数学分析习题及答案 (50)
数学分析试题及答案
数学分析试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^3-3x+1在x=1处的导数是()。
A. 1B. 2C. 3D. 4答案:B2. 极限lim(x→0) (sin x)/x的值是()。
A. 0B. 1C. -1D. 2答案:B3. 函数f(x)=x^2-4x+4的最小值是()。
A. 0B. 1C. 4D. 8答案:A4. 定积分∫(0,1) x^2 dx的值是()。
A. 1/3B. 1/2C. 2/3D. 1答案:B二、填空题(每题5分,共20分)1. 函数f(x)=x^3+2x^2-5x+6的导数是________。
答案:3x^2+4x-52. 函数f(x)=ln(x)的原函数是________。
答案:xln(x)-x3. 函数f(x)=e^x的不定积分是________。
答案:e^x+C4. 函数f(x)=x^2-6x+8在x=3处的值是________。
答案:-1三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。
然后检查二阶导数f''(x)=6x-12,发现f''(1)=-6<0,所以x=1是极大值点;f''(11/3)=2>0,所以x=11/3是极小值点。
2. 求极限lim(x→∞) (x^2+3x+2)/(x^3-4x+1)。
答案:分子和分母同时除以x^3,得到lim(x→∞)(1+3/x+2/x^2)/(1-4/x^2+1/x^3),当x趋向于无穷大时,极限为1。
3. 求定积分∫(0,2) (2x-1) dx。
答案:首先求不定积分∫(2x-1) dx = x^2 - x + C,然后计算定积分∫(0,2) (2x-1) dx = (2^2 - 2) - (0^2 - 0) = 4 - 2 = 2。
数学分析有答案的套题
七章 实数的完备性判断题:1. 1. 设11,1,2,2H n n n ⎧⎫⎛⎫==⎨⎬⎪+⎝⎭⎩⎭ 为开区间集,则H 是(0, 1 )的开复盖. 2. 2. 有限点集没有聚点.3. 3. 设S 为 闭区间 [],a b , 若,x S ∈则x 必为S 的聚点.4. 4. 若lim nn a →∞存在, 则点集{}n a 只有一个聚点.5. 5. 非空有界点集必有聚点.6. 6. 只有一个聚点的点集一定是有界点集.7. 7. 如果闭区间列{}[,]n n a b 满足条件 11[,][,],1,2,n n n n a b a b n ++⊃= , 则闭区间套定理成立. 8. 8. 若()f x 在[,]a b 上一致连续, 则()f x 在[,]a b 上连续. 9. 9. 闭区间上的连续函数一定有界.10. 10. 设()f x 为R 上连续的周期函数, 则()f x 在R 上有最大值与最小值.答案: √√√√×××√√√ 证明题1. 1. 若A 与B 是两个非空数集,且,,x A y B ∀∈∈有 x y ≤, 则sup inf A B ≤.2. 证明: 若函数()f x 在(,)a b 单调增加, 且(,)x a b ∀∈, 有()f x M ≤(其中M 是常数), 则 ,c M ∃≤ 使 lim ()x b f x c-→=.3. 证明: 若E 是非空有上界数集, 设 sup ,E a =且 a E ∉, 则 存在数列1,,n n n x E x x n N +∈<∈, 有 lim n n x a →∞=.4. 证明: 函数()f x 在开区间(,)a b 一致连续⇔函数()f x 在开区间(,)a b 连续, 且(0)f a +与(0)f b -都存在.5.设{}n x 为单调数列,证明: 若{}n x 存在聚点,则必是唯一的, 且为{}n x 的确界.6. 证明:sin ()xf x x =在()0,+∞上一致连续.7. 证明: {}n x 为有界数列的充要条件是{}n x 的任一子列都存在其收敛子列.8. 设()f x 在[],a b 上连续, 又有{}[],n x a b ⊂, 使 lim ()n n f x A →∞=. 证明: 存在[]0,x a b ∈, 使得 0()f x A =.答案1.证明: 设sup ,inf .A a B b == 用反证法. 假设 s u pi n f A B > 即 ,b a <有2a b b a +<<, 一方面, sup ,2a b a A +<= 则存在 00,;2a b x A x +∈<另一方面,inf ,2a b b B +=< 则00,2a by B y +∃∈<. 于是, 00,x A y B ∃∈∈有002a b y x +<<, 与已知条件矛盾, 即 sup inf A B ≤.2. 证明: 已知数集{}()(,)f x x a b ∈有上界, 则其存在上确界, 设{}sup ()(,)f x x a b c M ∈=≤由上确界的定义, 00,(,)x a b ε∀>∃∈, 使得 0(),c f x c ε-<≤00,:b xx b x b δδ∃=->∀-<<; 或 0:,x x x b ∀<<有 0()()c f x f x c ε-<≤≤ 或 ()f x c ε-<. 即 l i m ()x b f x c -→=.3. 证明: 已知 sup E a =, 由确界定义, 111,x E ε=∃∈, 有 11a x a ε-<<2121min ,0,2a x x E ε⎧⎫=->∃∈⎨⎬⎩⎭, 有 12x x < , 并且22a x a ε-<<3231min ,0,3a x x Eε⎧⎫=->∃∈⎨⎬⎩⎭, 有 23x x <, 并且33a x a ε-<<于是, 得到数列{}1,,,n n n n x x E x x n N +∈<∀∈. 有 lim n n x a →∞=.4. 证明: ⇒ 已知 ()f x 在(,)a b 一致连续,即12120,0,,(,):x x a b x x εδδ∀>∃>∀∈-<, 有 12()()f x f x ε-< 显然 ()f x 在(,)a b 连续, 且 120,0,,(,)x x a b εδ∀>∃>∀∈1122()a x a x x a x a δδδ<<+⎧-<⎨<<+⎩, 有 12()()f x f x ε-<.根据柯西收敛准则,函数()f x 在a 存在右极限(0).f a +同理可证函数()f x 在b 存在左极限(0)f b -.⇐已知(0)f a +与(0)f b -存在, 将函数()f x 在a 作右连续开拓, 在b 作左连续开拓, 于是函数()f x 在闭区间[],a b 连续, 从而一致连续, 当然在(,)a b 也一致连续. 5. 证明: 不妨设{}n x 递增.(1) 先证若{}n x 存在聚点必唯一. 假定,ξη都是{}n x 的聚点, 且ξη<. 取02ηξε-=, 由η是{}n x 聚点, 必存在0(,).n x U ηε∈又因{}n x 递增, 故n N ≥时恒有002n N x x ξηηεξε+≥>-==+于是, 在0(,)U ξε中至多含{}n x 的有限多项, 这与ξ是{}n x 的聚点相矛盾. 因此{}n x 的聚点存在时必唯一.(2) 再证{}n x 上确界存在且等于聚点ξ. ()a ξ为{}n x 上界. 如果某个N x ξ>, 则 n N ≥时恒有n x ξ>, 取00,N x εξ=-> 则在0(,)U x ξ内至多含{}n x 的有限多项, 这与ξ为{}n x 的聚点相矛盾.()b 对0,ε∀>由聚点定义, 必存在N x 使N x ξεξε-<<+. 由定义{}sup n x ξ=.6. 6. 证明: 令10,()sin (0,)x F x xx x =⎧⎪=⎨∈+∞⎪⎩由于 00sin lim ()lim 1(0)x x x F x F x ++→→===, 而 (0,)x ∈+∞时sin ()xF x x =, 所以 ()F x 在[)0,+∞上连续, 又因lim ()0x F x →+∞=存在, 所以 ()F x 在[)0,+∞上一致连续,从而在(0,)+∞上也一致连续, 即 ()f x 在(0,)+∞上一致连续. 7. 7. 证明: ⇒ 设{}n x 为有界数列, 则{}n x 的任一子列{}kn x 也有界, 由致密性定理知{}kn x 必存在其收敛子列{}k jn x .⇐ 设 {}n x 的任一子列都存在其收敛子列. 若{}n x 无界, 则对1M =, 必存在正整数1n 使得11n x >; 对2,M =存在正整数21,n n >使得22;;n x > 一般地,对M k =, 存在正整数1,k k n n ->使得k n x k >. 于是得到{}n x 的子列{}k n x , 它满足lim k n k x →∞=∞, 从而{}kn x 的任一子列{}k jn x 必须是无穷大量, 与充分性假定相矛盾.8. 8. 证: 因{}[],n x a b ⊂为有界数列, 故{}n x 必有收敛子列{}kn x ,设lim k n k x x →∞=,由于{}[],kn x a b ⊂,故 []0,x a b ∈. 一方面, 由于()f x 在0x 连续有0l i m ()(),x x f x f x →=再由归结原则有0lim ()lim ()()k n k x x f x f x f x →∞→==; 另一方面, 由lim ()n n f x A→∞= 及{}()kn f x 是{}()nf x 的子列有lim ()lim ()k n n k n f x f x A→∞→∞==因此 0().f x A =第八章 不定积分填空题1. ()()_________x ex dx ϕϕ'=⎰.2. 若函数()F x 与()G x 是同一个连续函数的原函数, 则()F x 与()G x 之间有关系式_______________.3. 若()f x '=且3(1)2f π= , 则 ()__________.f x = 4. 若()cos f x dx x C =-+⎰, 则()()___________.n f x =5.(ln )________.f x dx x '=⎰6. 若(sin ,cos )(sin ,cos )R x x R x x =--, 则作变换___________计算(sin ,cos )R x x dx ⎰.7.[1()]()__________n x x dx ϕϕ'+=⎰.()n N +∈8.3415(1)_________x x dx -=⎰9.若()(0)f x x x =>, 则 2()___________f x dx '=⎰.10. 过点(1,)4π斜率为211x +的曲线方程为___________.答案:1. ()x eC ϕ+. 2. ()()F x G x C =+ (C 为任意常数). 3. arcsin x π+. 4. sin()2n x π+. 5.(ln )f x C +. 6. tan t x =.7. 11[1()]1n x C n ϕ++++. 8. 4161(1)64x C --+. 9. 1ln 2x x C++10. arctan y x =判断题:1. 1. 有理函数的原函数是初等函数.2. 2. ()()df x dx f x dx =⎰3. 3. 若函数()f x 存在一个原函数,则它必有无限多个原函数.4. 4. 设()F x 是()f x 在区间I 上的原函数,则()F x 在区间I 上一定连续.5. 5. 函数()f x 的不定积分是它的一个原函数.6. 6. 21(1)x x x +-的有理函数分解式为: 22221(1)1(1)x A Bx C Dx Ex x xx x +++=++--- 7. 7.()()d d f x d f x =⎰8. 8. 若函数()f x 在区间I 上连续, 则它在区间I 上必存在原函数.9. 9. 存在一些函数, 采用不同的换元法, 可以得到完全不同的不定积分. 10. 10. 若()f x dx x C =+⎰, 则(1)f x dx x C -=+⎰答案: 1---10 √√√√××√√×√ 选择题:1.下列等式中( )是正确的.()().()()xx A f x dx f x Bf edx f e C ''==+⎰⎰221..(1)(1)2C f dx f C D xf x dx f x C ''=+-=--+⎰⎰2.若()f x 满足()sin 2,f x dx x C =+⎰则()(f x '= ) .4s i n 2.2c o s 2.4s i n 2.2A x B x C x Dx-- 3.若21()(0),f x x x '=>则()f x =( ).2.l n A x CB x CxCC ++++4.设函数()f x 在[,]a b 上的某个原函数为零,则在[,]a b 上 ( ) A .()f x 的原函数恒等于零. B. ()f x 的不定积分等于零.C. ()f x 不恒等于零但其导数恒等于零.D. ()f x 恒等于零. 5. 下列凑微分正确的是 ( )221.2.(ln 1)1x x A xe dx de B dx d x x ==++21.a r c t a n .c o s 2s i n 21C x d x d D x d xd x x ==+6. 22()()xf x f x dx '=⎰( )2222221111.().().().()2244A f x CB f x CC f x CD f x C++++.7. 若()f x dx x C =+⎰, 则 (1)f x dx -=⎰ ( )21.1......(1)2A x C B x C C x C D x C -+-++-+ 8. 函数cos (0)ax a ≠的一个原函数是 ( )111.s i n .s i n .s i n .s i n A x B a xC a xD a xa a a-9. 若()21xf x dx x C =+++⎰, 则()f x =( )2111.2..2ln 2 1..21.21ln 22x x x x A x x B C D ++++++10. 下列分部积分中对u 和v '选择正确的有 ( )22.cos ,cos ,.(1)ln ,1,ln A x xdx u x v x B x xdx u x v x''==+=+=⎰⎰.,,.a r c s i n ,1,a r cx xC xe dx u x v eD xdx u v x --''====⎰⎰答案:1—10 DCCDADCBBC计算题:1.ln(x dx+⎰2. x ⎰3. dx4.44cos 2sin cos xdx x x +⎰5.ln tan cos sin x dxx x ⎰6. 7.221(1)(1)x dxx x ++-⎰. 8. 11sin cos dxx x ++⎰9. 2(1)xx xe dx e +⎰.10.2答案:1. 1. 原式=ln(x x dx+-⎰21ln(2x x =-ln(x x C =+.2. 2.原式21122x =221124x =21arctan 2x C=3. =(sin cos )2cos 2sin 2222x x x xdx C=+=-++⎰4. 4422222cos 2cos 2sin cos (sin cos )2sin cos x xdx dx x xx x x x =++-⎰⎰ 22cos 2sin 2(2)2sin 22sin 2x d xd x x x ==--⎰⎰C=+5. ln tan ln tan tan ln tan (ln tan )cos sin tan xxdx d x xd x x xx ==⎰⎰⎰2(ln tan )2x C =+.6. 2sin 2(2cos 1)cos 21cos 2cos 2x t tt dt dtt t =-=+=⎰⎰tan 2t t C =-+arcsin x C=+7. 2221111[]2(1)2(1)(1)(1)(1)x dx dx x x x x x +=+--++-+⎰⎰111ln 1ln 1221x x Cx =-+++++211ln 121x Cx =-+++.8.tan222121sin cos 211111x u dxdu x xu u uu u =⋅++-+++++=⎰⎰ln 1ln 1tan 12du xu C C u =++=+++⎰.9.21(1)111x x x x x xe x dx dx xd e e e e ⎛⎫=-=-+ ⎪++++⎝⎭⎰⎰⎰ln(1)111x x x x xx e dx x e C e e e ---=-+=--+++++⎰.10.sin 22221cos 2sin 2x a uua udu a du =-==⎰⎰⎰22sin 2()arcsin 222a u a x u C C a =-+=+.第九章 定积分一、 一、 选择题(每题2分) 1、若()⎰=+122dx k x ,则=k ( )(A )1 (B )1- (C )0 (D )212、若()x f 是奇函数,且在[]a a ,-上可积,则下列等式成立的有( )(A )()()⎰⎰-=aa adxx f dx x f 02 (B )()()⎰⎰--=aaadxx f dx x f 02(C )()⎰-=a adx x f 0(D )()()⎰-=a aa f dx x f 23、设()x f 在[]b a ,上连续,则下面式子中成立的有( )(A )()()x f dt t f dx d x a =⎰ (B )()()x f dx x f dx d ba=⎰(C )()()⎰+=C x f dx x f dx d(D )()()x f dx x f ='⎰4、设()x f 为连续函数,()()⎰-=104dxx f x x f ,则()⎰10dx x f =( )(A )1- (B )0 (C )1 (D )25、函数()x f 在[]b a ,上连续是()⎰ba dx x f 存在的( )(A ) (A ) 必要条件 (B )充要条件 (C )充分条件 (D )无关条件 6、()x f 在[]b a ,上连续,()()⎰=xa dt t f x F ,则正确的是( )(A )()x F 是()x f 在[]b a ,上的一个原函数; (B )()x f 是()x F 在[]b a ,上的一个原函数; (C )()x F 是()x f 在[]b a ,上唯一的原函数; (D )()x f 是()x F 在[]b a ,上唯一的原函数 7、⎰e edxx 1ln =( )(A )0 (B )2e-2 (C )e 22-(D )e e 222-+8、已知()()21210-=⎰x f dt t f x,且()10=f ,则()=x f ( ) (A )2xe (B )x e 21 (C )x e 2 (D )x e 2219、下列关系中正确的有( )(A )dxe dx e x x ⎰⎰≤1102(B )dxe dx e x x ⎰⎰≥112(C )dxe dx e x x⎰⎰=112(D )以上都不正确10、⎰=ba xdx dx d arcsin ( )(A )a b arcsin arcsin -(B )211x -(C )x arcsin (D )011、设410I xdxπ=⎰,4230,sin I I xdxπ==⎰,则( );(A )123I I I >> (B )213I I I >> (C )312I I I >>(D )132I I I >>12、下列积分中可直接使用牛顿—莱布尼兹公式计算其值的是( );(A )1201x dx x +⎰ (B)10⎰ (C)e (D )210x e dx ⎰13、设()f x 为连续函数,则积分()ba I f x t dx=+⎰( )(A )与,,t a b 有关 (B )与,t x 有关 (C )与,,x b t 有关 (D )仅与x 有关 14、()2x af t dt '=⎰( )(A )()()1222f x f a -⎡⎤⎣⎦ (B )()()222f x f a -⎡⎤⎣⎦ (C )()()22f x f a -⎡⎤⎣⎦ (D )()()12f x f a -⎡⎤⎣⎦15、下列积分中,使用换元积分正确的是( )(A )1arcsin 1sin dt t x t π=+⎰令 (B)10sin x t =⎰令 (C)10tan x t=⎰令 (D )12111dx x xt -=+⎰令 答案:ACACC ACCBD BAAAC 二、 二、 填空题(每题2分)1、已知⎰=Φxdtt x 02)sin()(,则=Φ')(x .;2、比较大小:⎰20πxdx⎰2s i n πx d x.3、⎰-++1142251sin dx x x xx = ;4、函数()x f 在区间[]1,2-上连续且平均值为4,则()⎰-12dxx f = ; 5、设()x f 为连续函数,则()()[]=⋅+-+⎰-dx x x x f x f 322 ;6、522cos xdx ππ-=⎰;7、()12ln 1xd t dt dx +=⎰ ;8、(211x dx -+=⎰;9、设()f x 为连续函数,且()()12,f x x f t dt =+⎰则()f x = ;10、设0a ≠,若()0120ax x dx -=⎰,则a = ;11、已知()2302xf t dt x =⎰,则()1f x dx =⎰ ;12、=⎰ ;答案:1、()2sin x 2、≥>or 3、0 4、12 5、564 6、1615 7、()2ln 1x -+ 8、2 9、1x - 10、34 11、3 12、4π三、计算题 (每题5分)1、dx x x ⎰-22101解:令t x sin =,则tdt dx cos =,tx 2010π→→ dx x x ⎰-22101=⎰2022cos sin πtdt t=()⎰⎰-=202024cos 1812sin 41ππdt t tdt=16024sin 4181ππ=⎪⎭⎫ ⎝⎛-t t2、⎰2sin πxdxx 20cos xd xπ=-⎰=⎰+-20cos 02cos ππxdxx x=102sin =πx 3、dxx x x ⎰+-20232=()()⎰⎰⎰-+-=-2121111dxx x dx x x dx x x=12325201523223252523⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-x x x x =()22154+4、⎰-2121dx x x解:令tdt t dx t x tan sec ,sec ==,3021π→→t x⎰-2121dx x x =⎰302tan πtdt =()d t t ⎰-3021sec π=()3303tan ππ-=-t t5、()dx xx 21124⎰--+=()⎰--+-+11222442dxx x x x=()d xx x ⎰-+-112442=⎰-=1184dx6、⎰⋅202cos πxdx e x=⎰202sin πx d e x=⎰⋅-⋅20222sin 02sin ππdx e x x e x x=⎰⎰-+=+2022022cos 402cos 2cos 2πππππxdxe x e e x d e e x x x=2-πe则 ⎰⋅202c o s πx d x e x =()251-πe7、⎰-⋅ππxdxx sin 4解: x x sin 4⋅为奇函数,且积分区间[]ππ,-关于原点对称sin 4=⋅∴⎰-ππxdx x8、⎰+402cos 1πdx x x=⎰⎰=4402tan 21cos 2ππx xd dx x x=⎰-40tan 2104tan 21ππxdx x x =04cos ln 218ππx + =2ln 41822ln 218-=+ππ9、()⎰-+11221x dx = ()⎰+102212x dx解:令tdt dx t x 2sec ,tan ==,4010π→→t x ()⎰-+11221x dx =⎰402cos 2πtdt=()⎰+402cos 1πdt t =042sin 21π⎪⎭⎫ ⎝⎛+t t =214+π10、⎰+301arcsindx x x解:令x x t +=1arcsin,t x 2tan =,则tdt t dx 2sec tan 2=,3030π→→t x ⎰+301arcsin dx x x =⎰302tan πt td =⎰-3022tan 03tan ππtdt t t=()d t t ⎰--3021sec ππ=()03tan ππt t -- 334)33(-=--=πππ11、⎰+133221x x dx解:令t x 1=,则dt t dx 21-=,13133→→tx⎰+133221x x dx =⎰+⋅-132221111t t dt t=⎰+3121t tdt=221312-=+t12、dxx ee⎰1ln =dxx e⎰-11)ln (+dxx e ⎰1ln=()()1ln 11ln e x x x e x x x -+-- … =e 22-13、⎰--1145x xdx解:令x t 45-=,则()2541t x -=,tdtdx 21-=,1311→→-t x ⎰--1145x x d x =()dt t ⎰-312581 =13315813⎪⎭⎫ ⎝⎛-t t =61 14、0xdx=20arctan 1xdx x x +=1ln 1ln 2323x -+=- 15、20π⎰20cos 2x dx π20c o s c o s 22x x dx dx πππ⎫=-⎪⎭⎰⎰ =2sin sin 022x x πππ⎫-=⎪⎭五、证明题(每题5分)1、 1、 证明:若f 在[],a b 上可积,F 在[],a b 上连续,且除有限个点外有()()F x f x '=,则有()()()baf x dx F b F a =-⎰证:设除[]()()12,,,n x x x a b F x f x '∈= 外,即()()[]{}12,,\,,n F x f x x a b x x x '=∀∈ 可设 0121n n x a x x x b x +=≤<<<≤= 在[]1,i i x x +上应用N-L 公式知:()()()()()()()110i innbx i i ax i i f x dx f x dx F x F x F b F a ++====-=-∑∑⎰⎰2、 2、 证明:若T T '是增加若干个分点后所得到的分割,则iiiiT Tx xωω'''∆≤∆∑∑证:由性质2知 ()()()(),S T S T s T s T ''≤≥。
微积分(数学分析)证明题及参考答案.doc
统计专业和数学专业数学分析练习题1. 证明极限yx yx y x -+→)0,0(),(lim不存在。
2. 用极限定义证明: .0lim 22)0,0(),(=++→yx yx y x3. 证明极限22222)0,0(),()(lim y x y x y x y x -+→不存在.4. 设),(),(x f y x F =)(x f 在 0x 连续,证明:对,0R y ∈∀),(y x F 在),(00y x 连续.5. 证明:如果),(y x f 在 ),(000y x P 连续,且0),(00>y x f ,则对任意),(00y x f r <,),;(0δP ⋃∃对一切),;(),(0δP y x P ⋃∈有.),(r y x f >6. 证明:22),(y x y x f +=在点)0,0(处连续且偏导数不存在.7. 证明;2222221sin 0(,)00y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在)0,0(点连续,且0)0,0(,0)0,0(==y x f f 不存在.8. 证明222222221()sin 0(,)00x y x y f x y x y x y ⎧++≠⎪=+⎨⎪+=⎩在 点)0,0(处连续且偏导数存在.9. 设 函数),(y x f 在),(00y x 的某邻域内存在偏导数,若),(y x 属于该邻域,则存在)(010x x x -+=θξ和 )(020y y y -+=θη,,10,1021<<<<θθ 使得00000(,)(,)(,)()(,)()x y f x y f x y f y x x f x y y ξη-=-+-。
10. 证明:2222220(,)00xy x y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩,在点)0,0(不可微.11. 证明: 对任意常数,ρϕ, 球面2222x y z ρ++=与锥面2222tan x y z ϕ+=⋅是正交的. 12. 证明: 以λ为参数的曲线族221() x y a b a b λλ+=>-- 是相互正交的(当相交时).13. 证明: 由方程()z y x z ϕ=+所确定的隐函数(,)z z x y =满足222()z z z x y y ϕ⎡⎤∂∂∂=⎢⎥∂∂∂⎣⎦, 其中ϕ二阶可导. 14. 设()20()ln 12cos F a a x a dx π=-+⎰, 证明20,10,()ln , 1. 若且 若a a F a a a π⎧<≠⎪=⎨>⎪⎩15. 证明含参量反常积分⎰+∞sin dy yxy 在[)+∞,δ上一致收敛()0>其中δ,但在()0,+∞内不一致收敛。
数学分析试卷及答案6套
数学分析试卷及答案6套第一套试卷一、选择题(共20题,每题4分,共80分)1. 若函数f(x) = 3x^2 + 2x - 1,求f(-1)的值是多少?A. -4B. 4C. 0D. 12. 函数f(x) = ln(x^2 + 1)在区间(-∞, 0)上的最小值是多少?A. ln(1)B. ln(0)C. ln(-1)D. 不存在最小值3. 已知函数f(x)在区间[0, 5]上连续,且f(0) = 2, f(5) = 1,证明在该区间上存在一个点c,使得f(c) = 3.(请写出证明过程)4. 求不等式2x - 5 < 3x + 2的解集。
A. x < -7B. x > -7C. x > -3D. x < -35. 设函数f(x)在区间[a, b]上连续,且f(a) = f(b),证明在该区间上至少存在两个不同的点c和d,使得f(c) = f(d).(请写出证明过程)..................第一套答案一、选择题1. B2. A3. (证明过程略)4. A5. (证明过程略)二、填空题(共5题,每题4分,共20分)1. 若e^x = 2,则x = ln(2);2. 设a, b为实数,若a^2 + 2ab + b^2 = 0,则a = -b;3. lim(x→∞) (x^2 - 2x - 3)/(3x + 1) = 1;4. 若函数f(x) = x^2 + 3x - 2,则f(-1) = -6;5. 若f(x) = √(2x + 1),则f'(x) = 1/√(2x + 1)。
三、解答题(共3题,每题20分,共60分)1. 设函数f(x) = x^3 - 2x + 1在区间[-2, 2]上的一个驻点为c,请求该驻点c的值以及f(c)的极值。
(请写出解题过程)2. 求函数f(x) = x^3 - 3x + 1的所有零点。
(请写出解题过程)3. 若函数f(x) = 3x^4 + 4x^3 - 12x^2 + 4在区间[0, 3]上的导函数f'(x)恰有一个零点c,并且f(c) = 2,求函数f(x)在该区间上的最大值。
数学分析考研试题及答案
数学分析考研试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是有界函数?A. f(x) = sin(x)B. f(x) = e^xC. f(x) = x^2D. f(x) = 1/x2. 函数f(x) = x^3在区间(-∞, +∞)上是:A. 单调递增B. 单调递减C. 有增有减D. 常数函数3. 如果函数f(x)在点x=a处连续,那么:A. f(a)存在B. f(a) = 0C. lim(x->a) f(x) = f(a)D. lim(x->a) f(x) 不存在4. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 2/35. 函数序列fn(x) = x^n在[0, 1]上一致收敛的n的取值范围是:A. n = 1B. n > 1C. n < 1D. n = 26. 级数∑(1/n^2)是:A. 收敛的B. 发散的C. 条件收敛的D. 无界序列7. 如果函数f(x)在区间[a, b]上可积,那么:A. f(x)在[a, b]上连续B. f(x)在[a, b]上一定有界C. f(x)在[a, b]上单调递增D. f(x)在[a, b]上无界8. 函数f(x) = |x|在x=0处:A. 连续B. 可导C. 不连续D. 不可导9. 微分方程dy/dx + y = 0的通解是:A. y = Ce^(-x)B. y = Ce^xC. y = Csin(x)D. y = Ccos(x)10. 函数f(x) = e^x在x=0处的泰勒展开式是:A. f(x) = 1 + x + ...B. f(x) = x + ...C. f(x) = 1 + x^2 + ...D. f(x) = 1 + x^3 + ...二、填空题(每题4分,共20分)11. 极限lim(x->0) (sin(x)/x) 的值是 _______。
12. 函数f(x) = x^3 - 6x^2 + 11x - 6的拐点是 _______。
数学分析习题及答案 (50)
习 题 12.5 偏导数在几何中的应用1. 求下列曲线在指定点处的切线与法平面方程:(1)⎪⎩⎪⎨⎧+==.1,2x x z x y 在⎪⎭⎫⎝⎛21,1,1点; (2)⎪⎪⎩⎪⎪⎨⎧=-=-=.2sin 4,cos 1,sin tz t y t t x 在2π=t 的点;(3)⎩⎨⎧=++=++.6,0222z y x z y x 在)1,2,1(-点;(4)⎩⎨⎧=+=+.,222222R z x R y x 在⎪⎭⎫⎝⎛2,2,2R R R 点。
解 (1)曲线的切向量函数为21(1,2,)(1)x x +,在⎪⎭⎫⎝⎛21,1,1点的切向量为1(1,2,)4。
于是曲线在⎪⎭⎫⎝⎛21,1,1点的切线方程为)12(41)1(2-=-=-z y x ,法平面方程为252168=++z y x 。
(2)曲线的切向量函数为(1cos ,sin ,2cos )2tt t -,在2π=t 对应点的切向量为。
于是曲线在2π=t 对应点的切线方程为222112-=-=+-z y x π, 法平面方程为(1)(1)2x y z π-++-+-=402x y π++--=。
(3)曲线的切向量函数为2(,,)y z z x x y ---,在)1,2,1(-点的切向量为(6,0,6)-。
于是曲线在)1,2,1(-点的切线方程为⎩⎨⎧-==+22y z x , 法平面方程为z x =。
(4)曲线的切向量函数为4(,,)yz xz xy --,在⎪⎭⎫⎝⎛2,2,2R R R 点的切向量为22(1,1,1)R --。
于是曲线在⎪⎭⎫⎝⎛2,2,2R R R点的切线方程为222R z R y R x +-=+-=-,法平面方程为022=+--R z y x 。
2.在曲线32,,t z t y t x ===上求一点,使曲线在这一点的切线与平面102=++z y x 平行。
解 曲线的切向量为2(1,2,3)t t ,平面的法向量为(1,2,1),由题设,22(1,2,3)(1,2,1)1430t t t t ⋅=++=,由此解出1t =-或13-,于是)1,1,1(-- 和 )271,91,31(--为满足题目要求的点。
(完整word版)数学分析复习题及答案(word文档良心出品)
数学分析复习题及答案一.单项选择题1. 已知, 则=()A. B. C. D.2. 设, 则()A. B. C. D.3. ()A. B. C. D.4. 下列函数在内单调增加的是()A. B. C. D.二、填空题1. 设函数2.3.在处连续, 则三、判断题1. 若函数在区间上连续, 则在上一致连续。
()2. 实轴上的任一有界无限点集至少有一个聚点。
()3.设为定义在上的单调有界函数, 则右极限存在。
()四、名词解释1. 用的语言叙述函数极限的定义2. 用的语言叙述数列极限的定义五、计算题1. 根据第四题第1小题证明2. 根据第四题第2小题证明3. 设, 求证存在, 并求其值。
4.证明:在上一致连续, 但在上不一致连续。
5. 证明: 若存在, 则6. 证明: 若函数在连续, 则与也在连续, 问: 若在或在上连续, 那么在上是否必连续。
一、1.D 2.C 3.B 4.C二、1. 2. 3.三、1.× 2.√ 3.√四、1.函数极限定义: 设函数在点的某个空心邻域内有定义, 为定数。
, , 当时, , 则。
2.数列极限定义:设为数列, 为定数, , , 当时, 有, 则称数列收敛于。
五、1.证明:, , 当时, ;得证。
2.证明:令, 则, 此时, ,, , 当时,3.证明:⑴,⑵)1)(1(1111111----+++-=+-+=-n n n n n n n n n n x x x x x x x x x x 而, 由数学归纳法可知, 单调增加。
综合⑴, ⑵可知存在,设, 则由解得=A 215+(负数舍去)4.证明: 先证在上一致连续。
, 取, 则当且有时, 有 []δ•''+'≤''-'''+'=''-'x x x x x x x f x f ))(()()(εε<+⋅++≤)(2)1(2b a b a故2)(x x f =在[]b a ,上一致连续。
数学分析第五版练习册答案
数学分析第五版练习册答案在数学分析这门课程中,练习题是帮助学生巩固理论知识和提高解题技巧的重要手段。
以下是数学分析第五版练习册的部分答案,供学生参考。
第一章:实数和序列1. 证明实数的完备性。
答案:实数的完备性可以通过柯西序列来证明。
一个实数序列\( \{a_n\} \)被称为柯西序列,如果对于任意的正数\( \epsilon > 0 \),存在正整数\( N \),使得对于所有的\( m, n > N \),都有\( |a_m - a_n| < \epsilon \)。
实数的完备性意味着每一个柯西序列都收敛到一个实数。
2. 判断序列\( \{a_n\} \)的收敛性。
答案:序列\( \{a_n\} \)收敛当且仅当存在实数\( L \),使得对于任意的正数\( \epsilon > 0 \),存在正整数\( N \),使得对于所有的\( n > N \),都有\( |a_n - L| < \epsilon \)。
第二章:连续函数1. 证明函数\( f(x) = x^2 \)在实数线上是连续的。
答案:对于任意的\( x \)和\( \delta > 0 \),我们有\( |f(x+\delta) - f(x)| = |(x+\delta)^2 - x^2| =|\delta(2x+\delta)| \)。
当\( |\delta| < 1 \)时,\( |\delta(2x+\delta)| < 2|x||\delta| + |\delta|^2 \)。
由于\( 2|x||\delta| < 2|x| \)和\( |\delta|^2 < \epsilon \),我们可以选择\( \delta < \min(1, \frac{\epsilon}{2(|x|+1)}) \),使得\( |f(x+\delta) - f(x)| < \epsilon \)。
华东师大数学分析答案完整版
华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。
2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。
3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。
4. 函数的导数表示函数在某一点的瞬时变化率。
5. 微分表示函数在某一点的微小变化量。
6. 函数的积分表示函数在某个区间上的累积变化量。
7. 变限积分的导数是原函数的导数。
8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。
9. 函数的泰勒级数表示函数在某一点的幂级数展开。
10. 傅里叶级数表示周期函数的三角级数展开。
二、选择题1. 下列函数中,连续的是(A)。
A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。
A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。
A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。
A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。
A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。
解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。
2. 求不定积分∫(e^x) dx。
解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。
数学分析习题册答案
习 题 1-11.计算下列极限(1)lim x ax a a x x a→--, 0;a >解:原式lim[]x a a ax a a a x a x a x a→--=---=()|()|x a x a x a a x ==''- =1ln aa a a a a --⋅=(ln 1)a a a -(2)sin sin limsin()x a x ax a →--;解:原式sin sin lim x a x ax a→-=-(sin )'cos x a x a ===(3)2lim 2), 0;n n a →∞->解:原式2n =20[()']x x a ==2ln a = (4)1lim [(1)1]pn n n→∞+-,0;p >解:原式111(1)1lim ()|p p p x n n nx =→∞+-'===11p x px p -== (5)10100(1tan )(1sin )lim;sin x x x x→+-- 解:原式101000(1tan )1(1sin )1lim lim tan sin x x x x x x→→+---=--=990010(1)|10(1)|20t t t t ==+++=(6)1x →,,m n 为正整数;解:原式11lim1x x →=- 1111()'()'mx nx x x ===n m=2.设()f x 在0x 处二阶可导,计算00020()2()()lim h f x h f x f x h h→+-+-. 解:原式000()()lim 2h f x h f x h h →''+--=00000()()()()lim 2h f x h f x f x f x h h→''''+-+--=000000()()()()lim lim 22h h f x h f x f x h f x h h →→''''+---=+-00011()()()22f x f x f x ''''''=+=3.设0a >,()0f a >,()f a '存在,计算1ln ln ()lim[]()x a x a f x f a -→.解:1ln ln ()lim[]x a x a f x -→ln ()ln ()ln ln lim f x f a x ax a e --→=ln ()ln ()limln ln x a f x f a x a e→--=ln ()ln ()lim ln ln x af x f a x a x a x a e →----='()()f a a f a e=习 题 1-21.求下列极限 (1)lim x →+∞;解:原式lim 1)(1)]0x x x →+∞=+--= ,其中ξ在1x -与1x +之间(2)40cos(sin )cos lim sin x x xx→-;解:原式=40sin (sin )limx x x x ξ→--=30sin sin lim()()()x x x x x ξξξ→--⋅=16,其中ξ在x 与sin x 之间(3)lim x →+∞解:原式116611lim [(1)(1)]x x x x →+∞=+--56111lim (1)[(1)(1)]6x x x xξ-→+∞=⋅+⋅+--5611lim (1)33x ξ-→+∞=+= ,其中ξ在11x -与11x +之间 (4) 211lim (arctan arctan);1n n n n →+∞-+ 解:原式22111lim ()11n n n n ξ→+∞=-++ 1=,其中其中ξ在11n +与1n 之间 2.设()f x 在a 处可导,()0f a >,计算11()lim ()nn n n f a f a →∞⎡⎤+⎢⎥-⎣⎦.解:原式1111(ln ()ln ())lim (ln ()ln ())lim n n f a f a n f a f a n nn nn e e→∞+--+--→∞==11ln ()ln ()ln ()ln ()[lim lim ]11n n f a f a f a f a n n n ne→∞→∞+---+-=()()2()()()()f a f a f a f a f a f a ee'''+==习 题 1-31.求下列极限(1)0(1)1lim (1)1x x x λμ→+-+-,0;μ≠解:原式0limx x x λλμμ→==(2)0x →;解:02ln cos cos 2cos lim12x x x nxI x →-⋅⋅⋅=20ln cos ln cos 2ln cos 2lim x x x nx x→++⋅⋅⋅+=- 20cos 1cos 21cos 12lim x x x nx x →-+-+⋅⋅⋅+-=-22220(2)()lim x x x nx x →++⋅⋅⋅+=21ni i ==∑ (3)011lim)1xx x e →--(; 解:原式01lim (1)x x x e xx e →--=-201lim x x e x x →--=01lim 2x x e x→-=01lim 22x x x →== (4)112lim [(1)]xxx x x x →+∞+-;解:原式11ln(1)ln 2lim ()x x xxx x ee+→+∞=-21lim (ln(1)ln )x x x x x →+∞=+- 1lim ln(1)x x x→+∞=+1lim 1x xx→+∞== 2. 求下列极限 (1)2221cos ln cos limsin x x x x xe e x-→----;解:原式222201122lim12x x x x x →+==- (2)0ln()2sin lim sin(2tan 2)sin(tan 2)tan x x x e xx x x→++--;解:原式0ln(11)2sin lim sin(2tan 2)sin(tan 2)tan x x x e x x x x →++-+=--012sin limsin(2tan 2)sin(tan 2)tan x x x e xx x x→+-+=-- 02lim442x x x xx x x→++==--习 题 1-41.求下列极限(1)21lim (1sin )n n n n→∞-;解:原式2331111lim [1(())]3!n n n o n n n →∞=--+11lim((1))3!6n o →∞=+=(2)求33601lim sin x x e x x→--;解:原式3636336600()112lim lim 2x x x xx o x x e x x x →→++---=== (3)21lim[ln(1)]x x x x→∞-+;解:原式222111lim[(())]2x x x o x x x →∞=--+12=(4)21lim (1)x xx e x-→+∞+;解:原式211[ln(1)]2lim x x xx ee +--→∞==此题已换3.设()f x 在0x =处可导,(0)0f ≠,(0)0f '≠.若()(2)(0)af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.解:因为 ()(0)(0)()f h f f h o h '=++,(2)(0)2(0)()f h f f h o h '=++ 所以00()(2)2(0)(1)(0)(2)(0)()0limlim h h af h bf h f a b f a b f o h h h→→'+-+-+++==从而 10a b +-= 20a b += 解得:2,1a b ==- 3.设()f x 在0x 处二阶可导,用泰勒公式求0002()2()()limh f x h f x f x h h →+-+-解:原式222200001000220''()''()()'()()2()()'()()2!2!limh f x f x f x f x h h o h f x f x f x h h o h h→+++-+-++=22201220''()()()lim h f x h o h o h h→++=0''()f x = 4. 设()f x 在0x =处可导,且20sin ()lim() 2.x x f x x x →+=求(0),(0)f f '和01()lim x f x x→+. 解 因为 2200sin ()sin ()2lim()lim x x x f x x xf x x x x→→+=+= []22()(0)(0)()limx x o x x f f x o x x→'++++=2220(1(0))(0)()lim x f x f x o x x →'+++=所以 1(0)0,(0)2f f '+==,即(0)1,(0)2f f '=-= 所以 01()l i mx f x x→+01(0)(0)()l i m x f f x o x x →'+++=02()l i m 2x x o x x →+==习 题 1-51. 计算下列极限(1) limn →∞解:原式limn →∞=2n ==(2)2212lim (1)nn n a a na a na+→∞+++⋅⋅⋅+> 解:原式21lim (1)nn n n na na n a ++→∞=--2lim (1)n n na n a →∞=--21a a=-2. 设lim n n a a →∞=,求 (1) 1222lim nn a a na n →∞+++ ;解:原式22lim (1)n n na n n →∞=--lim 212n n na a n →∞==- (2) 12lim 111n nna a a →∞+++ ,0,1,2,,.i a i n ≠=解:由于1211111lim lim n n n na a a n a a →∞→∞+++== , 所以12lim 111n nna a a a →∞=+++3.设2lim()0n n n x x -→∞-=,求lim n n x n →∞和1lim n n n x x n-→∞-.解:因为2lim()0n n n x x -→∞-=,所以222lim()0n n n x x -→∞-=且2121lim()0n n n x x +-→∞-=从而有stolz 定理2222limlim 022n n n n n x x xn -→∞→∞-==,且212121lim lim 0212n n n n n x x x n ++-→∞→∞-==+ 所以lim 0n n x n →∞=,111lim lim lim 01nn n n n n n x x x x n n n n n --→∞→∞→∞--=-=-4.设110x q <<,其中01q <≤,并且1(1)n n n x x qx +=-, 证明:1lim n n nx q→∞=.证明:因110x q<<,所以211211(1)111(1)()24qx qx x x qx q q q+-=-≤=<,所以210x q <<,用数学归纳法易证,10n x q <<。
《数学分析》期末复习用 各章习题+参考答案
f f f (x) = x + 2 ; 2x + 3
f f f f (x) = 2x + 3 。 3x + 5
9. f (x) = f (x) + f (−x) + f (x) − f (−x) , f (x) + f (−x) 是偶函数, f (x) − f (−x) 是奇
2
2
2
2
函数.
⎧− 4x + 3
2⋅4⋅6⋅
⋅ (2n) 。 (提示:应用不等式 2k > (2k − 1)(2k + 1) )。
9. 求下列数列的极限:
⑴
lim
n→∞
3n2 + 4n − 1 n2 +1 ;
⑵
n3 + 2n2 − 3n + 1
lim
n→∞
2n3 − n + 3 ;
2
⑶
3n + n3
lim
n→∞
3n+1
+ (n + 1)3
k∈Z ⎝
2
2⎠
(4) y = x −1 ,定义域: (− ∞,−1) ∪ [1,+∞),值域: [0,1)∪ (1,+∞).
x +1
5.(1)定义域: ∪ (2kπ ,(2k +1)π ),值域: (− ∞,0]; k∈Z
(2)定义域:
∪
k∈Z
⎢⎣⎡2kπ
−
π 2
,2kπ
+
π 2
⎤ ⎥⎦
,值域: [0,1];
1
(3)定义域:
[−
4,1] ,值域:
⎢⎣⎡0,
《数学分析》试题(含答案)
考试科目: 数学分析(I)一 、求极限、导数或高阶导数(每小题5分,共35分)1.n lim →∞⎛⎫++……解:n n n 11(1)(1)lim lim n n n n →∞++⎛⎫≤+≤……,故原式1=2.2.()222n x x x n x x x x 2x 2lim =lim =lim =lim =022ln 22ln 22n →∞→∞→∞→∞. 3.()42220011-cos 12lim =lim =sin ln 1+2x x xx x x x x x x →→•.4. 11limarcsin()1ln x x x x→--解:111limarcsin()arcsin 1ln 26x x x x π→-==-. 5.设(0)xxy x x =>,求y '.1(ln (ln 1))xx x x y x x x x x -'=++.6. 设函数)(x y y =是由参数方程⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 确定,求2t dydxπ=和t dy dxπ=。
21t dy dxπ==.7. 设函数f 二阶可导,1()1x y f x -=+,22d y dx解:221()(1)1dy x f dx x x -'=++, 22344141()()(1)1(1)1d y x x f f dx x x x x --'''=-+++++.二、解答题(每小题8分,共32分)1. 已知001a <<,)n+1a n 0≥,求证n a 的极限存在并求其极限.解: 易知{}n a 单调增有上界1,故由单调收敛定理及n+1n n lim a =→∞知n n lima =1.→∞2. 讨论函数()211sin x x f x e x-=的间断点及其类型. 解: 0x =为可去间断点,=1x ±为第二类间断点.3. 求函数()(4)f x x =-的极值点与极值。
数学分析试题库--计算题、解答题--答案
数学分析题库(1-22章)四.计算题、解答题求下列极限解:1.∞=+=--+=--∞→∞→∞→)2(lim 2)2)(2(lim 24lim2n n n n n n n n n 2. 111lim(1)1223(1)n n n →∞++++⋅⋅+111111lim(1)122311lim(1)11n n n n n →∞→∞=+-+-++-+=-=+3.111cos lim cos 1lim00===-→→x e x e x x x x 4.这是型,而 )1()1ln()1()1(]111)1ln(1[)1(][])1[(2121)1ln(11x x x x x x x x x x x ex xxx x x+++-+=+⋅++-+='='++故 原极限=12(1)ln(1)lim(1)(1)xx x x x x x x →-++++ 2001ln(1)1lim2311lim 261x x x e x x e x x →→-+-=⋅+-=⋅⋅=∞++53)1(lim )1()1)(1(lim 11lim 212131=++=-++-=--→→→n n n n n n n n n n n 6 211lim(1)nn n n →∞++22(1)121lim(1)1n n n n n n n n +⋅+→∞=++因1)1(lim 2=+∞→nn n n , ∞=+∞→1lim 2n n n 故原极限=e e =1. 7. 用洛必达法则333sin 3cos 2lim 3cos sin 21lim66=--=-→→xx x x x x ππ8. 00111lim()lim 1(1)x x x x x e xx e x e →→---=--0011lim lim 122x x x x x x x x e e xe e xe e →→-===+-+ 9. xx xx x sin tan lim--→;解法1:200tan sec 1lim lim sin 1cos x x x x x x x x →→--=--2201cos lim cos 1cos x x x x →-=-()201cos limcos 2 x x x →+==解法2:2002030tan sec 1lim lim sin 1cos 2sec tan lim sin 2limcos 2x x x x x x x x x xx xxx→→→→--=--===10. 10lim(sin 2cos )xx x x →+解 因00sin 2cos 12cos 2sin limlim 21x x x x x xx →→+--==, (3分)故原式1sin 2cos 1sin 2cos 10lim(1sin 2cos 1)x x x x xx x x +-+-→=++-=2e求下列函数的导数sin 11.cos 12.ln(ln )13.14.sin .x xy e x y x y xy x ====求的各阶导数解 11x e x e y xxsin cos -=' 12 xx x x y ln 11ln 1=⋅=' 13)sin ln (cos )(sin ln sin xxx x x ey x xx +='=' 14 . cos sin()2y x x π'==+()sin sin(2)2cos sin(3)2sin()2n y x x y x x y x n πππ''=-=+⋅''=-=+⋅=+ 15 x e x e y xx2cos 22sin +=' 16 )1sin (ln cos 1xx x x y +-⋅+='17 )tan )ln(cos (cos )(cos ][sin )ln(cos sin x x x x e y x x x +='='18 ),2,1(),2)1(sin()( =⋅++=n n x yn π.19.1tan 22113sec ln 3x x x x x++-; 20.求下列函数的高阶微分:设x e x v x x u ==)(,ln )(,求)(),(33vud uv d解 因为xx x x x e x x xx e x e x e x e x v u v u C v u C v u dx uv d )ln 332(ln 13132)(2323231333++-=⋅+⋅+-⋅+='''+'''+'''+'''=所以 3233333)ln 332()()(dx x xx x e dx dx uv d uv d x ++-== )ln 332()(ln 13)(132)(ln )(23233333x x xx e e x e x e x e x e x dx d v u dx d x xx x x x -++=-⋅+⋅⋅+--⋅+=⋅=------所以 3233)ln 332()(dx x x xx e vud x-++=- 21. ;)(arctan 23x y = 解:332362arctan (arctan )6 arctan 1y x x x x x''==+22. ;xx y x =解: 令1xy x =,1ln ln y x x =两边对两边对x 求导有11ln 1y x y '=+,()ln x x x x x x x '=+ ln ln x y x x =两边对x 求导有(ln )x y x x y''= 1121 ()ln (ln ) (ln )ln ((ln )ln ) (ln ln )xxx x x x x x x x x x x x x x x x x x x x y x x x x x x x x x x x ---''=+=++'=++=++23. 求由参量方程⎪⎩⎪⎨⎧==;sin ,cos t e y t e x tt所确定的函数的二阶导数:22dx y d 解法1:⎪⎩⎪⎨⎧==;sin ,cos t e y t e x tt由含参量方程的求导法则有cos sin cos sin cos sin cos sin t t t t dy e t e t t t dx e t e t t t++==-- 求22d y dx 即求参量方程cos sin ,cos sin cos ;t dy t tdx t t x e t +⎧=⎪-⎨⎪=⎩的导数 222223(cos sin )(cos sin )()2(cos sin )(cos sin )(cos sin )t t t t t t dyd d y t t dx dx dxe t t e t t -++-===-- 解法2:⎪⎩⎪⎨⎧==;sin ,cos t e y t e x tt由含参量方程的求导法则有cos sin cos sin tan()cos sin cos sin 4t t t t dy e t e t t t t dx e t e t t t π++===+-- 求22d y dx 即求参量方程tan(),4cos ;t dyt dx x e t π⎧=+⎪⎨⎪=⎩的导数2232()sec ()4sec ()4cos()4t t dy d t d ydx t dxdx t πππ-+===++24.设3xy x e =, 试求(6)y.解 基本初等函数导数公式,有32333()()3,()6,()6,()=0, 4,5,6,k x x x x x x k ''''''==== ()(e )e ,1,2,,6x k x k ==,应用莱布尼兹公式(6n =)得(6)32e 63e 156e 206e x x x x y x x x =+⋅+⋅+⋅32(1890120)e x x x x =+++.25.试求由摆线方程(sin ),(1cos )x a t t y a t =-⎧⎨=-⎩所确定的函数()y f x =的二阶导数.解d ((1cos ))sin cot ,d ((sin ))1cos 2y a t t t x a t t t '-==='--22421cot csc d 1222csc .d ((sin ))(1cos )42t t y t x a t t a t a '⎛⎫- ⎪⎝⎭===-'-- 26 .求2()ln(1)f x x =+到6x 项的带佩亚诺型余项的麦克劳林公式.解 因为233ln(1)()23x x x x o x +=-++,所以2()ln(1)f x x =+到6x 项的带佩亚诺型余项的麦克劳林公式为46226ln(1)()23x x x x o x +=-++.28.解 (1))0(0sinlim )(lim 0f x x x f mx x ===→→,故对任意正整数m ,f 在0=x 连续. (2)⎩⎨⎧≤>==-=--='-→→→1101sin lim 01sinlim 0)0()(lim)0(1000m m x x x x x x f x f f m x m x x 不存在,故当1>m 时,f 在0=x 可导. (3)先计算f 的导函数.00≠∀x ,000000000000)1sin 1(sin 1sin)(lim1sin 1sin 1sin 1sin lim 1sin 1sinlim)(000x x x x x x x x x x x x x x x x x x x x x x x x x f mmm x x mm m m x x m m x x --+-=--+-=--='→→→200102000010000000100211cos1sin 11cos 1sin 2sin 2cos2lim 1sin )(lim 00x x x mx x x x x mx x x xx xx xx x x x x x x x x m m m m mx x m m m x x ---→---→-=⋅-=--+++++=⎩⎨⎧≤>=-=-='-→--→→220)1cos 1sin (lim )1cos 1sin(lim )(lim 20210m m x x mx x x x x mx x f m x m m x x 不存在由(2)知,0)0(='f ,于是当2>m 时,有)0(0)(lim 0f x f x '=='→,所以当2>m 时,f '在0=x 连续.29.解 因为23)(,2)(x x g x x f ='=',故当0=x 时,0)0(,0)0(='='g f ,不满足柯西中值定理的条件,所以在区间[-1, 1]上不能用柯西中值定理. 30.证明 (1)对任何0≠x ,有)0(01sin)(24f xx x f =≥=,故0=x 是极小值点. (2)当0≠x 时,有)1cos 1sin 2(1sin 21cos 1sin 21sin 4)(2223xx x x x x x x x x x f -=-=',作数列 221ππ+=n x n ,421ππ+=n y n ,则0→n x ,0→n y .即在0=x 的任何右邻域)0(0+U 内,既有数列}{n x 中的点,也有数列}{n y 中的点.并且0)(>'n x f ,0)(<'n y f ,所以在)0(0+U 内f '的符号是变化的,从而f 不满足极值的第一充分条件.又因为001sin lim)0(240=-='→x x x f x ,00)1cos 1sin 2(1sin 2lim )0(20=--=''→xx x x x x f x ,所以用极值的第二充分条件也不能确定f 的极值.31.答:能推出f 在),(b a 内连续.证明如下:),(0b a x ∈∀,取},m i n {2100x b a x --=ε,于是],[0εε-+∈b a x ,由题设,f 在],[εε-+b a 上连续,从而在0x 连续.由0x 的任意性知,f 在),(b a 内连续.32.试求函数32|2912|y x x x =-+在[1,3]-上的最值和极值. 解32222|2912||(2912)|(2912),10,(2912),03,y x x x x x x x x x x x x x x =-+=-+⎧--+-≤≤⎪=⎨-+<≤⎪⎩在闭区间[1,3]-上连续, 故必存在最大最小值.2261812,618126(1)(2),10,6(1)(2),03,x x y x x x x x x x x ⎧-+-⎪'=⎨-+⎪⎩----≤<⎧=⎨--<≤⎩ 令0y '=,得稳定点为1,2x =. 又因(0)12,f -'=-(0)12,f +'= 故y 在0x =处不可导. 列所以0x =和2x =为极小值点, 极小值分别为(0)0f =和(2)4f =,1x =为极大值点, 极大值为(1)5f =.又在端点处有(1)23f -=,(3)9f =, 所以函数在0x =处取最小值0,在1x =-处取最大值23.33.求函数155345++-=x x x y 在[1,2]-上的最大最小值: 解:令()y f x =43222252015 5(43) 5(1)(3)y x x x x x x x x x '=-+=-+=-- 令0y '=解得函数在[1,2]-的稳定点为120,1x x ==, 而(1)10,(0)1,(1)2,(2)7f f f f -=-===-,所以函数在[1,2]-的最大值和最小值分别为 max min (1)2,(1)10f f =-=-. 34. 确定函数25363223+--=x x x y 的凸性区间与拐点: 解:令()y f x =26636,y x x '=--126,y x ''=-1260,y x ''=-=解得12x =, 当1(,)2x ∈-∞时,0y ''<,从而区间1(,)2-∞为函数的凹区间,当1(,)2x ∈+∞时,0y ''>,从而区间1(,)2+∞为函数的凸区间.并且1113()0,()222f f ''==,所以113(,)22为曲线的拐点.35.设11(1,2,)nn a n n ⎛⎫=+= ⎪⎝⎭,则{}n a 是有理数列. 点集{}1,2,n a n =非空有界,但在有理数集内无上确界.数列{}n a 递增有上界,但在有理数集内无极限.36.设11(1,2,)nn a n n ⎛⎫=+= ⎪⎝⎭,则{}n a 是有理数列. 点集{}1,2,n a n =有界无限,但在有理数集内无不存在聚点.数列{}n a 满足柯西准则,但在有理数集内不存在极限.37.不能从H 中选出有限个开区间覆盖10,2⎛⎫ ⎪⎝⎭.因为H 中任意有限个开区间,设其中左端点最小的为12N +,则当103x N <<+时,这有限个开区间不能覆盖x .38.5232326129.6116ln 1326ln 1.x dx x x dx x x x x x x x C C ⎛⎫=-+-⎪++⎝⎭⎛⎫=-+-++ ⎪⎝⎭=+⎛⎛⎜⎜⎠⎠39.令sin ,2x a t t π=<,则()()22222cos sin cos 1cos 2211sin 2arcsin .222a a td a t a tdt t dta x t t C a C a ===+⎛⎫⎛=++=++ ⎪ ⎝⎭⎝⎰⎰⎰⎰40.()222222211131.arctan arctan arctan 1arctan 22211111arctan arctan .22221x x x xdx xd x x d x x x x x dx x x C x ⎛⎫++==-+ ⎪⎝⎭+++=-=-++⎛⎜⎠⎛⎜⎠⎰⎰41.()()23222211432.ln 111121ln 1.x dx dx x dxx x x x x x C +⎛⎫=+=++ ⎪++-+⎝⎭-+=+++⎛⎛⎛⎜⎜⎜⎜⎠⎠⎠42.令t =则有()()2222218,11t t x dx dt t t +-==--, ()()2222242211111ln2arctan 2arctan.1t dt dt t t t t tt C C t ⎛⎫==- ⎪--⎝⎭-++=-+=-⎛⎛⎜⎜⎠⎠43. 令tan 2xt =,则有22212cos ,11t x dx dt t t-==++, 22(2)111arctan 2arctan 2tan .53cos 2222141(2)d t dx dt x t C C x t t ⎡⎤===+=+⎢⎥-++⎣⎦⎛⎛⎛⎜⎜⎜⎠⎠⎠. 44.()()11111111ln ln ln ln ln 2(1)ee eeeex dx xdx xdx x x x xx x e -=-+=--+-=-⎰⎰⎰.45.()()111111202222t t t t te dt tde tee dt e e ==-=-=⎰⎰⎰.46.12111000011arcsin arcsin 12222d x xdx x x πππ-=-=+=+=-⎛⎛⎜⎜⎠⎠⎰.47.22222111111lim lim 1221nn n i J n n n n n i n →∞→∞=⎛⎫=+++=⋅ ⎪++⎝⎭⎛⎫+ ⎪⎝⎭∑.其中和式是函数21()1f x x=+在[0,1]上的一个积分和,所以11200arctan 41dx J x x π===+⎛⎜⎠. 48.()()()()().xx xaaaF x f t x t dt x f t dt tf t dt =-=-⎰⎰⎰.于是()()()()(),()()x xaaF x f t dt xf x xf x f t dt F x f x '''=+-==⎰⎰.49.以平面00()x x x a =<截椭球面,得一椭圆2222220022111y z x x b c a a +=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.所以截面积函数为221,[,]x bc x a a a π⎛⎫-∈- ⎪⎝⎭.于是椭球面的体积22413aa x V bc dx abc a ππ-⎛⎫=-= ⎪⎝⎭⎛⎜⎠.50.化椭圆为参数方程: cos ,sin ,[0,2]x a t y b t t π==∈.于是椭圆所围的面积为()2220sin cos sin A b ta t dt ab tdt ab πππ'===⎰⎰.51.(1cos ),sin ,02x a t y a t t π''=-=≤≤,于是所求摆线的弧长为22202sin 82t s a dta πππ====⎛⎜⎠⎰⎰.52.根据旋转曲面的侧面积公式2(baS f x π=⎰可得所求旋转曲面的面积为)02sin 2ln1S πππ⎤==⎦⎰.53.因为2222001111limlim lim 2222AAx xx A A A A xe dx xe dx e e +∞----→+∞→+∞→+∞⎛⎫⎛⎫==-=-= ⎪ ⎪⎝⎭⎝⎭⎰⎰.于是无穷积分2x xedx +∞-⎰收敛,其值为12.54.因为22211111lim lim 1(1)(1)AAA A dx dx x dx x x x x x x +∞→+∞→+∞-⎛⎫==- ⎪+++⎝⎭⎛⎛⎛⎜⎜⎜⎠⎠⎠ ()111lim ln(1)ln lim ln 1ln 2ln 11ln 2.AA A x x A A x A →+∞→+∞⎛⎫⎛⎫=+--=+--+-=- ⎪ ⎪⎝⎭⎝⎭于是无穷积分21(1)dxdx x x +∞+⎰收敛,其值为1ln2-.55.因为1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦,从而级数11(1)(2)n n n n ∞=++∑的部分和为1111111111()(1)(2)2(1)(1)(2)22(1)(2)4nn k k n k k k k k k k n n ==⎡⎤⎡⎤=-=-→→∞⎢⎥⎢⎥+++++++⎣⎦⎣⎦∑∑.于是该级数收敛,其和为14. 56.因为222111cos2sin 12limlim 112n n n n n n→∞→∞-==,且级数211n n ∞=∑收敛,所以级数111cos n n ∞=⎛⎫- ⎪⎝⎭∑收敛.57.因为1lim 1212n n n n →∞==<+,由根式判别法知级数121nn n n ∞=⎛⎫ ⎪+⎝⎭∑收敛.58.因为()21sinlim21nn nn→∞-=,且级数11n n ∞=∑发散,故原级数不绝对收敛.但{}2sin n 单调递减,且2limsin 0n n →∞=,由莱布尼茨判别法知级数()121sin n n n ∞=-∑条件收敛. 59. 因为1111112sin sin cos cos cos cos 22222n nk k x kx k x k x x n x ==⎛⎫⎛⎫⎛⎫⎛⎫=--+=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑,当(0,2)x π∈时,sin 02x≠,于是.所以级数1sin n nx ∞=∑的部分和数列111cos cos 221sin 2sin sin 22nn k x n x S kx x x =⎛⎫-+ ⎪⎝⎭==≤∑当(0,2)x π∈时有界,从而由狄利克雷判别法知级数1sin n nxn ∞=∑收敛;同法可证级数1cos 2n nxn ∞=∑在(0,)x π∈上收敛. 又因为2sin sin 11cos 21cos 2222nx nx nx nx n n n n n-≥=⋅=-,级数112n n∞=∑发散,1cos 2n nx n ∞=∑收敛,于是级数11cos 222n nx n n ∞=⎛⎫- ⎪⎝⎭∑发散,由比较判别法知级数1sin n nx n ∞=∑发散.所以级数1sin n nxn ∞=∑在(0,2)x π∈条件收敛. 60. 判断函数项级数∑++-1)() 1(n nn nn x 在区间] 1 , 0 [上的一致收敛性. 解 记nn n n n x x v n x u ⎪⎭⎫⎝⎛+=-=1)( , ) 1()(. 则有ⅰ> 级数∑)(x u n 收敛;ⅱ> 对每个∈x ] 1 , 0 [, )(x v n ↗;ⅲ> e n x x v nn ≤⎪⎭⎫⎝⎛+=1|)(| 对 ∀∈x ] 1 , 0 [和n ∀成立. 由Abel 判别法, ∑在区间] 1 , 0 [上一致收敛.61. )(x f n =221xn nx+, ∈x ] 1 , 0 [. 讨论函数列{)(x f n }的一致收敛性. 解 ∞→n lim )(x f n = 0, ∈x ] 1 , 0 [. |)(x f n ― 0|=)(x f n . 可求得10max ≤≤x )(x f n =,0 21) 1 (→/=n f n ) (∞→n . ⇒ 函数列{)(x f n }在区间] 1 , 0 [上非一致收敛.62. 函数列2212,0,211()22,,210, 1.n n x x n f x n n x x n n x n ⎧≤≤⎪⎪⎪=-<≤⎨⎪⎪<≤⎪⎩,2,1=n在]1,0[上是否一致收敛?解:由于(0)0n f =,故0)0(lim )0(==∞→n n f f .当10≤<x 时,只要xn 1>,就有0)(=x f n ,故在]1,0(上有0)(lim )(==∞→x f x f n n .于是函数列(8)在]1,0[上的极限函数0)(=x f ,又由于∞→==-∈n nf x f x f n n x )21()()(sup ]1,0[ )(∞→n , 所以函数列(8)在[0,1]上不一致收敛. 63. )(x f n 2222x n xen -=在R 内是否一致收敛?解 显然有)(x f n →0, |)()(|x f x f n -= )(x f n 在点n x =n21处取得极大值022121→/=⎪⎭⎫⎝⎛-ne n f n ,) (∞→n . 由系2 , )}({x f n 不一致收敛. 64. 函数列⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<=≤<-≤≤=. 11 , 0), , 2 , 1 ( , 121 ,22,210 , 2)(22x n n n x n x n n n x x n x f n在] 1 , 0 [上是否一致收敛?解 10≤<x 时, 只要1->x n , 就有)(x f n =0. 因此, 在] 1 , 0 (上有)(x f =∞→n lim )(x f n =0. 0)0(=n f , ⇒ )0(f =∞→n lim )0(n f =0.于是, 在] 1 , 0 [上有)(x f =∞→n lim )(x f n =0. 但由于021|)()(|max ]1,0[→/=⎪⎭⎫⎝⎛=-∈n n f x f x f n n x , ) (∞→n ,因此 , 该函数列在] 1 , 0 [上不一致收敛. 65. 求幂级数++++74533234333231x x x x 的收敛域 . 解 ++++74533234333231x x x x ∑∞=++=02131n n n x n x 是缺项幂级数 .∞→n lim, 31||||1⇒=+nn a a 3=R . 收敛区间为) 3 , 3 (-. 3±=x 时, 通项0→/. 因此 , 该幂级数的收敛域为) 3 , 3 (-.66. 计算积分⎰-=12dx e I x , 精确到0001.0.解 =-2x e∑∞=-02,!) 1(n nnn x ) , (∞+∞-∈x . 因此,⎰⎰∑=⎪⎪⎭⎫ ⎝⎛-=∞=-11002!) 1(2dx n x dx en n n x ∑⎰∞==-0102!) 1(n n n dx n x ∑∞=+-0!)12(1) 1(n nn n .上式最后是Leibniz 型级数 , 其余和的绝对值不超过余和首项的绝对值 . 为使10001!)12(1<+n n ,可取7≥n .故从第0项到第6项这前7 项之和达到要求的精度.于是⎰-=12dx e I x 1111111352769241112013720≈-+-+-+⋅⋅⋅⋅⋅ 7468.000011.000076.000463.002381.010000.033333.01=+-+-+-=. 67. 把函数)(x f =)5ln(x +展开成)2(-x 的幂级数.解+-+-+-=+-n x x x x x n n 132) 1 (32)1ln(∑∞=--=11) 1 (n n n n x , ] 1 , 1 (-∈x .而7ln 721ln )27ln()5ln(+⎪⎭⎫⎝⎛-+=-+=+x x x =∑∞=-+--117ln 7)2()1(n n nn nx , ] 9 , 5(-∈x .68. 求幂级数∑∞=+0!1n nx n n 的和函数. 解法一 收敛域为) , (∞+∞-,设和函数为)(x S , 则有⎰⎰∑⎰∑∞=∞==+=⎪⎭⎫ ⎝⎛+=xxn x nn n dt t n n dt t n n dt t S 00000)1(!1!1)(∑∞=+=01!n x n xe n x . 因此, ∑∞=+0!1n n x n n =)(x S =x x x e x xe dt t S )1()()(0+='='⎪⎭⎫ ⎝⎛⎰, ∈x ) , (∞+∞-. 解法二 ∑∞=+0!1n nx n n =∑∞=+0!n n n nx ∑∞==0!n nn x ∑∞=+-1)!1(n x ne n x = ∑∞=+=+=+=0)1(!n x x x x ne x e xe e n x x , ∈x ) , (∞+∞-.69. 展开函数xe x xf )1()(+=.解 =+=xxxe e x f )(∑∞=+0!n nn x ∑∞=+=01!n n n x ∑∑∞=∞=-+01)!1(!n n nn n x n x =+1∑∞=1!n n n x ∑∑∞=∞=⎪⎪⎭⎫ ⎝⎛-++=++11)!1(1!11)!1(n n nn x n n n x ∑∞==++=1!11n nx n n ∑∞=∞+<+0 || ,!1n nx x n n . 70. 在指定区间内把下列函数展开成傅里叶级数,)(x x f =(i ),ππ<<-x (ii ).20π<<x解 (1)(i )函数f 及其周期延拓后的图象所示. 显然f 是按段光滑的,故由收敛定理知它可以展开成傅里叶级数. 由于011()0a f x dx xdx ππππππ--===⎰⎰.当1≥n 时,有211()cos cos 11sin |sin 1cos |0n a f x nxdx x nxdxx nx nxdx n n nx x ππππππππππππππ-----===-==⎰⎰⎰ 11()sin sin 11cos |cos 2,2,n b f x nxdx x nxdxx nx nxdx n n n n n nππππππππππππ----===+⎧-⎪⎪=⎨⎪⎪⎩⎰⎰⎰当为偶数时,当为奇数时.所以在区间),(ππ-上,sin )1(2)(11nnxx f n n ∑∞=+-= (ii )函数f 及其周期延拓后的图象所示. 显然f 是按段光滑的,故由收敛定理知它可以展开成傅里叶级数. 由于20012a xdx πππ==⎰.当1≥n 时2022001cos 11sin |sin 0n a x nxdxx nx nxdxn n ππππππ==-=⎰⎰,2022001sin 11cos |cos 2n b x nxdxx nx nxdxn n πππππππ==-+=-⎰⎰.所以在区间)2,0(π上1sin ()2n nx f x n π∞==-∑. 71. 设)(x f 是以π2为周期的分段连续函数, 又设)(x f 是奇函数且满足)()(x f x f -=π试求)(x f 的Fourier 系数⎰-=πππnxdx x f b n 2sin )(12的值, ,2,1=n . 解 由)(x f 是奇函数,故nx x f 2sin )(是偶函数,再由)()(x f x f -=π,故有()b f x nx x n 2022=⎰ππsin d ()=-⎰220πππf x nx xsin d . 作变换π-=x t ,则()()()b f t n t tn 20221=--⎰πππsin d ()=-⎰220ππf t nt tsin d=-b n 2 .所以,02=n b ,.,2,1 =n72. 设)(x f 以π2为周期,在区间]2,0[π内,()f x x x x =≤<=⎧⎨⎪⎩⎪20202πππ,,,,试求)(x f 的Fourier 级数展开式。
数学分析竞赛试题及答案
数学分析竞赛试题及答案试题一:极限计算计算下列极限:\[ \lim_{x \to 0} \frac{\sin x}{x} \]试题二:级数收敛性判断判断下列级数是否收敛:\[ \sum_{n=1}^{\infty} \frac{1}{n^2} \]试题三:函数连续性与可导性若函数 \(f(x) = x^3 - 3x^2 + 2x\),判断其在 \(x=1\) 处的连续性与可导性。
试题四:中值定理应用若函数 \(f(x)\) 在闭区间 \([a, b]\) 上连续,在开区间 \((a, b)\) 内可导,且 \(f(a) = f(b)\),证明在 \((a, b)\) 内至少存在一点 \(c\),使得 \(f'(c) = 0\)。
试题五:积分计算计算下列定积分:\[ \int_{0}^{1} x^2 dx \]答案:试题一:根据极限的定义,我们知道当 \(x\) 趋近于 0 时,\(\sin x\) 与 \(x\) 是等价无穷小,所以极限为 1。
试题二:根据级数的比较判别法,由于 \(\frac{1}{n^2}\) 与\(\frac{1}{n(n+1)}\) 比较,后者的级数是收敛的,因此原级数也收敛。
试题三:函数 \(f(x) = x^3 - 3x^2 + 2x\) 在 \(x=1\) 处的导数为\(f'(x) = 3x^2 - 6x + 2\),代入 \(x=1\) 可得 \(f'(1) = -1\)。
由于 \(f(x)\) 在 \(x=1\) 处的左导数和右导数都存在且相等,所以\(f(x)\) 在 \(x=1\) 处连续且可导。
试题四:根据罗尔定理,由于 \(f(x)\) 在闭区间 \([a, b]\) 上连续,在开区间 \((a, b)\) 内可导,且 \(f(a) = f(b)\),所以必然存在至少一点 \(c \in (a, b)\) 使得 \(f'(c) = 0\)。
数学分析(上)_习题集(含答案)
《数学分析(上)》课程习题集一、单选题1. 设)(x f 在D 内有界,并且0)(>x f ,则( )(A )0)(inf >x f (B ){}0)(inf ≥x f (C ){}0)(inf =x f(D )A 、B 、C 都不对2. 函数][)(x x f =在97.3-的值为( )(A )3 (B )4 (C )3-(D )4-3. 函数1sin )1()(--=x x xx x f ,则0=x 是)(x f 的( )(A )连续点 (B )可去间断点(C )跃度非0的第一类间断点 (D )第二类间断点4. 函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x xx x f 在0=x 处的导数为( ) (A )1-(B )0 (C )1 (D )不存在5. 当x ∆充分小,0)('≠x f 时,函数的改变量y ∆与微分y d 的关系是( )(A )y y d =∆(B )y y d <∆(C )y y d >∆(D )y y d ≈∆6. 与x y 2=相同的函数有( )(A )x y 210lg = (B )x y 2lg 10= (C ))sin(arcsin 2x y =(D )xy 211=(E )2)2(x y =7. 设数列}{n x 单调有界,则其极限( )(A )是上确界(B )是下确界(C )可能是上确界也可能是下确界 (D )不是上、下确界8. 当0→x 时,下列变量为等价无穷小量的是( )(A ))1ln(x +与x ; (B )x cos 1-与2x ; (C )x+11与x -1 ; (D )11-+x 与x9. 下面哪个极限值为0( )(A )x x x 1sin lim ∞→ (B )x x x sin lim ∞→ (C )x x x 1sinlim0→ (D )x x x sin lim 0→ 10. 函数)(x f 连续( )(A )必可导(B )是)(x f 可导的充分条件(C )是)(x f 可导的必要条件 (D )是)(x f 可导的充要条件11. 函数)1ln(2x x y ++=是( )(A )偶函数 (B )奇函数 (C )非奇非偶函数 (D )奇、偶函数12. 给数列}{n x ,若在),(εε+-a a 内有无穷多个数列的点,(其中ε为一取定的正数),则( )(A )数列}{n x 必有极限,但不一定等于a (B )数列}{n x 极限存在且一定等于a (C )数列}{n x 的极限不一定存在 (D )数列}{n x 的极限一定不存在13. 设⎩⎨⎧≥+<=0,0,)(x x a x e x f x ,要使)(x f 在0=x 处连续,则a =( )(A )2 (B )1 (C )0 (D )1-14. 设)(x f 是连续函数,)(x F 是)(x f 的原函数,则下列结论正确的是( )(A )当)(x f 是奇函数时,)(x F 必是偶函数 (B )当)(x f 是偶函数时,)(x F 必是奇函数 (C )当)(x f 是周期函数时,)(x F 必是周期函数 (D )当)(x f 是单调增函数时,)(x F 必是单调增函数15. 设⎰-=xdt t x f cos 102sin )(,65)(65x x x g +=,则当0→x 时)(x f 是)(x g 的( )(A )低阶无穷小(B )高阶无穷小(C )等价无穷小 (D )同阶但非等价无穷小16. 设点a 是)(x f 的连续点,是)(x g 的第一类间断点,则点a 是函数)()(x g x f +的( )(A )连续点 (B )可能是连续点,亦可能是间断点(C )第一类间断点 (D )可能是第一类间断点,亦可能是第二类间断点17. 下列函数相同的是( )(A )xxx f =)(与1)(=x g (B )x x f lg 2)(=与2lg )(x x g =(C )x x f 2)(π=与)arccos (arcsin )(x x x x g +=(D )x x f =)(与2)(x x g = (E )11)(24+-=x x x f 与1)(2-=x x g18. 设⎰-=xa dt t f ax x x F )()(2,其中)(x f 为连续函数,则=→)(lim x F a x ( ) (A )2a (B ))(2a f a(C )0 (D )不存在19. 若)(x f 的导函数是x sin ,则)(x f 有一个原函数为( )(A ) 1+x sin(B )1-x sin (C )1+x cos(D )1-x cos20. 设数列0)(lim =∞→n n n n n y x y x 满足与,则下列断言正确的是( )(A )若n x 发散,则n y 必发散 (B )若n x 无界,则n y 必有界; (C )若n x 有界,则n y 必为无穷小 (D )若nx 1为无穷小,则n y 必为无穷小 21. 设[x]表示不超过x 的最大整数,则][x x y -=是( )(A )无界函数 (B )周期为1的周期函数 (C )单调函数(D )偶函数22. 当0→x 时,下列4个无穷小量中比其它3个更高阶的无穷小量是( )(A ))1ln(x + (B )1-xe (C )x x sin tan -(D )x cos 1-23. 设及)(lim 0x f x x →)(lim 0x g x x →均存在,则)()(limx g x f x x →( ) (A )存在 (B )存在但非零 (C )不存在 (D )不一定存在24. 若))(()(+∞<<-∞=-x x f x f ,在)0,(-∞内,0)(>'x f 且0)(<''x f 。
(完整版)数学分析试题及答案解析,推荐文档
∑⎰ ⎰ ⎰ 2014 ---2015 学年度第二学期《数学分析 2》A 试卷一. 判断题(每小题 3 分,共 21 分)(正确者后面括号内打对勾,否则打叉)1.若 f (x )在[a ,b ]连续,则 f (x )在[a ,b ]上的不定积分⎰ f (x )dx 可表为x f(t )dt + C ( ).a2.若 f (x ), g (x )为连续函数,则⎰ f (x )g (x )dx = [⎰f (x )dx ]⋅ [⎰g (x )dx ().+∞+∞3.若 f (x )dx 绝对收敛, ⎰ g (x )dx 条件收敛,则aa+∞[ f(x )- g (x )]dx 必然条件收敛().a+∞ 4. 若f (x )dx 收敛,则必有级数∑ f (n )收敛( )1n =15. 若{f n }与{g n }均在区间 I 上内闭一致收敛,则{f n + g n }也在区间 I上内闭一致收敛( ).∞6. 若数项级数 a n 条件收敛,则一定可以经过适当的重排使其发散n =1于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题 3 分,共 15 分)1. 若 f(x )在[a ,b ]上可积,则下限函数af (x )dx 在[a ,b ]上()xA. 不连续B. 连续C.可微D.不能确定⎰ ⎰∞⎰ ⎰ ⎰ ⎰ ∑ 2. 若 g (x )在[a ,b ]上可积,而 f (x )在[a ,b ]上仅有有限个点处与 g (x )不相等,则( )A. f (x )在[a ,b ]上一定不可积;B. f (x )在[a , b ]上一定可积,但是bf (x )dx ≠ bg (x )dx ;aaC. f (x )在[a , b ]上一定可积,并且 b f (x )dx = bg (x )dx ;aaD. f (x )在[a ,b ]上的可积性不能确定.∞3. 级数 n =11 + (- 1)n -1 n n2 A. 发散 B.绝对收敛 C.条件收敛 D. 不确定4. 设∑u n 为任一项级数,则下列说法正确的是( )A. 若lim u n →∞= 0 ,则级数∑u n一定收敛;B. 若lim un +1 = < 1,则级数∑u 一定收敛;n →∞ u nC. 若∃ N ,千D. 若∃ N ,千 n > N 千千n > N 千千千u n +1 n< 1,则级数∑u n 一定收敛; u n> 1,则级数∑u n 一定发散;5. 关于幂级数∑ a n x n 的说法正确的是()A. ∑ a n x n 在收敛区间上各点是绝对收敛的;B. ∑ a n x n 在收敛域上各点是绝对收敛的;C. ∑ a n x n 的和函数在收敛域上各点存在各阶导数;千 u n +1u n nx ⎰⎰ D. ∑ a n x n 在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题 5 分,共 10 分) 1. lim 1n (n + 1)(n + 2) (n + n ) n →∞ n2. ln (sin x )dx cos 2 x四. 判断敛散性(每小题 5 分,共 15 分)1. dx 01 + + x 2∞∑2. ∑ n ! n =1 n n∞ 3. n =1(- 1)nn 2n1 + 2n五. 判别在数集 D 上的一致收敛性(每小题 5 分,共 10 分)1. f n(x )= sin nx n, n =1,2 , D = (- ∞,+∞)∑2. n D xn= (- ∞, - 2]⋃[2, + ∞)六.已知一圆柱体的的半径为 R ,经过圆柱下底圆直径线并保持与底圆面300 角向斜上方切割,求从圆柱体上切下的这块立体的体积。
数学分析练习题
数学分析练习题一、选择题(每题4分,共20分)1. 函数f(x) = x^2 + 3x - 2在区间(-∞, -4)上的单调性是:A. 单调递增B. 单调递减C. 无单调性D. 无法确定2. 若函数f(x)在点x=a处连续,且f(a)=0,则f(x)在x=a处的极限值是:A. 0B. 1C. -1D. 无法确定3. 对于函数f(x) = sin(x),其在x=π/2处的导数是:A. 0B. 1C. -1D. 无法确定4. 若f(x) = x^3 - 6x^2 + 11x - 6,求f'(x) =:A. 3x^2 - 12x + 11B. x^3 - 6x^2 + 11C. 3x^2 - 12xD. 3x^2 - 12x + 105. 函数f(x) = e^x在区间[0, 1]上的最大值是:A. 1B. eC. e^1D. 无法确定二、填空题(每题3分,共15分)6. 若f(x) = x^3 + 2x^2 - 5x + 7,求f''(x) = __________。
7. 若函数f(x) = ln(x) + 1,求f(1) = __________。
8. 函数f(x) = x^2 + 1在x=2处的切线斜率是 __________。
9. 若f(x) = x^3 - 2x^2 + x - 5,求f'(1) = __________。
10. 函数f(x) = cos(x)在区间[0, π]上的最大值是 __________。
三、计算题(每题10分,共30分)11. 求函数f(x) = x^3 - 4x^2 + 2x + 5在x=1处的泰勒展开式。
12. 证明函数f(x) = x^2在区间(0, 1)上是凹函数。
13. 求不定积分∫(3x^2 - 2x + 1)dx。
四、解答题(每题15分,共40分)14. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求其在区间[1, 3]上的最大值和最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题 12.5 偏导数在几何中的应用1. 求下列曲线在指定点处的切线与法平面方程:(1)⎪⎩⎪⎨⎧+==.1,2x x z x y 在⎪⎭⎫⎝⎛21,1,1点; (2)⎪⎪⎩⎪⎪⎨⎧=-=-=.2sin 4,cos 1,sin tz t y t t x 在2π=t 的点;(3)⎩⎨⎧=++=++.6,0222z y x z y x 在)1,2,1(-点;(4)⎩⎨⎧=+=+.,222222R z x R y x 在⎪⎭⎫⎝⎛2,2,2R R R 点。
解 (1)曲线的切向量函数为21(1,2,)(1)x x +,在⎪⎭⎫⎝⎛21,1,1点的切向量为1(1,2,)4。
于是曲线在⎪⎭⎫⎝⎛21,1,1点的切线方程为)12(41)1(2-=-=-z y x ,法平面方程为252168=++z y x 。
(2)曲线的切向量函数为(1cos ,sin ,2cos )2tt t -,在2π=t 对应点的切向量为。
于是曲线在2π=t 对应点的切线方程为222112-=-=+-z y x π, 法平面方程为(1)(1)2x y z π-++-+-=402x y π++--=。
(3)曲线的切向量函数为2(,,)y z z x x y ---,在)1,2,1(-点的切向量为(6,0,6)-。
于是曲线在)1,2,1(-点的切线方程为⎩⎨⎧-==+22y z x , 法平面方程为z x =。
(4)曲线的切向量函数为4(,,)yz xz xy --,在⎪⎭⎫⎝⎛2,2,2R R R 点的切向量为22(1,1,1)R --。
于是曲线在⎪⎭⎫⎝⎛2,2,2R R R点的切线方程为222R z R y R x +-=+-=-,法平面方程为022=+--R z y x 。
2.在曲线32,,t z t y t x ===上求一点,使曲线在这一点的切线与平面102=++z y x 平行。
解 曲线的切向量为2(1,2,3)t t ,平面的法向量为(1,2,1),由题设,22(1,2,3)(1,2,1)1430t t t t ⋅=++=,由此解出1t =-或13-,于是)1,1,1(-- 和 )271,91,31(--为满足题目要求的点。
3. 求曲线t z t t y t x 22cos ,cos sin ,sin ===在2π=t 所对应的点处的切线的方向余弦。
解曲线的切向量函数为(sin 2,cos 2,sin 2)t t t -,将2t π=代入得)0,1,0(-,它是单位向量,所以是方向余弦。
4. 求下列曲面在指定点的切平面与法线方程: (1)3432y x z +=,在点)35,1,2(;(2)4e e =+zy zx ,在点)1,2ln ,2(ln ;(3)3322,,v u z v u y v u x +=+=+=,在点1,0==v u 所对应的点。
解(1)曲面的法向量函数为32(8,9,1)x y -,以(,,)(2,1,35)x y z =代入,得到(64,9,1)-,所以切平面方程为0)35()1(9)2(64=---+-z y x ,即 6491020x y z +--=,法线方程为13591642--=-=-z y x 。
(2)曲面的法向量函数为2211e ,e ,e e x y x yz z z z x yz z z z ⎛⎫-- ⎪⎝⎭,以(,,)x y z(ln 2,ln 2,1)=代入,得到(2,2,4ln 2)-,所以切平面方程为ln 2ln 22ln 2(1)0x y z -+---=,即 02ln 2=-+z y x ,法线方程为)1(2ln 212ln 2ln --=-=-z y x 。
(3)由于22112233J uv u v ⎛⎫ ⎪= ⎪ ⎪⎝⎭,所以在1,0==v u 所对应的点处的法向量为 (0,3,2)-,所以切平面方程为3(1)2(1)0y z --+-=,即 0123=++-z y ,法线方程为10,1132x y z -=⎧⎪--⎨=⎪-⎩,即⎩⎨⎧=+=5321z y x 。
5. 在马鞍面xy z =上求一点,使得这一点的法线与平面093=+++z y x 垂直,并写出此法线的方程。
解 马鞍面的法向量(,,1)y x -与(1,3,1)平行,所以1131y x -==,即1,3,3y x z xy =-=-==,于是该点为(3,1,3)--,在该点处的法线方程为3)1(313-=+=+z y x 。
6. 求椭球面49832222=++z y x 的平行于平面753=++z y x 的切平面。
解 由于椭球面的法向量(2,4,6)x y z 与(1,3,5)平行,所以23135x y z==,解出35,23y x z x ==,代入椭球面方程可得6x =±,即切点为(6,9,10)±。
所以有两个切平面满足条件,切平面的方程分别为 0)10(5)9(3)6(=-+-+-z y x 与 0)10(5)9(3)6(=+++++z y x 即35830x y z ++±=。
7. 求圆柱面222a y x =+与马鞍面xy bz =的交角。
解 设(,,)x y z 是圆柱面与马鞍面交线上一点。
圆柱面在该点的的法向量为(2,2,0)x y ,马鞍面在该点的的法向量为(,,)y x b ,于是两法向量的夹角θ的余弦为cos θ===,所以θ=8. 已知曲面0322=--z y x ,求经过点)1,0,0(-A 且与直线212zy x ==平行的切平面的方程。
解 设切点为000(,,)x y z , 则曲面在该点的法向量为00(2,2,3)x y --,切平面方程为00223(1)0x x y y z --+=。
由于切点在切平面上,所以22000223(1)0x y z --+=,与曲面方程相比较可得01z =。
由于切平面与直线平行,所以0000(2,2,3)(2,1,2)4260x y x y --⋅=--=,与曲面方程联立,并注意到01z =,可以求出切点坐标为(2,1,1)。
于是,切平面方程为03324=---z y x 。
9.设椭球面632222=++z y x 上点)1,1,1(P 处指向外侧的法向量为n ,求函数zy x u 2286+=在点P 处沿方向n 的方向导数。
解 曲面的单位法向量为(4,6,2)(4,6,2)x y z x y z =n ,将点)1,1,1(P 的坐标代入,得到n =。
于是,函数u 在点P 处沿方向n 的方向导数为11,,7u u u u n x y z ⎛⎫∂∂∂∂=⋅== ⎪∂∂∂∂⎝⎭n 。
10.证明曲面)0(>=++a a z y x 上任一点的切平面在各坐标轴上的截距之和等于a 。
证 设切点为000(,,)x y z ,则曲面在该点的法向量为⎛⎫,切平面方程为000)))0x x y y z z ---=, 即x y z==,所以截距之和为2a ==。
11.证明:曲线⎪⎩⎪⎨⎧===t tt a z t a y t a x e ,sin e ,cos e 与锥面222z y x =+的各母线相交的角度相同。
解 易知曲线的切向量为(cos sin ,sin cos ,1)t ae t t t t -+,锥面的母线方向为(,,)(cos ,sin ,1)t x y z ae t t =,假定它们的夹角为θ,则cos θ==。
12.证明曲面0),(=--cz ay bz ax f 上的切平面都与某一定直线平行,其中函数f 连续可微,且常数c b a ,,不同时为零。
证 曲面的法向量为1212(,,)af af bf cf --,由于1212(,,)af af bf cf --(,,)0b c a ⋅≡,所以曲面的法向量与非零向量),,(a c b 垂直,即曲面的切平面都与向量),,(a c b 平行,也就是与以此向量为方向的直线平行。
13.证明曲面)0(≠⎪⎭⎫⎝⎛=x x y xf z 在任一点处的切平面都通过原点,其中函数f 连续可微。
证 易知曲面上任意一点000(,,)x y z 处的切向量为00000000()'(),'(),1y y y y f f f x x x x ⎛⎫-- ⎪⎝⎭, 因此过点000(,,)x y z 的切平面为0000000000()'()()'()()()0y y y y f f x x f y y z z x x x x ⎛⎫--+---= ⎪⎝⎭, 容易验证,)0,0,0(满足上述方程,即所有切平面都经过原点。
14.证明曲面0,,=⎪⎪⎭⎫⎝⎛x y z x y z F 的所有切平面都过某一定点,其中函数F 具有连续偏导数。
证 易知曲面上任意一点000(,,)x y z 处的切向量为000233132222000000111,,y z x F F F F F F z x x y y z ⎛⎫--- ⎪⎝⎭, 因此过点000(,,)x y z 的切平面为000230310320222000000111()()()0y z x F F x x F F y y F F z z z x x y y z ⎛⎫⎛⎫⎛⎫--+--+--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 容易验证,)0,0,0(满足上述方程,即所有切平面都经过原点。
15.设),,(z y x F 具有连续偏导数,且0222≠++z y x F F F 。
进一步,设k 为正整数,),,(z y x F 为k 次齐次函数,即对于任意的实数t 和),,(z y x ,成立),,(),,(z y x F t tz ty tx F k =。
证明:曲面0),,(=z y x F 上所有点的切平面相交于一定点。
证 利用齐次条件对t 求导,有1(,,)(,,)(,,)(,,)k x y z xF tx ty tz yF tx ty tz zF tx ty tz kt F x y z -++=,再令1t =,得到曲面上的点(,,)x y z 所满足的恒等式:),,(),,(),,(),,(z y x kF z y x zF z y x yF z y x xF z y x =++。
因为曲面上任意一点000(,,)x y z 处的法向量为()0(,,),(,,),(,,)xyzF x y z F x y z F x y z ,于是过点000(,,)x y z 的切平面方程为000000000000(,,)()(,,)()(,,)()0x y z F x y z x x F x y z y y F x y z z z -+-+-=。
利用前面的恒等式,切平面方程化为000000000000(,,)(,,)(,,)(,,)0x y z F x y z x F x y z y F x y z z kF x y z ++==,显然切平面经过原点,所以原点就是所有切平面的交点。