D触发器工作原理

D触发器工作原理
D触发器工作原理

D触发器工作原理

D触发器工作原理

主从JK触发器是在CP脉冲高电平期间接收信号,如果在CP高电平期间输入端出现干扰信号,那么就有可能使触发器产生与逻辑功能表不符合的错误状态。边沿触发器的电路结构可使触发器在CP脉冲有效触发沿到来前一瞬间接收信号,在有效触发沿到来后产生状态转换,这种电路结构的触发器大大提高了抗干扰能力和电路工作的可靠性。下面以维持阻塞D触发器为例介绍边沿触发器的工作原理。

维持阻塞式边沿D触发器的逻辑图和逻辑符号如图9-7所示。该触发器由六个与非门组成,其中G1、G2构成基本RS触发器,G3、G4组成时钟控制电路,G5、G6组成数据输入电

路。和分别是直接置0和直接置1端,有效电平为低电平。分析工作原理时,设和

均为高电平,不影响电路的工作。电路工作过程如下。

(a) 逻辑图

(b) 逻辑符号

图9-7 维持阻塞型D触发器

①CP=0时,与非门G3和G4封锁,其输出为1,触发器的状态不变。同时,由于至G5和至G6的反馈信号将这两个门G5、G6打开,因此可接收输入信号,使=,= =。

②当CP由0变1时,门G3和G4打开,它们的输出和的状态由G5和G6的输出状态决定。==,==。由基本RS触发器的逻辑功能可知,=。

③触发器翻转后,在CP=1时输入信号被封锁。G3和G4打开后,它们的输出和的状态是互补的,即必定有一个是0,若为0,则经G4输出至G6输入的反馈线将G6封锁,即封锁了D通往基本RS触发器的路径;该反馈线起到了使触发器维持在0状态和阻止触发器变为1状态的作用,故该反馈线称为置0维持线,置1阻塞线。G3为0时,将G4和G5封锁,D端通往基本RS触发器的路径也被封锁;G3输出端至G5反馈线起到使触发器维持在1状态的作用,称作置1维持线;G3输出端至G4输入的反馈线起到阻止触发器置0的作用,称为置0阻塞线。因此,该触发器称为维持阻塞触发器。

由上述分析可知,维持阻塞D触发器在CP脉冲的上升沿产生状态变化,触发器的次态取决于CP脉冲上升沿前D端的信号,而在上升沿后,输入D端的信号变化对触发器的输出状态没有影响。如在CP脉冲的上升沿到来前=0,则在CP脉冲的上升沿到来后,触发器置0;如在CP脉冲的上升沿到来前=1,则在CP脉冲的上升沿到来后触发器置1。维持阻塞触发器的逻辑功能表如表9-4所示。

表9-4 触发器的逻辑功能表

说明

0 0 复位

1 1 置位

依据逻辑功能表可得触发器的状态方程为

(9-2)

【例9-4】已知上升沿触发的D触发器输入和时钟CP的波形如图9-8所示,试画出端波形。设触发器初态为0。

图9-8 维持阻塞触发器的波形图

解:该D触发器是上升沿触发,即在CP的上升沿过后,触发器的状态等于CP脉冲上升沿前D的状态。所以第一个CP过后,=1,第二个CP过后,= 0,…,波形如图9-8所示。

触发器在CP上升沿前接受输入信号,上升沿触发翻转,即触发器的输出状态变化比输入端的状态变化延迟,这就是触发器的由来

集成触发器及其应用电路设计

华中科技大学 电子线路设计、测试与实验》实验报告 实验名称:集成运算放大器的基本应用 院(系):自动化学院 地点:南一楼东306 实验成绩: 指导教师:汪小燕 2014 年6 月7 日

、实验目的 1)了解触发器的逻辑功能及相互转换的方法。 2)掌握集成JK 触发器逻辑功能的测试方法。 3)学习用JK 触发器构成简单时序逻辑电路的方法。 4)熟悉用双踪示波器测量多个波形的方法。 (5)学习用Verliog HDL描述简单时序逻辑电路的方法,以及EDA技术 、实验元器件及条件 双JK 触发器CC4027 2 片; 四2 输入与非门CC4011 2 片; 三3 输入与非门CC4023 1 片; 计算机、MAX+PLUSII 10.2集成开发环境、可编程器件实验板及专用电缆 三、预习要求 (1)复习触发器的基本类型及其逻辑功能。 (2)掌握D触发器和JK触发器的真值表及JK触发器转化成D触发器、T触发器、T 触发器的基本方法。 (3)按硬件电路实验内容(4)(5),分别设计同步3 分频电路和同步模4 可逆计数器电路。 四、硬件电路实验内容 (1)验证JK触发器的逻辑功能。 (2)将JK触发器转换成T触发器和D触发器,并验证其功能。 (3)将两个JK触发器连接起来,即第二个JK触发器的J、K端连接在一起, 接到第一个JK触发器的输出端Q两个JK触发器的时钟端CP接在一起,并输入1kHz 正方波,用示波器分别观察和记录CP Q、Q的波形(注意它们之间的时序关系),理解2分频、4分频的概念。 (4)根据给定的器件,设计一个同步3分频电路,其输出波形如图所示。然后组装电路,并用示波器观察和记录CP Q、Q的波形。 (5)根据给定器件,设计一个可逆的同步模4 计数器,其框图如图所示。图中,M为控制变量,当M=0时,进行递增计数,当M=1时,进行递减计数;Q、 Q为计数器的状态输出,Z为进位或借位信号。然后组装电路,并测试电路的输入、输出

基本RS触发器原理

基本RS 触发器原理 图4-1(a)是由两个“与非”门构成的基本R-S 触发器,(b)是其逻辑符号。RD 、SD 是两个输入端,Q 及y 是两个输出端。 正常工作时,触发器的Q 和y 应保持相反,因而触发器具有两个稳定状态: 1)Q=1,y=0。通常将Q 端作为触发器的状态。若Q 端处于高电平,就说触发器是1状态; 2)Q=0,y=1。Q 端处于低电平,就说触发器是0状态;Q 端称为触发器的原端或1端,y 端称为触发器的非端或0端。 由图4-1可看出,如果Q 端的初始状态设为1,RD 、SD 端都作用于高电平(逻辑 1),则y 一定为0。如果RD 、SD 状态不变,则Q 及y 的状态也不会改变。这是一个稳定状态;同理,若触发器的初始状态Q 为0而y 为1,在RD 、SD 为1的情况下这种状态也不会改变。这又是一个稳定状态。可见,它具有两个稳定状态。 输入与输出之间的逻辑关系可以用真值表、状态转换真值表及特征方程来描述。 图4 (一)真值表 R-S 触发器的逻辑功能,可以用输入、输出之间的逻辑关系构成一个真值表(或叫功能表)来描述。 1、当RD =0,SD=1时,不论触发器的初始状态如何,y 一定为1,由于“与非”门2的输入全是1,Q 端应为0。称触发器为0状态,RD 为置0端。 2、当RD =1,SD=0时,不论触发器的初始状态如何,Q 一定为1,从而使y 为0。称触发器为1状态,SD 置1端。 3、当RD =1,SD =1时,如前所述,Q 及y 状态保持原状态不变。 4、当RD =0,SD =0时,不论触发器的初始状态如何,Q=y=1,若RD 、SD 同时由0变成1,在两个门的性能完全一致的情况下, Q 及y 哪一个为1,哪一个为0是不定的,在应用时不允许RD 和SD 同时为0。 综合以上四种情况,可建立R-S 触发器的真值表于表1。应注意的是表中RD = SD =0的一行中Q 及y 状态是指RD 、SD 同时变为1后所处的状态是不定的,用Ф表示。 由于RD =0,SD =1时Q 为0,RD 端称为置0端或复位端。相仿的原因,SD 称置

施密特触发器工作原理

使用CMOS集成电路需注意的几个问题 集成电路按晶体管的性质分为TTL和CMOS两大类,TTL以速度见长,CMOS以功耗低而著称,其中CMOS电路以其优良的特性成为目前应用最广泛的集成电路。在电子制作中使用CMOS集成电路时,除了认真阅读产品说明或有关资料,了解其引脚分布及极限参数外,还应注意以下几个问题: 1、电源问题 (1)CMOS集成电路的工作电压一般在3-18V,但当应用电路中有门电路的模拟应用(如脉冲振荡、线性放大)时,最低电压则不应低于4.5V。由于CMOS集成电路工作电压宽,故使用不稳压的电源电路CMOS集成电路也可以正常工作,但是工作在不同电源电压的器件,其输出阻抗、工作速度和功耗是不相同的,在使用中一定要注意。 (2)CMOS集成电路的电源电压必须在规定围,不能超压,也不能反接。因为在制造过程中,自然形成许多寄生二极管,如图1所示为反相器电路,在正常电压下,这些二极管皆处于反偏,对逻辑功能无影响,但是由于这些寄生二极管的存在,一旦电源电压过高或电压极性接反,就会使电路产生损坏。 2、驱动能力问题 CMOS电路的驱动能力的提高,除选用驱动能力较强的缓冲器来完成之外,还可将同一个芯片几个同类电路并联起来提高,这时驱动能力提高到N倍(N为并联门的数量)。如图2所示。 3、输入端的问题 (1)多余输入端的处理。CMOS电路的输入端不允许悬空,因为悬空会使电位不定,破坏正常的逻辑关系。另外,悬空时输入阻抗高,易受外界噪声干扰,使电路产生误动作,而且也极易造成栅极感应静电而击穿。所以“与”门,“与非”门的多余输入端要接高电平,“或”门和“或非”门的多余输入端要接低电平。若电路的工作速度不高,功耗也不需特别考虑时,则可以将多余输入端与使用端并联。 (2)输入端接长导线时的保护。在应用中有时输入端需要接长的导线,而长输入线必然有较大的分布电容和分布电感,易形成LC振荡,特别当输入端一旦发生负电压,极易破坏CMOS中的保护二极管。其保护办法为在输入端处接一个电阻,如图3所示,R=VDD/1mA。 (3)输入端的静电防护。虽然各种CMOS输入端有抗静电的保护措施,但仍需小心对待,在存储和运输中最好用金属容器或者导电材料包装,不要放在易产生静电高压的化工材料或化纤织物中。组装、调试时,工具、仪表、工作台等均应良好接地。要防止操作人员的静电干扰造成的损坏,如不宜穿尼龙、化纤衣服,手或工具在接触集成块前最好先接一下地。对器件引线矫直弯曲或人工焊接时,使用的设备必须良好接地。 (4)输入信号的上升和下降时间不易过长,否则一方面容易造成虚假触发而导致器件失去正常功能,另一方面还会造成大的损耗。对于74HC系列限于0.5us以。若不满足此要求,需用施密特触发器件进行输入整形,整形电路如图4所示。 (5)CMOS电路具有很高的输入阻抗,致使器件易受外界干扰、冲击和静电击穿,所以为了保护CMOS管的氧化层不被击穿,一般在其部输入端接有二极管保护电路,如图5所示。 其中R约为1.5-2.5KΩ。输入保护网络的引入使器件的输入阻抗有一定下降,但仍在108Ω以上。这样也给电路的应用带来了一些限制: (A)输入电路的过流保护。CMOS电路输入端的保护二极管,其导通时电流容限一般为1mA在可能出现过大瞬态输入电流(超过10mA)时,应串接输入保护电阻。例如,当输入端接的信号,其阻很小、或引线很长、或输入电容较大时,在接通和关断电源时,就容易产生较大的瞬态输入电流,这时必须接输入保护电阻,若VDD=10V,则取限流电阻为10KΩ即可。 (B)输入信号必须在VDD到VSS之间,以防二极管因正向偏置电流过大而烧坏。因此在

D触发器的设计

目录 第一章绪论0 简介0 集成电路0 版图设计1 软件介绍1 标准单元版图设计1 标准单元版图设计的概念1 标准单元版图设计的历史1 标准单元的版图设计的优点2 标准单元的版图设计的特点2 第二章D触发器的介绍 2 简介2 维持阻塞式边沿D触发器3 电路工作过程3 状态转换图和时序图3 同步D触发器3 电路结构3 逻辑功能4 真单相时钟(TSPC)动态D触发器4 第三章工艺基于TSPC原理的D触发器设计5 电路图的设计5 创建库与视图5 基于TSPC原理的D触发器电路原理图5 创建D触发器版图6 设计步骤6 器件规格7 设计规则的验证及结果8 第四章课程设计总结9 参考文献 9 第一章绪论 简介 集成电路 集成电路(Integrated Circuit,简称IC)是20世纪60年代初期发展起来的一种新型半导体器件。它是经过氧化、光刻、扩散、外延、蒸铝等半导体制造工艺,把构成具有一定功能的电路所需的半导体、电阻、电容等元件及它们之间的连接导线全部集成在一小块硅片上,然后焊接封装在一个管壳内的电子器件。其封装外壳有圆壳式、扁平式或双列直插式等多种形式。是一种微型电子器件或部件,采

用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。集成电路发明者为杰克·基尔比(基于硅的集成电路)和罗伯特·诺伊思(基于锗的集成电路)。当今半导体工业大多数应用的是基于硅的集成电路。 版图设计 版图(Layout)是集成电路设计者将设计并模拟优化后的电路转化成的一系列几何图形,包含了集成电路尺寸大小、各层拓扑定义等有关器件的所有物理信息。集成电路制造厂家根据版图来制造掩膜。版图的设计有特定的规则,这些规则是集成电路制造厂家根据自己的工艺特点而制定的。不同的工艺,有不同的设计规则。设计者只有得到了厂家提供的规则以后,才能开始设计。版图在设计的过程中要进行定期的检查,避免错误的积累而导致难以修改。很多集成电路的设计软件都有设计版图的功能,Cadence 的Virtuoso的版图设计软件帮助设计者在图形方式下绘制版图。 对于复杂的版图设计,一般把版图设计分成若干个子步骤进行: (1)划分为了将处理问题的规模缩小,通常把整个电路划分成若干个模块。(2)版图规划和布局是为了每个模块和整个芯片选择一个好的布图方案。(3)布线完成模块间的互连,并进一步优化布线结果。 (4)压缩是布线完成后的优化处理过程,他试图进一步减小芯片的面积。软件介绍 目前大部分IC 公司采用的是UNIX 系统,使用版本是SunSolaris。版图设计软件通常为Cadence ,它是一个大型的EDA 软件,它几乎可以完成电子设计的方方面面,包括ASIC 设计、FPGA设计和PCB 设计。软件操作界面人性化,使用方便,安全可靠,但价格较昂贵。 标准单元版图设计 标准单元版图设计的概念 标准单元,也叫宏单元。它先将电路设计中可能会遇到的所有基本逻辑单元的版图, 按照最佳设计的一定的外形尺寸要求, 精心绘制好并存入单元库中。实际设计ASIC电路时, 只需从单元库中调出所要的元件版图, 再按照一定的拼接规则拼接, 留出规则而宽度可调的布线通道, 即可顺利地完成整个版图的设计工作了。 基本逻辑单元的逻辑功能不同, 其版图面积也不可能是一样大小的。但这些单元版图的设计必须满足一个约束条件, 这就是在某一个方向上它们的尺寸必须是完全一致的, 比如说它们可以宽窄不一, 但它们的高度却必须是完全相等的,这就是所谓的“等高不等宽”原则。这一原则是标准单元设计法得以实施的根本保证。 标准单元版图设计的历史 随着集成电路产业迅猛的发展,工艺水平不断提高,集成电路特征尺寸循着摩尔定律不断缩小。设计芯片时需要考虑的因素越来越多,芯片设计的复杂程度也越来越高。因而尽可能复用一些已经通过工艺验证的IP核可以提高设计的效率,降低芯片设计的成本。

正反相施密特触发器电路的工作原理详解

正反相施密特触发器电路的工作原理详解 什么叫触发器 施密特触发电路(简称)是一种波形整形电路,当任何波形的信号进入电路时,输出在正、负饱和之间跳动,产生方波或脉波输出。不同于比较器,施密特触发电路有两个临界电压且形成一个滞后区,可以防止在滞后范围内之噪声干扰电路的正常工作。如遥控接收线路,传感器输入电路都会用到它整形。 施密特触发器 一般比较器只有一个作比较的临界电压,若输入端有噪声来回多次穿越临界电压时,输出端即受到干扰,其正负状态产生不正常转换,如图1所示。 图1 (a)反相比较器 (b)输入输出波形 施密特触发器如图2 所示,其输出电压经由R1、R2分压后送回到运算放大器的非反相输入端形成正反馈。因为正反馈会产生滞后(Hysteresis)现象,所以只要噪声的大小在两个临界电压(上临界电压及下临界电压)形成的滞后电压范围内,即可避免噪声误触发电路,如表1 所示 图2 (a)反相斯密特触发器 (b)输入输出波形

表1 反相施密特触发器 电路如图2 所示,运算放大器的输出电压在正、负饱和之间转换: νO= ±Vsat。输出电压经由R1 、R2分压后反馈到非反相输入端:ν+= βνO, 其中反馈因数= 当νO为正饱和状态(+Vsat)时,由正反馈得上临界电压 当νO为负饱和状态(- Vsat)时,由正反馈得下临界电压 V TH与V TL之间的电压差为滞后电压:2R1 图3 (a)输入、输出波形 (b)转换特性曲线 输入、输出波形及转换特性曲线如图3(b)所示。

当输入信号上升到大于上临界电压V TH时,输出信号由正状态转变为 负状态即:νI >V TH→νo = - Vsat 当输入信号下降到小于下临界电压V TL时,输出信号由负状态转变为 正状态即:νI <V TL→νo = + Vsat 输出信号在正、负两状态之间转变,输出波形为方波。 非反相施密特电路 图4 非反相史密特触发器 非反相施密特电路的输入信号与反馈信号均接至非反相输入端,如图4所示。 由重迭定理可得非反相端电压 反相输入端接地:ν-= 0,当ν+ = ν- = 0时的输入电压即为临界电压。将ν+ = 0代入上式得 整理后得临界电压 当νo为负饱和状态时,可得上临界电压 当νo为正饱和状态时,可得下临界电压, V TH与V TL之间的电压差为滞后电压:

触发器原理转换及设计

实验五触发器原理,转换及设计 2.5.1 实验目的 (1)掌握基本D,J_K触发器的电路结构及逻辑功能。 (2)掌握各种触发器之间的相互转换及应用。 2.5.2 实验仪器设备与主要器件 试验箱一个,双踪示波器一台;稳压电源一台,函数发生器一台。74LS74双D正沿触发器;74LS75锁存器74LS76双J-K触发器。 2.5.3 实验原理 前面所述的各种集成电路均属组合逻辑电路,该电路某一时刻的输出状态只有该时刻的输入状态决定。 数字系统中的另一类电路称为时序逻辑电路。构成时序逻辑电路的基本器件是触发器。具有两种不同稳定状态的存储二进制信息的基本单元统称为双稳态器件,常芝锁存器或触发器。 2.5.4 实验内容 (1)测试D触发器的逻辑功能。将D触发器74LS74的SD,RD和D分别接逻辑开关,CP接单词没冲,按D触发器的逻辑功能进行测试,记录测试功能,观察CP与Q之间的关系,画出同步波形。 D触发器的特征表: CP D Q n Q n+1 * * * * ↑0 * 0 ↑ 1 * 1 仿真图: 波形图如图示:上图为CP波形,下图为Q波形:

当D=0时,Q=0; 当D=1时,Q=1; 图2-5-5的仿真图:

波形图: 由波形图看出时钟每触发2个周期时,电路输出1个周期信号,即该电路实现了二分频功能。 (2)测试J-K触发器的逻辑功能,测试结果与图2-5-2所示的特征表对照,并按图2-5-8所试点链接,用函数发生器输出1KHZ的0-5v方波信号作为时钟脉冲,记录CP,Q1,Q2的同步波形。 真值表: CPJKQnQn+1 * ** * Qn ↓↓00 00 0 1 0保持 1 ↓↓10 10 0 1 1置1 1 ↓↓01 01 0 1 0置0 0 ↓↓11 11 0 1 1必翻 0 仿真图: 波形图:由上到下依次为CP,Q1,Q2的波形;

同步RS触发器电路结构、工作原理及功能表示

同步RS 触发器电路结构、工作原理及功能表示 1.电路结构 主从RS 触发器是时钟触发器的一种。由与非门构成的时钟RS 触发器电路结构如图8.9所示,CP 为时钟脉冲输入端。 1S C1S CP Q Q 1R R (a)同步RS 触发器电路 (b )逻辑符号 图8.9 同步RS 触发器 2.功能分析 当CP =0时,G 3、G 4门关闭,不论R 、S 如何变化,触发器输出保持不变。 而CP =1时,R 、S 端的信号经与非门反相后引到基本RS 触发器的输入端,此时触发器输出由R 、S 及CP 决定。S =0、R =1时,S =1、R =0,Q =1,反馈到G 1门使Q =0,即不论触发器原态是0态还是1态,电路的输出一定为0;S =1、R =0时,S =0、R =1,Q =1,反馈到G 2门使Q =0,即不论触发器原态是0态还是1态,电路的输出一定为1;S =0、R =0时,S =1、R =1,触发器的状态将保持不变。 S =1、R =1时,S =0、R =0,使Q =1、Q =1,破坏了输出信号互补的原则,而随后S =0、R =0时,输出状态可能是1也可能是0,出现了不定状态,这在触发器工作时是不允许出现的。 R 、S 控制输出状态转换,CP 控制何时发生状态转换。时钟RS 触发器是在CP =1时发生状态转换,称为高电平触发。 3.功能表示方法 (1)功能表 时钟RS 触发器的功能表如表8.3。其功能与基本RS 触发器功能相似,但在CP =1到 Q & & G 1 G Q S R & G 3 & G 4 S R

来时状态才能变化。Q n 为CP 脉冲到来前触发器的状态,称为现态,Q n+1为CP 脉冲到来后触发器的状态,称为次态。 表8.3 RS 触发器的功能表 (2)特征方程 表示触发器次态与触发器输入及现态的逻辑关系式称为触发器的特征方程。 根据功能表画出卡诺图,如图8.10,经过化简,得到时钟RS 触发器在CP =1时的特征方程: n n Q R S Q +=+1;RS =0约束条件 RS =0为约束条件,表示S 、R 不能同时为1。 图8.10 时钟RS 触发器卡诺图 (3)状态转换图 用两个圆表示触发器的两种稳态0和1。箭头表示由现态到次态的转换方向,箭尾表示原态,箭头线上的数字标注出了原态转换成次态所需的触发条件。如图8.11所示。 图8.11 时钟RS 触发器状态转换图 (4)波形图 触发器的功能可以通过输入输出波形表示。图8.12为RS 触发器的波形图。 R S Q n Q n+1 功能说明 0 0 0 0 0 1 0 1 保持 0 0 1 1 0 1 1 1 置1 1 1 0 0 0 1 0 0 置0 1 1 1 1 0 1 不定 不定 禁止 Q n RS 0 1 10 11 00 01 0 1 × 0 1 1 × ×0 01 10 0× 1

施密特触发器原理简介

施密特触发器简单介绍 本文来自: https://www.360docs.net/doc/29170621.html, 原文网址:https://www.360docs.net/doc/29170621.html,/sch/test/0083158.html 我们知道,门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。在输入信号从低电平上 升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压(),在输入信号从 高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压()。正向 阈值电压与负向阈值电压之差称为回差电压()。普通门电路的电压传输特性曲线是单调的,施密特触发器的电压传输特性曲线则是滞回的[图6.2.2(a)(b)]。 图6.2.1 用CMOS反相器构成的施密特触发器 (a)电路(b)图形符号

图6.2.2 图6.2.1电路的电压传输特性 (a)同相输出(b)反相输出 用普通的门电路可以构成施密特触发器[图6.2.1]。因为CMOS门的输入电阻很高,所以 的输入端可以近似的看成开路。把叠加原理应用到和构成的串联电路上,我们可以推导出 这个电路的正向阈值电压和负向阈值电压。当时,。当从0逐渐上升到时, 从0上升到,电路的状态将发生变化。我们考虑电路状态即将发生变化那一时刻的情况。 因为此时电路状态尚未发生变化,所以仍然为0,, 于是,。与此类似,当时,。当从逐渐下降到 时,从下降到,电路的状态将发生变化。我们考虑电路状态即将发生变化那一时刻 的情况。因为此时电路状态尚未发生变化,所以仍然为, ,于是, 。通过调节或,可以调节正向阈值电压和反向阈值电压。不过,这个 电路有一个约束条件,就是。如果,那么,我们有及

基于TSPC原理的触发器工艺版图设计

苏州市职业大学 课程设计说明书 名称基于TSPC原理的D触发器0.35μm工艺版图设计2011年12月19日至2011年12月23日共1 周 院系电子信息工程系 班级 姓名

目录 第1章:绪论 (3) 1.1 版图设计的基础知识 (3) 1.1.1 版图设计流程 (3) 1.1.2 版图设计步骤 (3) 1.1.3 版图设计规则 (4) 1.1.4 版图设计验证 (5) 1.2 标准单元版图的设计 (6) 1.2.1 标准单元库的定义 (6) 1.2.2 标准单元库用途 (6) 1.2.3 标准单元设计方法 (6) 第2章:D触发器的介绍 (7) 2.1 D触发器 (7) 2.2 维持阻塞D触发器 (7) 2.2.1 维持阻塞D触发器的电路结构 (7) 2.2.2 维持阻塞D触发器的工作原理 (8) 2.2.3 维持阻塞D触发器的功能描述 (9) 2.3 同步D触发器 (9) 2.3.1 同步D触发器的电路结构 (9) 2.3.2 同步D触发器的工作原理 (10) 2.3.3 逻辑功能表示方法 (10) 2.4 基于TSPC原理的D触发器 (11) 2.4.1 构成原理 (11) 2.4.2 仿真波形 (11) 第3章:0.35um工艺基于TSPC原理的D触发器设计 (12) 3.1 动态D触发器电路图的设计步骤及电路图 (12) 3.2 动态D触发器版图的设计步骤及电路图 (13) 3.3 DRC、LVS验证 (14) 第4章:心得体会 (15) 参考文献 (16)

第1章:绪论 1.1 版图设计的基础知识 1.1.1 版图设计流程 版图设计是创建工程制图(网表)的精确的物理描述的过程,即定义各工艺层图形的形状、尺寸以及不同工艺层相对位置的过程。其中版图设计的流程如图1.1.1所示。 图1.1.1 1.1.2 版图设计步骤 作为后端设计者,是集成电路从设计走向制造的桥梁,设计步骤包括以下几部分: 1、布局:安排各个晶体管、基本单元和复杂单元在芯片上的位置。 2、布线:设计走线、门间、单元间的互连。 3、尺寸确定:确定晶体管尺寸(W、L)、互连尺寸(连线宽度)以及晶体管与互连之间的相对尺寸等。 4、版图编辑(Layout Editor):规定各个工艺层上图形的形状、尺寸和位置。 5、布局布线(Place and route):给出版图的整体规划和各图形间的连接。 6、版图检查(Layout Check):设计规则检查(DRC,Design Rule Check)、电器规则检查

D触发器的设计

目录 第一章绪论 (1) 1.1 简介 (1) 1.1.1 集成电路 (1) 1.1.2 版图设计 (1) 1.2 软件介绍 (2) 1.3 标准单元版图设计 (2) 1.3.1 标准单元版图设计的概念 (2) 1.3.2 标准单元版图设计的历史 (2) 1.3.3 标准单元的版图设计的优点 (3) 1.3.4 标准单元的版图设计的特点 (3) 第二章 D触发器的介绍 (4) 2.1 简介 (4) 2.2 维持阻塞式边沿D触发器 (4) 2.2.1 电路工作过程 (4) 2.2.2 状态转换图和时序图 (5) 2.3 同步D触发器 (5) 2.3.1 电路结构 (5) AHA12GAGGAGAGGAFFFFAFAF

2.3.2 逻辑功能 (6) 2.4 真单相时钟(TSPC)动态D触发器 (6) 第三章 0.35um工艺基于TSPC原理的D触发器设计 (8) 3.1 电路图的设计 (8) 3.1.1 创建库与视图 (8) 3.1.2 基于TSPC原理的D触发器电路原理图 (8) 3.2 创建 D触发器版图 (9) 3.2.1 设计步骤 (9) 3.2.2 器件规格 (11) 3.3 设计规则的验证及结果 (11) 第四章课程设计总结 (13) 参考文献 (14) AHA12GAGGAGAGGAFFFFAFAF

第一章绪论 1.1 简介 1.1.1 集成电路 集成电路(Integrated Circuit,简称IC)是20世纪60年代初期发展起来的一种新型半导体器件。它是经过氧化、光刻、扩散、外延、蒸铝等半导体制造工艺,把构成具有一定功能的电路所需的半导体、电阻、电容等元件及它们之间的连接导线全部集成在一小块硅片上,然后焊接封装在一个管壳内的电子器件。其封装外壳有圆壳式、扁平式或双列直插式等多种形式。是一种微型电子器件或部件,采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。集成电路发明者为杰克·基尔比(基于硅的集成电路)和罗伯特·诺伊思(基于锗的集成电路)。当今 AHA12GAGGAGAGGAFFFFAFAF

RS触发器的工作原理

斯密特触发器 斯密特触发器波形图 [1] 斯密特触发器又称斯密特与非门,是具有滞后特性的数字传输门。该器件既可以像普通“与非”门那样工作, 也可以接成斯密特触发器来使用。斯密特触发器具有如下两个特点: 1、电路具有两个阈值电压,分别称为正向阈值电压和负向阈值电压; 2、与双稳态触发器和单稳态触发器不同,斯密特触发器属于“电平触发型”电路,不依赖于边沿陡峭的脉冲。 它是一种阈值开关电路,具有突变输入——输出特性的门电路。这种电路被设计成阻止输入电压出现微小变化(低于某一阈值)而引起的输出电压的改变。当输入电压由低向高增加,到达V+时,输出电压发生突变,而输入电压Vi由高变低,到达V-时,输出电压发生突变,因而出现输出电压变化滞后的现象,可以看出对于要求一定延迟启动的电路,它是特别适用的。 斯密特触发器原理图 [2] 而从IC内部的逻辑符号和“与非”门的逻辑符号相比就略有不同,它增加了一个类似方框的图形,该图形正是代表斯密特触发器一个重要的滞后特性。滞后特性是指当把输入端并接成非门时,它们的输入、输出特

性是:当输入电压V1上升到VT+电平时,触发器翻转,输出负跳变;过了一段时间输入电压回降到VT+电平时,输出并不回到初始状态而需输入V1继续下降到VT-电平时,输出才翻转至高电平(正跳变),用公式:VT+—VT-=△VT 表示,△VT称为斯密特触发器的滞后电压。△VT与IC的电源电压有关,当电源电压提高时,△VT略有增加,一般△VT值在3V左右。因斯密特触发器具有电压的滞后特性,常用它对脉冲波形整形,使波形的上升沿或下降沿变得陡直;有时还用它作电压幅度鉴别,在数字电路中它也是很常用的器件。 电路结构斯密特触发器 把两个与非门G1、G2的输入、输出端交叉连接,即可构成基本RS触发器,其逻辑电路如图7.2.1.(a)所示。它有两个输入端R、S和两个输出端Q、Q。 工作原理 基本RS触发器的逻辑方程为: 根据上述两个式子得到它的四种输入与输出的关系: 1.当R端无效,S端有效时,则Q=0,Q=1,触发器置1。 2.当R端有效、S端无效时,则Q=1,Q=0,触发器置0。 如上所述,当触发器的两个输入端加入不同逻辑电平时,它的两个输出端Q和Q有两种互补的稳定状态。一般规定触发器Q端的状态作为触发器的状态。通常称触发器处于某种状态,实际是指它的Q端的状态。Q=1、Q=0时,称触发器处于1态,反之触发器处于0态。S=0,R=1使触发器置1,或称置位。因置位的决定条件是S=0,故称S 端为置1端。R=0,S=1时,使触发器置0,或称复位。 同理,称R端为置0端或复位端。若触发器原来为1态,欲使之变为0态,必须令R端的电平由1变0,S端的电平由0变1。这里所加的输入信号(低电平)称为触发信号,由它们导致的转换过程称为翻转。由于这里的触发信号是电平,因此这种触发器称为电平控制触发器。从功能方面看,它只

RS触发器

基本触发器的设计 预备知识:RS触发器是一种基本的触发器 一触发器 1触发器的概念 触发器:具有记忆功能的基本逻辑电路,能存储二进制信息(数字信息)。 触发器有二个基本特性: ( 1 )有两个稳态,可分别表示二进制数码 0 和 1 ,无外触发时可维持稳态; 触发器的两个稳定状态 ①Q=1,通常将Q端作为触发器的状态。若Q端处于高电平,就说触发器是1状态; ②Q=0,Q端处于低电平,就说触发器是0状态;Q端称为触发器的原端或1端,端称为触发器的非端或0端。 ( 2 )外触发下,两个稳态可相互转换(称翻转),已转换的稳定状态可长期保持下来,这就使得触发器能够记忆二进制信息,常用作二进制存储单元。 (3 )触发器的分类:根据 逻辑功能不同:RS触发器、D触发器、JK触发器、T触发器和触发器等。 触发方式不同:电平触发器、边沿触发器和主从触发器等。 电路结构不同:基本RS触发器,同步触发器、维持阻塞触发器、主从触发器和边沿触发器。 二、RS触发器的知识 1 基本RS触发器原理 图2-1是由两个“与非”门构成的基本R-S触发器。RD、SD是两个输入端,Q及Qn是两个输出端。 图2-1 RS触发器

2 稳定状态 正常工作时,触发器的Q和Qn应保持相反,因而触发器具有两个稳定状态: ①Q=1,Qn=0。通常将Q端作为触发器的状态。若Q端处于高电平,就说触发器是1状态; ②Q=0,Qn=1。Q端处于低电平,就说触发器是0状态; Q端称为触发器的原端或1端,Qn端称为触发器的非端或0端。 3 真值表 R-S触发器的逻辑功能,可以用输入、输出之间的逻辑关系构成一个真值表(或叫功能表)来描述。 ①当RD=0,SD=1时,不论触发器的初始状态如何,Qn 为1,由于“与非”门2的输入全是1,Q端应为0。称触发器为 状态,R D为置0端 ②当RD =1,SD =0时,不论触发器的初始状态如何,Q 为1,从而使Qn为0。称触发器为1状态,SD置1端。 ③当RD =1,SD =1时,如前所述,Q及Qn 态不变。 4 当RD =0,SD =0时,显然,在此条件下,两个与非门的输 出端Q,Qn全为1,若RD、SD同时由0变成1 完全一致的情况下, Q及Qn究竟哪一个为1,哪一个为0是不 定的,因此称这种情况为不定状态,在应用时不允许RD和SD同时为0。归纳:由上面的分析我们得出如表2-1的真值表 5 RS触发器逻辑表达式 为约束条件 该逻辑表达式也称为触发器的特性方程

施密特触发器和比较器的区别

施密特触发器原理图解详细分析 重要特性:施密特触发器具有如下特性:输入电压有两个阀值VL、VH,VL 施密特触发器通常用作缓冲器消除输入端的干扰。 施密特波形图 施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。 门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。在输入信号从低电平上升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压,在输入信号从高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压。正向阈值电压与负向阈值电压之差称为回差电压。 它是一种阈值开关电路,具有突变输入——输出特性的门电路。这种电路被设计成阻止输入电压出现微小变化(低于某一阈值)而引起的输出电压的改变。 利用施密特触发器状态转换过程中的正反馈作用,可以把边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲信号。输入的信号只要幅度大于vt+,即可在施密特触发器的输出端得到同等频率的矩形脉冲信号。 当输入电压由低向高增加,到达V+时,输出电压发生突变,而输入电 压Vi由高变低,到达V-,输出电压发生突变,因而出现输出电压变化滞后的现象,可以看出对于要求一定延迟启动的电路,它是特别适用的. 从传感器得到的矩形脉冲经传输后往往发生波形畸变。当传输线上的电容较大时,波形的上升沿将明显变坏;当传输线较长,而且接受端的阻抗与传输

(最新经营)单稳态触发器与施密特触发器原理及应用

CD4047BE 单稳态触发器原理及应用 多谐振荡器是一种自激振荡电路。因为没有稳定的工作状态,多谐振荡器也称为无稳态电路。具体地说,如果一开始多谐振荡器处于0状态,那么它于0状态停留一段时间后将自动转入1状态,于1状态停留一段时间后又将自动转入0状态,如此周而复始,输出矩形波。 图6.4.1对称式多谐振荡器电路 对称式多谐振荡器是一个正反馈振荡电路[图6.4.1,]。和是两个反相器,和是两个耦合电容,和是两个反馈电阻。只要恰当地选取反馈电阻的阻值,就可以使反相器的静态工作点位于电压传输特性的转折区。上电时,电容器两端的电压和均为0。假设某种扰动使有微小的正跳变,那么经过一个正反馈过程,迅速跳变为,迅速跳变为,迅速跳变为,迅速跳变为,电路进入第一个暂稳态。电容和开始充电。的充电电流方向与参考方向相同, 正向增加;的充电电流方向与参考方向相反,负向增加。随着的正向增加,从逐渐上升;随着的负向增加,从逐渐下降。因为经和两条支路充电而经一条支路充电,所以充电速度较快,上升到时还没有下降到。上升到使跳变为。理论上,向下跳变,也将向下跳变。考虑到输入端钳位二极管的影响,最多跳变到。下降到使跳变为,这又使从向上跳变,即变成,电路进入第二个暂稳态。经一条支路反向充电(实际上先放电再

反向充电),逐渐下降。经和两条支路反向充电(实际上先放电再反向充电),逐渐 上升。的上升速度大于的下降速度。当上升到时,电路又进入第一个暂稳态。此后,电路 将于两个暂稳态之间来回振荡。 非对称式多谐振荡器是对称式多谐振荡器的简化形式[图6.4.6]。这个电路只有一个反馈电阻和一个耦合电容。反馈电阻使的静态工作点位于电压传输特性的转折区,就是说,静态时,的输入电 平约等于,的输出电平也约等于。因为的输出就是的输入,所以静态时也被迫工 作于电压传输特性的转折区。 图6.4.6非对称是多谐振荡器电路 环形振荡器[图6.4.10]不是正反馈电路,而是一个具有延迟环节的负反馈电路。 图6.4.10最简单的环形振荡器

cad d触发器设计

摘要 本设计是基于ZeniEDA D触发器的设计。本文分四个部分,其中详细叙述了D 触发器的电路设计和版图设计两个部分。第一部分是绪论,主要有集成电路CAD的发展现状、Zeni软件的说明以及集成电路设计流程等内容。第二部分是D触发器的电路设计,首先对Spice仿真进行了说明,然后就是D触发器的总体方案和D触发器的功能描述,还对D触发器的各个功能模块的设计与仿真作了详细说明。第三部分是D触发器的版图设计,首先对版图设计的逻辑划分、布线布局理论等进行了简明的阐述,然后对D触发器的各个单元模块的版图设计进行了说明,并给出了每个功能模块的版图以及D触发器的总版图,最后给出了D触发器的DRC验证和LVS 验证以及导出GDS-Ⅱ文档。本设计几乎涉及了集成电路CAD设计的各个流程,并作了详细的描述与说明。 关键词:D触发器;反相器;与非门;传输门;版图

目录 摘要.................................................................................................................. I 1绪论 . (1) 1.1集成电路CAD的发展现状 (5) 1.2Zeni软件说明 (6) 1.3集成电路设计流程 (3) 2电路设计 (5) 2.1Spice仿真说明 (5) 2.2总体方案及功能描述 (6) 2.3单元模块电路设计及仿真 (8) 3版图设计 (14) 3.1版图设计基础 (14) 3.2单元模块版图设计 (15) 3.3D触发器版图设计 (17) 3.4版图验证 ....................................................... 1错误!未定义书签。 3.5导出GDS-Ⅱ文档 (20) 4总结与体会 (21) 参考文献:................................................................... 错误!未定义书签。致谢 . (23)

基本RS触发器工作原理

基本RS触发器工作原理 基本RS触发器工作原理 基本RS触发器的电路如图1(a)所示。它是由两个与非门,按正反馈方式闭合而成,也可以用两个或非门按正反馈方式闭合而成。图(b)是基本RS触发器逻辑符号。基本RS触发器也称为闩锁(Latch)触发器。 (a) (b) 图1 基本RS触发器电路图和逻辑符号 定义A门的一个输入端为R d端,低电平有效,称为直接置“0”端,或直接复位端(Reset),此时S d端应为高电平;B门的一个输入端为S d端,称为直接置“1”端,或直接置位端(Set),此时R d端应为高电平。我们定义一个与非门的输出端为基本RS触发器的输出端Q ,图中为B门的输出端。另一个与非门的输出端为Q 端,这两个端头的状态应该相反。因基本RS触发器的电路是对称的,定义A门的输出端为Q端,还是定义B门的输出端为Q端都是可以的。一旦Q端确定,R d和S d端就随之确定,再不能任意更改。 2 两个稳态 这种电路结构,可以形成两个稳态,即 Q=1,Q=0,Q=0,Q =1 当Q=1时,Q=1和R d=1决定了A门的输出,即Q=0 ,Q=0反馈回来又保证了Q=1 ;当Q=0时,Q=1,Q=1和S d=1决定了B门的输出,即Q=0,Q=0又保证了Q =1 。 在没有加入触发信号之前,即R d和S d端都是高电平,电路的状态不会改变。 3 触发翻转 电路要改变状态必须加入触发信号,因是与非门构成的基本RS触发器,所以,触发信号是低电平有效。若是由或非门构成的基本RS触发器,触发信号是高电平有效。

R d和S d是一次信号,只能一个一个的加,即它们不能同时为低电平。 在R d端加低电平触发信号,R d =0,于是Q =1 ,Q =1和S d=1决定了Q=0 ,触发器置“0”。R d是置“0”的触发器信号。 Q=0以后,反馈回来就可以替代R d=0的作用,R d=0就可以撤消了。所以,R d不需要长时间保留,是一个触发器信号。 在S d端加低电平触发信号,S d=0,于是Q=1 ,Q=1和R d=1决定了Q=0 ,触发器置“1”。但Q=0 反馈回来,S d=0才可以撤消,S d是置“1”的触发器信号。 如果是由或非门构成的基本RS触发器,触发信号是高电平有效。此时直接置“0”端用符号Rd;直接置“1”端用符号Sd。 4 真值表和特征方程 以上过程,可以用真值表来描述,见上表。表中的Q n和Q n表示触发器的现在状态,简称现态;Qn+1和Qn+1表示触发器在触发脉冲作用后输出端的新状态,简称次态。对于新状态Qn+1而言,Qn也称为原状态。 上表真值表表中Qn=Qn+1表示新状态等于原状态,即触发器没有翻转,触发器的状态保持不变。必须注意的是,一般书上列出的基本RS触发器的真值表中,当R d =0、S d=0时,Q 的状态为任意态。这是指当R d、S d同时撤消时,Q端状态不定。若当R d=0、S d =0时,Q =1,状态都为“1”,是确定的。但这一状态违背了触发器Q端和Q端状态必须相反的规定,是不正常的工作状态。若R d、S d不同时撤消时,Q端状态是确定的,但若R d、S d同时撤消时,Q端状态是不确定的。由于与非门响应有延迟,且两个门延迟时间不同,这时哪个门先动做了,触发器就保持该状态,这一点一定不要误解。但具体可见例1 。 把上表所列逻辑关系写成逻辑函数式,则得到

单稳态触发器与施密特触发器原理及应用(doc 8页)

单稳态触发器与施密特触发器原理及应用(doc 8页)

CD4047BE 单稳态触发器原理及应用 多谐振荡器是一种自激振荡电路。因为没有稳定的工作状态,多谐振荡器也称为无稳态电路。具体地说,如果一开始多谐振荡器处于0状态,那么它在0状态停留一段时间后将自动转入1状态,在1状态停留一段时间后又将自动转入0状态,如此周而复始,输出矩形波。 图6.4.1 对称式多谐振荡器电路 对称式多谐振荡器是一个正反馈振荡电路[图6.4.1,]。和是两个反相器,和是两个耦合电容,和是两个反馈电阻。只要恰当地选取反馈电阻的阻值,就可以使反相器的静态工作点位于电压传输特性的转折区。上电时,电容器两端的电压和均为0。假设某种扰动使有微小的正跳变,那么经过一个正反馈过程,迅速跳变为,迅速跳变为,迅速跳变为,迅速跳变为,电路进入第一个暂稳态。电容和开始充电。的充电电流方向与参考方向相同, 正向增加;的充电电流方向与参考方向相反,负向增加。随着的正向增加,从逐渐上升;随着的负向增加,从逐渐下降。因为经和两条支路充电而经一条支路充电,所以充电速度较快,上升到时还没有下降到。上升到使跳变为。理论上,向下跳变,也将向下跳变。考虑到输入端钳位二极管的影响,最多跳变到。下降到使跳变为,这又使从向上跳变

,即变成,电路进入第二个暂稳态。经一条支路反向充电(实际上先放电再反向充电),逐渐下降。经和两条支路反向充电(实际上先放电再反向充电),逐渐上升。的上升速度大于的下降速度。当上升到时,电路又进入第一个暂稳态。 此后,电路将在两个暂稳态之间来回振荡。 非对称式多谐振荡器是对称式多谐振荡器的简化形式[图6.4.6]。这个电路只有一个反馈电阻和一个耦合电容。反馈电阻使的静态工作点位于电压传输特性的转折区,就是说,静态时,的输入电平约等于,的输出电平也约等于。因为的输出就是的输入,所以静态时也被迫工 作在电压传输特性的转折区。 图6.4.6 非对称是多谐振荡器电路 环形振荡器[图6.4.10]不是正反馈电路,而是一个具有延迟环节的负反馈电路。 图6.4.10 最简单的环形振荡器

应用555定时器组成施密特触发器

课程设计任务书 学生班级:学生姓名:学号 设计名称:应用555定时器组成施密特触发器 起止日期:指导教师:

摘要 施密特触发器是一种用途十分广泛的脉冲单元电路。利用它所具有的电位触发特性,可以进行脉冲整形,把边沿不够规则的脉冲整形为边沿陡峭的矩形脉冲(图4);通过它可以进行波形变换,把正弦波变换成矩形波;另一个重要用途就是进行信号幅度鉴别,只要信号幅度达到某一设定值,触发器就翻转,所以常称它为鉴幅器。用施密特触发器还能组成多谐振荡器和单稳态触发器。施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。为此,同学们通过书籍查阅了解到有多种方法可以组成施密特触发器,然后通过比较各种方案后,用555定时器组成施密特触发器,并通过去实验室实验和老师的指导了解到⑴施密特触发器有两个稳定状态,其维持和转换完全取决于输入电压的大小。⑵电压传输特性特殊,有两个不同的阈值电压(正向阈值电压和负向阈值电压。⑶状态翻转时有正反馈过程,从而输出边沿陡峭的矩形脉冲 关键词:施密特触发器,555定时器,阈值电压。

目录 一:绪论 (4) 二:555定时器组成施密特触发器 2.1设计任务、要求及目的 (5) 2.2 555定时器 (5) 2.3 设计施密特触发器的方案 (7) 2.4 主要参数 (8) 2.5 制作原理图 (8) 2.6制作PCB版 (9) 2.6.1 制作步骤 2.6.2 制作过程中遇到的问题、原因及解决办法 三:结论 (10) 四:参考文献 (11) 五:附录 (11)

相关文档
最新文档