数学分析试题及答案解析
数学分析试题及答案解析
WORD 格式整理2014 ---2015 学年度第二学期 《数学分析 2》A 试卷学院 班级学号(后两位)姓名题号一二三四五六七八总分核分人得分一. 判断题(每小题 3 分,共 21 分)( 正确者后面括号内打对勾,否则打叉 )1.若 f x 在 a,b 连续,则 f x 在 a,b 上的不定积分 f x dx 可表为x af t dt C ( ).2. 若 f x ,g x 为连续函数,则 f x g x dx f x dx g x dx ( ).3. 若f x dx 绝对收敛,g x dx 条件收敛,则 [ f x g x ]dx 必aaa然条件收敛().4. 若f x dx 收敛,则必有级数f n 收敛( ) 1n 15. 若 f n 与 g n 均在区间 I 上内闭一致收敛,则 f ng n 也在区间 I上内闭一致收敛().6. 若数项级数a 条件收敛,则一定可以经过适当的重排使其发散 n n 1于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数, 并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同().专业资料值得拥有WORD 格式整理二. 单项选择题(每小题 3 分,共 15 分)8.若 f x 在 a,b 上可积,则下限函数axf x dx 在 a,b 上()A.不连续B. 连续C. 可微D. 不能确定9.若g x 在 a,b 上可积,而f x 在 a,b 上仅有有限个点处与g x 不相等,则()A. f x 在 a,b 上一定不可积;B. f x 在 a,b 上一定可积, 但是babf x dxg x dx;aC. f x 在 a,b 上一定可积,并且babf x dxg x dx;aD. f x 在 a,b 上的可积性不能确定 .10.级数n1 1 12nn 1nA. 发散B. 绝对收敛C. 条件收敛D. 不确定11.设u n 为任一项级数,则下列说法正确的是()uA. 若lim u n 0 ,则级数nn一定收敛;un 1B. 若lim 1,则级数u n 一定收敛;n unun 1C. 若N,当n N时有,1,则级数u n 一定收敛;un专业资料值得拥有WORD 格式整理u n 1D. 若 N,当nN 时有, 1,则级数u n 一定发散;u n12. 关于幂级数na n x 的说法正确的是()A. na n x 在收敛区间上各点是绝对收敛的; B. na n x 在收敛域上各点是绝对收敛的;C. na n x 的和函数在收敛域上各点存在各阶导数;D.na n x 在收敛域上是绝对并且一致收敛的;三. 计算与求值(每小题 5 分,共 10分)1 1.lim nnnn 1 n 2nn专业资料值得拥有WORD 格式整理ln sin x13.dx2cos x四. 判断敛散性(每小题 5 分,共 15 分)3 x 12.dx0 1 2x x专业资料值得拥有14.n1 n! n n15.n 1nn1 2nn 1 2专业资料值得拥有五. 判别在数集D上的一致收敛性(每小题 5 分,共 10 分)sin nx16.f n , 1,2 , ,x n Dn专业资料值得拥有WORD 格式整理2n17. D , 2 2,nx六.已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面30 角向斜上方切割,求从圆柱体上切下的这块立体的体积。
数学分析习题及答案 (50)
习 题 12.5 偏导数在几何中的应用1. 求下列曲线在指定点处的切线与法平面方程:(1)⎪⎩⎪⎨⎧+==.1,2x x z x y 在⎪⎭⎫⎝⎛21,1,1点; (2)⎪⎪⎩⎪⎪⎨⎧=-=-=.2sin 4,cos 1,sin tz t y t t x 在2π=t 的点;(3)⎩⎨⎧=++=++.6,0222z y x z y x 在)1,2,1(-点;(4)⎩⎨⎧=+=+.,222222R z x R y x 在⎪⎭⎫⎝⎛2,2,2R R R 点。
解 (1)曲线的切向量函数为21(1,2,)(1)x x +,在⎪⎭⎫⎝⎛21,1,1点的切向量为1(1,2,)4。
于是曲线在⎪⎭⎫⎝⎛21,1,1点的切线方程为)12(41)1(2-=-=-z y x ,法平面方程为252168=++z y x 。
(2)曲线的切向量函数为(1cos ,sin ,2cos )2tt t -,在2π=t 对应点的切向量为。
于是曲线在2π=t 对应点的切线方程为222112-=-=+-z y x π, 法平面方程为(1)(1)2x y z π-++-+-=402x y π++--=。
(3)曲线的切向量函数为2(,,)y z z x x y ---,在)1,2,1(-点的切向量为(6,0,6)-。
于是曲线在)1,2,1(-点的切线方程为⎩⎨⎧-==+22y z x , 法平面方程为z x =。
(4)曲线的切向量函数为4(,,)yz xz xy --,在⎪⎭⎫⎝⎛2,2,2R R R 点的切向量为22(1,1,1)R --。
于是曲线在⎪⎭⎫⎝⎛2,2,2R R R点的切线方程为222R z R y R x +-=+-=-,法平面方程为022=+--R z y x 。
2.在曲线32,,t z t y t x ===上求一点,使曲线在这一点的切线与平面102=++z y x 平行。
解 曲线的切向量为2(1,2,3)t t ,平面的法向量为(1,2,1),由题设,22(1,2,3)(1,2,1)1430t t t t ⋅=++=,由此解出1t =-或13-,于是)1,1,1(-- 和 )271,91,31(--为满足题目要求的点。
数学分析考研试题及答案
数学分析考研试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是有界函数?A. f(x) = sin(x)B. f(x) = e^xC. f(x) = x^2D. f(x) = 1/x2. 函数f(x) = x^3在区间(-∞, +∞)上是:A. 单调递增B. 单调递减C. 有增有减D. 常数函数3. 如果函数f(x)在点x=a处连续,那么:A. f(a)存在B. f(a) = 0C. lim(x->a) f(x) = f(a)D. lim(x->a) f(x) 不存在4. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 2/35. 函数序列fn(x) = x^n在[0, 1]上一致收敛的n的取值范围是:A. n = 1B. n > 1C. n < 1D. n = 26. 级数∑(1/n^2)是:A. 收敛的B. 发散的C. 条件收敛的D. 无界序列7. 如果函数f(x)在区间[a, b]上可积,那么:A. f(x)在[a, b]上连续B. f(x)在[a, b]上一定有界C. f(x)在[a, b]上单调递增D. f(x)在[a, b]上无界8. 函数f(x) = |x|在x=0处:A. 连续B. 可导C. 不连续D. 不可导9. 微分方程dy/dx + y = 0的通解是:A. y = Ce^(-x)B. y = Ce^xC. y = Csin(x)D. y = Ccos(x)10. 函数f(x) = e^x在x=0处的泰勒展开式是:A. f(x) = 1 + x + ...B. f(x) = x + ...C. f(x) = 1 + x^2 + ...D. f(x) = 1 + x^3 + ...二、填空题(每题4分,共20分)11. 极限lim(x->0) (sin(x)/x) 的值是 _______。
12. 函数f(x) = x^3 - 6x^2 + 11x - 6的拐点是 _______。
考研数学分析试题及答案
考研数学分析试题及答案一、选择题(每题3分,共30分)1. 设函数f(x)在区间[a, b]上连续,且f(a) = f(b) = 0,若f(x)在区间(a, b)内至少有一个最大值点,则下列说法正确的是()。
A. f(x)在[a, b]上必有最大值B. f(x)在[a, b]上必有最小值C. 函数f(x)在[a, b]上单调递增D. 函数f(x)在[a, b]上单调递减2. 下列级数中,发散的是()。
A. ∑(-1)^n / nB. ∑1/n^2C. ∑(1/n - 1/(n+1))D. ∑sin(n)3. 已知函数F(x)在点x=c处可导,且F'(c)≠0,那么下列说法中正确的是()。
A. F(x)在x=c处连续B. 函数F(x)在x=c处一定取得最大值或最小值C. 可导性不能保证函数的连续性D. F(x)在x=c处取得极值4. 对于函数f(x) = x^3 - 6x^2 + 9x + 5,其在区间[1, 5]上的最大值是()。
A. 5B. 10C. 15D. 205. 设f(x)在[a, b]上可积,若∫[a, b] f(x) dx = 10,则下列说法中错误的是()。
A. f(x)在[a, b]上非负B. 存在x₀∈[a, b],使得f(x₀) > 0C. 存在x₀∈[a, b],使得f(x₀) = 10/b - aD. f(x)可以是负函数6. 函数f(x) = e^x / (1 + e^x)的值域是()。
A. (-∞, 0)B. (0, 1/2)C. (0, 1)D. (1/2, +∞)7. 下列选项中,不是有界函数的是()。
A. y = sin xB. y = e^xC. y = x^2D. y = 1/x8. 设函数f(x)在点x=1处可导,且f'(1) = 2,那么f(1 + h) - f(1)在h趋近于0时的表达式是()。
A. 2hB. 2h + o(h)C. h^2D. o(h)9. 对于函数f(x) = x^2,其在区间[-1, 1]上满足拉格朗日中值定理的条件,且存在ξ∈(-1, 1),使得()。
数学分析习题精选精解
数学分析习题精选精解数学分析是数学中的一个重要分支,其核心内容是函数论和微积分学。
在学习数学分析的过程中,习题的练习是不可或缺的一环。
通过多做习题,巩固知识点、提高解题能力和思维能力,进而提高数学水平。
下面我们选取一些经典的数学分析习题,进行精选精解。
一、极限【例1】设$\lim\limits_{n\to\infty}{\sqrt[n]{n}}=a$,求$a$的值。
【解】这是一个简单的极限问题,我们采用夹逼法求解。
显然有$\sqrt[n]{n-1}<\sqrt[n]{n}<\sqrt[n]{n+1}$。
那么$\lim\limits_{n\to\infty}{\sqrt[n]{n-1}}=\lim\limits_{n\to\infty}{\sqrt[n]{n+1}}=1$。
因此,$\lim\limits_{n\to\infty}{\sqrt[n]{n}}=1$。
二、导数与微分【例2】已知$f(x)=\begin{cases}\sqrt{x-a},x\geqa\\0,x<a\end{cases}$,求$f'(a)$和$f''(a)$。
【解】首先,我们求$f'(x)$。
当$x\geq a$时,$f'(x)=\dfrac{1}{2\sqrt{x-a}}$。
当$x<a$时,$f'(x)=0$。
因此,$f'(a)=\lim\limits_{x\to a}{\dfrac{f(x)-f(a)}{x-a}}=\lim\limits_{x\to a}{\dfrac{\sqrt{x-a}}{x-a}}=\lim\limits_{x\to 0}{\dfrac{\sqrt{x}}{x}}=+\infty$。
再求$f''(x)$。
当$x\geq a$时,$f''(x)=\dfrac{-1}{4(x-a)^{\frac{3}{2}}}$。
数学分析习题及答案 (50)
习 题 12.5 偏导数在几何中的应用1. 求下列曲线在指定点处的切线与法平面方程:(1)⎪⎩⎪⎨⎧+==.1,2x x z x y 在⎪⎭⎫⎝⎛21,1,1点; (2)⎪⎪⎩⎪⎪⎨⎧=-=-=.2sin 4,cos 1,sin tz t y t t x 在2π=t 的点;(3)⎩⎨⎧=++=++.6,0222z y x z y x 在)1,2,1(-点;(4)⎩⎨⎧=+=+.,222222R z x R y x 在⎪⎭⎫⎝⎛2,2,2R R R 点。
解 (1)曲线的切向量函数为21(1,2,)(1)x x +,在⎪⎭⎫⎝⎛21,1,1点的切向量为1(1,2,)4。
于是曲线在⎪⎭⎫⎝⎛21,1,1点的切线方程为)12(41)1(2-=-=-z y x ,法平面方程为252168=++z y x 。
(2)曲线的切向量函数为(1cos ,sin ,2cos )2tt t -,在2π=t 对应点的切向量为。
于是曲线在2π=t 对应点的切线方程为222112-=-=+-z y x π, 法平面方程为(1)(1)2x y z π-++-+-=402x y π++--=。
(3)曲线的切向量函数为2(,,)y z z x x y ---,在)1,2,1(-点的切向量为(6,0,6)-。
于是曲线在)1,2,1(-点的切线方程为⎩⎨⎧-==+22y z x , 法平面方程为z x =。
(4)曲线的切向量函数为4(,,)yz xz xy --,在⎪⎭⎫⎝⎛2,2,2R R R 点的切向量为22(1,1,1)R --。
于是曲线在⎪⎭⎫⎝⎛2,2,2R R R点的切线方程为222R z R y R x +-=+-=-,法平面方程为022=+--R z y x 。
2.在曲线32,,t z t y t x ===上求一点,使曲线在这一点的切线与平面102=++z y x 平行。
解 曲线的切向量为2(1,2,3)t t ,平面的法向量为(1,2,1),由题设,22(1,2,3)(1,2,1)1430t t t t ⋅=++=,由此解出1t =-或13-,于是)1,1,1(-- 和 )271,91,31(--为满足题目要求的点。
(完整word版)数学分析复习题及答案(word文档良心出品)
数学分析复习题及答案一.单项选择题1. 已知, 则=()A. B. C. D.2. 设, 则()A. B. C. D.3. ()A. B. C. D.4. 下列函数在内单调增加的是()A. B. C. D.二、填空题1. 设函数2.3.在处连续, 则三、判断题1. 若函数在区间上连续, 则在上一致连续。
()2. 实轴上的任一有界无限点集至少有一个聚点。
()3.设为定义在上的单调有界函数, 则右极限存在。
()四、名词解释1. 用的语言叙述函数极限的定义2. 用的语言叙述数列极限的定义五、计算题1. 根据第四题第1小题证明2. 根据第四题第2小题证明3. 设, 求证存在, 并求其值。
4.证明:在上一致连续, 但在上不一致连续。
5. 证明: 若存在, 则6. 证明: 若函数在连续, 则与也在连续, 问: 若在或在上连续, 那么在上是否必连续。
一、1.D 2.C 3.B 4.C二、1. 2. 3.三、1.× 2.√ 3.√四、1.函数极限定义: 设函数在点的某个空心邻域内有定义, 为定数。
, , 当时, , 则。
2.数列极限定义:设为数列, 为定数, , , 当时, 有, 则称数列收敛于。
五、1.证明:, , 当时, ;得证。
2.证明:令, 则, 此时, ,, , 当时,3.证明:⑴,⑵)1)(1(1111111----+++-=+-+=-n n n n n n n n n n x x x x x x x x x x 而, 由数学归纳法可知, 单调增加。
综合⑴, ⑵可知存在,设, 则由解得=A 215+(负数舍去)4.证明: 先证在上一致连续。
, 取, 则当且有时, 有 []δ•''+'≤''-'''+'=''-'x x x x x x x f x f ))(()()(εε<+⋅++≤)(2)1(2b a b a故2)(x x f =在[]b a ,上一致连续。
华东师大数学分析答案完整版
华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。
2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。
3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。
4. 函数的导数表示函数在某一点的瞬时变化率。
5. 微分表示函数在某一点的微小变化量。
6. 函数的积分表示函数在某个区间上的累积变化量。
7. 变限积分的导数是原函数的导数。
8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。
9. 函数的泰勒级数表示函数在某一点的幂级数展开。
10. 傅里叶级数表示周期函数的三角级数展开。
二、选择题1. 下列函数中,连续的是(A)。
A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。
A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。
A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。
A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。
A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。
解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。
2. 求不定积分∫(e^x) dx。
解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。
数学分析期末试题A答案doc
数学分析期末试题A答案doc2024年数学分析期末试题A及答案一、选择题1、以下哪个函数在 x = 0 处连续? A. $f(x) = x^2$ B. $f(x) = \frac{1}{x}$ C. $f(x) = sin x$ D. $f(x) = e^x$ 答案:D解析:在 x = 0 处,只有选项 D 中的函数 e^x 是连续的。
因此,答案为 D。
2、设 $f(x) = x^2$,则 $f(3x - 2) =$ __________。
A. $x^2$ B. $(3x - 2)^2$ C. $(3x - 2)^3$ D. $(3x - 2)^2 + 1$ 答案:B解析:将 $x$ 替换为 $3x - 2$,得 $f(3x - 2) = (3x - 2)^2$。
因此,答案为 B。
3、下列等式中,错误的是: A. $\int_{0}^{1}x^2dx =\frac{1}{3}x^3|{0}^{1}$ B. $\int{0}^{\pi}\sin xdx = \cosx|{0}^{\pi}$ C. $\int{0}^{2\pi}\sin xdx = 0$ D.$\int_{0}^{1}(2x + 1)dx = (x^2 + x)|_{0}^{1}$ 答案:A解析:等式两边取极限,只有 A 选项等式两边不相等,因此 A 选项是错误的。
4、下列哪个导数是常数函数? A. $y = x^3$ B. $y = \sin x$ C. $y = e^x$ D. $y = log_a(x)$ 答案:C解析:常数函数的导数为零。
在选项中,只有 C 中的函数 e^x 的导数为常数函数,其导数为 $e^x$。
因此,答案为 C。
高一生物期末考试试题及答案doc高一生物期末考试试题及答案doc高一生物期末考试是一次重要的学业水平测试,旨在考察学生在本学期学习生物课程的效果。
以下是本次考试的部分试题及其答案,供大家参考。
一、选择题1、下列哪一种生物不是由细胞构成的? A. 细菌 B. 植物 C. 动物D. 病毒答案:D2、哪一个器官属于消化系统? A. 口腔 B. 食道 C. 胃 D. 大肠答案:C3、在光合作用中,哪一个物质是植物从空气中吸收的? A. 氧气 B. 二氧化碳 C. 葡萄糖 D. 水答案:B二、填空题1、病毒是一种生物,但它不能 _______ 和保持生命活动,必须_______ 在细胞内。
《数学分析》试题(含答案)
考试科目: 数学分析(I)一 、求极限、导数或高阶导数(每小题5分,共35分)1.n lim →∞⎛⎫++……解:n n n 11(1)(1)lim lim n n n n →∞++⎛⎫≤+≤……,故原式1=2.2.()222n x x x n x x x x 2x 2lim =lim =lim =lim =022ln 22ln 22n →∞→∞→∞→∞. 3.()42220011-cos 12lim =lim =sin ln 1+2x x xx x x x x x x →→•.4. 11limarcsin()1ln x x x x→--解:111limarcsin()arcsin 1ln 26x x x x π→-==-. 5.设(0)xxy x x =>,求y '.1(ln (ln 1))xx x x y x x x x x -'=++.6. 设函数)(x y y =是由参数方程⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 确定,求2t dydxπ=和t dy dxπ=。
21t dy dxπ==.7. 设函数f 二阶可导,1()1x y f x -=+,22d y dx解:221()(1)1dy x f dx x x -'=++, 22344141()()(1)1(1)1d y x x f f dx x x x x --'''=-+++++.二、解答题(每小题8分,共32分)1. 已知001a <<,)n+1a n 0≥,求证n a 的极限存在并求其极限.解: 易知{}n a 单调增有上界1,故由单调收敛定理及n+1n n lim a =→∞知n n lima =1.→∞2. 讨论函数()211sin x x f x e x-=的间断点及其类型. 解: 0x =为可去间断点,=1x ±为第二类间断点.3. 求函数()(4)f x x =-的极值点与极值。
数学分析试题库--计算题、解答题--答案
数学分析题库(1-22章)四.计算题、解答题求下列极限解:1.∞=+=--+=--∞→∞→∞→)2(lim 2)2)(2(lim 24lim2n n n n n n n n n 2. 111lim(1)1223(1)n n n →∞++++⋅⋅+111111lim(1)122311lim(1)11n n n n n →∞→∞=+-+-++-+=-=+3.111cos lim cos 1lim00===-→→x e x e x x x x 4.这是型,而 )1()1ln()1()1(]111)1ln(1[)1(][])1[(2121)1ln(11x x x x x x x x x x x ex xxx x x+++-+=+⋅++-+='='++故 原极限=12(1)ln(1)lim(1)(1)xx x x x x x x →-++++ 2001ln(1)1lim2311lim 261x x x e x x e x x →→-+-=⋅+-=⋅⋅=∞++53)1(lim )1()1)(1(lim 11lim 212131=++=-++-=--→→→n n n n n n n n n n n 6 211lim(1)nn n n →∞++22(1)121lim(1)1n n n n n n n n +⋅+→∞=++因1)1(lim 2=+∞→nn n n , ∞=+∞→1lim 2n n n 故原极限=e e =1. 7. 用洛必达法则333sin 3cos 2lim 3cos sin 21lim66=--=-→→xx x x x x ππ8. 00111lim()lim 1(1)x x x x x e xx e x e →→---=--0011lim lim 122x x x x x x x x e e xe e xe e →→-===+-+ 9. xx xx x sin tan lim--→;解法1:200tan sec 1lim lim sin 1cos x x x x x x x x →→--=--2201cos lim cos 1cos x x x x →-=-()201cos limcos 2 x x x →+==解法2:2002030tan sec 1lim lim sin 1cos 2sec tan lim sin 2limcos 2x x x x x x x x x xx xxx→→→→--=--===10. 10lim(sin 2cos )xx x x →+解 因00sin 2cos 12cos 2sin limlim 21x x x x x xx →→+--==, (3分)故原式1sin 2cos 1sin 2cos 10lim(1sin 2cos 1)x x x x xx x x +-+-→=++-=2e求下列函数的导数sin 11.cos 12.ln(ln )13.14.sin .x xy e x y x y xy x ====求的各阶导数解 11x e x e y xxsin cos -=' 12 xx x x y ln 11ln 1=⋅=' 13)sin ln (cos )(sin ln sin xxx x x ey x xx +='=' 14 . cos sin()2y x x π'==+()sin sin(2)2cos sin(3)2sin()2n y x x y x x y x n πππ''=-=+⋅''=-=+⋅=+ 15 x e x e y xx2cos 22sin +=' 16 )1sin (ln cos 1xx x x y +-⋅+='17 )tan )ln(cos (cos )(cos ][sin )ln(cos sin x x x x e y x x x +='='18 ),2,1(),2)1(sin()( =⋅++=n n x yn π.19.1tan 22113sec ln 3x x x x x++-; 20.求下列函数的高阶微分:设x e x v x x u ==)(,ln )(,求)(),(33vud uv d解 因为xx x x x e x x xx e x e x e x e x v u v u C v u C v u dx uv d )ln 332(ln 13132)(2323231333++-=⋅+⋅+-⋅+='''+'''+'''+'''=所以 3233333)ln 332()()(dx x xx x e dx dx uv d uv d x ++-== )ln 332()(ln 13)(132)(ln )(23233333x x xx e e x e x e x e x e x dx d v u dx d x xx x x x -++=-⋅+⋅⋅+--⋅+=⋅=------所以 3233)ln 332()(dx x x xx e vud x-++=- 21. ;)(arctan 23x y = 解:332362arctan (arctan )6 arctan 1y x x x x x''==+22. ;xx y x =解: 令1xy x =,1ln ln y x x =两边对两边对x 求导有11ln 1y x y '=+,()ln x x x x x x x '=+ ln ln x y x x =两边对x 求导有(ln )x y x x y''= 1121 ()ln (ln ) (ln )ln ((ln )ln ) (ln ln )xxx x x x x x x x x x x x x x x x x x x x y x x x x x x x x x x x ---''=+=++'=++=++23. 求由参量方程⎪⎩⎪⎨⎧==;sin ,cos t e y t e x tt所确定的函数的二阶导数:22dx y d 解法1:⎪⎩⎪⎨⎧==;sin ,cos t e y t e x tt由含参量方程的求导法则有cos sin cos sin cos sin cos sin t t t t dy e t e t t t dx e t e t t t++==-- 求22d y dx 即求参量方程cos sin ,cos sin cos ;t dy t tdx t t x e t +⎧=⎪-⎨⎪=⎩的导数 222223(cos sin )(cos sin )()2(cos sin )(cos sin )(cos sin )t t t t t t dyd d y t t dx dx dxe t t e t t -++-===-- 解法2:⎪⎩⎪⎨⎧==;sin ,cos t e y t e x tt由含参量方程的求导法则有cos sin cos sin tan()cos sin cos sin 4t t t t dy e t e t t t t dx e t e t t t π++===+-- 求22d y dx 即求参量方程tan(),4cos ;t dyt dx x e t π⎧=+⎪⎨⎪=⎩的导数2232()sec ()4sec ()4cos()4t t dy d t d ydx t dxdx t πππ-+===++24.设3xy x e =, 试求(6)y.解 基本初等函数导数公式,有32333()()3,()6,()6,()=0, 4,5,6,k x x x x x x k ''''''==== ()(e )e ,1,2,,6x k x k ==,应用莱布尼兹公式(6n =)得(6)32e 63e 156e 206e x x x x y x x x =+⋅+⋅+⋅32(1890120)e x x x x =+++.25.试求由摆线方程(sin ),(1cos )x a t t y a t =-⎧⎨=-⎩所确定的函数()y f x =的二阶导数.解d ((1cos ))sin cot ,d ((sin ))1cos 2y a t t t x a t t t '-==='--22421cot csc d 1222csc .d ((sin ))(1cos )42t t y t x a t t a t a '⎛⎫- ⎪⎝⎭===-'-- 26 .求2()ln(1)f x x =+到6x 项的带佩亚诺型余项的麦克劳林公式.解 因为233ln(1)()23x x x x o x +=-++,所以2()ln(1)f x x =+到6x 项的带佩亚诺型余项的麦克劳林公式为46226ln(1)()23x x x x o x +=-++.28.解 (1))0(0sinlim )(lim 0f x x x f mx x ===→→,故对任意正整数m ,f 在0=x 连续. (2)⎩⎨⎧≤>==-=--='-→→→1101sin lim 01sinlim 0)0()(lim)0(1000m m x x x x x x f x f f m x m x x 不存在,故当1>m 时,f 在0=x 可导. (3)先计算f 的导函数.00≠∀x ,000000000000)1sin 1(sin 1sin)(lim1sin 1sin 1sin 1sin lim 1sin 1sinlim)(000x x x x x x x x x x x x x x x x x x x x x x x x x f mmm x x mm m m x x m m x x --+-=--+-=--='→→→200102000010000000100211cos1sin 11cos 1sin 2sin 2cos2lim 1sin )(lim 00x x x mx x x x x mx x x xx xx xx x x x x x x x x m m m m mx x m m m x x ---→---→-=⋅-=--+++++=⎩⎨⎧≤>=-=-='-→--→→220)1cos 1sin (lim )1cos 1sin(lim )(lim 20210m m x x mx x x x x mx x f m x m m x x 不存在由(2)知,0)0(='f ,于是当2>m 时,有)0(0)(lim 0f x f x '=='→,所以当2>m 时,f '在0=x 连续.29.解 因为23)(,2)(x x g x x f ='=',故当0=x 时,0)0(,0)0(='='g f ,不满足柯西中值定理的条件,所以在区间[-1, 1]上不能用柯西中值定理. 30.证明 (1)对任何0≠x ,有)0(01sin)(24f xx x f =≥=,故0=x 是极小值点. (2)当0≠x 时,有)1cos 1sin 2(1sin 21cos 1sin 21sin 4)(2223xx x x x x x x x x x f -=-=',作数列 221ππ+=n x n ,421ππ+=n y n ,则0→n x ,0→n y .即在0=x 的任何右邻域)0(0+U 内,既有数列}{n x 中的点,也有数列}{n y 中的点.并且0)(>'n x f ,0)(<'n y f ,所以在)0(0+U 内f '的符号是变化的,从而f 不满足极值的第一充分条件.又因为001sin lim)0(240=-='→x x x f x ,00)1cos 1sin 2(1sin 2lim )0(20=--=''→xx x x x x f x ,所以用极值的第二充分条件也不能确定f 的极值.31.答:能推出f 在),(b a 内连续.证明如下:),(0b a x ∈∀,取},m i n {2100x b a x --=ε,于是],[0εε-+∈b a x ,由题设,f 在],[εε-+b a 上连续,从而在0x 连续.由0x 的任意性知,f 在),(b a 内连续.32.试求函数32|2912|y x x x =-+在[1,3]-上的最值和极值. 解32222|2912||(2912)|(2912),10,(2912),03,y x x x x x x x x x x x x x x =-+=-+⎧--+-≤≤⎪=⎨-+<≤⎪⎩在闭区间[1,3]-上连续, 故必存在最大最小值.2261812,618126(1)(2),10,6(1)(2),03,x x y x x x x x x x x ⎧-+-⎪'=⎨-+⎪⎩----≤<⎧=⎨--<≤⎩ 令0y '=,得稳定点为1,2x =. 又因(0)12,f -'=-(0)12,f +'= 故y 在0x =处不可导. 列所以0x =和2x =为极小值点, 极小值分别为(0)0f =和(2)4f =,1x =为极大值点, 极大值为(1)5f =.又在端点处有(1)23f -=,(3)9f =, 所以函数在0x =处取最小值0,在1x =-处取最大值23.33.求函数155345++-=x x x y 在[1,2]-上的最大最小值: 解:令()y f x =43222252015 5(43) 5(1)(3)y x x x x x x x x x '=-+=-+=-- 令0y '=解得函数在[1,2]-的稳定点为120,1x x ==, 而(1)10,(0)1,(1)2,(2)7f f f f -=-===-,所以函数在[1,2]-的最大值和最小值分别为 max min (1)2,(1)10f f =-=-. 34. 确定函数25363223+--=x x x y 的凸性区间与拐点: 解:令()y f x =26636,y x x '=--126,y x ''=-1260,y x ''=-=解得12x =, 当1(,)2x ∈-∞时,0y ''<,从而区间1(,)2-∞为函数的凹区间,当1(,)2x ∈+∞时,0y ''>,从而区间1(,)2+∞为函数的凸区间.并且1113()0,()222f f ''==,所以113(,)22为曲线的拐点.35.设11(1,2,)nn a n n ⎛⎫=+= ⎪⎝⎭,则{}n a 是有理数列. 点集{}1,2,n a n =非空有界,但在有理数集内无上确界.数列{}n a 递增有上界,但在有理数集内无极限.36.设11(1,2,)nn a n n ⎛⎫=+= ⎪⎝⎭,则{}n a 是有理数列. 点集{}1,2,n a n =有界无限,但在有理数集内无不存在聚点.数列{}n a 满足柯西准则,但在有理数集内不存在极限.37.不能从H 中选出有限个开区间覆盖10,2⎛⎫ ⎪⎝⎭.因为H 中任意有限个开区间,设其中左端点最小的为12N +,则当103x N <<+时,这有限个开区间不能覆盖x .38.5232326129.6116ln 1326ln 1.x dx x x dx x x x x x x x C C ⎛⎫=-+-⎪++⎝⎭⎛⎫=-+-++ ⎪⎝⎭=+⎛⎛⎜⎜⎠⎠39.令sin ,2x a t t π=<,则()()22222cos sin cos 1cos 2211sin 2arcsin .222a a td a t a tdt t dta x t t C a C a ===+⎛⎫⎛=++=++ ⎪ ⎝⎭⎝⎰⎰⎰⎰40.()222222211131.arctan arctan arctan 1arctan 22211111arctan arctan .22221x x x xdx xd x x d x x x x x dx x x C x ⎛⎫++==-+ ⎪⎝⎭+++=-=-++⎛⎜⎠⎛⎜⎠⎰⎰41.()()23222211432.ln 111121ln 1.x dx dx x dxx x x x x x C +⎛⎫=+=++ ⎪++-+⎝⎭-+=+++⎛⎛⎛⎜⎜⎜⎜⎠⎠⎠42.令t =则有()()2222218,11t t x dx dt t t +-==--, ()()2222242211111ln2arctan 2arctan.1t dt dt t t t t tt C C t ⎛⎫==- ⎪--⎝⎭-++=-+=-⎛⎛⎜⎜⎠⎠43. 令tan 2xt =,则有22212cos ,11t x dx dt t t-==++, 22(2)111arctan 2arctan 2tan .53cos 2222141(2)d t dx dt x t C C x t t ⎡⎤===+=+⎢⎥-++⎣⎦⎛⎛⎛⎜⎜⎜⎠⎠⎠. 44.()()11111111ln ln ln ln ln 2(1)ee eeeex dx xdx xdx x x x xx x e -=-+=--+-=-⎰⎰⎰.45.()()111111202222t t t t te dt tde tee dt e e ==-=-=⎰⎰⎰.46.12111000011arcsin arcsin 12222d x xdx x x πππ-=-=+=+=-⎛⎛⎜⎜⎠⎠⎰.47.22222111111lim lim 1221nn n i J n n n n n i n →∞→∞=⎛⎫=+++=⋅ ⎪++⎝⎭⎛⎫+ ⎪⎝⎭∑.其中和式是函数21()1f x x=+在[0,1]上的一个积分和,所以11200arctan 41dx J x x π===+⎛⎜⎠. 48.()()()()().xx xaaaF x f t x t dt x f t dt tf t dt =-=-⎰⎰⎰.于是()()()()(),()()x xaaF x f t dt xf x xf x f t dt F x f x '''=+-==⎰⎰.49.以平面00()x x x a =<截椭球面,得一椭圆2222220022111y z x x b c a a +=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.所以截面积函数为221,[,]x bc x a a a π⎛⎫-∈- ⎪⎝⎭.于是椭球面的体积22413aa x V bc dx abc a ππ-⎛⎫=-= ⎪⎝⎭⎛⎜⎠.50.化椭圆为参数方程: cos ,sin ,[0,2]x a t y b t t π==∈.于是椭圆所围的面积为()2220sin cos sin A b ta t dt ab tdt ab πππ'===⎰⎰.51.(1cos ),sin ,02x a t y a t t π''=-=≤≤,于是所求摆线的弧长为22202sin 82t s a dta πππ====⎛⎜⎠⎰⎰.52.根据旋转曲面的侧面积公式2(baS f x π=⎰可得所求旋转曲面的面积为)02sin 2ln1S πππ⎤==⎦⎰.53.因为2222001111limlim lim 2222AAx xx A A A A xe dx xe dx e e +∞----→+∞→+∞→+∞⎛⎫⎛⎫==-=-= ⎪ ⎪⎝⎭⎝⎭⎰⎰.于是无穷积分2x xedx +∞-⎰收敛,其值为12.54.因为22211111lim lim 1(1)(1)AAA A dx dx x dx x x x x x x +∞→+∞→+∞-⎛⎫==- ⎪+++⎝⎭⎛⎛⎛⎜⎜⎜⎠⎠⎠ ()111lim ln(1)ln lim ln 1ln 2ln 11ln 2.AA A x x A A x A →+∞→+∞⎛⎫⎛⎫=+--=+--+-=- ⎪ ⎪⎝⎭⎝⎭于是无穷积分21(1)dxdx x x +∞+⎰收敛,其值为1ln2-.55.因为1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦,从而级数11(1)(2)n n n n ∞=++∑的部分和为1111111111()(1)(2)2(1)(1)(2)22(1)(2)4nn k k n k k k k k k k n n ==⎡⎤⎡⎤=-=-→→∞⎢⎥⎢⎥+++++++⎣⎦⎣⎦∑∑.于是该级数收敛,其和为14. 56.因为222111cos2sin 12limlim 112n n n n n n→∞→∞-==,且级数211n n ∞=∑收敛,所以级数111cos n n ∞=⎛⎫- ⎪⎝⎭∑收敛.57.因为1lim 1212n n n n →∞==<+,由根式判别法知级数121nn n n ∞=⎛⎫ ⎪+⎝⎭∑收敛.58.因为()21sinlim21nn nn→∞-=,且级数11n n ∞=∑发散,故原级数不绝对收敛.但{}2sin n 单调递减,且2limsin 0n n →∞=,由莱布尼茨判别法知级数()121sin n n n ∞=-∑条件收敛. 59. 因为1111112sin sin cos cos cos cos 22222n nk k x kx k x k x x n x ==⎛⎫⎛⎫⎛⎫⎛⎫=--+=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑,当(0,2)x π∈时,sin 02x≠,于是.所以级数1sin n nx ∞=∑的部分和数列111cos cos 221sin 2sin sin 22nn k x n x S kx x x =⎛⎫-+ ⎪⎝⎭==≤∑当(0,2)x π∈时有界,从而由狄利克雷判别法知级数1sin n nxn ∞=∑收敛;同法可证级数1cos 2n nxn ∞=∑在(0,)x π∈上收敛. 又因为2sin sin 11cos 21cos 2222nx nx nx nx n n n n n-≥=⋅=-,级数112n n∞=∑发散,1cos 2n nx n ∞=∑收敛,于是级数11cos 222n nx n n ∞=⎛⎫- ⎪⎝⎭∑发散,由比较判别法知级数1sin n nx n ∞=∑发散.所以级数1sin n nxn ∞=∑在(0,2)x π∈条件收敛. 60. 判断函数项级数∑++-1)() 1(n nn nn x 在区间] 1 , 0 [上的一致收敛性. 解 记nn n n n x x v n x u ⎪⎭⎫⎝⎛+=-=1)( , ) 1()(. 则有ⅰ> 级数∑)(x u n 收敛;ⅱ> 对每个∈x ] 1 , 0 [, )(x v n ↗;ⅲ> e n x x v nn ≤⎪⎭⎫⎝⎛+=1|)(| 对 ∀∈x ] 1 , 0 [和n ∀成立. 由Abel 判别法, ∑在区间] 1 , 0 [上一致收敛.61. )(x f n =221xn nx+, ∈x ] 1 , 0 [. 讨论函数列{)(x f n }的一致收敛性. 解 ∞→n lim )(x f n = 0, ∈x ] 1 , 0 [. |)(x f n ― 0|=)(x f n . 可求得10max ≤≤x )(x f n =,0 21) 1 (→/=n f n ) (∞→n . ⇒ 函数列{)(x f n }在区间] 1 , 0 [上非一致收敛.62. 函数列2212,0,211()22,,210, 1.n n x x n f x n n x x n n x n ⎧≤≤⎪⎪⎪=-<≤⎨⎪⎪<≤⎪⎩,2,1=n在]1,0[上是否一致收敛?解:由于(0)0n f =,故0)0(lim )0(==∞→n n f f .当10≤<x 时,只要xn 1>,就有0)(=x f n ,故在]1,0(上有0)(lim )(==∞→x f x f n n .于是函数列(8)在]1,0[上的极限函数0)(=x f ,又由于∞→==-∈n nf x f x f n n x )21()()(sup ]1,0[ )(∞→n , 所以函数列(8)在[0,1]上不一致收敛. 63. )(x f n 2222x n xen -=在R 内是否一致收敛?解 显然有)(x f n →0, |)()(|x f x f n -= )(x f n 在点n x =n21处取得极大值022121→/=⎪⎭⎫⎝⎛-ne n f n ,) (∞→n . 由系2 , )}({x f n 不一致收敛. 64. 函数列⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<=≤<-≤≤=. 11 , 0), , 2 , 1 ( , 121 ,22,210 , 2)(22x n n n x n x n n n x x n x f n在] 1 , 0 [上是否一致收敛?解 10≤<x 时, 只要1->x n , 就有)(x f n =0. 因此, 在] 1 , 0 (上有)(x f =∞→n lim )(x f n =0. 0)0(=n f , ⇒ )0(f =∞→n lim )0(n f =0.于是, 在] 1 , 0 [上有)(x f =∞→n lim )(x f n =0. 但由于021|)()(|max ]1,0[→/=⎪⎭⎫⎝⎛=-∈n n f x f x f n n x , ) (∞→n ,因此 , 该函数列在] 1 , 0 [上不一致收敛. 65. 求幂级数++++74533234333231x x x x 的收敛域 . 解 ++++74533234333231x x x x ∑∞=++=02131n n n x n x 是缺项幂级数 .∞→n lim, 31||||1⇒=+nn a a 3=R . 收敛区间为) 3 , 3 (-. 3±=x 时, 通项0→/. 因此 , 该幂级数的收敛域为) 3 , 3 (-.66. 计算积分⎰-=12dx e I x , 精确到0001.0.解 =-2x e∑∞=-02,!) 1(n nnn x ) , (∞+∞-∈x . 因此,⎰⎰∑=⎪⎪⎭⎫ ⎝⎛-=∞=-11002!) 1(2dx n x dx en n n x ∑⎰∞==-0102!) 1(n n n dx n x ∑∞=+-0!)12(1) 1(n nn n .上式最后是Leibniz 型级数 , 其余和的绝对值不超过余和首项的绝对值 . 为使10001!)12(1<+n n ,可取7≥n .故从第0项到第6项这前7 项之和达到要求的精度.于是⎰-=12dx e I x 1111111352769241112013720≈-+-+-+⋅⋅⋅⋅⋅ 7468.000011.000076.000463.002381.010000.033333.01=+-+-+-=. 67. 把函数)(x f =)5ln(x +展开成)2(-x 的幂级数.解+-+-+-=+-n x x x x x n n 132) 1 (32)1ln(∑∞=--=11) 1 (n n n n x , ] 1 , 1 (-∈x .而7ln 721ln )27ln()5ln(+⎪⎭⎫⎝⎛-+=-+=+x x x =∑∞=-+--117ln 7)2()1(n n nn nx , ] 9 , 5(-∈x .68. 求幂级数∑∞=+0!1n nx n n 的和函数. 解法一 收敛域为) , (∞+∞-,设和函数为)(x S , 则有⎰⎰∑⎰∑∞=∞==+=⎪⎭⎫ ⎝⎛+=xxn x nn n dt t n n dt t n n dt t S 00000)1(!1!1)(∑∞=+=01!n x n xe n x . 因此, ∑∞=+0!1n n x n n =)(x S =x x x e x xe dt t S )1()()(0+='='⎪⎭⎫ ⎝⎛⎰, ∈x ) , (∞+∞-. 解法二 ∑∞=+0!1n nx n n =∑∞=+0!n n n nx ∑∞==0!n nn x ∑∞=+-1)!1(n x ne n x = ∑∞=+=+=+=0)1(!n x x x x ne x e xe e n x x , ∈x ) , (∞+∞-.69. 展开函数xe x xf )1()(+=.解 =+=xxxe e x f )(∑∞=+0!n nn x ∑∞=+=01!n n n x ∑∑∞=∞=-+01)!1(!n n nn n x n x =+1∑∞=1!n n n x ∑∑∞=∞=⎪⎪⎭⎫ ⎝⎛-++=++11)!1(1!11)!1(n n nn x n n n x ∑∞==++=1!11n nx n n ∑∞=∞+<+0 || ,!1n nx x n n . 70. 在指定区间内把下列函数展开成傅里叶级数,)(x x f =(i ),ππ<<-x (ii ).20π<<x解 (1)(i )函数f 及其周期延拓后的图象所示. 显然f 是按段光滑的,故由收敛定理知它可以展开成傅里叶级数. 由于011()0a f x dx xdx ππππππ--===⎰⎰.当1≥n 时,有211()cos cos 11sin |sin 1cos |0n a f x nxdx x nxdxx nx nxdx n n nx x ππππππππππππππ-----===-==⎰⎰⎰ 11()sin sin 11cos |cos 2,2,n b f x nxdx x nxdxx nx nxdx n n n n n nππππππππππππ----===+⎧-⎪⎪=⎨⎪⎪⎩⎰⎰⎰当为偶数时,当为奇数时.所以在区间),(ππ-上,sin )1(2)(11nnxx f n n ∑∞=+-= (ii )函数f 及其周期延拓后的图象所示. 显然f 是按段光滑的,故由收敛定理知它可以展开成傅里叶级数. 由于20012a xdx πππ==⎰.当1≥n 时2022001cos 11sin |sin 0n a x nxdxx nx nxdxn n ππππππ==-=⎰⎰,2022001sin 11cos |cos 2n b x nxdxx nx nxdxn n πππππππ==-+=-⎰⎰.所以在区间)2,0(π上1sin ()2n nx f x n π∞==-∑. 71. 设)(x f 是以π2为周期的分段连续函数, 又设)(x f 是奇函数且满足)()(x f x f -=π试求)(x f 的Fourier 系数⎰-=πππnxdx x f b n 2sin )(12的值, ,2,1=n . 解 由)(x f 是奇函数,故nx x f 2sin )(是偶函数,再由)()(x f x f -=π,故有()b f x nx x n 2022=⎰ππsin d ()=-⎰220πππf x nx xsin d . 作变换π-=x t ,则()()()b f t n t tn 20221=--⎰πππsin d ()=-⎰220ππf t nt tsin d=-b n 2 .所以,02=n b ,.,2,1 =n72. 设)(x f 以π2为周期,在区间]2,0[π内,()f x x x x =≤<=⎧⎨⎪⎩⎪20202πππ,,,,试求)(x f 的Fourier 级数展开式。
数学分析 测试试卷及答案
综合测试试卷一一、 计算题(本大题共15小题,每小题2分,共30分)1、xx x tan 01lim ⎪⎭⎫⎝⎛+→; 2、()x x x 2cot lim 0→ ;3、设a 为非零常数,则xx a x a x ⎪⎭⎫ ⎝⎛-+∞→lim ;4、⎪⎭⎫ ⎝⎛--+∞→n n n n n 3lim ; 5、xx x ex e111lim +-+→;6、⎪⎪⎭⎫⎝⎛++∞→x x x x 2sin 3553lim 2; 7、⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n n 2222211lim ;8、()x x x sin 2031lim +→;9、⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+∞→x x x x 11ln sin 31ln sin lim ; 10、()()x x x x x x +++→1ln cos 11cossin 3lim20 ; 11、20211limx x x x --++→; 12、⎪⎭⎫ ⎝⎛-→x x x x tan 11lim 20; 13、()3021ln arctan limx xx x +-→ ;14、若0>a ,0>b 为常数,则xxx x ba 302lim ⎪⎪⎭⎫⎝⎛+→;15、⎪⎪⎭⎫⎝⎛++++++∞→n n n n n n πππcos 12cos 1cos 11lim。
. 二、单项选择题(本大题共5小题,每小题2分,共10分)16、xx x x sin sinlim10→的值为( ) A. 1; B. ∞; C.不存在; D. 0.17、=+--+→232231x x x x x lim ( )A. 3;B. 4-;C. 1;D. 1-.18、 =⎪⎭⎫ ⎝⎛-∞→xx x 211lim ( )A.e 2;B. 2-e; C. 2e ; D.e2. 19、若22222=--++→x x bax x x lim ,则必有( ) A. 82==b a ,; B. 52==b a ,;C. 80-==b a ,; D. 82-==b a ,. 20、当+→0x 时,以下四式中为无穷小量的是( )A. x x 1sin ;B. x e 1; C. x ln ; D. x xsin 1.21、当+→0x 时,以下四式中为无穷大量的是( ) A. 12--x; B.xx sec sin +1; C. xe -; D. x e 1. 22、=→xx x x cos sinlim10( ) A.不存在; B. 0; C. 1; D. ∞.23、()=-→xx x cos tan lim 02π( )A.0;B. 1;C. ∞;D. 不存在. 24、=⎪⎭⎫⎝⎛--→1110x x e x lim ( )A.0;B. 21;C. ∞;D.21-. 25、()=+→xx x ex 10lim ( )A.e ;B. 1;C. 2e ; D. 2.三、计算题(本大题共3小题,每小题17分,共51分)26、623lim 2232--++-→x x xx x x ; 27、()11lim 22--+∞→x x x . 28、38231lim x x x +---→. 29、⎪⎪⎭⎫ ⎝⎛+--∞→1212lim 223x x x x x . 30、n n n n n !2lim ∞→. 31、()()()503020152332lim++-∞→x x x x . 32、设)(a f '存在,且0>)(a f ,求xx a f x a f ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+∞→)(lim 1.33、xx x x ⎪⎭⎫ ⎝⎛+∞→1lim . 34、11lim 31--→x x x . 35、xx x cos lim 00+→. 36、xx x x 10arcsin lim ⎪⎭⎫⎝⎛→. 37、()x x x x cos 1sin 1ln lim 0-+→. 38、201sin lim x x →. 39、21cos lim x x x ⎪⎭⎫ ⎝⎛∞→. 40、121lim +∞→+++p p p p n n n ,0>p .41、()1ln lim0-+→xx e x.42、dx xx an nn ⎰+∞→1sin lim.(提示:先用积分中值定理:()()a b f dx x f ba-=⎰ξ)(,[]b a ,∈ξ)综合测试试卷一参考答案一、计算题(本大题共15小题,每小题2分,共30分) 1、1; 2、21; 3、a e 2;4、2;5、1-;6、56;7、21;8、6e ;9、2;10、23;11、41-;12、31; 13、61-; 14、()23ab ; 15、22π。
(完整版)数学分析试题及答案解析,推荐文档
∑⎰ ⎰ ⎰ 2014 ---2015 学年度第二学期《数学分析 2》A 试卷一. 判断题(每小题 3 分,共 21 分)(正确者后面括号内打对勾,否则打叉)1.若 f (x )在[a ,b ]连续,则 f (x )在[a ,b ]上的不定积分⎰ f (x )dx 可表为x f(t )dt + C ( ).a2.若 f (x ), g (x )为连续函数,则⎰ f (x )g (x )dx = [⎰f (x )dx ]⋅ [⎰g (x )dx ().+∞+∞3.若 f (x )dx 绝对收敛, ⎰ g (x )dx 条件收敛,则aa+∞[ f(x )- g (x )]dx 必然条件收敛().a+∞ 4. 若f (x )dx 收敛,则必有级数∑ f (n )收敛( )1n =15. 若{f n }与{g n }均在区间 I 上内闭一致收敛,则{f n + g n }也在区间 I上内闭一致收敛( ).∞6. 若数项级数 a n 条件收敛,则一定可以经过适当的重排使其发散n =1于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题 3 分,共 15 分)1. 若 f(x )在[a ,b ]上可积,则下限函数af (x )dx 在[a ,b ]上()xA. 不连续B. 连续C.可微D.不能确定⎰ ⎰∞⎰ ⎰ ⎰ ⎰ ∑ 2. 若 g (x )在[a ,b ]上可积,而 f (x )在[a ,b ]上仅有有限个点处与 g (x )不相等,则( )A. f (x )在[a ,b ]上一定不可积;B. f (x )在[a , b ]上一定可积,但是bf (x )dx ≠ bg (x )dx ;aaC. f (x )在[a , b ]上一定可积,并且 b f (x )dx = bg (x )dx ;aaD. f (x )在[a ,b ]上的可积性不能确定.∞3. 级数 n =11 + (- 1)n -1 n n2 A. 发散 B.绝对收敛 C.条件收敛 D. 不确定4. 设∑u n 为任一项级数,则下列说法正确的是( )A. 若lim u n →∞= 0 ,则级数∑u n一定收敛;B. 若lim un +1 = < 1,则级数∑u 一定收敛;n →∞ u nC. 若∃ N ,千D. 若∃ N ,千 n > N 千千n > N 千千千u n +1 n< 1,则级数∑u n 一定收敛; u n> 1,则级数∑u n 一定发散;5. 关于幂级数∑ a n x n 的说法正确的是()A. ∑ a n x n 在收敛区间上各点是绝对收敛的;B. ∑ a n x n 在收敛域上各点是绝对收敛的;C. ∑ a n x n 的和函数在收敛域上各点存在各阶导数;千 u n +1u n nx ⎰⎰ D. ∑ a n x n 在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题 5 分,共 10 分) 1. lim 1n (n + 1)(n + 2) (n + n ) n →∞ n2. ln (sin x )dx cos 2 x四. 判断敛散性(每小题 5 分,共 15 分)1. dx 01 + + x 2∞∑2. ∑ n ! n =1 n n∞ 3. n =1(- 1)nn 2n1 + 2n五. 判别在数集 D 上的一致收敛性(每小题 5 分,共 10 分)1. f n(x )= sin nx n, n =1,2 , D = (- ∞,+∞)∑2. n D xn= (- ∞, - 2]⋃[2, + ∞)六.已知一圆柱体的的半径为 R ,经过圆柱下底圆直径线并保持与底圆面300 角向斜上方切割,求从圆柱体上切下的这块立体的体积。
(完整word版)数学分析试题库--证明题--答案
数学分析题库(1—22章)五.证明题1.设A ,B 为R 中的非空数集,且满足下述条件:(1)对任何B b A a ∈∈,有b a <;(2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y 。
证明:.inf sup B A =证 由(1)可得B A inf sup ≤.为了证B A inf sup =,用反证法。
若B A inf sup ,设B y A x A B ∈∈∃=-,,sup inf 0ε,使得0ε≥-x y 。
2.设A ,B 是非空数集,记B A S ⋃=,证明:(1){}B A S sup ,sup max sup =; (2){}B A S inf ,inf min inf =证(1)若A ,B 中有一集合无上界,不妨设A 无上界,则S 也是无上界数集,于是+∞=+∞=S A sup ,sup ,结论成立。
若A ,B 都是有上界数集,且A B sup sup ≤,现设法证明:sup sup A S =(ⅰ)S x ∈∀,无论A x ∈或B x ∈,有;sup A x ≤ (ⅱ)000,,sup ,x A x A εε∀∃∈->>于是,0S x ∈0sup .x A >同理可证(2). 3。
按N -ε定义证明352325lim 22=--+∞→n n n n 证 35232522---+n n n)23(3432-+=n n≤2234n n⋅ (n>4) n32=, 取⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡=4,132max εN ,当n>N 时,35232522---+n n n 〈ε。
注 扩大分式是采用扩大分子或缩小分母的方法.这里先限定n>4,扩大之后的分式nn G 32)(=仍是无穷小数列。
4.如何用ε-N 方法给出a a n n ≠∞→lim 的正面陈述?并验证|2n |和|n )1(-|是发散数列。
答 a a n n ≠∞→lim 的正面陈述:0ε∃〉0,+∈∀N N ,n '∃≥N ,使得|a a n -'|≥0ε数列{n a }发散⇔R a ∈∀,a a n n ≠∞→lim .(1)a n a n ∀=.2,0ε∃=41,+∈∀N N ,只要取⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+='N a n ,21max ,便可使||2a n -'≥||2a n -'≥||212a a -⎪⎭⎫ ⎝⎛+≥41,于是{2n }为发散数列。
高中数学试题分析及答案
高中数学试题分析及答案一、选择题1. 若函数f(x) = x^2 - 4x + 3的图像与x轴有两个交点,则这两个交点的横坐标之和为:A. 4B. 2C. 0D. -2答案:A解析:根据二次函数的图像性质,函数f(x) = x^2 - 4x + 3的图像与x轴的交点即为方程x^2 - 4x + 3 = 0的根。
根据韦达定理,方程的两个根之和等于系数-4的相反数,即4。
2. 已知向量a = (3, -1),向量b = (2, 4),求向量a与向量b的数量积:A. 10B. -2C. 8D. 2答案:B解析:向量a与向量b的数量积计算公式为a·b = |a||b|cosθ,其中θ为两向量之间的夹角。
根据数量积的定义,a·b = 3×2 + (-1)×4 = 6 - 4 = 2。
因此,正确答案为D。
二、填空题3. 已知等差数列{an}的首项a1 = 2,公差d = 3,求该数列的第5项a5。
答案:17解析:等差数列的通项公式为an = a1 + (n-1)d。
将已知条件代入公式,得到a5 = 2 + (5-1)×3 = 2 + 12 = 14。
4. 已知圆的方程为(x-2)^2 + (y+1)^2 = 9,求该圆的圆心坐标和半径。
答案:圆心坐标为(2, -1),半径为3。
解析:圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a, b)为圆心坐标,r为半径。
将已知圆的方程与标准方程对比,可得圆心坐标为(2, -1),半径为3。
三、解答题5. 已知函数f(x) = 2x^3 - 9x^2 + 12x - 3,求该函数的极值点。
解析:首先求出函数f(x)的导数f'(x) = 6x^2 - 18x + 12。
令f'(x) = 0,解得x1 = 1,x2 = 2。
然后计算二阶导数f''(x) = 12x - 18,判断极值点。
数学分析面试真题答案解析
数学分析面试真题答案解析是数学基础课程中非常重要的一门学科。
它对于培养学生的逻辑思维能力、分析问题的能力以及解决实际问题的能力有着重要的作用。
所以,在面试过程中,问题经常是考察学生数学思维能力的一个重要方面。
以下是一些常见的面试真题及其解析,希望能对读者有所帮助。
一、求极限1. 计算极限$\lim_{x\to 0}\frac{\sin x}{x}$。
解析:要计算这个极限,可以利用泰勒展开的思想。
根据泰勒级数展开,有$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} -\cdots$。
因此,原极限可以改写为$\lim_{x\to 0}\frac{x -\frac{x^3}{3!} + \frac{x^5}{5!} - \cdots}{x}$。
显然,当$x\to0$时,分子和分母同时趋于0,所以可以使用洛必达法则,即对分子和分母同时求导,有$\lim_{x\to 0}(1 - \frac{x^2}{2!} +\frac{x^4}{4!} - \cdots) = 1$。
2. 计算极限$\lim_{n\to\infty}\frac{n}{\sqrt[n]{n!}}$。
解析:我们可以利用中的极限性质,即$\lim_{n\to\infty}\sqrt[n]{n!} =\lim_{n\to\infty}\frac{n}{\sqrt[n]{n!}}$。
所以,原极限可以改写为$\lim_{n\to\infty}\sqrt[n]{n!}$。
根据Stirling公式,$\lim_{n\to\infty}\frac{\sqrt{2\pin}\left(\frac{n}{e}\right)^n}{n!} = 1$。
所以,原极限为1。
二、连续与可导1. 设$f(x)$在$x_0$处连续,且$\lim_{x\to x_0}f'(x)$存在,证明$f(x)$在$x_0$处可导。
解析:由题意可知,$\lim_{x\to x_0}f'(x) = L$存在。
数学分析—极限练习题及详细答案
一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。
A.sin ||xB.ln(1)x -C.11.【答案】D 。
2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.0 2.【答案】B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。
4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。
5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。
数学分析下考试题及答案
数学分析下考试题及答案一、单项选择题(每题5分,共20分)1. 函数f(x)=x^2在区间[0,1]上是否连续?A. 是B. 否答案:A2. 极限lim(x→0) (sin(x)/x)的值是多少?A. 0B. 1C. 2答案:B3. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4答案:B4. 函数f(x)=x^3在x=0处是否可导?A. 是B. 否答案:A二、填空题(每题5分,共20分)1. 函数f(x)=x^2的导数是_________。
答案:2x2. 函数f(x)=x^3的不定积分是_________。
答案:(1/4)x^4 + C3. 极限lim(x→∞) (1/x)的值是_________。
答案:04. 函数f(x)=sin(x)的原函数是_________。
答案:-cos(x) + C三、计算题(每题10分,共30分)1. 计算极限lim(x→2) [(x^2 - 4) / (x - 2)]。
答案:42. 求函数f(x)=e^x的不定积分。
答案:e^x + C3. 计算定积分∫(0 to 1) x^2 dx。
答案:1/3四、证明题(每题15分,共30分)1. 证明函数f(x)=x^3在x=0处连续。
答案:由于f(x)=x^3是一个多项式函数,而多项式函数在其定义域内处处连续,因此f(x)=x^3在x=0处连续。
2. 证明函数f(x)=x^2在区间[0,1]上是单调递增的。
答案:对于任意的0≤x1<x2≤1,我们有f(x1)-f(x2)=x1^2-x2^2=(x1-x2)(x1+x2)。
由于x1<x2,所以x1-x2<0,而x1+x2>0,因此f(x1)-f(x2)<0,即f(x1)<f(x2),这说明函数f(x)=x^2在区间[0,1]上是单调递增的。
本科数学分析试题及答案
本科数学分析试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在点x=a处可导,则以下哪个选项是正确的?A. f(x)在点x=a处连续B. f(x)在点x=a处不可导C. f(x)在点x=a处不连续D. f(x)在点x=a处的导数为0答案:A2. 设f(x)是定义在实数集上的函数,若f'(x)存在,则以下哪个选项是正确的?A. f(x)是单调函数B. f(x)在任意点处都有定义C. f(x)在任意点处都可导D. f(x)是周期函数答案:B3. 若函数f(x)在区间(a, b)内连续,则以下哪个选项是正确的?A. f(x)在区间(a, b)内一定有最大值和最小值B. f(x)在区间(a, b)内一定有唯一的最大值和最小值C. f(x)在区间(a, b)内不一定有最大值和最小值D. f(x)在区间(a, b)内的最大值和最小值一定在区间端点处取得答案:C4. 若函数f(x)在区间[a, b]上可积,则以下哪个选项是正确的?A. f(x)在区间[a, b]上一定连续B. f(x)在区间[a, b]上一定有界C. f(x)在区间[a, b]上一定单调D. f(x)在区间[a, b]上一定有界且连续答案:B二、填空题(每题5分,共20分)1. 设函数f(x)在区间(a, b)内连续,且f(a)=f(b),则根据罗尔定理,存在至少一个点c∈(a, b),使得f'(c)______。
答案:=02. 若函数f(x)在点x=a处可导,则f(x)在点x=a处的导数定义为______。
答案:lim (x→a) [f(x) - f(a)] / (x - a)3. 设f(x)在区间[a, b]上连续,则根据微积分基本定理,∫[a, b]f(x) dx = F(b) - F(a),其中F(x)是f(x)的一个原函数,即F'(x)______。
答案:=f(x)4. 若函数f(x)在区间[a, b]上可积,则∫[a, b] f(x) dx表示的是函数f(x)在区间[a, b]上与x轴所围成的区域的______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014 ---2015学年度第二学期《数学分析2》A 试卷一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()⎰dx x f 可表为()C dt t f xa+⎰( ).2.若()()x g x f ,为连续函数,则()()()[]()[]⎰⎰⎰⋅=dx x g dx x f dx x g x f ( ). 3. 若()⎰+∞adx x f 绝对收敛,()⎰+∞adx x g 条件收敛,则()()⎰+∞-adx x g x f ][必然条件收敛( ). 4. 若()⎰+∞1dx x f 收敛,则必有级数()∑∞=1n n f 收敛( )5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ).6. 若数项级数∑∞=1n n a 条件收敛,则一定可以经过适当的重排使其发散于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分)1.若()x f 在[]b a ,上可积,则下限函数()⎰ax dx x f 在[]b a ,上( )A.不连续B. 连续C.可微D.不能确定2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则( )A. ()x f 在[]b a ,上一定不可积;B. ()x f 在[]b a ,上一定可积,但是()()⎰⎰≠babadx x g dx x f ;C. ()x f 在[]b a ,上一定可积,并且()()⎰⎰=bab adx x g dx x f ;D. ()x f 在[]b a ,上的可积性不能确定.3.级数()∑∞=--+12111n n n nA.发散B.绝对收敛C.条件收敛D. 不确定4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑nu 一定收敛;B. 若1lim1<=+∞→ρnn n u u ,则级数∑n u 一定收敛;C. 若1,1<>∃+n n u uN n N ,时有当,则级数∑n u 一定收敛;D. 若1,1>>∃+n n u uN n N ,时有当,则级数∑n u 一定发散;5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的;C. ∑n n x a 的和函数在收敛域上各点存在各阶导数;D. ∑n n x a 在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题5分,共10分)1. ()()()n n n n n n n +++∞→Λ211lim2. ()⎰dx xx 2cos sin ln四. 判断敛散性(每小题5分,共15分) 1.dx xx x ⎰∞+++-021132.∑∞=1!n nnn 3. ()nnn nn21211+-∑∞=五. 判别在数集D 上的一致收敛性(每小题5分,共10分)1.()()+∞∞-===,,2,1,sin D n nnxx f n Λ2. (][)∞+⋃-∞-=∑,22,2D xn n六.已知一圆柱体的的半径为R ,经过圆柱下底圆直径线并保持与底圆面030 角向斜上方切割,求从圆柱体上切下的这块立体的体积。
(本题满10分)七. 将一等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表面距离为10米,已知三角形底边长为20米,高为10米,求该三角形铁板所受的静压力。
(本题满分10分)八. 证明:函数()∑=3cos nnxx f 在()∞+∞-,上连续,且有连续的导函数.(本题满分9分)2014 ---2015学年度第二学期《数学分析2》B 卷 • 答案学院 班级 学号(后两位) 姓名一、判断题(每小题3分,共21分,正确者括号内打对勾,否则打叉)1.✘2.✔3.✘4. ✔5. ✔6. ✔7. ✔ 二.单项选择题(每小题3分,共15分) 1. B ; 2.C ; 3.A ; 4.D; 5.B 三.求值与计算题(每小题5分,共10分)1.dx ex x x xnn ⎰+∞→310223sin lim解:由于⎰⎰≤+≤310310223sin 0dx x dx e x x x n xn-------------------------3分而03111limlim 131=+=+∞→∞→⎰n n n n n dx x---------------------------------4分故由数列极限的迫敛性得:0sin lim31223=+⎰∞→dx ex x x xnn-------------------------------------5分 2. 设()x x x f sin sin 2=,求()dx x f xx ⎰-1 解:令 t x 2sin = 得()dx x f xx ⎰-1=()()t d t f tt 2222sin sin sin 1sin ⎰-----------------2分=tdt t ttt t cos sin 2sin cos sin ⎰=⎰tdt t sin 2-----------------------------------4分=2cos 2sin t t t C -++=C ----------------5分四.判别敛散性(每小题5分,共10分)1.dx xx ⎰-121arctan解:()241arctan lim1arctan 1lim 012211π=+=---→-→xx xx x x x Θ-------3分且 121<=p ,∴由柯西判别法知, 瑕积分 dx xx ⎰-121arctan 收敛 -------------------------5分2.()∑∞=2ln ln 1n nn解:时当00,,ln lim n n N n n n >∈∃+∞=+∞→Θ有 2ln e n > -----------------------------2分从而 当0n n >()2ln 1ln 1nn n<-------------------------------4分由比较判别法 ()∑∞=2ln ln 1n nn 收敛----------------------------5分五.判别在所示区间上的一致收敛性(每小题5分,共15分)1. ()()∞+==+=,0,2,1,12D n n x x f n Λ解:极限函数为()()D x x x f x f n n ∈==∞→lim -----------------------2分又 ()()nx nx n x nx x f x f n 11/11222<++=-+=---------3分 ()()10sup n x Df x f x n∈∴<-≤从而0sup lim =-∴∞→f f n n故知 该函数列在D 上一致收敛. -------------------------5分2. ]1,1[,3sin 2-=∑D x nn解:因当 D x ∈ 时,()nn n n x x u ⎪⎭⎫⎝⎛≤=323sin 2--------------2分而 正项级数 ∑⎪⎭⎫⎝⎛n32收敛, -----------------------------4分由优级数判别法知,该函数列在D 上一致收敛.-------------5分 3. ()()∑+∞∞-=+-,,12D nx n解:易知,级数()∑-n1的部分和序列{}n S 一致有界,---2分 而 对()nx x V D x n +=∈∀21, 是单调的,又由于()()∞→→≤+=∈∀n nn x x V D x n 011,2,------------------4分 所以()⎭⎬⎫⎩⎨⎧+=n x x v n 21在D 上一致收敛于0,从而由狄利克雷判别法可知,该级数在D 上一致收敛。
------5分六. 设平面区域D 是由圆222=+y x ,抛物线2x y =及x 轴所围第一象限部分,求由D 绕y 轴旋转一周而形成的旋转体的体积(本题满分10分)解:解方程组⎩⎨⎧==+2222xy y x 得圆222=+y x 与抛物线2x y =在第一象限 的交点坐标为:()1,1, ---------------------------------------3分则所求旋转体得体积为:()⎰⎰--=1122ydy dy y V ππ -------------------------------7分=------------------ =76π ------------------------------------------------------10分 七.现有一直径与高均为10米的圆柱形铁桶(厚度忽略不计),内中盛满水,求从中将水抽出需要做多少功?(本题满分10分)解:以圆柱上顶面圆圆心为原点,竖直向下方向为x 轴正向建立直角坐标系 则分析可知做功微元为:dx x xdx dW νπνπ2552=⋅⋅= --------------------------------5分 故所求为:⎰=10215dx x W νπ-------------------------------------8分 =1250πν=12250π(千焦)-----------------------------------10分八.设()()Λ2,1=n x u n 是],[b a 上的单调函数,证明:若()∑a u n 与()∑b u n 都绝对收敛,则()∑x u n 在],[b a 上绝对且一致收敛. (本题满分9分) 证明:()()Λ2,1=n x u n 是],[b a 上的单调函数,所以有()()()b u a u x u n n n +≤ ------------------------------4分又由()∑a u n 与()∑b u n 都绝对收敛,所以()()[]∑+b u a u nn收敛,--------------------------------------7分由优级数判别法知:()∑x u n在],[b a 上绝对且一致收敛.--------------------------------2013 ---2014学年度第二学期《数学分析2》A 试卷一. 判断题(每小题2分,共16分)(正确者后面括号内打对勾,否则打叉)1.若)(x f 在[a,b]上可导,则)(x f 在[a,b]上可积. ( )2.若函数)(x f 在[a,b]上有无穷多个间断点,则)(x f 在[a,b]上必不可积。