan lim -+¥®=_________________ 6.[]=®x x x tan)sin(sin sin lim0_____________7.________24tan lim =÷øöçèæ+¥®n n x p8.________ln 1ln ln lim 20=÷øöçèæ+®x x x x9.)1ln(lim 2cos 0x x e e x x x x +-®=__________ 10.=×+-¥®x xx x x cos 1sin 21lim 22_________ 11.=÷øöçèæ-®x x xx tan 11lim 2_________ 12.310)(1lim e x x f x xx =úûùêëé++®,则úûùêëé+®20)(1lim x xf x =_______13.()=+++®)1ln(cos 11cos sin 3lim 20x x xx x x ___________二、选择填空二、选择填空1.=-®tt t cos 1lim( ) A.0 B.1C.2D.不存在不存在 2.函数x x x f 1cos 1)(=,在0=x 点的任何邻域内都是() A.有界的有界的 B.无界的无界的 C.单增单增 D.单减单减 3.已知()25lim 2=++-+¥®cyx ax x ,则必有() A.20,25-==b a B. 25==b a C.0,25=-=b aD.2,1==b a 4.设nn n x n x f ÷øöçèæ-+=+¥®2lim )1(,则=)(x f ( ) A.1-x eB.2+x eC.1+x eD.xe -5.若22lim222=--++®x x b ax x x ,则必有() A.8,2==b a B.5,2==b a C. 8,0-==b aD. 8,2-==b a 6.0)(6sin lim30=+®x x xf x x ,则=+®20)(6lim xx f x ( ) A. 0 B.6 C.36D.¥ 7.设对任意x 点有)()()(x g x p x ££j ,且[]0)()(lim =-¥®x x g x j ,则=¥®)(lim x f x () A.存在且一定为0B.存在且一定不为0C.一定不存在一定不存在D.不一定存在不一定存在 8.当0®x 时,变量x x 1sin12是( ) A.无穷小无穷小 B.无穷大无穷大C.有界,但不是无穷小有界,但不是无穷小D.无界的,但不是无穷大无界的,但不是无穷大9.=-+÷øöçèæ+¥®p 21sin 1])1(1[lim n nn n() A.peB.p 1eC.1D.p 2e 10.=--®xx x xx x tan )(arctan 1lim 220()A.0B.1C.21D.21-11.x x x g dt t x f xsin )(,tan )(sin 02-==ò,则当0®x 时,)(x f 是)(x g 的() A.高阶无穷小高阶无穷小 B.低阶无穷小低阶无穷小 C.同阶非等价无穷小同阶非等价无穷小 D.等价无穷小等价无穷小三、计算题三、计算题1.求下列极限:求下列极限:(1))x x cos x (sin 2lim 22x --p ®; (2)1x x 21x lim 220x ---®; (3)1x x 21x lim 221x ---®; (4)3230x x2x )x 31()1x (lim +-+-®;(5)1x 1x lim m n 1x --®,(n ,m 为自然数);(6)2x 3x 21lim 4x --+®;(7))0a (,xa x a lim 20x >-+®;(8)x x cos x lim x -¥®; (9)4x xsin x lim 2x -¥® ;(10).)1x 5()5x 8()6x 3(lim 902070x --+¥® 2.设,0a ,b x b x b x b a x a x a x a )x (f 0n1n 1n 1n 0m 1m 1m 1m 0¹++++++++=---- 0b 0¹,m ≤n ,试求).x (f lim x ¥® 3.求下列极限(其中n 为自然数):(1)2x x 11x xlim +®;(2)20x x 11x x lim ++®; (3)1x nx x x lim n 21x --+++® ;(4)x1x 1lim nx -+®;(5)úûùêëé®x 1lim 0x ;(6)[]x x1lim x +¥®. 4.求下列函数在0x =处的左右极限或极限。

数学分析第三版答案 (2)

数学分析第三版答案 (2)

数学分析第三版答案简介《数学分析第三版》是一本经典的数学教材,对于数学分析的基本概念、定理和方法进行了系统而全面的介绍。

本文档整理了《数学分析第三版》中的一部分习题答案,希望能够对读者巩固和检验所学知识提供帮助。

目录1.函数、极限与连续2.导数与微分3.一元函数的积分4.多元函数的积分5.级数与广义积分函数、极限与连续习题1.1-1证明下列函数的极限不存在:1.$f(x) = \\sin{\\left(\\frac{1}{x}\\right)}$2.$f(x) = \\frac{\\sin{x}}{x}$解答1.当x趋于0时,$\\frac{1}{x}$趋于无穷大。

由于正弦函数的周期是$2\\pi$,所以当x趋于无穷大时,$\\frac{1}{x}$趋于0。

因此,当x趋于0时,$f(x) =\\sin{\\left(\\frac{1}{x}\\right)}$不收敛。

2.当x趋于无穷大时,$\\sin{x}$在$[-\\pi, \\pi]$上做无限多次振荡。

而x也趋于无穷大,所以$\\frac{\\sin{x}}{x}$在无限多个点上振荡。

因此,当x趋于无穷大时,$f(x) = \\frac{\\sin{x}}{x}$不收敛。

习题1.1-2计算下列极限:1.$\\lim\\limits_{x \\to 0}{\\frac{\\sin{x}}{x}}$2.$\\lim\\limits_{x \\to \\infty}{\\frac{x^2 - 3x +2}{2x^2 + 5}}$3.$\\lim\\limits_{x \\to 1}{\\frac{x^2 - 1}{x - 1}}$解答1.根据拉’Hospital法则,$\\lim\\limits_{x \\to0}{\\frac{\\sin{x}}{x}} = \\lim\\limits_{x \\to0}{\\frac{\\cos{x}}{1}} = 1$。

数学分析课本(华师大三版)-习题及答案Part-II

数学分析课本(华师大三版)-习题及答案Part-II

x = x(t ) x + y + 2t (1 − t ) = 1 is determined by . Find the y y = y (t ) te + 2 x − y = 2
equations of the tangent line and the normal line of the curve at t = 0 . 3. Suppose
Part II
Differentials with one-variable
x = 3t 2 + 2t + 3 . y e sin t − y + 1 = 0
1. Suppose the function y = y ( x ) is determined by the equation system Find the differentials dy |t = 0 and dy 2 |t = 0 . 2. Suppose that the curve
1 (1 + ) x − e x (2) lim ; x →0 x
1
sin x x2 (3) lim( ) . x →0 x
1
lim
x →0
x 2e 2 + 2 cos x − 2 . tgx − sin x
f ( x) x →0
x 6. Suppose that f (0) = 0 , and suppose f ' (0) exists. Find the limit lim +
d2y 1 y . ln( x 2 + y 2 ) = arc tg . Find the second differential 2 x dx 2

《数学分析》(华师大版)课本上习题

《数学分析》(华师大版)课本上习题

《数学分析》(华师大版)课本上习题第二十二章曲线积分与曲面积分P.361 第一型曲线积分与第一型曲面积分1. 计算下列第一型曲线积分:(1))1,0(),0,1(),0,0(,)(B A O L ds y x L是以其中?+为顶点的三角形;(2)+Lds y x2122)(,其中L 是以原点为中心,R 为半径的右半圆周;(3)?L xyds ,其中L 为椭圆12222=+by a x 在第一象限中的部分;(4)Lds y ,其中L 为单位圆122=+y x ;(5)ds z y x L)(222++,其中L 为螺旋线)20(,sin ,cos π≤≤===t bt z t a y t a x 的一段;(6)?Lxyzds ,其中L 为曲线)10(21,232,22≤≤===t t z t y t x 的一段;(7)+Lds z y 222,其中L 是2222a z y x =++与y x =相交的圆周.2. 求曲线)0,10(21,,2>≤≤===a t at z at y a x 的质量.设其线密度为.2az =ρ 3. 求摆线??≤≤-=-=)0()cos 1()sin (πt t a y t t a x 的重心,设其质量分布是均匀的.4. 计算下列第一类型曲面积分:(1)++SdS z y x )(,其中S 是上半圆面0,2222≥=++z a z y x ;(2)+SdS y x )(22,其中S 为立体122≤≤+z y x 的边界曲面;(3),??+S yx dS 22其中S 为柱面222R y x =+被平面H z z ==,0所截取的部分;(4)SxyzdS ,其中S 为平面1=++z y x 在第一卦限中的部分;5. 若曲线以极坐标))((21θθθθρρ≤≤=表示,试给出计算Lds y x f ),(的公式,并用此公式计算下列曲线积分:(1)?+Ly x ds e22,其中L 为曲线)4(πθρ≤≤=a 的一段;(2)?Lxds ,其中L 为对数螺线)0(>=k ae k θρ在圆a r =内的部分.6. 设有一质量分布不均匀的半圆弧)0(sin ,cos πθθθ≤≤==r y r x ,其线密度θρa =(a 为常数),求它对原点)0,0(处质量为m 的质点的引力.7. 证明:若函数f 在光滑曲线],[),(),(:βα∈==t t y y t x x L 上连续,则存在点L y x ∈),(00,使得L y x f dS y x f L=?),(),(00,其中L ?为L 的长.8. 计算dS z S2,其中S 为圆锥表面的一部分:≤≤≤≤??===,20,0:;cos sin sin sin cos :π?θθ?θa r D r z r y r x S这里θ为常数).20(πθ≤≤P.371 第二型曲线积分1. 计算第二型曲线积分:(1)-L ydx xdy ,其中L 为本节例2中的三种情形.(2)?+-Ldy dx y a )2(,其中L 为摆线)20)(cos 1(),sin (π≤≤-=-=t t a y t t a x 沿t 增加方向的一段;(3)++-L y x ydy xdx 22,其中L 为圆周222a y x =+,依逆时针方向;(4)?+Lxdy ydx sin ,其中L 为)0(sin π≤≤=x x y 与x 轴所围的闭曲线,依顺时针方向;(5)++Lzdz ydy xdx ,其中L :从(1,1,1)到(2,3,4)的直线段.2. 设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比.若质点由)0,(a 沿椭圆移动到),0(b ,求力所作的功。

数学分析课本(华师大三版)-习题及答案第十章

数学分析课本(华师大三版)-习题及答案第十章

第十章 定积分的应用一、填空题1. 求曲线8,2222=+=y x x y 所围成图形面积A (上半平面部分),则A = 2. 曲线x x e y e y -==,及1=x 所围面积A = 3. 曲线θθcos 1,cos 3+==r r 所围面积A = 4. 曲线)0(>=λλθae r 从0=θ到αθ=一段弧长S = 5. 曲线 ⎩⎨⎧-=+=)cos (sin )sin (cos t t t a y t t t a x 从0=t 到π=t 一段弧长S =6. 均匀摆线)0(cos 1sin π≤≤⎩⎨⎧-=-=t ty tt x ,弧长4=S ,则其重心坐标是7. 曲线0,0),0(==≤=y x x e y x 所围图形绕Ox 轴旋转所得旋转体的体积为 ;而绕Oy 轴旋转所得旋转体的体积为 8. 抛物线)(a x x y -=与直线x y =所围图形的面积为9. 在抛物线24x y =上有一点P ,已知该点的法线与抛物线所围成的弓形面积为最小,则P 点的坐标是10.设有一内壁形状为抛物面22y x z +=的容器,原来盛有)(83cm π的水,后来又入注)(643cm π的水,设此时水面比原来提高了hcm ,则h = 11.由曲线,2,1=+=x xx y 及2=y 所围图形的面积S = 曲线x x x y 223++-=与x 轴所围成的图形的面积A = 二、选择填空题1. 曲线)0(ln ,ln b a a y x y <<==与y 轴所围成图形的面积为A ,则A =( ) (A )⎰ba xdx ln ln ln (B )⎰ba e ex dx e(C )⎰baydy e ln ln (D )⎰ba e exdx ln2.曲线x y xy ==,1,2=x 所围成的图形面积为A ,则A =( )(A )dx x x )1(21-⎰(B )dx xx )1(21-⎰(C )⎰⎰-+-2121)2()12(dy y dy y(D )⎰⎰-+-2121)2()12(dx x dx x3.曲线x e y =下方与该曲线过原点的切线左方及y 轴右方所围成的图形面积A =( ) (A )dx ex e x )(10-⎰ (B )dy y y y e)ln (ln 1-⎰(C )dx xe e exx )(1⎰- (D )dy y y y )ln (ln 1-⎰4.曲线)0(cos 2>=a a r θ所围图形面积A =( )(A )()θθπd a 220cos 221⎰ (B )θθππd a ⎰-2cos 221 (C )()θθπd a 220cos 221⎰(D )()θθπd a 220cos 2212⎰ 5.曲线πθπθθ=-==,,ae r 所围图形面积A =( )(A )⎰πθθ02221d e a (B )⎰πθθ20222d e a (C )⎰-ππθθd ea 22 (D )⎰-ππθθd e a 2226.曲线θθ2cos ,sin 22==r r 所围图形面积A =( )(A )()()⎰⎰+-222121212cos 2sin 2θθθθd d(B )()()⎰⎰+462602cos sin 2πππθθθθd d(C )()()⎰⎰+46262cos 21sin 221πππθθθθd d(D )()()⎰⎰+462602cos sin 22πππθθθθd d7.曲线()21ln xy -=上210≤≤x 一段弧长S =( )(A )dx x ⎰⎪⎭⎫⎝⎛-+212111 (B )⎰-+2102211dx x x (C )dx x x ⎰⎪⎭⎫ ⎝⎛--+2102121 (D )dx x ⎰-+21022])1[ln(1 8.摆线)0()cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 一拱与x 轴所围图形绕x 轴旋转,所得旋转体的体积=V ( )(A )()⎰-ππ2022cos 1dt t a (B )())]sin ([cos 12202t t a d t a a--⎰ππ(C )()⎰--ππ2022)]sin ([cos 1t t a d t a (D )()⎰-adt t a ππ2022cos 19.星形线⎪⎩⎪⎨⎧==ta y ta x 33sin cos 的全长S =( )(A )⎰-⋅202)sin (cos 3sec 4πdt t t a t(B )⎰-⋅022)sin (cos 3sec 4πdt t t a t(C )⎰-⋅π02)sin (cos 3sec 2dt t t a t(D )⎰-⋅02)sin (cos 3sec 2πdt t t a t10.心形线)cos 1(4θ+=r 与直线2,0πθθ==围成图形绕极轴旋转的旋转体体积=V ( )(A )⎰+202)cos 1(16πθθπd(B )⎰+2022sin )cos 1(16πθθθπd(C )⎰++2022]cos )cos 1(4[sin )cos 1(16πθθθθπd(D )⎰++0222]cos )cos 1(4[sin )cos 1(16πθθθθπd11.两个半径为a 的直交圆柱体所围的体积为V =( )(A )⎰-adx x a 022)(4(B )⎰-adx x a 022)(8(C )⎰-adx x a 022)(16 (D )⎰-adx x a 022)(212.矩形闸门宽a 米,高h 米,垂直放在水中,上沿与水面齐,则闸门压力p =( ) (A )⎰hahdh 0 (B )⎰aahdh 0(C )⎰hahdh 021(D )⎰h ahdh 0213.横截面为S ,深为h 的水池装满水,把水全部抽到高为H 的水塔上,所作功=W ( )(A )⎰-+hdy y h H S 0)( (B )⎰-+Hdy y h H S 0)((C )⎰-hdy y H S 0)( (D )⎰+-+Hh dy y h H S 0)(14.半径为a 的半球形容器,每秒灌水b ,水深)0(a h h <<,则水面上升速度是( )(A )⎰h dy y dh d 02π (B )⎰--h dy a y a dh d 022])([π (C )⎰hdy y dh db2π (D )⎰-hdy y ay dh d b2)2(15.设)(),(x g x f 在区间[]b a ,上连续,且m x g x f <<)()((m 为常数),则曲线b x a x x f y x g y ====,),(),(所围平面图形绕直线m y =旋转而成的旋转体体积为( ) (A )⎰-+-badx x g x f x g x f m )]()()][()(2[π(B )⎰---badx x g x f x g x f m )]()()][()(2[π(C )⎰-+-badx x g x f x g x f m )]()()][()([π(D )⎰---badx x g x f x g x f m )]()()][()([π三、计算题1.求抛物线2x y =与2x 2y -=所围图形的面积。

华东师大数学分析答案完整版

华东师大数学分析答案完整版

历年考研真题评析!
%题!&!!北京大学#$##3年$设,!$$在(%#;’上无界#求证)16#(%#;’#使 得 对 ,#&##,!$$在!#(##= &#$2 (%#;’上 无 界 !
分析!本题采用闭区间套定理证明!
证明!取%#;中点%$&;#则(%#%$&;’#(%$&;#;’中至 少 有 一 个 区 间 使 ,!$$无 界 !如 果 两 个 都 是 可 任 取 一 个 $#记 为 (%! #;!’!
,!($$%8!($$&9 !($$% (8!$$&9 !$$

,!$$%8!$$&9!$$
由 之 可 得 ! ! !8!$$%,!$$($,!($$#9 !$$%,!$$&$,!($$
这里 8!$$#9!$$分别是奇函数和偶函数!
+ , %例"&!求数集 ’% !&!&$&!(!$& &#0& 的上"下确界!
向 的 基 础 !数 学 归 纳 法 是 证 明 某 些 不 等 式 的 重 要 工 具 !
二 !数 集 " 确 界 原 理
!" 邻域是数学分析中重要的基本概念!某点的邻域是与该点靠近的数的 集 合#它 是 描 述 极 限 概 念的基本工具! 在无限区间记号!()#%’#!() #%$#(%#& )$#!%#& )$#!( ) #& )$中 出 现 的 ( ) 与 & )仅是常 用 的 记 号#它 们 并 不 表 示 具 体 的 数!在 数 学 分 析 课 程 范 围 内#不 要 把&)#( )#) 当作数来运算!

数学分析课后习题答案(华东师范大学版)

数学分析课后习题答案(华东师范大学版)

P.182 习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时, y的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解 由P.122推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。

因此每一个含有第一类间断点的函数都没有原函数。

5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x )9624()3)32(22()32(222 C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22 ⑻C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2 ⑼ C x x dx x x dx xx x x dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222⒁C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(P.188 习题1.应用换元积分法求下列不定积分:⑴C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x x dx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1ππππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dxC x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇C x dx xxxdx +==⎰⎰|sin |ln sin cos cot (21)⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245 C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin ((23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =C t t t t t t dt tt t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵C x x x dx x x x x xdx +-=⋅-=⎰⎰ln 1ln ln⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷ C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222 ⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3 ⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n mP.199 习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得1=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x )12arctan(1)12(122+++++=x x x 参见教材P.186 例9或P.193关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dxC x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材P.185例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12⑵]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷⎰⎰⎰⎰===xx x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sin C x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸C x e C e u e du u e u x dx e x u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x 去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。

数学分析课本(华师大三版)

数学分析课本(华师大三版)

数学分析课本(华师大三版)篇一:数学分析课本(华师大三版)-习题及答案第八章第八章不定积分一. 填空题x1.若f?(e)?1?x,则f(x)?___________2.设f(x)的一个原函数为xe,则?xf?(x)dx?_____________ 3.若e?xx是f(x)的一个原函数,则?xf(x)dx?________________4.若f(x)?1,则f(x)?____________ 5.?max(x,x)dx?___________________6.若f(x)有原函数xlnx,则?xf??(x)dx?_______________ 7.?ln(sinx)sin2?3??2xdx?________________8.若?dx(1?2cosx)2?Asinx1?2cosx?B?dx1?2cosx,则A?__________,B?__________ 9.设?xf(x)dx?arcsinx?C,则? dxx(4?x)lnx?1x2dxf(x)?_________10.??_________________11.?dx?_________________12.?13.?14.??a?sin(lnx)?cos(lnx)nx?________________?f(x)?xf?(x)?dxdx1?ex?________________?_____________15.?16.?xex2(1?x)dx?_____________________4sinx?3cosxsinx?2cosxdx?______________217.已知f?(2?cosx)?sinx?tan 2x,则f(x)?_______________ 18.?f?(x)1??f(x)?2dx?______________19. 若?f(x)dx?F(x)?C,而u??(x),则?f(u)du?___________. 20设函数f(x)的二阶导数f??(x)连续,那么?xf??(x)dx?__________. 21设f(x)的原函数是sinxx,则?xf?(x)dx?__________.11222已知曲线y?f(x)上任一点的切线斜率为3x2?3x?6,且x??1时,y?则f(x)?__________;f(x)的极小值是__________.1?x2是极大值,23已知一个函数的导数为f(x)?,并且当x?1时,这个函数值等于32?,则这个函数为F(x)?__________. 24 设f?(sin2x)?cosx(x?1),则f(x)?__________.225 若f(x)为连续函数,且f?(x)?f(x),则?f(x)dx?__________.26 若(?f(x)dx)??lnx,则f(x)?__________. 27 已知e28?x2是f(x)的一个原函数,则?f(tanx)secxdx?__________.22?f()dx?__________. 2xx1?x29 设f(x)dx??C,则f(x)?__________.1?x?1?30 在积分曲线族?二、选择填空题 1.设I?1xxdx中,过(1,1)点的积分曲线是y?__________.?xe?1e?1xx,则I?()(1?e)?C (1?e)?x?C ?2ln(1?e)?C (e?1)?C2.设f(x)是连续的偶函数,则期原函数F(x)一定是() A.偶函数B.奇函数C.非奇非偶函数 D.有一个是奇函数xxx3.设I1??1?xdx,I2??du,则存在函数u?u(x),使()x(1?xex)u(1?u)?I2?x ?I2?x ??I1 ?I1 4.当n??1时,?xn lnxdx?() nn?1n(lnx?1n)?C B.xn?1(lnx?1n?1)?Cn?1?1xn?1xn(lnx?1n?1)?CD.n?1lnx?C 7.?(cosx2 ?sinx2)dx?() (sinx?cos x)?C (cos xx222?sin 2)?C?cosxxx22?C?sin2?C8.?x?sinx1?cosxdx?()??2cotx??C9.若f(x)的导函数是e?x?cosx,则f(x)的一个原函数为()?x?cosxB.?e?x?sinxC.?e?x??x?sinx10.若f(x)是以l为周期的连续函数,则其原函数()。

数学分析课本(华师大三版)-习题及答案02

数学分析课本(华师大三版)-习题及答案02

数学分析课本(华师大三版)-习题及答案02第二章数列极限习题§1数列极限概念1、设n a =nn)1(1-+,n=1,2,…,a=0。

(1)对下列ε分别求出极限定义中相应的N :1ε=0.1,2ε=0.01,3ε=0.001;(2)对1ε,2ε,3ε可找到相应的N ,这是否证明了n a 趋于0?应该怎样做才对;(3)对给定的ε是否只能找到一个N ? 2、按ε—N 定义证明:(1)∞→n lim 1+n n =1;(2)∞→n lim 2312322=-+n n n ;(3)∞→n lim n n n !;(4)∞→n lim sinn π=0;(5)∞→n lim n an=0(a >0)。

3、根据例2,例4和例5的结果求出下列极限,并指出哪些是无穷小数列:(1)∞→n limn1;(2)∞→n limn3;(3)∞→n lim 31n ;(4)∞→n lim n 31;(5)∞→n limn21;(6)∞→n limn10;(7)∞→n lim n21。

4、证明:若∞→n lim n a = a ,则对任一正整数k ,有∞→n lim k n a += a 。

5、试用定义1'证明:(1)数列{n1}不以1为极限;(2)数列{n n )1(-}发散。

6、证明定理2.1,并应用它证明数列{nn)1(1-+}的极限是1。

7、证明:若∞→n lim n a = a ,则∞→n lim |n a |= |a|。

当且仅当a 为何值时反之也成立?8、按ε—N 定义证明:(1)∞→n lim )1(n n -+=0;(2)∞→n lim3321n n++++ =0;(3)∞→n lim n a =1,其中,1nn -n 为偶数, n a =nnn +2,n 为奇数。

§2收敛数列的性质1、求下列极限:(1)∞→n lim 32413323++++n n n n ;(2)∞→n lim 221n n +;(3)∞→n lim 113)2(3)2(+++-+-n n nn ;(4)∞→n lim )(2n n n -+;(5)∞→n lim )1021(n n n +++ ;(6)∞→n lim n n31313121212122++++++ 。

数学分析课本(华师大三版)-习题及答案第三章

数学分析课本(华师大三版)-习题及答案第三章

数学分析课本(华师大三版)-习题及答案第三章第三章函数极限一、填空题 1.若[]2)(1ln lim20=+→x x f x ,则=→20)(lim xx f x _________ 2.=--+-→xxe e x x x x x 340sin 21sin lim _______________ 3.设xx x x f ??+-=11)(,则=+∞→)1(lim x f x ____________4.已知??>-=<+=2,12,02,1)(x x x x x x f ,1)(+=x e x g ,[]=→)(lim 0x g f x ________5.()x x x x ln cos arctan lim -+∞→=_________________6.[]=→xx x tan )sin(sin sin lim0_____________ 7.________24tan lim =+∞→n n x π8.________ln 1ln ln lim 2=??+→x x x x 9.)1ln(lim 2cos 0x x e e xx x x +-→=__________10.=?+-∞→x xx x x cos 1sin 21lim22_________ 11.=-→x x x x tan 11lim 20_________12.310)(1lim e x x fx xx =++→,则+→20)(1lim x x f x =_______ 13.()=+++→) 1ln(cos 11cossin 3lim20x x x x x x ___________ 二、选择填空1.=-→ttt cos 1lim( )A.0B.1C.2D.不存在2.函数xx x f 1cos 1)(=,在0=x 点的任何邻域内都是( ) A.有界的 B.无界的 C.单增 D.单减 3.已知()25lim 2=++-+∞→c yx ax x ,则必有( )A.20,25-==b a B. 25==b a C.0,25=-=b a D.2,1==b a4.设nn n x n x f ??-+=+∞→2lim )1(,则=)(x f ( )A.1-x eB.2+x eC.1+x eD.xe-5.若22lim 222=--++→x x bax x x ,则必有( ) A.8,2==b a B.5,2==b a C. 8,0-==b a D. 8,2-==b a6.0)(6sin lim30=+→x x xf x x ,则=+→20)(6lim xx f x ( ) A. 0 B.6 C.36 D.∞7.设对任意x 点有)()()(x g x p x ≤≤?,且[]0)()(lim =-∞→x x g x ?,则=∞→)(lim x f x ( )A.存在且一定为0B.存在且一定不为0C.一定不存在D.不一定存在 8.当0→x 时,变量x x1sin 12是( ) A.无穷小 B.无穷大C.有界,但不是无穷小D.无界的,但不是无穷大9.=-+?+∞→π21sin 1])1(1[lim n n n n( )A.πe B.π1e C.1 D.π2e10.=--→xx x xx x tan )(arctan 1lim 220( )A.0B.1C.21 D.21-11.x x x g dt t x f xsin )(,tan )(sin 02-==,则当0→x 时,)(x f 是)(x g 的( )A.高阶无穷小B.低阶无穷小C.同阶非等价无穷小D.等价无穷小三、计算题1.求下列极限:(1))x x cos x (sin 2lim 22x --π→; (2)1x x 21x lim 220x ---→;(3)1x x 21x lim 221x ---→; (4)3230x x 2x ) x 31()1x (lim +-+-→; (5)1x 1x lim m n 1x --→,(n ,m 为自然数);(6)2x 3x 21lim4x --+→;(7))0a (,xax a lim 20x >-+→;(8)xx cos x limx -∞→; (9)4x xsin x lim 2x -∞→ ;(10).)1x 5()5x 8()6x 3(lim 902070x --+∞→ 2.设,0a ,b x b x b x b a x a x a x a )x (f 0n1n 1n 1n 0m 1m 1m 1m 0≠++++++++=---- 0b 0≠,m ≤n ,试求).x (f lim x ∞→ 3.求下列极限(其中n 为自然数): (1)20 x x 11x xlim+→; (2)20x x11x x lim ++→; (3)1x nx x x lim n 21x --+++→ ;(4)x1x 1limnx -+→;(5)→x 1lim 0x ; (6)[]x x 1lim x +∞→.4.求下列函数在0x =处的左右极限或极限。

(完整word版)数学分析 上册 第三版 华东师范大学数学系 编(word文档良心出品)

(完整word版)数学分析 上册  第三版 华东师范大学数学系 编(word文档良心出品)

数学分析 上册 第三版 华东师范大学数学系 编部分习题参考解答P.4 习题1.设a 为有理数,x 为无理数,证明:(1)a + x 是无理数; (2)当0≠a 时,ax 是无理数。

证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数。

这与题设“x 为无理数”矛盾,故a + x 是无理数。

(2)假设ax 是有理数,于是aaxx =是有理数,这与题设“x 为无理数”矛盾,故ax 是无理数。

3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b 。

证明 由题设,对任何正数ε有0||+<-εb a ,再由教材P.3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b 。

另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a 。

这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b 。

5.证明:对任何R x ∈有(1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x 证明 (1)|2||1||)2()1(|1-+-≤-+-=x x x x(2)因为|2||1||1||)3(2||3|2-+-≤-=--≤--x x x x x ,所以2|3||2||1|≥-+-+-x x x 6.设+∈R c b a ,,证明||||2222c b c a b a -≤+-+证明 建立坐标系如图,在三角形OAC 中,OA 的长度是22b a +,OC 的长度是22c a +,AC 的长度为||c b -。

因为三角形两边的差 大于第三边,所以有||||2222c b c a b a -≤+-+7.设 b a b x ≠>>,0,0,证明x b x a ++介于1与ba之间。

华东师大数学分析习题解答

华东师大数学分析习题解答

《数学分析选论》习题解答第一章实数理论1 .把§例4改为关于下确界的相应命题,并加以证明.证设数集S有下确界,且inf S S,试证:(1)存在数列{a n} S,使lim a n;n(2)存在严格递减数列{ a n} S,使lim a n.n证明如下:(1)据假设, a S,有a ;且0, a S,使得a .现依1次取n n,n 1,2,,相应地a n S ,使得an n , n 1,2,.因n 0(n ),由迫敛性易知lim a nn(2)为使上面得到的{a n}是严格递减的,只要从n 2起,改取1n min 〒,a n 1,n2,3,,就能保证an 1 (an 1)n a n , n 2,3,□2.证明§例6的(ii).证设AB为非空有界数集,S A B , 试证:inf S min inf A, inf B .现证明如下.由假设,S A B显然也是非空有界数集,因而它的下确界存在•故对任何x S,有x A或x B,由此推知x inf A或x inf B,从而又有x min inf A, inf B inf S min inf A, inf B 另一方面,对任何x A,有x S,于是有x inf S inf A inf S ;同理又有inf B inf S •由此推得inf S min inf A, inf B综上,证得结论inf S min inf A, inf B 成立.3•设RB为有界数集,且A B •证明:(1)sup(A B) min sup A, sup B ;(2)inf (A B) max inf A, inf B .并举出等号不成立的例子.证这里只证(2),类似地可证(1).设inf A, inf B •则应满足:x A, y B ,有x , y .于是,z A B,必有zz max , ,z这说明max , 是A B的一个下界•由于A B亦为有界数集,故其下确界存在, 且因下确界为其最大下界,从而证得结论inf A B max inf A, inf B成立.上式中等号不成立的例子确实是存在的.例如:设A (2,4) ,B (0, 1) (3, 5),则A B (3, 4),这时inf A 2, inf B 0,而inf (A B) 3,故得inf A B max inf A, inf B •4•设RB为非空有界数集•定义数集A B c aba A, b B ,证明:(1) sup(A B) sup A sup B ;(2) inf (A B) inf A inf B •证 这里只证(2),类似地可证(1)由假设,inf A,inf B 都存在, 现欲证inf (A B).依据下确界定义,分两步证明如下: 1)因为 XA,B,有x ,所以 B ,必有这说明 的一个下界.2)0, X 。

数学分析课本(华师大三版)-习题及答案第三学期试题

数学分析课本(华师大三版)-习题及答案第三学期试题

(三十二)数学分析试题(二年级第一学期)一 叙述题(每小题10分,共30分)1 叙述含参变量反常积分⎰+∞adx y x f ),(一致收敛的Cauchy 收敛原理。

2 叙述Green 公式的内容及意义。

3 叙述n 重积分的概念。

二 计算题(每小题10分,共50分)1.计算积分⎰+-=C yx ydx xdy I 2243,其中C 为椭圆13222=+y x ,沿逆时针方向。

2.已知 ),,(y z xz f z -= 其中),(v u f 存在着关于两个变元的二阶连续偏导数,求z 关于y x ,的二阶偏导数。

3.求椭球体1222222=++cz b y a x 的体积。

4.若l 为右半单位圆周,求⎰lds y ||。

5.计算含参变量积分⎰+-=π2)cos 21ln( )(dx a x a a I (1<a )的值。

三 讨论题(每小题10分,共20分)1 若积分在参数的已知值的某邻域内一致收敛,则称此积分对参数的已知值一致收敛。

试讨论积分⎰∞++=0221xa adxI 在每一个固定的a 处的一致收敛性。

2 讨论函数dx yx x yf y F ⎰+=122)()(的连续性,其中)(x f 在]1,0[上是正的连续函数。

数学分析试题(二年级第一学期)答案1一 叙述题(每小题10分,共30分)1 含参变量反常积分⎰+∞adx y x f ),(关于y 在],[d c 上一致收敛的充要条件为:对于任意给定的0>ε, 存在与y 无关的正数0A , 使得对于任意的0,A A A >',],[ ,),(d c y dx y x f A A∈<⎰'ε成立。

2 Green 公式:设D 为平面上由光滑或分段光滑的简单闭曲线所围的单连通区域。

如果函数),(),,(y x Q y x P 在D 上具有连续偏导数,那么⎰⎰∂∂∂-∂∂=+DDdxdy xPx Q Qdy Pdx )(,其中D ∂取正向,即诱导正向。

华东师大数学分析习题解答2

华东师大数学分析习题解答2

《数学分析选论》习题解答第 二 章 连 续 性1. 设n y x ℜ∈,,证明:)||||||||(2||||||||2222y x y x y x +=-++.证 由向量模的定义,∑∑==-++=-++n i i i n i i i y x y x y x y x 121222)()(|||||||| ∑=+=+=n i i i y x y x 12222)||||||||(2)(2. □2*. 设n n x S ℜ∈ℜ⊂点,到集合S 的距离定义为),(inf ),(y x S x Sy ρ=ρ∈. 证明:(1)若S 是闭集,S x ∉,则0),(>S x ρ;(2)若d S S S ⋃=( 称为S 的闭包 ),则{}0),(|=ρℜ∈=S x x S n .证 (1)倘若0),(=S x ρ,则由),(S x ρ的定义,S y n ∈∃,使得 Λ,2,1,1),(=<ρn ny x n . 因 S x ∉,故x y n ≠,于是x 必为S 的聚点;又因S 是闭集,故S x ∈,这就导致矛盾.所以证得0),(>S x ρ. (2)S x ∈∀.若S x ∈,则0),(=ρS x 显然成立.若S x ∉,则d S x ∈(即x 为S 的聚点),由聚点定义,∅≠⋂ε>ε∀S x U );(,0ο,因此同样有 0),(),(inf =ρ=ρ∈S x y x S y .反之,凡是满足0),(=ρS x 的点x ,不可能是S 的外点( 若为外点,则存在正数0ε,使∅=⋂εS x U );(0,这导致0),(inf 0>ε≥ρ∈y x Sy ,与0),(=ρS x 相矛盾).从而x 只能是S 的聚点或孤立点.若x 为聚点,则S S x ⊂∈d ;若x 为孤立点,则S S x ⊂∈.所以这样的点x 必定属于S .综上,证得 {}0),(|=ρℜ∈=S x x S n 成立. □3.证明:对任何n S ℜ⊂,d S 必为闭集. 证 如图所示,设0x 为d S 的任一聚点, 欲证∈0x d S ,即0x 亦为S 的聚点. 这是因为由聚点定义,y ∃>ε∀,0,使得d S x U y ⋂ε∈);(0ο. 再由y 为S 的聚点,);();(0ε⊂δ∀x U y U ο,有∅≠⋂δS y U );(ο.于是又有∅≠⋂εS x U );(0ο,所以0x 为S 的聚点,即∈0x d S ,亦即d S 为闭集. □4.证明:对任何n S ℜ⊂,S ∂必为闭集.证 如图所示,设0x 为S ∂的任一聚点,欲证S x ∂∈0,即0x 亦为S 的界点.由聚点定义,y ∃>ε∀,0,使 S x U y ∂⋂ε∈);(0ο. 再由y 为界点的定义,);();(0ε⊂δ∀x U y U , 在);(δy U 内既有S 的内点,又有S 的外点.由此证得在);(0εx U 内既有S 的内点,又有S 的外点,所以0x 为S 的界点,即S ∂必为闭集. □*5.设n S ℜ⊂,0x 为S 的任一内点,1x 为S 的任一外点.证明:联结0x 与1x 的直线段必与S ∂至少有一交点.0x ο);(δy U);(0εx U οοSS∂ο);(δy U);(0εx U οοSd S 0x证 如图所示,把直线段10x x 置于一实轴上,并为叙述方便起见,约定此实轴上的点与其坐标用同一字 母表示.下面用区间套方法来证明∅≠∂⋂S x x 10. 记2,],[],[1111011b a c x x b a +==.若S c ∂∈1, 则结论成立;若1c 为S 的内点,则取],[],[1122b c b a =;若1c 为S 的外点,则取],[],[1122c a b a =.一般地,用逐次二等分法构造区间套:记2n n n b a c +=( 不妨设S c n ∂∉),并取 Λ,2,1,,],[,,],[],[11=⎩⎨⎧=++n S c c a S c b c b a n n n n n n n n 的外点为的内点为.此区间套的特征是:其中每个闭区间的左端点n a 恒为S 的内点,右端点n b 恒为S 的外点.现设y b a n n n n ==∞→∞→lim lim ,下面证明S y ∂∈. 由区间套定理的推论,0>ε∀,当n 足够大时,);(],[ε⊂y U b a n n ,因此在);(εy U 中既含有S 的内点(例如n a ),又含有S 的外点(例如n b ),所以10x x 上的点y 必是S 的界点. □ 6.证明聚点定理的推论2和推论3.(1)推论2 n ℜ中的无限点集S 为有界集的充要条件是:S 的任一无限子集必有聚点.证 [必要性] 当S 为有界集时,S 的任一无限子集亦为有界集,由聚点定理直接推知结论成立.[充分性] 用反证法来证明.倘若S 为无界集,则必能求得一个点列{}S P k ⊂,使得+∞=∞→||||lim k k P .这个{}k P 作为S 的一个无限子集不存在聚点,与条件矛盾.故S 为有界集. □(2)推论3 n ℜ中的无限点集S 为有界闭集的充要条件是:S 为列紧集,即S的任一无限子集必有属于S 的聚点.证 [必要性] 因S 有界,故S 的任一无限子集亦有界,由聚点定理,这种无限子集必有聚点.又因子集的聚点也是S 的聚点,而S 为闭集,故子集的聚点必属于S .[充分性] 由上面(1)的充分性证明,已知S 必为有界集.下面用反证法再来证明S 为闭集.倘若S 的某一聚点S P ∉,则由聚点性质,存在各项互异的点列{}S P k ⊂,使 P P k k =∞→lim .据题设条件,{}k P 的惟一聚点P 应属于S ,故又导致矛盾.所以S 的所有聚点都属于S ,即S 为闭集. □7.设X B A X f X m n ⊂ℜ→ℜ⊂,,,:.证明:(1))()()(B f A f B A f ⋃=⋃;(2))()()(B f A f B A f ⋂⊂⋂;(3)若f 为一一映射,则)()()(B f A f B A f ⋂=⋂.证 (1))(,,)(x f y B A x B A f y =⋃∈∃⋃∈∀使.若)(,A f y A x ∈∈则; 若)(,B f y B x ∈∈则.所以,当)()()(,B f A f x f y B A x ⋃∈=⋃∈时.这表示)()()(B f A f B A f ⋃⊂⋃.反之,)(,,)()(x f y X x B f A f y =∈∃⋃∈∀使.若A x A f y ∈∈则,)(;若B x B f y ∈∈则,)(,于是B A x ⋃∈.这表示)()(B A f x f y ⋃∈=,亦即)()()(B f A f B A f ⋃⊃⋃.综上,结论)()()(B f A f B A f ⋃=⋃得证.(2)y x f B A x B A f y =⋂∈∃⋂∈∀)(,,)(使.因A x ∈且B x ∈,故)()()()(B f x f A f x f ∈∈且,即 )()()(B f A f x f y ⋂∈=,亦即 )()()(B f A f B A f ⋂⊂⋂.然而此式反过来不一定成立.例如]2,1[,]1,2[,)(2-=-==B A x x f ,则有]4,0[)()()()(=⋂==B f A f B f A f ;]1,0[)(,]1,1[=⋂-=⋂B A f B A .可见在一般情形下,)()()(B A f B f A f ⋂⊄⋂.(3))()(B f A f y ⋂∈∀,B x A x ∈∈∃21,,使)()(21x f x f y ==.当f 为 一一映射时,只能是B A x x ⋂∈=21,于是)(B A f y ⋂∈,故得)()()(B A f B f A f ⋂⊂⋂.联系(2),便证得当f 为一一映射时,等式)()()(B A f B f A f ⋂=⋂成立.□8.设m n m n c b a g f ℜ∈ℜ∈ℜ→ℜ,,,,:,且c x g b x f a x a x ==→→)(lim ,)(lim .证明:(1)0||||,||||||)(||lim ==→b b x f ax 当且时可逆; (2)c b x g x f a x T ])()([lim =T →.证 设[][]T T ==)(,,)()(,)(,,)()(11x g x g x g x f x f x f m m ΛΛ,T T T ===],,[,],,[,],,[111m m n c c c b b b a a a ΛΛΛ.利用向量函数极限与其分量函数极限的等价形式,知道m i c x g b x f i i ax i i a x ,,2,1,)(lim ,)(lim Λ===→→. (1)||||)()(lim ||)(||lim 221221b b b x f x f x f m m a x a x =++=++=→→ΛΛ.当0||||=b 时,由于||)(||||||||)(||x f b x f =-,因此由0||)(||lim =→x f a x ,推知m i x f i a x ,,2,1,0)(lim 2Λ==→,即得0)(lim =→x f a x .(2)类似地有c b c b c b x g x f x g x f x g x f m m m m a x a x T →T →=+=++=ΛΛ1111])()()()([lim ])()([lim .□9.设m n D f D ℜ→ℜ⊂:,.试证:若存在证数r k ,,对任何D y x ∈,满足r y x k y f x f ||||||)()(||-≤-,则f 在D 上连续,且一致连续.证 这里只需直接证明f 在D 上一致连续即可.0,01>⎪⎭⎫ ⎝⎛ε=δ∃>ε∀rk ,对任何D y x ∈,,只要满足δ<-||||y x ,便有 ε<-≤-r y x k y f x f ||||||)()(||.由于这里的δ只与ε有关,故由一致连续的柯西准则(充分性),证得f 在D 上一致连续. □10.设m n D f D ℜ→ℜ⊂:,.试证:若f 在点D x ∈0连续,则f 在0x 近旁局部有界.证 由f 在点0x 连续的定义,对于1=ε,0>δ∃,当)(0δ∈;x U x 时,满足||)(||1||)(||1||)()(||||)(||||)(||000x f x f x f x f x f x f +≤⇒<-≤-,所以f 在0x 近旁局部有界. □11.设m n f ℜ→ℜ:为连续函数,n A ℜ⊂为任一开集,n B ℜ⊂为任一闭集.试问)(A f 是否必为开集?)(B f 是否必为闭集?为什么?解 )(A f 不一定为开集.例如),(,sin )(ππ-∈=x x x f .这里),(ππ-=A 为开集,但]1,1[)(-=A f 却为闭集.当B 为有界闭集时,由连续函数的性质知道)(B f 必为闭集且有界.但当B 为无界 闭集时,)(B f 就不一定为闭集,例如),(,arctan )(∞+-∞∈=x x x f .这里),(∞+-∞=B 可看作一闭集,而⎪⎭⎫ ⎝⎛ππ-=2,2)(B f 却为一开集. □ 12.设n n D D ℜ→ϕℜ⊂:,.试举例说明:(1)仅有D D ⊂ϕ)(,ϕ不一定为一压缩映射; (2) 仅有存在)10(<<q q ,使对任何D x x ∈''',,满足||||||)()(||x x q x x ''-'≤''ϕ-'ϕ,此时ϕ也不一定为一压缩映射.解 (1)例如),0[,1)(∞+∈+=ϕx x x .这里),0[∞+=D 为一闭域,它虽然满足D D ⊂∞+=ϕ),1[)(,但因|||)()(|x x x x ''-'=''ϕ-'ϕ,所以ϕ不是压缩映射.(注:这也可根据压缩映射原理来说明,由x x =+1无解,即ϕ没有不动点,故ϕ不是压缩映射.)(2) 例如]1,1[,12)(-=∈+=ϕD x x x .它虽然满足 )50(||21|)()(|.=''-'=''ϕ-'ϕq x x x x , 但因D D ⊄⎥⎦⎤⎢⎣⎡=ϕ23,21)(,故此ϕ仍不是一个压缩映射. □ 13.讨论b a ,取怎样的值时,能使下列函数在指定的区间上成为一个压缩映射:(1)],[,)(1b a x x x ∈=ϕ; (2)],[,)(22a a x x x -∈=ϕ; (3)],[,)(3b a x x x ∈=ϕ; (4)],0[,)(4a x b ax x ∈+=ϕ.解 (1)由|||)()(|11x x x x ''-'=''ϕ-'ϕ,可知对任何b a ,,1ϕ在],[b a 上都不可能是压缩映射.(2)首先,只有当10≤≤a 时,才能使],[],0[)],[(22a a a a a -⊂=-ϕ.其次,由于对任何],[,a a x x -∈'''都有||2|||||)()(|22x x a x x x x x x ''-'<''-'⋅''+'=''ϕ-'ϕ,因此只要取120<=<a q ,即210<<a ,就能保证2ϕ在],[a a -上为一压缩映射. (3) 由],[],[)],[(3b a b a b a ⊂=ϕ,可知b a ≤≤≤10.再由||21||||x x a x x x x x x ''-'<''+'''-'=''-', 又可求得21>a ,即41>a .所以,当取b a ≤≤<141时,就能保证3ϕ在],[b a上为一压缩映射.(4) 由于0>a ,因此可由a b a b ax b ≤+≤+≤≤20,解出a a ≤2( 即10≤<a ),0≥b .再由||||x x a b x a b x a ''-'=-''-+',可见只要0,10≥<<b a ,就能保证4ϕ在],0[a 上为一压缩映射. □ 14.试用不动点方法证明方程0ln =+x x 在区间[]3/2,2/1上有惟一解;并用迭代法求出这个解(精确到四位有效数字).解 若直接取x x x x x ln )ln ()(-=+-=ϕ,则因 ∈>≥=ϕ'x x x ,1231|)(|[]3/2,2/1, 可知ϕ在[]3/2,2/1上不是压缩映射.为此把方程改写成x x -=e ,并设x x x x x --=--=ϕe e )()(. 由于在[]3/2,2/1上 11|||)(|<≤-=ϕ'-e e x x ,且[][]3/2,2/1],[)3/2,2/1(2/13/2⊂=ϕ--e e ,所以x x -=ϕe )(在[]3/2,2/1上为一压缩映射,且在[]3/2,2/1上有惟一不动点.取2/10=x ,按k x k x -+=e 1迭代计算如下: k k x k k x k k x所以,方程x x -=e 即0ln =+x x 的解(精确到四位有效数字)为17650.=*x . □15.设 n B f ℜ→:,其中{}r x x x B n ≤ρℜ∈=),(|0为一个n 维闭球(球心为0 1 2 3 0.5 0.6065 0.5452 0.5797 4 5 6 7 0.5601 0.5712 0.5649 0.5684 M M 15 16 17 0.5672 0.5671 0.56710x ).试证:若存在正数)10(<<q q ,使对一切B x x ∈''',,都有||||||)()(||x x q x f x f ''-'≤''-',r q x x f )1(||)(||00-≤-,则f 在B 中有惟一的不动点.证 显然,只需证得了B B f ⊂)(,连同条件便知f 在B 上为一压缩映射,从而有惟一的不动点.现证明如下:)(,x f y B x =∈∀.由r x x ≤-||||0,以及题设条件的两个不等式,得到.r r q r q rq x x q x x f x f x f x y =-+≤-+-≤-+-≤-)1()1(||||||)(||||)()(||||||00000这表示B x f y ∈=)(,即B B f ⊂)(. □。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 数列极限习题§1数列极限概念1、设n a =nn)1(1-+,n=1,2,…,a=0。

(1)对下列ε分别求出极限定义中相应的N : 1ε=0.1,2ε=0.01,3ε=0.001;(2)对1ε,2ε,3ε可找到相应的N ,这是否证明了n a 趋于0?应该怎样做才对; (3)对给定的ε是否只能找到一个N ? 2、按ε—N 定义证明:(1)∞→n lim 1+n n =1;(2)∞→n lim 2312322=-+n n n ;(3)∞→n lim n n n !;(4)∞→n lim sinn π=0;(5)∞→n lim n an=0(a >0)。

3、根据例2,例4和例5的结果求出下列极限,并指出哪些是无穷小数列: (1)∞→n limn1;(2)∞→n limn3;(3)∞→n lim 31n ;(4)∞→n lim n 31; (5)∞→n limn21;(6)∞→n limn10;(7)∞→n lim n21。

4、证明:若∞→n lim n a = a ,则对任一正整数k ,有∞→n lim k n a += a 。

5、试用定义1'证明: (1)数列{n1}不以1为极限;(2)数列{n n )1(-}发散。

6、证明定理2.1,并应用它证明数列{nn)1(1-+}的极限是1。

7、证明:若∞→n lim n a = a ,则∞→n lim |n a |= |a|。

当且仅当a 为何值时反之也成立?8、按ε—N 定义证明: (1)∞→n lim )1(n n -+=0;(2)∞→n lim3321n n++++ =0;(3)∞→n lim n a =1,其中,1nn -n 为偶数, n a =nnn +2,n 为奇数。

§2收敛数列的性质1、求下列极限:(1)∞→n lim 32413323++++n n n n ;(2)∞→n lim 221n n +;(3)∞→n lim 113)2(3)2(+++-+-n n nn ;(4)∞→n lim )(2n n n -+;(5)∞→n lim )1021(n n n +++ ;(6)∞→n lim n n31313121212122++++++ 。

2、设∞→n lim n a = a ,∞→n lim n b = b ,且a <b 。

证明:存在正数N ,使得当n >N 时有n a <n b 。

3、设{n a }为无穷小数列,{n b }为有界数列,证明:{n a n b }为无穷小数列。

4、求下列极限: (1)∞→n lim ))1(1321211(+++⋅+⋅n n ; (2)∞→n lim )2222(284n ;(3)∞→n lim )2122321(2n n -+++; (4)∞→n limnn11-; (5)∞→n lim ))2(1)1(11(222n n n ++++ ; (6)∞→n lim )12111(222nn n n ++++++ 。

5、设{n a }与{n b }中一个是收敛数列,另一个是发散数列。

证明{n a ±n b }是发散数列,又问{n a n b }和{nb a }(n b ≠0)是否必为发散数列?6、证明以下数列发散:(1){1)1(+-n n n};(2){nn )1(-};(3){4cos πn }。

7、判断以下结论是否成立(若成立,说明理由;若不成立,举出反例): (1)若{12-k a }和{k a 2}都收敛,则{n a }收敛;(2)若{23-k a },{13-k a }和{k a 3}都收敛,且有相同极限,则{n a }收敛 8、求下列极限: (1)∞→n limnn 2124321- ; (2)∞→n lim!!1n p np ∑=;(3)∞→n lim 10],)1[(<<-+αααn n ;(4)∞→n lim 1||),1()1)(1(22<+++ααααn。

9、设m a a a ,,,21 为m 个正数,证明: ∞→n limnnm n n a a a ++21=max{m a a a ,,,21 }。

10、设∞→n lim n a = a 。

证明:(1)∞→n limnna n ][= a ; (2)若a >0,n a >0,则∞→n lim nn a =1。

§3数列极限存在的条件1、利用∞→n lim nn)11(+= e 求下列极限: (1)∞→n lim nn)11(-; (2)∞→n lim 1)11(++n n;(3)∞→n lim n n )111(++; (4)∞→n lim n n)211(+; (5)∞→n lim nn)11(2+。

2、试问下面的解题方法是否正确: 求∞→n lim n2。

解:设n a =n2及lim n a = a 。

由于n a = 21-n a ,两边取极限(n →∞)得a = 2 a ,所以a = 0。

3、证明下列数列极限存在并求其值:(1)设1a =2,1+n a =n a 2,n=1,2,…; (2)设1a =c (c >0),1+n a =n a c +,n=1,2,…;(3)n a =!n c n (c >0),n=1,2,…。

4、利用{n n )11(+}为递增数列的结论,证明{n n )111(++}为递增数列。

5、应用柯西收敛准则,证明以下数列{n a }收敛:(1)n a =n n 2sin 22sin 21sin 2+++ ; (2)n a =222131211n++++ 。

6、证明:若单调数列{n a }含有一个收敛子列,则{n a }收敛:7、证明:若n a >0,且∞→n lim1+n na a =l >1,则∞→n lim n a =0。

8、证明:若{n a }为递增(递减)有界数列,则 ∞→n l i m n a =sup{n a }(inf{n a })。

又问逆命题成立否?9、利用不等式1+n b -1+n a>(n+1)n a (b-a ),b >a>0证明:{1)11(++n n }为递减数列,并由此推出{n n)11(+}为有界数列。

10、证明:|e-n n )11(+|<n3。

提示:利用上题可知e <1)11(++n n ;又易证1)11(++n n <n 3+nn)11(+。

11、给定两正数1a 与1b (1a >1b ),作出其等差中项2a =211b a +与等比中项112b a b =,一般地令21nn n b a a +=+,n n n b a b =+1,n=1,2,…。

证明:lim n a 与lim n b 皆存在且相等。

12、设{n a }为有界数列,记-n a =sup{n a ,1+n a ,…},-n a =inf{n a ,1+n a ,…}。

证明:(1)对任何正整数n ,-n a ≥-n a ;(2){-n a }为递减有界数列,{-n a }为递增有界数列,且对任何正整数n ,m 有-n a ≥-m a ;(3)设-n a 和-n a 分别是{-n a }和{-n a }的极限,则-a ≥-a ;(4){n a }收敛的充要条件是-a =-a 。

总练习题1、求下列数列的极限: (1)∞→n limnnn 33+;(2)∞→n lim n e n 5;(3)∞→n lim )122(n n n ++-+。

2、证明:(1)∞→n lim n q n 2=0(|q|<1);(2)∞→n lima n n lg =0(a ≥1);(3)∞→n lim n n !1=0。

3、设∞→n lim n a = a ,证明:(1)∞→n limna a a n+++ 21= a (又问由此等式能否反过来推出∞→n lim n a = a );(2)若n a >0(n=1,2,…),则∞→n lim n n a a a 21= a 。

4、应用上题的结论证明下列各题:(1)∞→n lim nn 131211++++=0;(2)∞→n limna =1(a >0); (3)∞→n limnn =1; (4)∞→n limnn !1=0;(5)∞→n limnn n != e ; (6)∞→n limnn++++ 321=1;(7)若∞→n limnn b b 1+= a (n b >0),则∞→n lim n n b = a ;(8)若∞→n lim (n a -1-n a )= d ,则∞→n limna n= d 。

5、证明:若{n a }为递增数列,{n b }为递减数列,且∞→n lim (n a -n b )=0, 则∞→n lim n a 与∞→n lim n b 都存在且相等。

6、设数列{n a }满足:存在正数M ,对一切n 有||||||12312--++-+-=n n n a a a a a a A ≤M 。

证明:数列{n a }与{n A }都收敛。

7、设a >0,σ>0,1a =)(21a a σ+,)(211nn n a a a σ+=+,n=1,2,…。

证明:数列{n a }收敛,且其极限为σ。

8、设1a >1b >0,记 n a =211--+n n b a ,n b =11112----+n n n n b a b a ,n=2,3,…。

证明:数列{n a }与{n b }的极限都存在且等于11b a 。

9、按柯西收敛准则叙述数列{n a }发散的充要条件,并用它证明下列数列{n a }是发散的:(1)n a =n n)1(-;(2)n a =2sinπn ;(3)n a =n1211+++ 。

10、设∞→n lim n a = a ,∞→n lim n b = b 。

记n S = max{n a ,n b },n T = min{n a ,n b },n=1,2,…。

证明:(1)∞→n lim n S = max{ a ,b };(2)∞→n lim n T = min{ a ,b }。

提示:参考第一章总练习题1。

习题答案§1数列极限概念3、(1)0,无穷小数列;(2)1;(3)0,无穷小数列;(4)0,无穷小数列;(5)0,无穷小数列;(6)1;(7)1。

§2收敛数列的性质 1、(1)41;(2)0;(3)31;(4)21;(5)10;(6)2。

4、(1)1;(2)2;(3)3;(4)1;(5)0;(6)1。

8、(1)0(提示:先证明n n 2124321- <121+n ); (2)1(提示:!)!1(2!)!1()!2)(2(!!1n n n n n n p n np +-<+-+--<<∑=); (3)0(提示:先证明0<1)1(-≤-+αααn n n );(4)α-11(提示:记n n p 22)1()1)(1(ααα+++= ,则121)1(+-=-n n p αα)。

相关文档
最新文档