第二章.电路分析方法

合集下载

(完整版)第二章电路分析方法

(完整版)第二章电路分析方法

第二章电路的分析方法电路分析是指在已知电路构和元件参数的情况下,求出某些支路的电压、电流。

分析和计算电路可以应用欧姆定律和基尔霍夫定律,但往往由于电路复杂,计算手续十分繁琐。

为此,要根据电路的构特点去寻找分析和计算的简便方法。

2.1 支路电流法支路电流法是分析复杂电路的的基本方法。

它以各支路电流为待求的未知量,应用基尔霍夫定律(KCL 和KVL )和欧姆定律对结点、回路分别列出电流、电压方程,然后解出各支路电流。

下面通过具体实例说明支路电流法的求解规律。

例2-1】试用支路电流法求如图2-1 所示电路中各支路电流。

已知U S1 130V ,U S2 117V ,R1 1 ,R2 0.6 ,R 24 。

【解】该电路有3 条支路(b=3),2个结点(n=2),3 个回路(L=3 )。

先假定各支路电流的参考方向和回路的绕行方向如图所示。

因为有3 条支路则有3 个未知电流,需列出3 个独立方程,才能解得3个未知量。

根据KCL 分别对点A、B 列出的方程实际上是相同的,即结点A、B 中只有一个结点电流方程是独立的,因此对具有两个结点的电路,只能列出一个独立的KCL 方程。

再应用KVL 列回路电压方程,每一个方程中至少要包含一条未曾使用过的支路(即没有列过方程的支路)的电流或电压,因此只能列出两个独立的回路电压方程。

根据以上分析,可列出3 个独立方程如下:结点A I1 I2 I 0回路ⅠI1R1 I2R2 U S1 U S2回路ⅡI2 R2 IR U S2I1 10A, I2 5A, I=5A 联立以上3 个方程求解,代入数据解得支路电流通过以上实例可以总出支路电流法的解题步骤是:1.假定各支路电流的参考方向,若有n个点,根据KCL 列出(n-1)个结点电流方程。

2.若有b 条支路,根据KVL 列(b-n+1)个回路电压方程。

为了计算方便,通常选网孔作为回路。

5 3.解方程组,求出支路电流。

【例 2-2】如图 2-2 所示电路,用支路电流法求各支路电流。

电路的分析方法

电路的分析方法

I3
I2
R3
R1 R2
++
B
R4 -
I5 R5
E1 -
- E2 I4 C
+ E5
结点电流方程:
A点: I1 I 2 I3 B点: I3 I 4 I5
设: VC 0 V
则:各支路电流分别为 :
I1
E1 VA R1

I2
VA E2 R2
I3
VA VB R3

I
4
VB R4
I5
VB E5 R5
独立方程只有 1 个
独立方程只有 2 个
小结
设:电路中有N个节点,B个支路 则:独立的节点电流方程有 (N -1) 个
独立的回路电压方程有 (B -N+1)个
+ R1
- E1
a R2 +
R3 E2 _
b
N=2、B=3
独立电流方程:1个 独立电压方程:2个
(一般为网孔个数)
讨论题
+ 3V -
4V I1
I2
abda :
I1
I6
E4 I4R4 I1R1 I6R6
a
R6
c
bcdb :
I3 I4
I5
0 I2R2 I5R5 I6R6
d
+E3
R3
adca : E3 E4 I3R3 I4R4 I5R5
电压、电流方程联立求得: I1 ~ I6
支路电流法小结
解题步骤
结论
1 对每一支路假设 1. 假设未知数时,正方向可任意选择。
E Ro
E 0
(等效互换关系不存在)
a Uab' b

第二章电路的分析方法(答案)

第二章电路的分析方法(答案)

第⼆章电路的分析⽅法(答案)第⼆章电路的分析⽅法本章以电阻电路为例,依据电路的基本定律,主要讨论了⽀路电流法、弥尔曼定理等电路的分析⽅法以及线性电路的两个基本定理:叠加定理和戴维宁定理。

1.线性电路的基本分析⽅法包括⽀路电流法和节点电压法等。

(1)⽀路电流法:以⽀路电流为未知量,根据基尔霍夫电流定律(KCL)和电压定律(KVL)列出所需的⽅程组,从中求解各⽀路电流,进⽽求解各元件的电压及功率。

适⽤于⽀路较少的电路计算。

(2)节点电压法:在电路中任选⼀个结点作参考节点,其它节点与参考节点之间的电压称为节点电压。

以节点电压作为未知量,列写节点电压的⽅程,求解节点电压,然后⽤欧姆定理求出⽀路电流。

本章只讨论电路中仅有两个节点的情况,此时的节点电压法称为弥尔曼定理。

2 .线性电路的基本定理包括叠加定理、戴维宁定理与诺顿定理,是分析线性电路的重要定理,也适⽤于交流电路。

(1)叠加定理:在由多个电源共同作⽤的线性电路中,任⼀⽀路电压(或电流)等于各个电源分别单独作⽤时在该⽀路上产⽣的电压(或电流)的叠加(代数和)。

①“除源”⽅法(a)电压源不作⽤:电压源短路即可。

(b)电流源不作⽤:电流源开路即可。

②叠加定理只适⽤于电压、电流的叠加,对功率不满⾜。

(2)等效电源定理包括戴维宁定理和诺顿定理。

它们将⼀个复杂的线性有源⼆端⽹络等效为⼀个电压源形式或电流源形式的简单电路。

在分析复杂电路某⼀⽀路时有重要意义。

①戴维宁定理:任何⼀个线性含源的⼆端⽹络,对外电路来说,可以⽤⼀个理想电压源和⼀个电阻的串联组合来等效代替,其中理想电压源的电压等于含源⼆端⽹络的开路电压,电阻等于该⼆端⽹络中全部独⽴电源置零以后的等效电阻。

②诺顿定理:任何⼀个线性含源的⼆端⽹络,对外电路来说,可以⽤⼀个理想电流源和⼀个电阻的并联组合来等效代替。

此理想电流源的电流等于含源⼆端⽹络的短路电流,电阻等于该⼆端⽹络中全部独⽴电源置零以后的等效电阻。

3 .含受控源电路的分析对含有受控源的电路,根据受控源的特点,选择相应的电路的分析⽅法进⾏分析。

第2章 电路分析基础(张永瑞)(第三版)

第2章 电路分析基础(张永瑞)(第三版)

为 i1, i2, i3, 其参考方向标示在图上。就本例而言,问题是如
何找到包含未知量 i1, i2, i3 的 3个相互独立的方程组。
第二章 电路的基本分析方法
图 2.1-2 支路电流法分析用图
第二章 电路的基本分析方法
根据KCL,对节点 a 和 b 分别建立电流方程。设流出
节点的电流取正号,则有
第二章 电路的基本分析方法
解出支路电流之后,再要求解电路中任何两点之间的电 压或任何元件上消耗功率那就是很容易的事了。例如, 若再要求解图 2.1-2 电路中的 c 点与 d 点之间电压ucd 及 电压源 us1所产生的功率 Ps1,可由解出的电流i1、i2、i3 方 便地求得为
ucd R1i1 R2i2 ps1 us1i1
i1 i2 i3 0
(2.1-7)
(2.1-7)式即是图2.1-2 所示电路以支路电流为未知量的足够的 相互独立的方程组之一,它完整地描述了该电路中各支路电 流和支路电压之间的相互约束关系。应用克莱姆法则求解 (2.1-7)式。系数行列式Δ和各未知量所对应的行列式Δj(j=1, 2,
个节点列KCL方程时,规定流出节点的电流取正号,流入节
点的电流取负号,每一个支路电流在n个方程中一定出现两 次, 一次为正号(+ij), 一次为负号(-ij), 若把这n个方程相加,
它一定是等于零的恒等式,即
第二章 电路的基本分析方法
( i ) [( i ) ( i )] 0
第二章 电路的基本分析方法
2.1.2 独立方程的列写
一个有n个节点、b条支路的电路,若以支路电流作未知
变量, 可按如下方法列写出所需独立方程。
(1) 从 n 个节点中任意择其n-1个节点,依KCL列节点电

电工学 第二章 电路的分析方法

电工学  第二章 电路的分析方法
返回
例4、用叠加原理求图示电路中的I。 1mA 4kΩ + 10V - 2kΩ I 2kΩ
2kΩ
解:
电流源单独作用时 电压源单独作用时: 10 2 44 mA 1 257mA II 1 mA .0.25mA 4 2 [2+4//2] 4 4 2 [(2+2)//2] 2 I=I′+I″= 1.507mA
返回
第三节 电压源与电流源的等 效变换
等效变换的概念 二端电阻电路的等效变换 独立电源的等效变换 电源的等效变换 无源二端网络的输入电阻 和等效电阻
返回
一、等效变换的概念
1、等效电路
两个端口特性相同,即端口对外的 电压电流关系相同的电路,互为等效电 路。
返回
2、等效变换的条件 对外电路来说,保证输出电压U和 输出电流I不变的条件下电压源和电流 源之间、电阻可以等效互换。
1 1 2 2 S
-US+R2I2+R3I3+R4I4 =0
返回
第二节 叠加原理
叠加原理
原理验证
几点说明
返回
一、叠加原理
在由多个 独立电 源共同 作用的 线性 电路中,任一支路的电流(或电压)等于各 个独立电源分别单独作用在该支路中产 生的电流(或电压)的叠加(代数和) 。
不作用的恒压源短路,不作用的恒流 源开路。
US2单独作用
= 4/3A
返回
三、几点说明
叠加原理只适用于线性电路。
电路的结构不要改变。将不作用的恒压
源短路,不作用的恒流源开路。
最后叠加时要注意电流或电压的方向:
若各分电流或电压与原电路中电流或
电压的参考方向一致取正,否则取负。 功率不能用叠加原理计算。

第二章 电路的分析方法

第二章  电路的分析方法

电路分析基础
回路电流法求解电路的步骤
选取自然网孔作为独立回路,在网孔中标出各回路电流
的参考方向,同时作为回路的绕行方向; 支路上的互阻压降由相邻回路电流而定;
建立各网孔的KVL方程,注意自电阻压降恒为正,公共 联立求解方程式组,求出各假想回路电流. .
它们与回路电流之间的关系,求出各支路电流.
返节目录
电路分析基础
思考 练习
用结点电压法求解下图所示电路,与回路电流法相比较, 能得出什么结论? US3 R I A+ - 3 3 B
IS1 I1
R1
I4
R4
I5
R5
I2
R2
IS2
此电路结点n=3,用 结点电压法求解此电 路时,只需列出3-1=2 个独立的结点电压方 程式:
U S3 1 1 1 1 ( + + )V A V B = I S1 + R1 R 3 R 4 R3 R3 ( U 1 1 1 1 + + )V B V A = I S2 S3 R 2 R3 R5 R3 R3
返节目录
电路分析基础
结点电压法应用举例
用结点电压法求解结点n=2的复杂电路时,显然只需 列写出2-1=1个结点电压方程式,即: US

① I2 R2 + US2 _ I3 R3 I4 R4
-
V1 =
∑R ∑
S
I1 R1 + US1 _
1 R
+
US4
此式称弥尔曼 定理.是结点 电压法的特例
直接应用弥尔曼定理求V1
返节目录
电路分析基础
第1节 支路电流法
定义
以支路电流为未知量,根据基尔霍夫两定律列出必 要的电路方程,进而求解客观存在的各支路电流的方 法,称支路电流法 支路电流法.

第2章 第1、2节 电路的分析方法

第2章  第1、2节 电路的分析方法

第二节 电压源和电流源
六、几种特殊情况
+
E1 E2
+ +
-
-
-
E
Is1 IS2
Is
+
+
R
R
E
-
-
E
Is
Is
第二节 电压源和电流源
六、几种特殊情况
+ Is E
+
Is
+
E
Is
-
-
E
-
第二节 电压源和电流源
七、例题 P18 例2 —4
八、作业
1、P31
2 —7
第二节 电压源和电流源
2、有两个直流电压源并联向负载电阻RL=9Ω供 、有两个直流电压源并联向负载电阻R =9Ω 电,如图示。E =120V, =2Ω 电,如图示。E1=120V,R01=2Ω,E2=240V, 240V, R02=2Ω。求负载RL上流过的电流IL。 =2Ω。求负载R + E1 R01 + R02 IL E2 R L
第二节 电压源和电流源
2、理想电压源 2)特点 流过外电路的电流是由外电路决定。 3)理想电压源的电路符号及伏安特性
+ E - 0
I U
R
U
E
U=E I
第二节 电压源和电流源
理想电压源的伏安特性表明:负载电阻发 生变化时,负载电流发生变化,但端电压 始终保持不变。
第二节 电压源和电流源
3、实际电压源 理想电压源是不存在的,任何电源都有内阻。实 际电压源可视为由一个理想电压源和一个内阻串 联而成。 1)符号
第二节 电压源和电流源
四、电流源的并联
a R01 R02 R03 R0 b

第二章(1)电路基本分析方法

第二章(1)电路基本分析方法

I3
U s1
R1
R2
I2

U s3
R3

1
3
2

2.1.1 电路图与拓扑图

R2
① R3
R4
R5

R6 ④
U s1
R1
实际电路图

2
4

5

3
6

1
对应的线图
线图是由点(节点)和线段(支路)组成,反映实际 电路的结构(支路与节点之间的连接关系)。
有向图
如果线图各支路规定了一个方向(用 箭头表示,一般取与电路图中支路电流 方向一致),则称为有向图。
回路2:I3×R3+US3-I4×R4+I2×R2=0
回路3:I4×R4+I6×R6-I5×R5=0
网孔回路电压方程必为独立方程。
网孔回路电压方程数=b(支路数)-n(节点数)+1
解出支路电流
4>. 由n­1个节点电流方程和b­n+1个网孔电压方程(共b
个方程)可解出b个支路电流变量。
R3
I 3
U s3
第二章(1) 电路基本分析方法
本章内容
1.网络图论初步 2.支路电流法 3.网孔电流法 4.回路电流法 5.节点电压法
2.1 网络图论的概念
图的概念:对于一个由集中参数元件组成的电网络,
若用线段表示支路,用黑圆点表示节点,由此得到一
个由线条和点所组成的图形,称此图为原电网络的拓
扑图,简称为图。
I1 ①
- I1 + I2 - I3 =0
I1 -10+3× I2 =0 3×I2 +2× I3 -13=0
解得: I1 =1A, I2 =3A, I3 =2A

第二章电路定理及分析方法lqx

第二章电路定理及分析方法lqx

2
3
2A 2A
6
1A
4
1 I
2
4
I
1 4A
1A
电路分析 方法
解:
2 2
2
4
I 1
+ 8V -
4
1A
I
1
4A
1A
2
I 2A 1A 4 4 1 3A 2
I 1
2 I 3A 2A 21
电路分析 方法
等效电路
3V

3V
3V
2A
3V
(a)
(b)
3V 2A 2A
I 3 I1 I 4 0
I4 I2 I5 0
I1
R1
I2 1
R2 + US2 2 I6 R6
US1 +
I5 I3 I6 0
-
R1 I1 R2 I 2 R4 I 4 US1 US2 0 d R6 I 6 R5 I 5 R2 I 2 US2 0 US3 R3 I 3 R4 I 4 R5 I 5 0

(1)应用KCL列(n-1)个结点电流方程 对结点 a: I1 – I2 –IG = 0 对结点 b: I3 – I4 +IG = 0 c 对结点 c: I + I – I = 0 2 4 (2)应用KVL选网孔列回路电压方程 对网孔abda:IG RG – I3 R3 +I1 R1 = 0 对网孔acba:I2 R2 – I4 R4 – IG RG = 0 对网孔bcdb:I4 R4 + I3 R3 = E
§2.2
基本分析方法
一、 支路电流法
未知数:各支路电流

电工技术 第二章电路的分析方法

电工技术 第二章电路的分析方法

戴维南定理和诺顿定理
总结词
戴维南定理和诺顿定理是两种等效电源定理,它们可 以将复杂电路简化为一个等效的电源和一个电阻的串 联或并联形式,从而简化电路分析。
详细描述
戴维南定理将一个线性有源二端网络等效为一个电压 源和一个电阻的串联形式,其中电压源的电压等于二 端网络的开路电压,电阻等于网络内部所有独立源为 零时的等效电阻。诺顿定理则将有源二端网络等效为 一个电流源和一个电阻的并联形式,其中电流源的电 流等于网络的短路电流,电阻与戴维南定理中的电阻 相同。这两种定理在电路分析中有着广泛的应用。
最大功率传输定理
总结词
最大功率传输定理是关于电路中最大功率传输的条件和规律的定理。它表明在一定的电源内阻和负载 电阻条件下,负载电阻可以吸收的最大功率是一定的,且该最大功率发生在负载电阻等于电源内阻时 。
详细描述
最大功率传输定理是分析功率传输问题的基础,它可以帮助我们了解在给定电源内阻和负载电阻的情 况下,如何选择合适的负载电阻以获得最大的功率传输效率。这对于电子设备和系统的设计具有重要 的指导意义。
非线性电容和电感电路的分析
总结词
非线性电容和电感电路是指电容和电感值随电压或电流变 化的电路,其分析方法主要包括等效法和状态变量法。
详细描述
等效法是通过简化电路来分析非线性电容和电感电路的方 法,而状态变量法则通过建立状态方程来求解非线性电容 和电感电路的解。
总结词
在分析非线性电容和电感电路时,需要注意非线性元件的 特性变化和电路的稳定性,以确定电路的工作状态和性能 。
电路的基本物理量
电流
单位时间内通过导体横截面的电荷量, 用符号“I”表示,单位为安培(A)。
电阻
表示导体对电流阻碍作用的物理量, 用符号“R”表示,单位为欧姆 (Ω)。

第2章 电路的分析方法

第2章 电路的分析方法

此方法特别适合结点少支路多的电路。 方法特别适合结点少支路多的电路。
28

用结点电压 法求图示电路 中的电流I。
1)选择参考结点, 选择参考结点,标 出结点电压与支路电流 的正方向。 的正方向。 2)列结点电压方程组
1 1 1 1 28 + )U 1 − U 2 = ( + 10 40 20 20 10 1 1 1 − U 1 + ( + )U 2 = 5 20 20 30
1 r1 r2 2 r3 3
Y-∆
等效变换 R12 2
1 R31 R23 3
当 r1 = r2 = r3 =r , R12 = R23 =R31 =R 时:
1 r= R 3
8
4、实际电源模型间的等效互换
一个实际电源既可用电压源与电阻串联 一个实际电源既可用电压源与电阻串联的电 电压源与电阻串联的电 路模型来表示, 路模型来表示,也可用电流源与电阻并联 也可用电流源与电阻并联的电路 电流源与电阻并联的电路 ' 模型来表示。 模型来表示。即 I I a a RO ' Uab + Uab ' RO US IS b b 等效互换的条件: 等效互换的条件:对外的电压电流相等。 对外的电压电流相等。 即: '
3)求I
U1 − U 2 I= = −2.2 A 20
29
解得 U1=40V , U2=84V

电路如图所 示,求电路结点 2的电位V2。 分析 V1=2V
I2
I1
解:
1 3 1 1 + V2 − V1 = − + 0.5 3 3 3 4
解得: 解得: 验证: 验证: V2=2/7 V=0.29V

电工技术--第二章 电路的分析方法

电工技术--第二章  电路的分析方法
I1
A
R1 Us1 R2
I2
R3 Us2 B
I3
A
I1 '
A
I2' I1"
R1 Us1
R2
R1
R2
I2"
R3
I3'
+
R3 Us2
I3 "
B
B
A
I1
R1 R2
A
I2
R3
A
I2'
R3
I1' I3
R1
R2
I1" I3'
R1
R2
I2"
R3
Us1 Us2
=
Us1
+
Us2
I3"
B
B
B
解: I1
U S1 R 2R 3 R1 + R2 + R3
例1 :
I1 R1 I3
a
I2 R2 R3 2 +
对结点 a: I1+I2–I3=0 对网孔1: I1 R1 +I3 R3=E1 E2 对网孔2: I2 R2+I3 R3=E2
+ E1
-
1
-
b
联立求解各支路电流
例:试求各支路电流。
a
c
支路中含有恒流源 I3 注意:当支路中含有恒流源 时,若在列KVL方程时,所选 回路中不包含恒流源支路
+
U -
I RL
Ro Uo
+
+ _
I RL
网络
U B
B 有源二端网络
戴维南等效电路
任意一个线性有源二端网络对外都可等 效为等效电压源。

电工技术(第三版席时达)教学指导、习题解答第二章.docx

电工技术(第三版席时达)教学指导、习题解答第二章.docx

第二章电路分析方法【引言】①电路分析是指在已知电路结构和元件参数的条件下,确定各部分电压与电流之间的关系。

②电路按结构形式分简单电路——单回路电路。

用欧姆定律即可解决。

复杂电路——不能用串并联的方法将多个回路化简为单回路的电路③ 分析和计算电路原则上可以应用欧姆定律和基尔霍夫定律解决,但往往由于电路复杂,计算手续十分繁琐,还需用到一些其他方法,以简化计算。

本章介绍三种最常用的电路分析方法:支路电流法、叠加定理和戴维宁定理。

学习目的和要求1.掌握用支路电流法分析电路的方法。

2.掌握用叠加定理分析电路的方法3.掌握用戴维南定理分析电路的方法。

2-1支路电流法【讲授】计算复杂电路的各种方法中,最基本的方法是支路电流法。

一、内容:以支路电流为待求量,利用基尔霍夫两条定律,列出电路的方程式,从而解出支路电流。

【说明】因基尔霍夫定律适用于任何电路,故支路电流法是分析复杂电路的一种最基本方法,可以在不改变电路结构的情况下求解任何电路。

〔例 2-1-1 〕试用支路电流法求例1-2-3 的两台直流发电机并联电路中的负载电流I 及每台发电机的输出电流I1和 I2。

〔解〕( 1)假定各支路电流的参考方向如图2-1-1所示。

根据基尔霍夫电流定律列出结点电流方程。

对于结点 A 有12- I=0( 1)I +I对于结点 B 有-I 12- I +I=0【说明】①这两个方程中只有一个是独立的。

另一个可由图 2-1-1②一个独立的电流方程中至少应包含一个在其它方程中没有出现过的新支路电流。

一般情况下,如果电路有 n 个结点,则按基尔霍夫电流定律列出的独立方程数为n-1。

至于选那几个结点列方程,则是任意的。

③本例中选结点 A 的电流方程作为独立方程,把它记作式( 1 )。

(2)根据基尔霍夫电压定律,列出回路的电压方程。

对于回路Ⅰ有I1R1- I2R2+U S2- U S1=0( 2)对于回路Ⅱ有I 2 2S2( 3)R +IR- U =0本例中共有三条支路,也就是有三个待求电流I1、I 2和I,因而有三个方程即可求解。

电工电子技术基础与应用第2章 电路的分析方法

电工电子技术基础与应用第2章   电路的分析方法

72
I=
A = 4A
6 + 12
2.2 支路电流法
1.支路电流法 支路电流法就是以支路电流为变量,根据
基尔霍夫电流定律和基尔霍夫电压定律, 列出节点电流方程和回路电压方程,求解 支路电流的方法。支路电流法是分析电路 最基本的方法之一。 2.支路电流法的解题步骤
2.支路电流法的解题步骤
o
IS
I
31.2 电压源与电流源的等效变换
1.等效变换方法 因为对外接负载来说这两个电源提供的电
压和电流完全相同,所以
因此,一个恒压源US与内阻R0串联的电路 可以等效为一个恒流源IS与内阻RS并联的电
路。如图所示。
I
+
RS
+
U
R
U_S
_
IS
R'S
I +
U
R
_
在电压源和电流源等效过程中,两种电路模 型的极性必须一致,即电流源流出电流的一 端与电压源正极性端对应。
=
6.5V
4、使用叠加定理时的注意事项:
1)只能用来计算线性电路的电流和电压, 对非线性电路,叠加定理不适用。
2)叠加时要注意电流和电压的参考方向, 求其代数和。
3)不能用叠加定理直接计算功率。因为
功率 P I 2 R (I 2 I 2 )R I 2 R I 2 R
理想电流源所在 处开路。
有源二端网络变换为电压源模型后,一个复杂的 电路就变为一个简单的电路,就可以直接用全电 路的欧姆定律,来求取该电路的电流和端电压。
2)当电流源单独作用时,电压源不作用,在该电 压源处用短路代替。
+ US _

第二章电路分析方法和定理

第二章电路分析方法和定理

电路分析基础
用回路法求各支路电流。 用回路法求各支路电流。 I1 R1 + US1 _ I2 R2 Ia + US2 _ I3 Ib R3 Ic I4 R4 + US4 _
解: (1) 设独立回路电流 顺时针 设独立回路电流(顺时针 顺时针)
(2) 列 KVL 方程 (R1+R2)Ia = US1- US2 -R2Ib -R2Ia + (R2+R3)Ib - R3Ic = US2 -R3Ib + (R3+R4)Ic = -US4 (3) 求解回路电流方程,得 Ia , Ib , Ic 求解回路电流方程, (4) 求各支路电流: I1=Ia , I2=Ib-Ia , I3=Ic-Ib , I4=-Ic 求各支路电流: -
电路分析基础
2.2 网孔电流法 (net current method )
网孔电流法: 网孔电流法:以网孔电流为未知量列写电路方程分析电路 的方法。 的方法。 A I1 R1 Us1 D R2 Us2 B I2 R3 Us3 C
电路分析基础
2.2 网孔电流法 (net current method )
电路分析基础
回路法的一般步骤: 回路法的一般步骤: (1) 选定 -(n-1)个独立回路,并确定其绕行方向; 选定l=b- - 个独立回路 并确定其绕行方向; 个独立回路, (2) 对l个独立回路,以回路电流为未知量,由自、 个独立回路, 个独立回路 以回路电流为未知量,由自、 互电阻列标准回路方程 方程; 互电阻列标准回路方程; (3) 求解上述方程,得到 个回路电流; 求解上述方程,得到l个回路电流 个回路电流; (4) 求各支路电流 用回路电流表示 ; 求各支路电流(用回路电流表示 用回路电流表示); (5) 其它分析。 其它分析。 网孔电流法:对平面电路,若以网孔为独立回路, 网孔电流法:对平面电路,若以网孔为独立回路,此 时回路电流也称为网孔电流, 时回路电流也称为网孔电流 , 对应的分 析方法称为网孔电流法。 析方法称为网孔电流法。

电路分析基础第二章

电路分析基础第二章

- R2il1+ (R2 +R3) il2 =uS2

R11=R1+R2 — 回路1的自电阻。等于回路1中所有电阻之和。 R22=R2+R3 — 回路2的自电阻。等于回路2中所有电阻之和。
自电阻总为正。 R12= R21= –R2 — 回路1、回路2之间的互电阻。 当两个回路电流流过相关支路方向相同时,互电阻取正 号;否则为负号。
(2) 列 KVL 方程
(R1+R2)Ia
-R2Ib
= US1- US2
-R2Ia + (R2+R3)Ib
- R3Ic = US2
-R3Ib + (R3+R4)Ic = -US4
对称阵,且 互电阻为负
(3) 求解回路电流方程,得 Ia , Ib , Ic
(4) 求各支路电流: I1=Ia , I2=Ib-Ia , I3=Ic-Ib , I4=-Ic
0 : 无关
特例:不含受控源的线性网络 Rjk=Rkj , 系数矩阵为对称阵。 (平面电路, Rjk均为负(当回路电流均取顺(或逆)时针方向))
回路法的一般步骤: (1) 选定l=b-(n-1)个独立回路,并确定其绕行方向; (2) 对l个独立回路,以回路电流为未知量,列写其 KVL方程; (3) 求解上述方程,得到l个回路电流; (4) 求各支路电流(用回路电流表示);
-Ib+3Ic=3U2
增补方程: ② U2=3(Ib-Ia)
4Ia-3Ib=2
解得 Ia=1.19A
受控电压源
③ -12Ia+15Ib-Ic=0 9Ia-10Ib+3Ic=0
Ib=0.92A Ic=-0.51A
看作独立电 压源列方程

第二章电路的分析方法

第二章电路的分析方法

G1G3 G1 G2 G3
对于由三个相等的电阻组成的三端电阻网络 △→Y的等效变换 Y→△的等效变换
RY
1 R 3
R 3RY
例:如图所示网络,已知R1=R3=R4=6Ω,
R2=R5=R6=2Ω,试求端钮a 、b间的等效电阻R0。

R5 R4 R6
a

a
6Ω 6Ω 6Ω
R1
I1 I2
R1 Im1
- US1+
解:
R3 - US3+
- US2+ R4 Im2 R5 I5
( R1 R3 ) Im1 R3 Im3 U S1 U S 3 U S 2 (R4 R5 ) Im2 R4 Im3 U S 2 U S 4
Im3 US4 R6 I6 +
R3 Im1 R4 Im2 (R3 R4 R6 ) Im3 U S 3 U S 4
I 1
a R 2
I 2 +
解: 当电流源出现在边缘时,不列写该网孔 的方程 -R1IS1+(R1+R3)Im2-R3Im3=0
I1 s
I 4
R 1
I 3
R 3
E 2 -
b
-R3Im2+(R2+R3)Im3=-E2
U 1 1 1 1 1 )U n1 U n2 U n3 I S1 S 6 R1 R4 R6 R4 R6 R6 U 1 1 1 1 1 U n1 ( )U n 2 U n3 S 2 R4 R2 R4 R5 R5 R2
两式相减得: R0‘IS -E -(R0‘-R0)I =0
R0=R0‘ E=R0‘IS 2 电压源变换为电流源 用同样的分析方法可知

第2章 电路的分析方法1.电路的连接2.电压源和电流源3.支路电...

第2章 电路的分析方法1.电路的连接2.电压源和电流源3.支路电...

U U R1 U 1 R1 I R1 R1 U R R1 R2 R1 R2 两个电阻串联时的分压公式:
R1 U1 U R1 R2
I + U – + U1 R1 – + U2 R 2 –
R2 U2 U R1 R2
I + U – R
8
第2章
电路的分析方法
例 2-1 有一个电表的表头,其内阻R g=5kΩ,允许 通过的最大电流(这时表头指针偏转到满刻度) I g =200μA. 。问直接用这个表头可以测多大的电压? 如果要求用来测量 10V以下(包括 10V)的电压, 则应串入多大的电阻?
4
第2章
电路的分析方法
电阻的串联和并联
一、电阻的串联:
Req R1 R2 Rn Rk
k 1 n
二、电阻的并联:
n 1 1 1 1 1 Req R1 R2 Rn k 1 Rk
5
第2章
电路的分析方法
2.1 电阻的连接
在电阻电路中,电阻的连接形式多种多样,其中最简 单的连接方式是串联和并联 2.1.1 电阻的串联 几个电阻依次首尾相接,中间没有节点,不产生分支 电路,这种连接方式叫串联,其重要特点是在电源作 用下,串联电路中的电流是处处相等的。 1.串联电阻的等效化简 对于多个串联电阻来说,可以用一个等效电阻R来代 替,该等效电阻R可以用KVL很容易计算出来,等效 电阻的值等于串联电路中各电阻之和
R
+ U I I1 R1 R2 I2 + U 11
第2章
电路的分析方法
I
R1 R 2 R1 R 2
R
图 2-3 并联电阻的等效简化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E2 + U I2 R2

E2

R2 IS
I3
+
R1 I2
+
R3 U
b

U I3 R3
E1
+ –
+
R1
将各电流代入KCL方程则有:
E1 - U E2 + U U + IS R1 R2 R3
U
I1

整理得:
E1 E2 + IS R1 R 2 U 1 1 1 + + R1 R 2 R 3
第2章 电路的分析方法
2.1 支路电流法 2.2 节点电压法 2.3 叠加原理 2.4 戴维宁定理与诺顿定理
2.1 支路电流法
支路电流法: 以支路电流为未知量、应用KCL、KVL列方程组求解。
I1 +
a I3 b
I2
R1
1
R2 3 R3 2
+ E2
E1
-
对上图电路 支路数:b=3
结点数:n =2
回路数 = 3 单孔回路(网孔)=2 若用支路电流法求各支路电流应列出三个方程
(理想电压源短路,理想电流源开路)
例1:
IG
a IG G RG b
+
G
RG
+
已知:R1=5 、 R2=5 R3=10 、 R4=5 E=12V、RG=10 试用诺顿定理求检流计中的电 流IG。
E
– E –
有源二端网络
解: (1) 求短路电流IS
I1
I3 I4 I2
a
R =(R1//R3) +( R2//R4 ) = 5. 8
I3 注意:当支路中含有恒流源 时,若在列KVL方程时,所选 回路中不包含恒流源支路
(1)应用KCL列结点电流方程 对结点a: I1 + I2 –I3 = – 7 (2)应用KVL列回路电压方程 对回路1:12I1 – 6I2 = 42 对回路2:6I2 + 3I3 = 0
(3)联立解得:I1= 2A, I2= –3A, I3=6A
支路电流法的解题步骤: 1. 在图中标出各支路电流的参考方向,对选定的回路 标出回路循行方向。 2. 应用KCL对结点列出( n-1 )个独立的结点电流方程。 3. 应用KVL对回路列出b-( n-1 )个独立的回路电压方程 (通常可取网孔列出)。 4. 联立求解b个方程,求出各支路电流。
例1 :
即结点电压方程:
E + IS U R 1 R
注意: (1)上式仅适用于两个结点的电路。 (2)分子为各支路短路后的支路电流代数和。 电流流入结点为正,流出为负(Es从“+”极流出) (3)分母为所有支路电阻倒数之和(与恒流源串联的电阻除外)
例1: 电路如图:
已知:E1=50 V、E2=30 V E1 IS1=7 A、 IS2=2 A – R1=2 、R2=3 、R3=5 R 1 试求:各电源元件的功率。 解:(1)求结点电压 Uab
电路如图,已知E1=40V,E2=20V,R1=R2=4, 例 1: R3=13 ,试用戴维宁定理求电流I3。
+ + E1 E2 – – R3 I1 R1 I2 R2 b
有源二端网络
a
a
I3
R0
Uoc
+ _ b
R3
I3
等效电源
注意:“等效”是指对端口外等效 即用等效电源替代原来的二端网络后,待求支路的 电压、电流不变。
2.2 结点电压法
结点电压的概念: 任选电路中某一结点为零电位参考点,其他各结点对参考点的 电压,称为结点电压。 结点电压法:以结点电压为未知量,列方程求解。 结点电压的参考方向从结点指向参考结点。
求出结点电压后,可应用基尔霍夫定律或欧姆定律求出各支路 的电流或电压。
+ E – R1
a R2 b I2 IS
当 US = 1V、IS=1A 时, 得 0 = K1 1 + K2 1 当 US =10 V、IS=0A 时,得 1 = K1 10+K2 0
联立两式解得: K1 = 0.1、K2 = – 0.1
所以 Uo = K1US + K2 IS = 0.1 0 +(– 0.1 ) 10 = –1V
+ E – R3
+ E – R1
a R2 IS R3 b
有源二端网络
b
无源二端网络
无源 二端 网络
a R b + _E a
a
无源二端网络可 化简为一个电阻
b
电压源 (戴维宁定理)
有源 二端 网络
a
b
R0 b a
IS R0
有源二端网络可 化简为一个电源 电流源 (诺顿定理)
b
一、戴维宁定理
任何一个有源二端线性网络都可以用一个理想电压源和一 个电阻串联的电源来等效代替。 a I 有源 二端 网络
I1 R1 1 I3
a
I2 R2 R3 2 +
对结点 a: I1+I2–I3=0 对网孔1: I1 R1 +I3 R3=E1 E2 对网孔2: I2 R2+I3 R3=E2
+ E1
-
-
b
联立求解各支路电流
例2:试求各支路电流。 支路中含有恒流源
a
c
+
42V

1
12
6 I1 b
I2
7A
2 3 d
E 2 IG A 0.126 A R0 + RG 5 .8 + 10
二、诺顿定理
对外部电路而言,任何一个有源二端线性网络都可以用 一个理想电流源和一个电阻并联的电源来等效代替。
有源 二端 网络
a I + U – b
aI + RL IS R0 U RL

等效电源
b
IS : 有源二端网络的短路电流, 即将a 、b短接后的短路电流。 R0: 端口内除去所有电源后端口处的等效电阻。
(b)E单独作用将IS断开
(c)IS单独作用将E 短接
R3 5 IS 1 0 .5 A 由图(c) I 2 R2 + R3 5+5
I2 R3 1 5V 5V US
I 2 R3 0.5 5V 2.5V US
- I2 1A - 0.5 A 0.5 A 所以 I 2 I 2
+ US 5V + 2.5V 7.5 V US US
例2:

US
+ + Uo -
线性无
IS
源网络
已知: US =1V、IS=1A 时, Uo=0V US =10 V、IS=0A 时,Uo=1V 求:US = 0 V、IS=10A 时, Uo=?
解:电路中有两个电源作用,根据叠加原理可设 Uo = K1US + K2 IS
例1:已知 E =10V、IS=1A ,R1=10 ,R2= R3= 5 试用叠加原 理求流过 R2的电流 I2和理想电流源 IS 两端的电压 US。 R2 R2 R2
E
+

R1
I2 R3 IS
(a)
+
US
E
+


R1
I2 ' R3
+ –
US'
R1
I2 R3 IS
+ –
US
E 10 A 1A 解:由图(b) I 2 R2 + R3 5 + 5
IS
b
R3 10 I1 I 2 . 07 A 1 . 38 A R1 + R3 10 + 5
E 12 I A 2 –
IS = I1 – I2 =1. 38 A–1.035A=0.345A a
+
E

R1
IS
I1
I2
R2
= –
R1
E
+
I1'
I2 ' R2
+
R1
I1'' IS
I2'' R2
(a) 原电路
(b) E 单独作用 I2 = I2' + I2''
(c) IS单独作用
根据叠加原理 I1 = I1' + I1''
由图(b)当E 单独作用时 由图(c)当IS单独作用时 R2 " E R1 ' ' " I I I1 I 2 I2 IS 1 S R + R R1 + R2 R1 + R2 1 2 E R1 E R2 ' " ' '' I1 I1 + I1 I S 同理:I2 = I2 + I2 + IS R1 + R2 R1 + R2 R1 + R2 R1 + R2
a _
PS1= UI1 IS1 = Uab IS1 = 24 7 W= 168 W (发出功率)
PS2= UI2 IS2 = (Uab– IS2 R3) IS2 = 14 2 W= 28 W (因电流 IS2 从UI2的“–”端流出,所以取用功率)
2.3 叠加原理
叠加原理:在多个电源共同作用的线性电路中,任一支路的 电流(电压)等于各个电源分别单独作用时,在该支路中所产 生的电流(电压)的代数和。
I3 R3
I1
在左图电路中只含有 两个结点,若设 b 为参 考结点,则电路中只有 一个未知的结点电压。
相关文档
最新文档