初中数学中考总复习:圆综合复习--巩固练习题及答案(基础)

合集下载

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10√5D.12√33.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()A.90°B.100°C.130°D.140°4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()A.46°B.56°C.36°D.26°5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()A.6 √3B.6 √2C.9 √3D.9 √27.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()A.30°B.35°C.45°D.55°8.∠ABC中∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A.95B.125C.185D.3659.如图,AB为∠O的直径,点C在∠O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°10.两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是() A.外离B.内切C.相交D.外切11.已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.B.C.D.12.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π二、填空题13.在Rt∠ABC中∠C=90°,AB=5,BC=4,求内切圆半径14.如图,∠C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则∠C的半径为.15.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为.16.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.17.如图,在直角坐标系中以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是.18.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图①作射线AB;②在射线AB取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;③以C为圆心,OC C为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.请回答:该尺规作图的依据是.三、综合题19.如图,在△ABC中AC=BC=BD,点O在AC边上,OC为⊙O的半径,AB是⊙O 的切线,切点为点D,OC=2,OA=2√2.(1)求证:BC是⊙O的切线;(2)求阴影部分的面积.20.如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD=54,求EFAC的值.21.如图,四边形ABCD 内接于∠O,BD是∠O的直径,过点A作∠O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE∠CD;(2)已知AE=4cm,CD=6cm,求∠O的半径.22.如图,∠O是∠ABC的外接圆,BC为∠O的直径,点E为∠ABC的内心,连接AE并延长交∠O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为∠O的切线.23.公元前5世纪,古希腊哲学家阿那克萨哥拉因“亵渎神灵罪”而被投人监狱,在狱中他对方铁窗和圆月亮产生了兴趣.他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大,于是伟大的古希腊尺规作图几何三大问题之--的化圆为方问题诞生了:作一个正方形,使它的面积等于已知圆的面积(1)设有一个半径为√3的圆,则这个圆的周长为,面积为,作化圆为方得到的正方形的边长为(计算结果保留π)(2)由于对尺规作图的限制(只能有限次地使用没有刻度的直尺和圆规进行作图),包括化圆为方在内的几何三大问题都已被证明是不可能的.但若不受标尺的限制,化圆为方并非难事。

中考数学《圆》专项复习综合练习题-附带答案

中考数学《圆》专项复习综合练习题-附带答案

中考数学《圆》专项复习综合练习题-附带答案一、单选题1.如图,圆O是△ABC的外接圆,∠A=68°,则∠BOC的大小是()A.22°B.32°C.136°D.68°2.已知两圆半径分别为4和7,圆心距为3 ,那么这两个圆的位置关系是()A.内含B.内切C.相交D.外切3.如图,已知线段OA交⊙O于点B,且OB=AB 点P是⊙O上的一个动点,那么∠OAP的最大值是A.90°B.60°C.45°D.30°4.如图,半径为5的⊙A中,DE=2 √5,∠BAC+∠EAD=180°,则弦BC的长为()A.√21B.√41C.4 √5D.3 √55.如图,点D E F分别在△ABC的三边上,AB=AC∠A=∠EDF=90°与∠EFD=30°AB=1下列结论正确的是()A.BD可求BE不可求B.BD不可求BE可求C.BD BE均可求D.BD BE均不可求6.如图,在Rt△ABC中,∠ACB=90° AC=3,以点C为圆心, CA为半径的圆与AB交于点D,若点D恰好为线段AB的中点,则AB的长度为()B.3 C.9 D.6A.327.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,AE=DE, BC=CE,过点O作OF⊥AC于点F,延长FO 交BE于点G ,若DE=6,EG=4,则AB的长为()A.4√5B.8√3C.13 D.148.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形…,重复上述过程,经过2018次后所得到的正六边形边长是原正六边形边长的()A.(√2)2016倍B.(√3)2017倍C.(√3)2018倍D.(√2)2019倍二、填空题9.如图,PA、PB切⊙O于点A、B ,已知⊙O半径为2 且∠APB=60°,则AB= .10.如图,矩形ABCD中,BC=4 CD=2 以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)11.如图,两边平行的刻度尺在圆上移动当刻度尺的一边与直径为6.5cm的圆相切时另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm)则刻度尺的宽为 cm.12.如图,两圆相交于A、B两点小圆经过大圆的圆心O 点C D分别在两圆上若∠ADB=100°则∠ACB的度数为。

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图△ABC内接于⊙O AB、CD是⊙O的直径E是DA长线上一点且∠CED=∠CAB.(1)求证:CE是⊙O的切线;求线段CE的长.(2)若DE=3√5tanB=122.如图在△ABC中AB=AC以AB为直径作⊙O交BC于点D.过点D作DE⊥AC 垂足为E延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;⊙O的半径为5 求线段CF的长.(2)若tanB=123.如图△ABC内接于⊙O直径DE⊙AB于点F交BC于点M DE的延长线与AC的延长线交于点N连接AM.(1)求证:AM=BM;(2)若AM⊙BM DE=8 ⊙N=15° 求BC的长.4.如图△ABC内接于⊙O AB是⊙O的直径D是⊙O上的一点CO平分∠BCD CE⊥AD垂足为E AB与CD相交于点F.(1)求证:CE是⊙O的切线;时求CE的长.(2)当⊙O的半径为5sinB=355.如图1 锐角△ABC内接于⊙O⊙BAC=60°若⊙O的半径为2√3.(1)求BC的长度;(2)如图2 过点A作AH⊙BC于点H若AB+AC=12 求AH的长度.6.如图AB是⊙O的直径M是OA的中点弦CD⊥AB于点M过点D作DE⊥CA交CA的延长线于点E.(1)连接AD则∠AOD=_______;(2)求证:DE 与⊙O 相切;(3)点F 在BC ⏜上 ∠CDF =45° DF 交AB 于点N .若DE =6 求FN 的长.7.如图 AB 是⊙O 的直径 点C 为⊙O 上一点 OF ⊥BC 垂足为F 交⊙O 于点E AE 与BC 交于点H 点D 为OE 的延长线上一点 且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线(2)求证:CE 2=EH ⋅EA(3)若⊙O 的半径为52 sinA =35 求BH 和DF 的长. 8.如图 在⊙ABC 中 ⊙C=90° 点O 在AC 上 以OA 为半径的⊙O 交AB 于点D BD 的垂直平分线交BC 于点E 交BD 于点F 连接DE .(1)求证:直线DE 是⊙O 的切线(2)若AB=5 BC=4 OA=1 求线段DE 的长.9.如图 AB 是⊙O 的直径 弦CD 与AB 交于点E 过点B 的切线BP 与CD 的延长线交于点P 连接OC CB .(1)求证:AE ·EB =CE ·ED(2)若⊙O 的半径为 3 OE =2BE CE DE =95 求tan∠OBC 的值及DP 的长.10.如图菱形ABCD中AB=4以AB为直径作⊙O交AC于点E过点E作EF⊥AD于点F.(1)求证:EF是⊙O的切线(2)连接OF若∠BAD=60°求OF的长.(3)在(2)的条件下若点G是⊙O上的一个动点则线段CG的取值范围是什么?11.如图点C在以AB为直径的半圆O上(点C不与A B两点重合)点D是弧AC的中点DE⊥AB于点E连接AC交DE于点F连接OF过点D作半圆O的切线DP 交BA的延长线于点P.(1)求证:AC∥DP(2)求证:AC=2DE的值.(3)连接CE CP若AE⊙EO=1⊙2求CECP12.如图1 AB为⊙O直径CB与⊙O相切于点B D为⊙O上一点连接AD OC若AD//OC.(1)求证:CD为⊙O的切线(2)如图2 过点A作AE⊥AB交CD延长线于点E连接BD交OC于点F若AB=3AE=12求BF的长.13.已知:如图在⊙O中∠PAD=∠AEP AF=CF AB是⊙O的直径CD⊥AB于点G.(1)求证:AP是⊙O的切线.(2)若AG=4tan∠DAG=2求△ADE的面积.(3)在(2)的条件下求DQ的长.14.如图已知AB是⊙O的直径点E是⊙O上异于A B的点点F是弧EB的中点连接AE AF BF过点F作FC⊙AE交AE的延长线于点C交AB的延长线于点D⊙ADC的平分线DG交AF于点G交FB于点H.(1)求证:CD是⊙O的切线(2)求sin⊙FHG的值(3)若GH=4√2HB=2 求⊙O的直径.15.如图⊙O的两条弦AB、CD互相垂直垂足为E且AB=CD.(1)求证:AC=BD.(2)若OF⊥CD于F OG⊥AB于G问四边形OFEG是何特殊四边形?并说明理由.(3)若CE=1,DE=3求⊙O的半径.16.【问题提出】如图1 △ABC为⊙O内接三角形已知BC=a圆的半径为R 探究a R sin∠A之间的关系.【解决问题】如图2 若∠A为锐角连接BO并延长交⊙O于点D连接DC则∠A=∠D在△DBC中BD为⊙O的直径BC=a所以BD=2R,∠BCD=90°.所以在Rt△DBC中建立a R sin∠D的关系为________________.所以在⊙O内接三角形△ABC中a R sin∠A之间的关系为________________.类比锐角求法当∠A为直角和钝角时都有此结论.【结论应用】已知三角形△ABC中∠B=60°,AC=4则△ABC外接圆的面积为________.17.已知AB为⊙O的直径PA PC是⊙O的的切线切点分别为A C过点C作CD//AB交⊙O于D.(1)如图当P D O共线时若半径为r求证CD=r(2)如图当P D O不共线时若DE=2CE=8求tan∠POA.18.如图1 已知矩形ABCD中AB=2√3AD=3 点E为射线BC上一点连接DE以DE为直径作⊙O(1)如图2 当BE=1时求证:AB是⊙O的切线(2)如图3 当点E为BC的中点时连接AE交⊙O于点F连接CF求证:CF=CD (3)当点E在射线BC上运动时整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值若不存在请说明理由.19.已知四边形ABCD为⊙O的内接四边形直径AC与对角线BD相交于点E作CH⊥BD于H CH与过A点的直线相交于点F∠FAD=∠ABD.(1)求证:AF为⊙O的切线(2)若BD平分∠ABC求证:DA=DC(3)在(2)的条件下N为AF的中点连接EN若∠AED+∠AEN=135°⊙O 的半径为2√2求EN的长.20.如图1 直线l1⊥l2于点M以l1上的点O为圆心画圆交l1于点A B交l2于点C D OM=4 CD=6 点E为弧AD上的动点CE交AB于点F AG⊙CE 于点G连接DG AC AD.(1)求⊙O的半径长(2)若⊙CAD=40° 求劣弧弧AD的长(3)如图2 连接DE是否存在常数k使CE−DE=k·EG成立?若存在请求出k的值若不存在请说明理由(4)若DG⊙AB则DG的长为(5)当点G在AD的右侧时请直接写出⊙ADG面积的最大值.参考答案1.(1)证明:⊙AB是⊙O的直径⊙∠ACB=90°⊙∠CAB+∠B=90°⊙∠CED=∠CAB∠B=∠D⊙∠CED+∠D=90°⊙∠DCE=∠ACB=90°⊙CD⊥CE⊙CD是⊙O的直径即OC是⊙O半径⊙CE是⊙O的切线(2)由(1)知CD⊥CE在Rt△ABC和Rt△DEC中⊙∠B=∠D tanB=12⊙tan∠B=tan∠D=CECD =12⊙CD=2CE在Rt△CDE中CD2+CE2=DE2DE=3√5⊙(2CE)2+CE2=(3√5)2解得CE=3(负值舍去)即线段CE的长为3.2.解:(1)⊙OB=OD⊙∠ABC=∠ODB⊙AB=AC⊙∠ABC=∠ACB⊙∠ODB=∠ACB⊙OD∥AC⊙DE⊥AC OD是半径⊙DE⊥OD⊙DE是⊙O的切线.(2)连接BF AD⊙⊙O的半径为5 AB为直径⊙AB=10∠ADB=90°∠BFC=90°⊙tanB=1设AD=x则BD=2x2在Rt△ABD中由勾股定理得:AD2+BD2=AB2即x2+(2x)2=102解得:x=2√5或x=−2√5(舍去)⊙BD=2x=4√5⊙AB=AC∠ADB=90°⊙BD=CD⊙BC=2BD=8√5由(1)知OD∥AC⊙∠ODB=∠C⊙OB=OD⊙∠B=∠ODB=∠C⊙tanC=tanB=1即CF=2BF2在Rt△BCF中BF2+CF2=BC2即BF2+(2BF)2=(8√5)2解得BF=8或BF=−8(舍去)⊙CF=2BF=16.3.(1)证明:⊙直径DE⊙AB于点F⊙AF=BF⊙AM=BM(2)连接AO BO如图由(1)可得AM=BM⊙AM⊙BM⊙⊙MAF=⊙MBF=45°⊙⊙CMN=⊙BMF=45°⊙AO=BO DE⊙AB∠AOB⊙⊙AOF=⊙BOF=12⊙⊙N=15°⊙⊙ACM=⊙CMN+⊙N=60° 即⊙ACB=60°∠AOB.⊙⊙ACB=12⊙⊙AOF=⊙ACB=60°.⊙DE=8⊙AO=4.得AF=2√3在Rt⊙AOF中由sin∠AOF=AFAO在Rt⊙AMF中AM=√2AF=2√6.得BM= AM=2√6得CM=2√2在Rt⊙ACM中由tan∠ACM=AMCM⊙BC=CM+BM=2√2+2√6.4.(1)证明:⊙弧AC=弧AC⊙∠ADC=∠B.⊙OB=OC⊙∠B=∠OCB.⊙CO平分∠BCD⊙∠OCB=∠OCD⊙∠ADC=∠OCD.⊙CE⊥AD⊙∠ADC+∠ECD=90°⊙∠OCD+∠ECD=90°即CE⊥OC.⊙OC为⊙O的半径⊙CE是⊙O的切线.(2)连接OD得OD=OC⊙∠ODC=∠OCD.⊙∠OCD=∠OCB=∠B⊙∠ODC=∠B⊙CO=CO⊙△OCD≌△OCB⊙CD=CB.⊙AB是⊙O的直径⊙∠ACB=90°⊙AC=AB⋅sinB=10×35=6⊙CB=√AB2−AC2=√102−62=8⊙CD=8⊙CE=CD⋅sin∠ADC=CD⋅sinB=8×35=245.5.解:(1)连接OB OC过点O作OD⊙BC于点D⊙BD =CD =12BC⊙⊙A =60°⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =⊙OCB =180°−∠BOC2=30°⊙OB =2√3⊙BD =OB •cos30°=2√3×√32=3⊙BC =2BD =6.(2)设点G 为此三角形ABC 内切圆的圆心(角平分线的交点) 过G 分别向ABAC BC 作垂线GM GN GQ⊙GM =GN =GQ CQ =CN BQ =BM AM =AN⊙AM +AN =AB +AC -BC =6⊙AM =AN =3.在Rt △AGM 中⊙⊙GAM =30°⊙GM =√3⊙S △ABC =12BC •AH =S △ABG +S △BCG +S △ACG=12AB •GM +12BC •GQ +12AC •GN=12GM(AB+AC+CB)=9√3∵BC=6, S△ABC=12BC•AH⊙AH=3√3.6.(1)解:如图1 连接OD AD⊙AB是⊙O的直径CD⊥AB⊙AB垂直平分CD⊙M是OA的中点⊙OM=12OA=12OD⊙cos∠DOM=OMOD =12⊙∠DOM=60°即∠AOD=60°故答案为:60°(2)解:⊙CD⊥AB AB是⊙O的直径⊙CM=MD⊙M是OA的中点⊙AM=MO又⊙∠AMC=∠DMO⊙△AMC≌△OMD⊙∠ACM=∠ODM⊙CA∥OD⊙DE⊥CA⊙∠E=90°⊙∠ODE=180°−∠E=90°⊙DE⊥OD⊙DE与⊙O相切(3)如图2 连接CF CN⊙OA⊥CD于M⊙M是CD中点⊙NC=ND⊙∠CDF=45°⊙∠NCD=∠NDC=45°⊙∠CND=90°⊙∠CNF=90°由(1)可知∠AOD=60°∠AOD=30°⊙∠ACD=12在Rt△CDE中∠E=90°∠ECD=30°DE=6=12⊙CD=DEsin30°在Rt△CND中∠CND=90°∠CDN=45°CD=12⊙CN=CD•sin45°=6√2⊙∠AOD=60°,OA=OD⊙△OAD是等边三角形⊙∠OAD=60°∠CAD=2∠OAD=120°⊙∠CFD=180°−∠CAD=60°在Rt△CNF中∠CNF=90°∠CFN=60°CN=6√2 =2√6.⊙FN=CNtan60°7.(1)证明:如图1所示⊙∠ODB=∠AEC∠AEC=∠ABC⊙∠ODB=∠ABC⊙OF⊥BC⊙∠BFD=90°⊙∠ODB+∠DBF=90°⊙∠ABC+∠DBF=90°即∠OBD=90°⊙BD⊥OB⊙AB是⊙O的直径⊙BD是⊙O的切线(2)证明:连接AC如图2所示⊙OF⊥BC⊙弧BE=弧CE⊙∠CAE=∠ECB⊙∠CEA=∠HEC⊙△AEC ∽△CEH⊙CE EH =EACE⊙CE 2=EH ⋅EA(3)解:连接BE 如图3所示⊙AB 是⊙O 的直径⊙∠AEB =90°⊙⊙O 的半径为52 sin∠BAE =35 ⊙AB =5 BE =AB ⋅sin∠BAE =5×35=3 ⊙EA =√AB 2−BE 2=4⊙弧BE =弧CE⊙BE =CE =3⊙CE 2=EH ⋅EA⊙EH =94⊙在Rt △BEH 中 BH =√BE 2+EH 2=√32+(94)2=154 ⊙∠A =∠C⊙sinC =sinA⊙OF ⊥BC 垂足为F⊙在Rt △CFE 中 FE =CE ⋅sinC =3×35=95 ⊙CF =√CE 2−EF 2=√32−(95)2=125 ⊙BF =CF =125⊙OF =√BO 2−BF 2=√(52)2−(125)2=710 ⊙∠ODB =∠ABC⊙tan∠ODB =tan∠ABC⊙BFDF =OFBF⊙BF 2=OF ⋅DF⊙(125)2=710DF ⊙DF =28835.8.解:(1)连接OD 如图⊙EF 垂直平分BD⊙ED=EB⊙⊙EDB=⊙B⊙OA=OD⊙⊙A=⊙ODA⊙⊙A+⊙B=90°⊙⊙ODA+⊙EDB=90°⊙⊙ODE=90°⊙OD⊙DE⊙直线DE 是⊙O 的切线(2)作OH⊙AD 于H 如图 则AH=DH 在Rt △OAB 中 sinA=BC AB =45在Rt △OAH 中 sinA=OH OA =45⊙OH=45⊙AH=√12−(45)2=35⊙AD=2AH=65 ⊙BD=5﹣65=195⊙BF=12BD=1910在Rt⊙ABC 中 cosB=45 在Rt⊙BEF 中 cosB=BF BE =45⊙BE=54×1910=198 ⊙线段DE 的长为198.9.((1)证明:连接AD∵∠A =∠BCD ∠AED =∠CEB ∴ΔAED ∽ΔCEB∴ AECE =EDEB∴AE ·EB =CE ·ED(2)解:∵⊙O 的半径为 3 ∴OA =OB =OC =3∵OE =2BE∴OE =2 BE =1 AE =5 ∵ CEDE =95 ∴设CE =9x DE =5x∵AE ·EB =CE ·ED∴5×1=9x ·5x解得:x 1=13 x 2=−13(不 合题意舍去) ∴CE =9x =3 DE =5x =53 过点C 作CF ⊥AB 于F∵OC =CE =3∴OF =EF =12OE =1∴BF =2在RtΔOCF中∵∠CFO=90°∴CF2+OF2=OC2∴CF=2√2在RtΔCFB中∵∠CFB=90°∴tan∠OBC=CFBF =2√22=√2∵CF⊥AB于F∴∠CFB=90°∵BP是⊙O的切线AB是⊙O的直径∴∠EBP=90°∴∠CFB=∠EBP在ΔCFE和ΔPBE中{∠CFB=∠PBE EF=BE ∠FEC=∠BEP∴ΔCFE≅ΔPBE(ASA)∴EP=CE=3∴DP=EP−ED=3−53=43.10.:解:(1)证明:如图连接OE.⊙四边形ABCD是菱形∴∠CAD=∠CAB∵OA=OE∴∠CAB=∠OEA∴∠CAD=∠OEA∴OE∥AD∵EF⊥AD∴OE⊥EF又⊙OE是⊙O的半径⊙EF是⊙O的切线.(2)解:如图连接BE.⊙AB是⊙O的直径∴∠AEB=90°∵∠BAD=60°∴∠CAD=∠CAB=30°在Rt△ABE中AE=AB·cos30°=2√3在Rt△AEF中EF=AE·sin30°=√3AB=2在Rt△OEF中OE=12⊙OF=√OE2+EF2=√4+3=√7.(3)解:如图过点C作CM垂直AB交AB延长线于点M由(2)知∠BAD=60°∴∠ACB=∠CAB=30°,∠CBM=60°∴AB=BC=4,BM=2,CM=2√3∴AM=6,OM=6−2=4.⊙OC=√OM2+CM2=√42+(2√3)2=2√7⊙CG近=2√7−2CE远=2√7+2⊙线段CG的取值范围是:2√7−2≤CG≤2√7+211.(1)证明:连接OD∵D为弧AC的中点∴OD⊥AC又∵DP为⊙O的切线∴OD⊥DP∴AC∥DP(2)证明:∵DE⊥AB∴∠DEO=90°由(1)可知OD⊥AC设垂足为点M∴∠OMA=90°∴∠DEO=∠OMA AC=2AM又∵∠DOE=∠AOM OD=OA∴△ODE≌△OAM(AAS)∴DE=AM∴AC=2AM=2DE(3)解:连接OD OC CE CP∵∠ODP=∠OED=90°∠DOE=∠DOP ∴△DOE∽△POD∴ODOP =OEOD∴OD2=OE⋅OP ∵OC=OD∴OC2=OE⋅OP∴OCOE =OPOC又∵∠COE=∠POC ∴△COE∽△POC∴CECP =OEOC∵AE:EO=1:2∴OEOA =23∴OEOC =23∴CECP =23.12.解:(1)连接OD⊙CB与⊙O相切于点B⊙OB⊥BC⊙AD//OC⊙∠A=∠COB,∠ADO=∠DOC⊙OA=OD⊙∠A=∠ADO=∠COB=∠DOC⊙△DOC≌△BOC(SAS)⊙∠ODC=∠OBC=90°⊙OD⊥DC又OD为⊙O半径⊙CD为⊙O的切线(2)解:设CB=x⊙AE⊥EB⊙AE为⊙O的切线⊙CD CB为⊙O的切线⊙ED=AE=4,CD=CB=x,∠DOC=∠BCO⊙BD⊥OC过点E作EM⊥BC于M则EM=12,CM=x−4⊙(4+x)2=122+(x−4)2解得x=9⊙CB=9⊙OC=√62+92=3√13⊙AB是直径且AD⊙OC⊙⊙OFB=⊙ADB=⊙OBC=90°又⊙⊙COB=⊙BOF⊙⊙OBF⊙⊙OCB⊙OB BF =OCBC⊙BF=OB⋅BCOC =6×93√13=1813√1313.(1)证明:如图所示连接AC ⊙AB是⊙O的直径CD⊥AB⊙弧AD=弧AC⊙∠AEP=∠ADC⊙∠PAD=∠AEP⊙∠PAD=∠ADC⊙AP∥CD⊙AP⊥AB⊙AB是⊙O的直径⊙AP是⊙O的切线(2)解:如图所示连接BD⊙AF=CF⊙∠FAC=∠FCA⊙弧CE=弧AD⊙弧AD=弧AC⊙弧AD=弧AC=弧CE⊙∠ADG=∠QDG⊙AB⊥CD⊙∠AGD=∠QGD=90°又⊙OG=OG⊙△AGD≌△OGD(ASA)⊙QG=AG=4∠DQG=∠DAG=2在Rt△ADG中tan∠DAG=DGAG⊙DG=2AG=8⊙QD=√DG2+QG2=4√5连接OD过点E作EH⊥AB于H设圆O的半径为r则OG=r−4在Rt△ODG中由勾股定理得OD2=OG2+DG2⊙r2=(r−4)2+82解得r=10⊙AB=20⊙BQ=12⊙∠AEQ=∠DBQ,∠EAQ=∠BDQ⊙△AQE∽△DQB⊙QE BQ =AQDQ即QE12=84√5⊙QE=12√55⊙∠EQH=∠DQG=∠DAG⊙在Rt△EQH中tan∠EQH=EHQH=2⊙EH=2QH⊙EH2+QH2=QE2⊙4QH2+QH2=1445⊙QH=125⊙EH=245⊙S△ADE=S△ADQ+S△AEQ=12AQ⋅DG+12AQ⋅EH=12×8×8+12×8×245=70.4.(3)解:由(2)得DQ=4√5.14.(1)证明:连接OF.⊙OA=OF⊙⊙OAF=⊙OF A⊙EF̂=FB̂,⊙⊙CAF=⊙F AB⊙⊙CAF=⊙AFO⊙OF∥AC⊙AC⊙CD⊙OF⊙CD⊙OF是半径⊙CD是⊙O的切线.(2)⊙AB是直径⊙⊙AFB=90°⊙OF⊙CD⊙⊙OFD=⊙AFB=90°⊙⊙AFO=⊙DFB⊙⊙OAF=⊙OF A⊙⊙DFB=⊙OAF⊙GD平分⊙ADF⊙⊙ADG=⊙FDG⊙⊙FGH=⊙OAF+⊙ADG⊙FHG=⊙DFB+⊙FDG⊙⊙FGH=⊙FHG=45°⊙sin⊙FHG=sin45°=√22(3)解:过点H作HM⊙DF于点M HN⊙AD于点N.⊙HD平分⊙ADF⊙HM=HNS△DHF⊙S△DHB= FH⊙HB=DF ⊙DB⊙⊙FGH是等腰直角三角形GH=4√2⊙FH=FG=4⊙DF DB =42=2设DB=k DF=2k⊙⊙FDB=⊙ADF⊙DFB=⊙DAF ⊙⊙DFB⊙⊙DAF⊙DF2=DB•DA⊙AD=4k⊙GD平分⊙ADF⊙FG AG =DFAD=12⊙AG=8⊙⊙AFB=90° AF=12 FB=6∴AB=√AF2+BF2=√122+622=6√5⊙⊙O的直径为6√515.(1)证明:⊙AB=CD⊙弧AB=弧CD⊙弧AB−弧BC=弧CD−弧BC即弧AC=弧BD⊙AC=BD(2)解:四边形OFEG是正方形.理由如下:⊙AB⊥CD OF⊥CD OG⊥AB⊙∠AED=∠OGE=∠OFE=90°⊙四边形OFEG是矩形.如图连接OA OD.⊙OF⊥CD OG⊥AB⊙CF=DF AG=BG.⊙CD=AB⊙AG=DF.⊙OG=√OA2−AG2OF=√OD2−DF2OA=OD⊙OG=OF⊙四边形OFEG是正方形(3)解:⊙CE=1 DE=3⊙CD=4⊙CF=DF=2⊙EF=CF-CE=2-1=1.⊙四边形OFEG是正方形⊙OF=EF=1.在Rt△OED中OD=√OF2+DF2=√5⊙⊙O的半径为√5.16.:解:【解决问题】如图连接BO并延长交⊙O于点D连接DC则∠A=∠D 在△DBC中⊙BD为⊙O的直径BC=a⊙BD=2R,∠BCD=90°⊙sinD=BCBD =a2R⊙sinA=a2R故答案为:sinD=a2R sinA=a2R【结论应用】解:设△ABC外接圆的半径为R ⊙∠B=60°,AC=4⊙sinB=AC2R⊙√3 2=42R解得:R=43√3⊙△ABC外接圆的面积为π×(43√3)2=163π.故答案为:163π17.(1)证明:连接OC⊙PA PC是⊙O的切线切点分别为A C ⊙PA=PC∠PAO=∠PCO=90°在RtΔPAO和RtΔPCO中{PA=PCPO=PO⊙RtΔPAO≌RtΔPCO(HL)⊙∠POA=∠POC⊙CD//AB⊙∠CDO=∠DOA⊙∠CDO=∠COD⊙CD=OC=r(2)解:设OP交CD于E连接OC过O作OH⊥CD于点H由(1)可知RtΔPAO≌RtΔPCO⊙∠POA=∠POC⊙CD//AB⊙∠CEO=∠EOA⊙∠CEO=∠COE⊙CE=CO=8⊙CD=CE+ED=10⊙OH⊥CD⊙CH=DH=5⊙EH=DH−DE=3在RtΔCHO中⊙OH=√OC2−CH2=√82−52=√39在RtΔOHE中⊙tan∠POA=tan∠HEO=OHEH =√393⊙tan∠POA=√393.18.解:(1)如图过点O作OM⊥AB且OM的反向延长线交CD于点N.由题意可知四边形BCNM为矩形⊙MN=AD=3⊙O为圆心即O为DE中点⊙N为DC中点即线段ON为△DEC中位线又⊙CE=BC−BE=3−1=2⊙ON=12CE=1⊙OM=MN -ON=3-1=2.在Rt △DEC 中 DE =√CD 2+CE 2=√(2√3)2+22=4. ⊙OD=DE=OM=2.即AB 为⊙O 的切线.(2)设⊙O 与AD 交于点G 连接CG EG DF FG ⊙DE 为直径⊙∠EGD =∠EFD =90°.⊙∠GEC =90°⊙CG 为直径.⊙∠CFG =∠CDG =90°⊙E 为BC 中点⊙G 为AD 中点在Rt △AFD 中 FG 为中线⊙AG=DG=FG在Rt △CFG 和Rt △CDG 中 {FG =DG CG =CG⊙△CFG ≅△CDG(HL).⊙CF=CD .(3)如图 取AD 中点H 连接CH FH FD .由(2)可知FH =12AD =32 在Rt △CDH 中 CH =√CD 2+HD 2=√(2√3)2+(32)2=√572 ⊙CF ≥CH −FH =√572−32. ⊙当F 点在CH 上时CF 长有最小值 最小值为√572−32.19.解:(1)⊙AC 为⊙O 的直径⊙⊙ADC =90°⊙⊙DAC +⊙DCA =90°.⊙弧AD =弧AD⊙⊙ABD =⊙DCA .⊙⊙F AD =⊙ABD⊙⊙F AD =⊙DCA⊙⊙F AD +⊙DAC =90°⊙CA ⊙AF⊙AF 为⊙O 的切线.(2)连接OD .⊙弧AD =弧AD⊙⊙ABD=1⊙AOD.2⊙弧DC=弧DC⊙DOC.⊙⊙DBC=12⊙BD平分⊙ABC⊙⊙ABD=⊙DBC⊙⊙DOA=⊙DOC⊙DA=DC.(3)连接OD交CF于M作EP⊙AD于P.⊙AC为⊙O的直径⊙⊙ADC=90°.⊙DA=DC⊙DO⊙AC⊙⊙F AC=⊙DOC=90° AD=DC=√(2√2)2+(2√2)2=4 ⊙⊙DAC=⊙DCA=45° AF⊙OM.⊙AO=OCAF.⊙OM=12⊙⊙ODE+⊙DEO=90° ⊙OCM+⊙DEO=90°⊙⊙ODE=⊙OCM.⊙⊙DOE=⊙COM OD=OC⊙⊙ODE⊙⊙OCM⊙OE=OM.设OM=m⊙OE =m AE =2√2−m AP =PE =2−√22m⊙DP =2+√22m . ⊙⊙AED +⊙AEN =135° ⊙AED +⊙ADE =135°⊙⊙AEN =⊙ADE .⊙⊙EAN =⊙DPE⊙⊙EAN ⊙⊙DPE⊙AE DP =AN PE ⊙2√2−m 2+√22m =m2−√22m⊙m =2√23⊙AN =2√23 AE =4√23由勾股定理得:NE =2√103.20.解:(1)连接OD⊙AB 是⊙O 的直径 l 1⊥l 2 CD =6⊙CM =DM =12CD =3在Rt △DOM 中 OM =4⊙OD=√OM2+CM2=5即⊙O的半径长为5(2)⊙AB是⊙O的直径l1⊥l2⊙弧BC=弧BD⊙∠BAD=∠BAC=12∠CAD=20°⊙∠BOD=2∠BAD=40°⊙∠AOD=180°−∠BOD=140°⊙劣弧弧AD的长为140×π×5180=35π9(3)存在常数k=2理由如下:如图在CG上截取CH=DE连接AH AE⊙AB垂直平分CD⊙AC=AD又⊙⊙ACH=⊙ADE⊙⊙ACH⊙⊙ADE(SAS)⊙AH=AE⊙ AG⊙HE⊙HG=EG⊙CE-DE=2EG⊙k=2(4)⊙DG⊙AB⊙⊙CFM⊙⊙CGD⊙FM DG =CFCG=CMCD=12⊙CF=FG DG=2FM⊙⊙CMF=⊙AGF⊙CFM=⊙AFG ⊙⊙CFM⊙⊙AFG⊙CF AF =FMFG⊙FM×AF=CF×FG=CF2设FM=x则AF=9-x⊙x(9−x)=32+x2解得:x=32或3⊙DG=3或6(5)如图取AC的中点P当PG⊙AD时⊙ADG的面积最大在Rt△AMC中⊙CMA=90° CM=3 AM=OA+OM=5+4=9⊙AD=AC=√CM2+AM2=√32+92=3√10在Rt△AGC中⊙CGA=90° 点P为AC的中点⊙PG=12AC=3√102过点C作CN⊙AD于点N在Rt⊙CDN和Rt⊙ADM中⊙⊙CND=⊙AMD=90° ⊙CDN=⊙ADM ⊙Rt⊙CDN~Rt⊙ADM⊙CN AM =CDAD⊙CN=AM⋅CDAD =9×63√10=9√105设PG交AD于点K ⊙PK⊙AD CN⊙AD ⊙PK⊙CN⊙⊙APK⊙⊙CAN⊙PK CN =APAC=12⊙PK=12CN=9√1010⊙GK=PG−PK=3√102−9√1010=3√105⊙⊙ADG面积的最大值为12AD⋅GK=12×3√10×3√105=9.。

备战中考数学圆的综合综合题含详细答案

备战中考数学圆的综合综合题含详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题)1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.【答案】(1)证明见解析;(2)25°.【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC -∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD 是矩形∴∠A=∠B=90°,AD=BC∴AOD BOC ∆≅∆∴AO=OB(2)解:∵AB 是O 的直径,PA 与O 相切于点A , ∴PA ⊥AB ,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC ,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒.2.如图,四边形ABCD 是⊙O 的内接四边形,AB=CD .(1)如图(1),求证:AD ∥BC ;(2)如图(2),点F 是AC 的中点,弦DG ∥AB,交BC 于点E,交AC 于点M,求证:AE=2DF ;(3)在(2)的条件下,若DG 平分∠3∠3,求⊙O 的半径。

【答案】(1)证明见解析;(2)证明见解析;(3)129【解析】试题分析:(1)连接AC.由弦相等得到弧相等,进一步得到圆周角相等,即可得出结论.(2)延长AD到N,使DN=AD,连接NC.得到四边形ABED是平行四边形,从而有AD=BE,DN=BE.由圆内接四边形的性质得到∠NDC=∠B.即可证明ΔABE≌ΔCND,得到AE=CN,再由三角形中位线的性质即可得出结论.(3)连接BG,过点A作AH⊥BC,由(2)知∠AEB=∠ANC,四边形ABED是平行四边形,得到AB=DE.再证明ΔCDE是等边三角形,ΔBGE是等边三角形,通过解三角形ABE,得到AB,HB,AH,HE的长,由EC=DE=AB,得到HC的长.在Rt△AHC中,由勾股定理求出AC的长.作直径AP,连接CP,通过解△APC即可得出结论.试题解析:解:(1)连接AC.∵AB=CD,∴弧AB=弧CD,∴∠DAC=∠ACB,∴AD∥BC.(2)延长AD到N,使DN=AD,连接NC.∵AD∥BC,DG∥AB,∴四边形ABED是平行四边形,∴AD=BE,∴DN=BE.∵ABCD是圆内接四边形,∴∠NDC=∠B.∵AB=CD,∴ΔABE≌ΔCND,∴AE=CN.∵DN=AD,AF=FC,∴DF=1CN,∴AE=2DF.2(3)连接BG,过点A作AH⊥BC,由(2)知∠AEB=∠ANC,四边形ABED是平行四边形,∴AB=DE.∵DF∥CN,∴∠ADF=∠ANC,∴∠AEB=∠ADF,∴tan∠AEB= tan∠ADF=3DG平分∠ADC,∴∠ADG=∠CDG.∵AD∥BC,∴∠ADG=∠CED,∠NDC=∠DCE.∵∠ABC=∠NDC,∴∠ABC=∠DCE.∵AB∥DG,∴∠ABC=∠DEC,∴∠DEC=∠ECD=∠EDC,∴ΔCDE是等边三角形,∴AB=DE=CE.∵∠GBC=∠GDC=60°,∠G=∠DCB=60°,∴ΔBGE是等边三角形,BE= GE=53.∵tan∠AEB= tan∠ADF=43,设HE=x,则AH=43x.∵∠ABE=∠DEC=60°,∴∠BAH=30°,∴BH=4x,AB=8x,∴4x+x=53,解得:x=3,∴AB=83,HB=43,AH=12,EC=DE=AB=83,∴HC=HE+EC=383+=93.在Rt△AHC中,AC=222212(93)AH HC+=+=343.作直径AP,连接CP,∴∠ACP=90°,∠P=∠ABC=60°,∴sin∠P=AC AP,∴3432129sin603ACAP===︒,∴⊙O的半径是129.3.如图,在以点O为圆心的两个同心圆中,小圆直径AE的延长线与大圆交于点B,点D 在大圆上,BD与小圆相切于点F,AF的延长线与大圆相交于点C,且CE⊥BD.找出图中相等的线段并证明.【答案】见解析【解析】试题分析:由AE是小⊙O的直径,可得OA=OE,连接OF,根据切线的性质,可得OF⊥BD,然后由垂径定理,可证得DF=BF,易证得OF∥CE,根据平行线分线段成比例定理,可证得AF=CF,继而可得四边形ABCD是平行四边形,则可得AD=BC,AB=CD.然后连接OD、OC,可证得△AOD≌△EOC,则可得BC=AD=CE=AE.试题解析:图中相等的线段有:OA=OE,DF=BF,AF=CF,AB=CD,BC=AD=CE=AE.证明如下:∵AE是小⊙O的直径,∴OA=OE.连接OF,∵BD与小⊙O相切于点F,∴OF⊥BD.∵BD是大圆O的弦,∴DF=BF.∵CE⊥BD,∴CE∥OF,∴AF=CF.∴四边形ABCD是平行四边形.∴AD=BC,AB=CD.∵CE:AE=OF:AO,OF=AO,∴AE=EC.连接OD、OC,∵OD=OC,∴∠ODC=∠OCD.∵∠AOD=∠ODC,∠EOC=∠OEC,∴∠AOC=∠EOC,∴△AOD≌△EOC,∴AD=CE.∴BC=AD=CE=AE.【点睛】考查了切线的性质,垂径定理,平行线分线段成比例定理,平行四边形的判定与性质以及全等三角形的判定与性质等知识.此题综合性很强解题的关键是注意数形结合思想的应用,注意辅助线的作法,小心不要漏解.4.如图,已知在△ABC中,∠A=90°,(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.【答案】(1)作图见解析;(2)3π【解析】【分析】(1)与AB、BC两边都相切.根据角平分线的性质可知要作∠ABC的角平分线,角平分线与AC的交点就是点P的位置.(2)根据角平分线的性质和30°角的直角三角形的性质可求半径,然后求圆的面积.【详解】解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠ABC=60°,BP平分∠ABC,∴∠ABP=30°,∵∠A=90°,∴BP=2APRt△ABP中,AB=3,由勾股定理可得:3,∴S⊙P=3π5.已知:如图,在四边形ABCD中,AD∥BC.点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.(1)请你添加一个适当的条件,使得四边形ABCD是平行四边形,并证明你的结论;(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=45,求⊙O的半径.【答案】(1)当AD=BC时,四边形ABCD是平行四边形,理由见解析;(2)作出相应的图形见解析;(3)圆O的半径为2.5.【解析】分析:(1)添加条件AD=BC,利用一组对边平行且相等的四边形为平行四边形验证即可;(2)作出相应的图形,如图所示;(3)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.详解:(1)当AD=BC时,四边形ABCD是平行四边形,理由为:证明:∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形;故答案为:AD=BC;(2)作出相应的图形,如图所示;(3)∵AD∥BC,∴∠DAB+∠CBA=180°,∵AE与BE分别为∠DAB与∠CBA的平分线,∴∠EAB+∠EBA=90°,∴∠AEB=90°,∵AB为圆O的直径,点F在圆O上,∴∠AFB=90°,∴∠FAG+∠FGA=90°,∵AE平分∠DAB,∴∠FAG=∠EAB,∴∠AGF=∠ABE,∴sin∠ABE=sin∠AGF=45AE AB ,∵AE=4,∴AB=5,则圆O 的半径为2.5.点睛:此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.6.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF =3,求阴影部分的面积.【答案】(1)详见解析;(2)633π-. 【解析】【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC,∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º∴∠PCA=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠PCA=∠ABC ;(2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B,∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形,∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º,∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA,同理,CF =FM,∴AM =2CF=23,Rt △ACM 中,易得AC=23×3=3=OC, ∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º,∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB,连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =3∵△CDO ≌△EDO(AAS),∴332 ∴1332ABM S AB MO ∆=⨯= 同样,易求93AOE S ∆=, 260333602BOE S ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形933633332ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.7.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH,①△CBH∽△OBC②求OH+HC的最大值【答案】(1)证明见解析;(2)①证明见解析;②5.【解析】分析:(1)由题意可知:∠CAB=∠GAF,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:BC HBOC BC=,所以HB=24BC,由于BC=HC,所以OH+HC=4−24BC+BC,利用二次函数的性质即可求出OH+HC的最大值.详解:(1)由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC②由△CBH ∽△OBC 可知:BC HB OC BC = ∵AB=8,∴BC 2=HB•OC=4HB , ∴HB=24BC , ∴OH=OB-HB=4-24BC ∵CB=CH ,∴OH+HC=4−24BC +BC , 当∠BOC=90°,此时BC=42 ∵∠BOC <90°, ∴0<BC <42,令BC=x 则CH=x ,BH=24x ()221142544OH HC x x x ∴+=-++=--+ 当x=2时,∴OH+HC 可取得最大值,最大值为5点睛:本题考查圆的综合问题,涉及二次函数的性质,相似三角形的性质与判定,切线的判定等知识,综合程度较高,需要学生灵活运用所知识.8.如图,是大半圆的直径,是小半圆的直径,点是大半圆上一点,与小半圆交于点,过点作于点. (1)求证:是小半圆的切线; (2)若,点在上运动(点不与两点重合),设,. ①求与之间的函数关系式,并写出自变量的取值范围; ②当时,求两点之间的距离.【答案】(1)见解析;(2)①,,②两点之间的距离为或.【解析】【分析】(1)连接CO、CM,只需证到CD⊥CM.由于CD⊥OP,只需证到CM∥OP,只需证到CM 是△AOP的中位线即可.(2)①易证△ODC∽△CDP,从而得到CD2=DP•OD,进而得到y与x之间的函数关系式.由于当点P与点A重合时x=0,当点P与点B重合时x=4,点P在大半圆O上运动(点P不与A,B两点重合),因此自变量x的取值范围为0<x<4.②当y=3时,得到-x2+4x=3,求出x.根据x的值可求出CD、PD的值,从而求出∠CPD,运用勾股定理等知识就可求出P,M两点之间的距离.【详解】(1)连接,如图1所示∵是小半圆的直径,∴即∵∴∵∴∴,∵∴,∴∴.,即∵经过半径的外端,且∴直线是小半圆的切线.(2)①∵,,∴∴∴∽∴∴∵,,,∴当点与点重合时,;当点与点重合时,∵点在大半圆上运动(点不与两点重合),∴∴与之间的函数关系式为,自变量的取值范围是.②当时,解得,Ⅰ当时,如图2所示在中,∵,∴,∴∵,∴是等边三角形∵∴∴.Ⅱ当时,如图3所示,同理可得∵∴∴过点作,垂足为,连接,如图3所示∵,∴同理在中,∵,∴综上所述,当时,两点之间的距离为或.【点睛】考查了切线的判定、平行线的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质、特殊角的三角函数值、勾股定理等知识,综合性比较强.9.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=12 AC•BC=12(x+3)(x+4)=12(x2+7x+12)=12×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=3x2+(m+n)x+mn]=3(3mn+mn)3.【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.10.如图,AB是⊙O的直径,∠ACB的平分线交AB于点D,交⊙O于点E,过点C作⊙O 的切线CP交BA的延长线于点P,连接AE.(1)求证:PC=PD;(2)若AC=5cm,BC=12cm,求线段AE,CE的长.【答案】(1)见解析 (2) EC=172AE=132【解析】试题分析:(1)如图1中,连接OC、OE.利用等角的余角相等,证明∠PCD=∠PDC即可;(2)如图2中.作EH⊥BC于H,EF⊥CA于F.首先证明Rt△AEF≌Rt△BEH,推出AF=BH,设AF=BH=x,再证明四边形CFEH是正方形,推出CF=CH,可得5+x=12﹣x,推出x=72,延长即可解决问题;试题解析:(1)证明:如图1中,连接OC、OE.∵AB直径,∴∠ACB=90°,∴CE平分∠ACB,∴∠ECA=∠ECB=45°,∴AE=BE,∴OE⊥AB,∴∠DOE=90°.∵PC是切线,∴OC⊥PC,∴∠PCO=90°.∵OC=OE,∴∠OCE=∠OEC.∵∠PCD+∠OCE=90°,∠ODE+∠OEC=90°,∠PDC=∠ODE,∴∠PCD=∠PDC,∴PC=PD.(2)如图2中.作EH⊥BC于H,EF⊥CA于F.∵CE平分∠ACB,EH⊥BC于H,EF⊥CA于F,∴EH=EF,∠EFA=∠EHB=90°.∵AE=BE,∴AE=BE,∴Rt△AEF≌Rt△BEH,∴AF=BH,设AF=BH=x.∵∠F=∠FCH=∠CHE=90°,∴四边形CFEH是矩形.∵EH=EF,∴四边形CFEH是正方形,∴CF=CH,∴5+x=12﹣x,∴x =72,∴CF =FE =172,∴EC CF =2,AE 点睛:本题考查了切线的性质、圆周角定理、勾股定理、垂径定理、正方形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。

2020年九年级数学中考《圆》综合专题复习试题(含答案)

2020年九年级数学中考《圆》综合专题复习试题(含答案)
1 ∴∠AOH=2∠AOC=60°.
1 ∵AH=2AC= 3,
AH ∴OA=sin60°=2. ∴⊙O 半径的长为 2. (2)证明:在 BM 上截取 BE=BC,连接 CE, ∵∠ABC=120°,BM 平分∠ABC, ∴∠MBA=∠MBC=60°. ∵BE=BC, ∴△EBC 是等边三角形.
∴CE=CB=BE,∠BCE=60°. ∴∠BCD+∠DCE=60°. ∵∠ACM=∠ABM=60°,∴∠ECM+∠DCE=60°. ∴∠ECM=∠BCD. ∵∠CAM=∠CBM=60°,∠ACM=∠ABM=60°. ∴△ACM 是等边三角形.∴AC=CM. ∴△ACB≌△MCE(SAS).∴AB=ME. ∵ME+EB=BM, ∴AB+BC=BM.
基础题组
1.(2019·保定一模)已知⊙O 的半径 OA 长为 2,若 OB= 3,则可以得到的正确图形可
能是(A)
2.(2019·广州)平面内,⊙O 的半径为 1,点 P 到 O 的距离为 2,过点 P 可作⊙O 的切线条
数为(C)
A.0 条
B.1 条
C.2 条
D.无数条
3.如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,以点 A 为圆心作圆.如果⊙A 与线
则∠D=27°.
基础题组
1.(2019·柳州)如图,A,B,C,D 是⊙O 上的点,则图中与∠A 相等的角是(D)
A.∠B
B.∠C
C.∠DEB
D.∠D
A︵B
A︵B
2.(2019·吉林)如图,在⊙O 中, 所对的圆周角∠ACB=50°.若 P 为 上一点,
∠AOP=55°,则∠POB 的度数为(B)
A.30°
3 切,连接 OC,则 tan∠OCB= 5 .

中考数学总复习《圆的综合题》练习题及答案

中考数学总复习《圆的综合题》练习题及答案

中考数学总复习《圆的综合题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.△ABC是△O内接三角形,△BOC=80°,那么△A等于()A.80°B.40°C.140°D.40°或140°2.如图,把直径为60cm的圆形车轮(⊙O)在水平地面上沿直线l无滑动地滚动一周,设初始位置的最低点为P,则下列说法错误的是()A.当点P离地面最高时,圆心O运动的路径的长为30πcmB.当点P再次回到最低点时,圆心O运动的路径的长为60πcmC.当点P第一次到达距离地面15cm的高度时,圆心O运动的路径的长为7.5πcmD.当点P第二次到达距离地面30cm的高度时,圆心O运动的路径的长为45πcm3.下列说法正确的是()A.垂直于弦的直线必经过圆心B.平分弦的直径垂直于弦C.平分弧的直径平分弧所对的弦D.同一平面内,三点确定一个圆4.一根钢管放在V形架内,横截面如图所示,钢管的半径是6,若∠ACB=60°,则阴影部分的面积是()A.18√3−12πB.36√3−12πC.18√3−6πD.36√3−24π5.半径为2cm 的△O中有长为2√3cm的弦AB,则弦AB所对的圆周角度数为() A.60°B.90°C.60°或120°D.45°或90°6.如图,A点在半径为2的△O上,过线段OA上的一点P作直线l,与△O过A点的切线交于点B,且△APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.7.如图,已知在△ABC中,AB=AC,以AB为直径的△O交BC边于点D,交AC边于点E,连结DE。

下列五个结论:①BD=DE;②△CDE是等腰三角形;③2DE2=CA·CE;④DE=AB·sinB;⑤S△DECS△ABC=cos2C。

2019华东师大初中数学中考总复习:圆综合复习--巩固练习(基础)

2019华东师大初中数学中考总复习:圆综合复习--巩固练习(基础)

中考总复习:圆综合复习—巩固练习(基础)【巩固练习】一、选择题1.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是( )A.弦AB的长等于圆内接正六边形的边长 B.弦AC的长等于圆内接正十二边形的边长C.AC BCD.∠BAC=30°2.如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为( )A.7 B...9第1题第2题第3题3.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6cm,OD=4cm,则DC的长为( ) A.5 cm B.2.5 cm C.2 cm D.1 cm4.已知:⊙O的半径为13cm,弦AB∥CD,AB=24cm,CD=10cm,则AB,CD之间的距离为( ) A.17cm B.7cm C.12cm D.17cm或7cm5.(2015•西藏)已知⊙O1与⊙O2相交,且两圆的半径分别为2cm和3cm,则圆心距O1O2可能是()A.1cm B.3cm C.5cm D.7cm6.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )A.1 B.34C.12D.13二、填空题7.在⊙O中直径为4,弦AB=C是圆上不同于A,B的点,那么∠ACB度数为________.8.如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC上一点,则∠D=________.第8题第9题9.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是________度.10.若两圆相切,圆心距是7,其中一圆的半径为10,则另一个圆的半径为________.11.(2015•盐城校级模拟)如图,将一个圆心角为120°,半径为6cm的扇形围成一圆锥侧面(OA、OB 重合),则围成的圆锥底面半径是cm.12.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB的弧长等于________.(结果保留根号及π)三、解答题13.(2014秋•北京期末)如图,AB为⊙O的直径,直线l与⊙O相切于点C,过点A作AD⊥l于点D,交⊙O于点E.(1)求证:∠CAD=∠BAC;(2)若sin∠BAC=,BC=6,求DE的长.14.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,3sin5P ,求⊙O的直径.15.如图,已知⊙O1与⊙O2都过点A,AO1是⊙O2的切线,⊙O1交O1O2于点B,连接AB并延长交⊙O2于点C,连接O2C.(1)求证:O2C⊥O1O2;(2)证明:AB·BC=2O2B•BO1;(3)如果AB•BC=12,O2C=4,求AO1的长.16.如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F.(1)求证:OE∥AB;(2)求证:12EH AB=;(3)若1B4BHE=,求BHCE的值.【答案与解析】一、选择题1.【答案】D ;【解析】∵ OA=AB=OB,∴∠AOB=60°.又∵ CO⊥AB,∴11603022BOC AOB∠=∠=⨯=°°.又∠BOC和∠BAC分别是BC对的圆心角和圆周角,∴11301522BAC BOC∠=∠=⨯=°°.∴ D错.2.【答案】B ;【解析】连接AD,BD,由AB是⊙O的直径得∠ACB=∠ADB=90°,故∠ACD=∠BCD=45°,BC=8,AD=BD=ACD∽△OCB,得AC CDCO BC=,即CO·CD=6×8=48.由△DOB ∽△DBC ,得CD BD Bd OD=,即OD ·CD =50=. ∴ CO ·CD+OD ·CD =(CO+OD)·CD =CD 2=98.∴ CD ==3.【答案】D ;【解析】连接AO ,由垂径定理知132AD AB ==,所以Rt △AOD 中,5AO =.所以DC =OC-OD =OA-OD =5-4=1.4.【答案】D ;【解析】如图,在Rt △OAE 中,5OE ===(cm).在Rt △OCF 中,12OF ==(cm).∴ EF =OF-OE =12-5=7(cm).同理可求出OG =12(cm).∴ EG =5+12=17(cm).则AB ,CD 的距离为17cm 或7cm .5.【答案】B ;【解析】两圆半径差为1,半径和为5,两圆相交时,圆心距大于两圆半径差,且小于两圆半径和,所以,1<O 1O 2<5.符合条件的数只有B .6.【答案】C ;【解析】圆锥底面的周长等于其侧面展开图半圆弧的长度,设圆锥底面圆的半径为r , 则12212r ππ=⨯⨯, ∴ 12r =.二、填空题7.【答案】120°或60°;【解析】如图,过O 作OD ⊥AB 于D ,在Rt △ODB 中,OB =2,12BD =⨯=∴ sin 2BD DOB OB ∠==. ∴ ∠DOB =60°,∴ ∠AOB =60°×2=120°.如图中点C 有两种情况:∴ 1120602ACB ∠=⨯=°°或1(360120)1202ACB ∠=-=°°°. 8.【答案】40°;【解析】∵ AC 是⊙O 的直径,∴ ∠ABC =90°,∴ ∠A =40°,∴ ∠D =∠A =40°.9.【答案】100;【解析】在△ABC 中,∠A =180°-∠B-∠C =180°-60°-70°=50°,∵ OA =OD ,∴ ∠ODA =∠A =50°,∴ ∠BOD =∠A+∠ODA =100°.10.【答案】3或17;【解析】显然两圆只能内切,设另一圆半径为r ,则|r-10|=7,∴ r =3或17.11.【答案】2;【解析】设此圆锥的底面半径为r ,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=2cm .故答案为2.12. ;【解析】∠AOB =45°+45°=90°,OA =.∴ AB 90180l π⨯==.三、解答题13.【答案与解析】(1)证明:连接OC ,∵CD为⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴OC∥AD,∴∠CAD=∠ACO.又∵OC=OA,∴∠ACO=∠OAC,∴∠CAD=∠OAC,即∠CAD=∠BAC.(2)过点B作BF⊥l于点F,连接BE,∵AB为⊙O的直径,∴∠AEB=90°,又AD⊥l于点D,∴∠AEB=∠ADF=∠BFD=90°,∴四边形DEBF是矩形,∴DE=BF.∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCF=90°.∵∠ADC=90°,∴∠ACD+∠CAD=90°,∴∠BCF=∠CAD.∵∠CAD=∠BAC,∴∠BCF=∠BAC.在Rt△BCF中,BC=6,sin∠BCF==sin∠BAC=,∴BF==,∴DE=BF=.14.【答案与解析】(1)证明:∵ BD BD =,∴ ∠BCD =∠P .又∵ ∠1=∠BCD ,∴ ∠1=∠P .∴ CB ∥PD .(2)解:连接AC .∵ AB 为⊙O 的直径,∴∠ACB =90°.又∵ CD ⊥AB ,∴ BC BD =.∴ ∠A =∠P ,∴ sin A =sin P .在Rt △ABC 中,sin BC A AB=, ∵ 3sin 5P =,∴ 35BC AB =. 又∵ BC =3,∴ AB =5,即⊙O 的直径为5.15.【答案与解析】(1)证明:∵ AO 1是⊙O 2的切线,∴ O 1A ⊥AO 2, ∴ ∠O 2AB+∠BAO 1=90°.又O 2A =O 2C ,O 1A =O 1B ,∴ ∠O 2CB =∠O 2AB ,∠O 2BC =∠ABO 1=∠BAO 1. ∴ ∠O 2CB+∠O 2BC =∠O 2AB+∠BAO 1=90°.∴ O 2C ⊥O 2B ,即O 2C ⊥O 1O 2.(2)证明:延长O 2O 1,交⊙O 1于点D ,连接AD . ∵ BD 是⊙O 1的直径,∴ ∠BAD =90°.又由(1)可知∠BO 2C =90°,∴ ∠BAD =∠BO2C ,又∠ABD =∠O 2BC ,∴ 2O B BC AB BD=. ∴ AB ·BC =O 2B ·BD .又BD =2BO 1,∴ AB ·BC =2O 2B ·BO 1.(3)解:由(2)证可知∠D =∠C =∠O 2AB ,即∠D =∠O 2AB . 又∠AO 2B =∠DO 2A ,∴ △AO 2B ∽△DO 2A .∴ 2222AO O B DO O A=,∴ 2222AO O B O D =.∵ 22O C O A =,∴ 2222O C O B O D =. ①又由(2)AB ·BC =O 2B ·BD . ②由①-②得2222O C AB BC O B -=,即222412O B -=.∴ O 2B =2,又O 2B ·BD =AB ·BC =12,∴ BD =6.∴ 2AO 1=BD =6,∴ AO 1=3.16.【答案与解析】(1)证明:在等腰梯形ABCD 中,AB =DC ,∴ ∠B =∠C .∵ OE =OC ,∴ ∠OEC =∠C .∴ ∠B =∠OEC .∴ OE ∥AB .(2)证明:连接OF ,如图.∵ ⊙O 与AB 切于点F ,∴ OF ⊥AB .∵ EH ⊥AB ,∴ OF ∥EH .又∵ OE ∥AB ,∴ 四边形OEHF 为平行四边形.∴ EH =OF .∵ 1122OF CD AB ==, ∴ 12EH AB =. (3)解:连接DE ,如图.∵ CD 是直径,∴ ∠DEC =90°.∴ ∠DEC =∠EHB .又∵ ∠B =∠C ,∴ △EHB ∽△DEC .∴BH BE CE CD=. ∵ 14BH BE =,设BH =k ,∴ BE =4k ,EH ==,∴ 2CD EH ==.∴15BH CE ==.。

中考数学《圆的综合》专题训练(含有答案)

中考数学《圆的综合》专题训练(含有答案)

中考数学《圆的综合》专题训练(含有答案)1.如图,:AB 是O 的直径:BC 是O 弦,OD CB ⊥于点E ,交BC 于点D .(1)请写出三个不同类型的正确结论(2)连结CD ,设BCD α∠= ABC β∠= 试找出α与β之间的一种关系式并给予证明.2.如图,,在ABC 中 AB AC = 以AB 为直径的O 交BC 于点D 交CA 的延长线于点E .(1)求证点D 为线段BC 的中点.(2)若63BC = 3AE = 求O 的半径及阴影部分的面积.3.如图,AB 为O 的直径 点C 在O 上 延长BC 至点D 使DC CB =.延长DA 与O 的另一个交点为E 连结AC CE ,.(1)求证D E ∠=∠(2)若42AB BC AC =-=, 求CE 的长.4.请仅用无刻度的直尺完成下列作图 不写作法 保留作图痕迹(1)如图1, ABC 与ADE 是圆内接三角形 AB AD = AE AC = 画出圆的一条直径.(2)如图2 , AB CD 是圆的两条弦 AB CD =且不相互平行 画出圆的一条直径. 5.如图,AB 是O 的直径 点D 在AB 的延长线上 点C 在O 上 ,30CA CD CDA =∠=︒.(1)求证CD 是O 的切线(2)若O 的半径为6 求点A 到CD 所在直线的距离.6.如图, 点C 在以AB 为直径的O 上 过C 作O 的切线交AB 的延长线于E AD CE ⊥于D 连接AC .(1)求证ACD ABC ∠=∠(2)若3tan 4CAD ∠= 8AD = 求O 直径AB 的长.7.如图, 已知以Rt ABC 的直角边AC 为直径作O 交斜边AB 于点E 连接EO 并延长交BC 的延长线于点D 连接AD 点F 为BC 的中点 连接EF .(1)求证EF 是O 的切线(2)若O 的半径为6 8CD = 求AB 的长.8.如图, AB 是半圆O 的直径 D 为半圆O 上的点(不与A B 重合) 连接AD 点C 为BD 的中点 过点C 作CF AD ⊥ 交AD 的延长线于点F 连接BF AC 交于点E .(1)求证FC 是半圆O 的切线(2)若3AF = 23AC = 求半圆O 的半径及AE 的长.9.如图, AB 为O 的直径 C 为BA 延长线上一点 CD 是O 的切线 D 为切点 OF AD ⊥于点E 交CD 于点F .(1)求证ADC AOF ∠=∠ (2)若53OC OB = 24BD = 求EF 的长. 10.如图,所示 AB 是O 的直径 点D 在AB 上 点C 在O 上 AD AC =CD 的延长线交O 于点E .(1)在CD 的延长线上取一点F 使BF BC = 求证BF 是O 的切线 (2)若2AB = 2CE 求图中阴影部分的面积.11.如图, ABC 内接于O AB 为O 的直径 D 为BA 延长线上一点 连接CD 过O 作OF BC ∥交AC 于点E 交CD 于点F ACD AOF ∠=∠.(1)求证CD 为圆O 的切线 (2)若1sin 4D =10BC = 求EF 的长. 12.如图, 四边形ABCD 是O 的内接四边形 AD CD = 70BAC ∠=︒ 50∠=°ACB .(1)求ABD ∠的度数 (2)求BAD ∠的度数.13.如图, 四边形ABCD 是O 的内接四边形 且对角线BD 为O 的直径 过点A 作AE CD ⊥ 与CD 的延长线交于点E 且DA 平分BDE ∠.(1)求证AE 是O 的切线(2)若O 的半径为5 6CD = 求DA 的长.14.如图, 在正方形ABCD 中有一点P 连接AP BP 旋转APB △到CEB 的位置.(1)若正方形的边长是8 4BP =.求阴影部分面积 (2)若4BP = 7AP = 135APB ∠=︒ 求PC 的长.15.如图, AB 是O 的直径 OD 垂直于弦AC 于点E 且交O 于点D F 是BA 延长线上一点 若CDB BFD ∠=∠.(1)求证 FD 是O 的一条切线(2)若15AB = 9BC = 求DF 的长. 16.如图,O 是ABC ∆的外接圆 AE 切O 于点A AE 与直径BD 的延长线相交于点E .(1)如图,① 若70C ∠=︒ 求E ∠的大小 (2)如图,① 若AE AB = 求E ∠的大小.17.已知 如图, 直线MN 交O 于A B 两点 AC 是直径 AD 平分CAM ∠交O 于D 过D 作DE MN ⊥于E .(1)求证DE 是O 的切线(2)若8cm DE = 4cm AE = 求O 的半径.18.已知四边形ABCD 内接于O C 是DBA 的中点 FC AC ⊥于C 与O 及AD 的延长线分别交于点,E F 且DE BC =.(1)求证~CBA FDC(2)如果9,4AC AB == 求tan ACB ∠的值.参考答案与解析1.(1)见解析(2)关系式为2=90αβ+︒ 证明见解析【分析】(1)AB 是O 的直径 BC 是弦 OD BC ⊥于E 本题满足垂径定理. (2)连接,CD DB 根据四边形ACDB 为圆内接四边形 可以得到290αβ+=︒. 【解析】(1)解不同类型的正确结论有 ①BE CE = ①BD CD = ①90BED ∠=︒ ①BOD A ∠=∠ ①AC OD ∥ ①AC BC ⊥ ①222OE BE OB += ①ABC S BC OE =⋅△ ①BOD 是等腰三角形 ①BOE BAC △∽△等等. (2)如图, 连接,CD DBα与β之间的关系式为290αβ+=︒证明AB 为圆O 的直径90A ABC ∴∠+∠=︒①又四边形ACDB 为圆内接四边形180A CDB ∠∠∴+=︒①∴①-①得90CDB ABC ∠∠-=︒①18021802CDB BCD α∠=︒-∠=︒- 即180290αβ︒--=︒ ①2=90αβ+︒.【点评】本题考查了圆的一些基本性质 且有一定的开放性 垂径定理 圆内接四边形的性质掌握圆的相关知识. 2.(1)见解析 (2)半径为3 39π324S =阴【分析】(1)连结AD 可得90ADB ∠=︒ 已知AB AC = 根据等腰三角形三线合一的性质即可得证点D 为线段BC 的中点(2)根据已知条件可证ABC DEC ∽△△ 得到ED ECAB BC= 22BD AB EC =⋅ 且EDC △是等腰三角形 进而得到ED DC BD == 设AB x = 则(()22333x x =+ 解方程即可求得O 的半径连接OE 可证AOE △是等边三角形 再根据AOEAOE S S S =-阴扇形即可求出阴影部分的面积【解析】(1)连结AD①AB 为O 的直径 ①90ADB ∠=︒ ①AB AC = ①BD CD =即点D 为线段BC 的中点. (2)①B E ∠=∠ C C ∠=∠ ①ABC DEC ∽△△ ①ED ECAB BC= ①AB AC = ①B C ∠=∠ ①C E ∠=∠ ①ED DC BD == ①22BD AB EC =⋅ 设AB x = 则 (()22333x x =+解得19x =-(舍去) 26x = ①O 的半径为3 连接OE ①60AOE =︒∠ ①AOE △是等边三角形 ①AE 33①AOEAOE S S S=-阴扇形260313333602π⨯⨯=-⨯ 39π324=【点评】本题主要考查等腰三角形的性质 相似三角形的判定和性质 不规则图形面积的计算 熟练掌握相关知识点是解题的关键. 3.(1)见解析 (2)CE 的长为17【分析】(1)由AB 为O 的直径得90ACB ∠=︒ 通过证明()ACD ACB ≌SAS 得到D B ∠=∠ 又由B E ∠=∠ 从而得到D E ∠=∠(2)设BC x = 则2AC x =- 在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+= 解一元二次方程得到BC 的长 由(1)知D E ∠=∠ 从而得到CD CE = 又由DC CB = 得到17CE CB ==【解析】(1)证明AB 为O 的直径90ACB ∴∠=︒180ACD ACB ∠+∠=︒90ACD ∴∠=︒在ACD 和ACB △中AC AC ACD ACB DC BC =⎧⎪∠=∠⎨⎪=⎩()ACD ACB ∴≌SASD B ∴∠=∠ BE ∠=∠D E ∴∠=∠(2)解设BC x =2BC AC -=∴2AC x =-在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+=解得117x = 217x = 17BC ∴=由(1)得D E ∠=∠ CD CE ∴= DC CB =17CE CB ∴==∴ CE 的长为17【点评】本题主要考查了圆周角定理 三角形全等的判定与性质 等腰三角形的性质 勾股定理解直角三角形 熟练掌握圆周角定理 三角形全等的判定与性质 等腰三角形的性质是解题的关键. 4.(1)见解析 (2)见解析【分析】(1)设BC DE 交于点G 连接AG 交圆于点F 即可作答(2)连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N 即可作答.【解析】(1)如图, 设BC DE 交于点G 连接AG 并延长 交圆于点F线段AF 即为所求证明如图, BC AE 交于点Q DE AC 交于点P 连接DB 交AF 于点H①AB AD = AE AC = ①C E ∠=∠ ADE ABC =∠∠ ①DAE BAC ∠=∠①DAE BAC ≌ ①BC DE = ①DAE BAC ∠=∠ ①BAE DAC ∠=∠①AB AD = ADE ABC =∠∠ ①DAP BAQ ≌ ①AQ AP = ①AE AC = ①QE PC =①QGE PGC ∠=∠ C E ∠=∠ ①QGE PGC ≌ ①QG PG =①AG AG = AQ AP = ①QAG PAG ≌ ①QAG PAG ∠=∠ ①BAE DAC ∠=∠ ①BAG DAG ∠=∠ ①AH AH = AB AD = ①BAH DAH ≌①BH DH = 90AHB AHD ∠=∠=° ①AF 垂直平分弦DB ①AF 是圆的直径(2)如图, 连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N线段MN 即为所求. 证明方法同(1).【点评】本题主要考查了垂径定理 圆周角定理以及全等三角形的判定与性质等知识 掌握圆周角定理以及垂径定理是解答本题的关键. 5.(1)见解析 (2)9【分析】(1)已知点C 在O 上 先连接OC 由已知CA CD = 30CDA ∠=︒ 得30CAO ∠=︒ 30ACO ∠=︒ 所以得到60COD ∠=︒ 根据三角形内角和定理得90DCO ∠=︒ 即能判断直线CD 与O 的位置关系.(2)要求点A 到CD 所在直线的距离 先作AE CD ⊥ 垂足为E 由30CDA ∠=︒ 得12AE AD = 在Rt OCD △中 半径6OD = 所以212OD OC == 18AD OA OD =+= 从而求出AE .【解析】(1)①ACD 是等腰三角形 30D ∠=︒①30CAD CDA ∠=∠=︒.连接OC①AO CO =①AOC 是等腰三角形①30CAO ACO ∠=∠=︒①60COD ∠=︒在COD △中 又①30CDO ∠=︒①90DCO ∠=︒①CD 是O 的切线 即直线CD 与O 相切.(2)过点A 作AE CD ⊥ 垂足为E .在Rt OCD △中 ①30CDO ∠=︒①212OD OC ==61218AD AO OD =+=+=在Rt ADE △中①30EDA ∠=︒①点A 到CD 边的距离为92AD AE ==. 【点评】此题考查的知识点是切线的判定与性质 解题的关键是运用直角三角形的性质及30°角所对直角边的性质.6.(1)见解析 (2)252AB =.【分析】(1)连接OC 由DE 为O 的切线 得到OC DE ⊥ 再由AD CE ⊥ 得到AD OC ∥ 得到OCA CAD ∠=∠ 根据OA OC = 利用等边对等角得到OCA CAB ∠=∠ 等量代换得到CAD CAB ∠=∠ 由AB 为O 的直径 可知90ACB ∠=︒ 最后根据等角的余角相等可得结论 (2)在Rt CAD △中 利用锐角三角函数定义求出CD 的长 根据勾股定理求出AD 的长 由(1)易证ADC ACB 得到AD AC AC AB= 即可求出AB 的长. 【解析】(1)解连接OC由题意可知DE 与O 的相切于COC DE ∴⊥AD CE ⊥AD OC ∴∥OCA CAD ∴∠=∠OA OC =OCA CAB ∴∠=∠CAD CAB ∴∠=∠ AB 为O 的直径90ACB ∴∠=︒90CAD ACD CAB ABC ∴∠+∠=∠+∠=︒ACD ABC ∴∠=∠(2)在Rt CAD △中3tan 4CDCAD AD ∠== 8AD =364CD AD ∴==22226810AC CD AD ∴+=+=由(1)可知CAD CAB ∠=∠90D ACB ∠=∠=︒ADC ACB ∴ADACAC AB ∴=81010AB∴= 252AB ∴=【点评】此题考查了切线的性质 以及解直角三角形 熟练掌握切线的判定与性质是解本题的关键. 7.(1)证明见解析 (2)125AB =【分析】(1)连接FO 可根据三角形中位线的性质可判断OF AB ∥ 然后根据直径所对的圆周角是直角 可得CE AE ⊥ 进而知OF CE ⊥ 然后根据垂径定理可得FEC FCE ∠=∠OEC OCE ∠=∠ 再通过Rt ABC 可知90OEC FEC ∠+∠=︒ 因此可证EF 为O 的切线(2)根据题意可先在Rt OCD △中求出OD 然后在Rt EFD 中求出FC 最终在Rt ABC 中求解AB 即可.【解析】(1)证连接FO 则由题意OF 为Rt ABC 的中位线①OF AB ∥①AC 是O 的直径①CE AE ⊥①OF AB ∥①OF CE ⊥①由垂径定理知 OF 所在直线垂直平分CE①FC FE = OE OC =①FEC FCE ∠=∠ OEC OCE ∠=∠①90ACB ∠=︒即90OCE FCE ∠+∠=︒①90OEC FEC ∠+∠=︒即90FEO ∠=︒①EF 是O 的切线(2)解①O 的半径为6 8CD = 90ACB ∠=︒①OCD 为直角三角形 6OC OE == 8CD = ①2210OD OC CD += 10616ED OD OE =+=+=由(1)知 EFD △为直角三角形 且FC FE =①设FC FE x == 则8FD FC CD x =+=+①由勾股定理 222EF ED FD +=即()222168x x +=+ 解得12x =即12FC FE ==①点F 为BC 的中点①224BC FC ==①212AC OC ==①在Rt ABC 中 22125AB BC AC +①125AB =【点评】本题考查切线的证明 圆的基本性质 以及勾股定理解三角形等 掌握切线的证明方法 熟练运用圆中的基本性质是解题关键.8.(1)见解析(2)半径为2 123AE =【分析】(1)根据点C 为弧BD 的中点 得出FAC CAB ∠∠= 然后得出FAC ACO ∠∠= 根据平行线的性质得出CF OC ⊥ 进而即可求解(2)连接BC 设OC 与BF 相交于点P 证明AFC ACB ∽ 得出4AB = 证明BOP BAF ∽得出1322OP AF == 进而证明ECP EAF ∽ 根据相似三角形的性质列出比例式 进而即可求解. 【解析】(1)证明连接OC 如图,点C 为弧BD 的中点∴CD CB =FAC CAB ∠∠∴=又OA OC =CAB ACO ∠∠∴=FAC ACO ∠∠∴=∴OC AF ∥又CF AD ⊥CF OC ∴⊥FC ∴是半圆O 的切线.(2)解连接BC 如图,AB 是半圆O 的直径90ACB ∠∴=︒90AFC ACB ∠∠∴==︒又FAC CAB ∠∠=AFC ACB ∴∽ ∴AFACAC AB = 23234AB ∴=∴半圆O 的半径为2.设OC 与BF 相交于点POC AF ∥BOP BAF ∴∽ ∴12OPOB AF AB == ∴1322OP AF == ∴12PC OC OP =-=OC AF ∥ECP EAF ∴∽ ∴EC PCAE AF = 即123AC AEAE -= 2316AE-=∴123AE = 【点评】本题考查了切线的性质与判定 相似三角形的性质与判定 掌握切线的判定以及相似三角形的性质与判定是解题的关键.9.(1)见解析(2)3【分析】(1)连接DO 根据CD 是O 的切线 OF AD ⊥ 证明ADC DOF ∠∠= 利用等腰三角形三线合一性质 证明ADC AOF ∠∠=.(2) 利用平行线分线段成比例定理 计算OE 证明CFO CDB △∽△ 计算OF两线段作差即可求解.【解析】(1)如图, 连接DO CD 是O 的切线OD DF ∴⊥90ADC ADO ∠∠∴+=︒OF AD ⊥ OA OD =90DOF ADO ∠∠∴+=︒ DOF AOF ∠∠=ADC DOF ∠∠∴=ADC AOF ∠∠∴=.(2)如图, 连接DO CD 是O 的切线OD DF ∴⊥90CDO ∠∴=︒53OC OB =设5(0)CO k k => 则3DO OB AO k ===4CD k ∴=538CB CO OB k k k ∴=+=+= AB 是O 的直径 24BD =AD DB ∴⊥OF AD ⊥∴OF BD ∥ ∴AO AE OB ED = CFO CDB △∽△ ∴OF CO BD CB= AE ED ∴=5524538OF k k k ==+ ∴1122OE BD == 15OF = 3EF OF OE ∴=-=.【点评】本题考查了切线的性质 等腰三角形的三线合一性质 平行线分线段成比例定理 相似三角形的性质与判定 熟练掌握切线的性质 相似三角形的性质与判定是解题的关键.10.(1)证明过程见解析 (2)142π-【分析】(1)AB 是O 的直径 AC AD = BF BC = 可求出90FBD ∠=︒ AB BF ⊥ 由此即可求证(2)如图,所示(见解析)连接,CO EO 可得1OC OE == 可证222CO O CE += 90COE ∠=︒ 根据扇形面积的计算方法即可求解.【解析】(1)证明①AB 是O 的直径①90ACB ∠=︒①90ACD BCD ∠+∠=︒①AC AD =①ACD ADC ∠=∠①ADC BDF ∠=∠①ACD BDF ∠=∠①BC BF =①BCD F ∠=∠①90BDF F ∠+∠=︒①180()90FBD FDB F ∠=︒-∠+∠=︒①AB BF ⊥ 且OB 是O 的半径①BF 是O 的切线.(2)解如图,所示 连接,CO EO①2AB =①1OC OE == ①2CE ①222CO EO += 2222CE == ①222CO O CE +=①90COE ∠=︒ ①29011111360242ππS ⨯=-⨯⨯=-阴影 ①图中阴影部分的面积为142π-. 【点评】本题主要考查圆的基础知识 掌握圆的切线的证明方法 扇形面积的计算方法是解题的关键.11.(1)见解析(2)3【分析】(1)连接CO 根据OF BC ∥可得B AOF ∠=∠ 根据直径所对的圆周角为直角可得90B CAB ∠+∠=︒ 再根据AO CO =得出CAB ACO ∠=∠ 最后证明90ACD ACO ∠+∠=︒即可 (2)根据中位线定理得出152OE BC == 证明DBC DOF ∽ 根据相似三角形对应边成比例 即可求解.【解析】(1)证明连接CO①OF BC ∥①B AOF ∠=∠①AB 为O 的直径①90ACB ∠=︒ 则90B CAB ∠+∠=︒①90AOF CAB ∠+∠=︒①AO CO =①CAB ACO ∠=∠①ACD AOF ∠=∠①90ACD ACO ∠+∠=︒ 即OC CD ⊥①CD 为圆O 的切线(2)①AB 为O 的直径①点O 为AB 中点①OF BC ∥①OE 为ABC 中位线 ①152OE BC == ①1sin 4D = OC CD ⊥ ①4OD OC = 则5BD OD OB OC =+=①OF BC ∥①DBC DOF ∽ ①OF OF BC BD = 即4510OC OF OC = 解得8OF =①853EF OF OE =-=-=.【点评】本题主要考查了切线的判定和性质 圆周角定理 相似三角形的判定和性质以及解直角三角形 解题的关键是掌握切线的判定和性质以及相似三角形的判定和性质.12.(1)30︒(2)100︒【分析】(1)根据三角形内角和定理可得60ABC ∠=︒ 再由AD CD = 可得ABD CBD ∠=∠ 即可求解(2)根据圆周角定理可得30ABD ACD ∠∠==︒ 从而得到80BCD ∠=︒ 再由圆内接四边形的性质 即可求解.【解析】(1)解①70,50BAC ACB ∠=︒∠=︒①18060ABC BAC ACB ∠=︒-∠-∠=︒①AD CD = ①1302ABD CBD ABC ∠=∠=∠=︒ (2)解由圆周角定理得30ABD ACD ∠∠==︒①80BCD ACB ACD ∠=∠+∠=︒①四边形ABCD 是O 的内接四边形①180100BAD BCD ∠=︒-∠=︒.【点评】本题主要考查了圆内接四边形的性质 圆周角定理等知识 熟练掌握圆内接四边形的性质 圆周角定理是解题的关键.13.(1)见解析(2)AD 的长是25【分析】(1)连接OA 根据已知条件证明OA AE ⊥即可解决问题(2)作OF CD ⊥ 则四边形OAEF 是矩形 且132DF CD ==由此可求得DE 的长 在Rt OFD △中 勾股定理求出OF 即AE 的长 在Rt AED △中利用勾股定理求DA . 【解析】(1)证明如图, 连接OA①AE CD ⊥①90DAE ADE ∠+∠=︒.①DA 平分BDE ∠①ADE ADO ∠=∠又①OA OD =①OAD ADO ∠=∠①90DAE OAD ∠+∠=︒①OA AE ⊥①AE 是O 的切线(2)解过点O 作OF CD ⊥于F .①90OAE AEF OFE ∠︒=∠=∠=①四边形OAEF 是矩形①5EF OA AE OF ===,.①OF CD ⊥ ①132DF FC CD ===①532DE EF DF =-=-=在Rt OFD △中 2222534OF OD DF --=①4AE OF ==在Rt AED △中 22224225AD AE DE ++=①AD 的长是25【点评】本题考查了切线的判定与性质 垂径定理 圆周角定理 勾股定理 解决本题的关键是掌握切线的判定与性质.14.(1)12π(2)9【分析】(1) 根据题意 CEB APB ABC PBE S S S S S =+--阴影扇形扇形 根据公式计算即可.(2) 连接PE 根据题意 45,135,90PEB CEP PEC ∠=︒∠=︒∠=︒ 根据勾股定理计算即可.【解析】(1)如图, ①正方形ABCD 旋转APB △到CEB 的位置①APB CEB ≌ 90ABC PBE ∠=∠=︒ =CEB APB S S ①CEB APB ABC PBE S S S S S =+--阴影扇形扇形①ABC PBE S S S =-阴影扇形扇形①48BP AB ==, ①9064901612360360S πππ︒⨯⨯︒⨯⨯=-=︒︒阴影. (2)连接PE根据题意 45,135PEB APB CEP ∠=︒∠=∠=︒ AP CE =①90PEC ∠=︒①4BP = 7AP =①2227,4432CE PE ==+=①222273281PC CE PE =+=+=解得9PC =.【点评】本题考查了正方形的性质 旋转的性质 阴影面积的计算 扇形面积公式 勾股定理 熟练掌握旋转的性质 阴影面积的计算 扇形面积公式 勾股定理是解题的关键.15.(1)证明见解析(2)10DF =【分析】(1)因为CDB CAB ∠=∠ CDB BFD ∠=∠ 所以CAB BFD ∠=∠ 即可得出FD ①AC 可得得出OD FD ⊥ 进而得出结论(2)利用勾股定理先求解AC 再利用垂径定理得出AE 的长 可得OE 的长 证明AEO FDO ∽ 再利用相似三角形的判定与性质得出DF 的长.【解析】(1)①CDB CAB ∠=∠ CDB BFD ∠=∠①CAB BFD ∠=∠①FD AC ∥①OD 垂直于弦AC 于点E①OD FD ⊥①FD 是O 的一条切线(2)①AB 为O 的直径①90ACB ∠=︒①15AB = 9BC = ①2215912AC -= 7.5AO OB OD ===①DO AC ⊥①6AE CE == ①227.56 4.5OE -①AC FD ∥①AEO FDO ∽ ①AE EO FD DO = ①4.567.5FD= 解得10DF =.经检验符合题意.【点评】本题主要考查了相似三角形的判定与性质 垂径定理 圆周角定理 切线的判定 以及平行线的判定 掌握相似三角形的判定与性质 垂径定理 圆周角定理以及平行线的判定是解题的关键.16.(1)50︒(2)30︒【分析】(1)连接OA 先由切线的性质得OAE ∠的度数 求出2142AOB C ∠=∠=︒ 进而得AOE ∠ 则可求出答案(2)连接OA 根据等腰三角形的性质及切线的性质列方程求解即可.【解析】(1)连接OA .如图,①AE 切O 于点AOA AE ∴⊥90OAE ∴∠=︒70C ∠=︒2270140AOB C ∴∠=∠=⨯︒=︒又180AOB AOE ∠+∠=︒40AOE ∴∠=︒90AOE E ∠+∠=︒904050E ∴∠=︒-︒=︒.(2)连接OA 如图,①设E x ∠=.AB AE =ABE E x ∴∠=∠=OA OB =OAB ABO x ∴∠=∠=2AOE ABO BAO x ∴∠=∠+∠=. AE 是O 的切线OA AE ∴⊥ 即90OAE ∠=︒在OAE ∆中 90AOE E ∠+∠=︒即290x x +=︒解得30x =︒30E ∴∠=︒.【点评】本题主要考查了切线的性质 等腰三角形的性质 圆周角的性质 三角形内角和的性质 用方程思想解决几何问题 关键是熟悉掌握这些性质.17.(1)见解析(2)10cm【分析】(1)连接OD 根据平行线的判定与性质可得90ODE DEM ∠=∠=︒ 又点D 在O 上 即可证得DE 是O 的切线(2)首先根据勾股定理可得AD 的长 再由ACD ADE ∽ 根据相似三角形的性质列出比例式 代入数据即可求得圆的半径.【解析】(1)证明如图,连接ODOA OD =OAD ODA ∠=∠∴ AD 平分CAM ∠OAD DAE ∴∠=∠ODA DAE ∴∠=∠DO MN ∴∥DE MN ⊥90ODE DEM ∴∠=∠=︒ 即OD DE ⊥ 又点D 在O 上 OD 为O 的半径DE ∴是O 的切线(2)解90AED ∠=︒ 8cm DE = 4cm AE =22228445AD DE AE ∴++如图,连接CDAC 是直径90ADC AED ∴∠=∠=︒CAD DAE ∠=∠ACD ADE ∴△∽△AD AC AE AD ∴= 4545=解得20AC =O ∴的半径为10cm .【点评】本题考查圆了切线的判定;等边对等角 平行线的判定与性质 圆周角定理 勾股定理 相似三角形的判定和性质等知识 在圆中学会正确添加辅助线是解决问题的关键.18.(1)见解析 (2)49【分析】(1)欲证~CBA FDC ,只要证明两个角对应相等就可以.可以转化为证明DE BC =就可以 (2)由~CBA FDC 可得814CF = ACB F ∠=∠ 进而即可得到答案. 【解析】(1)证明①四边形ABCD 内接于O①CBA CDF ∠=∠.①DE BC =①BCA DCE ∠=∠.①~CBA FDC(2)解①C 是DBA 的中点①9CD AC ==①~CBA FDC 4AB = ①AB AC CD CF = 即499CF= ①814CF = ①~CBA FDC ①94tan tan 8194AC ACB F CF ∠=∠===.【点评】本题考查的是圆的综合题;涉及弧、弦的关系;等腰三角形的性质;相似三角形的判定与性质;锐角三角函数;掌握相似三角形的判定和性质是解答此题的关键.。

人教版 九年级数学上册 第24章 圆 综合巩固训练(含答案)

人教版 九年级数学上册 第24章 圆 综合巩固训练(含答案)

人教版九年级数学第24章圆综合巩固训练一、选择题(本大题共10道小题)1. 下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形2. 如图,AB和⊙O相切于点B,∠AOB=60°,则∠A的大小为( )A. 15°B. 30°C. 45°D. 60°3. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定4. 如图所示的扇形纸片半径为5 cm,用它围成一个圆锥的侧面,该圆锥的高是4 cm,则该圆锥的底面周长是( )A. 3πcmB. 4πcmC. 5πcmD. 6πcm5. 如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4∶5,那么所需扇形铁皮的圆心角应为()A.288°B.144°C.216°D.120°6. 如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.7 B .27 C .6 D .87. 如图,在⊙O 中,如果AB ︵=2AC ︵,那么()A .AB =AC B .AB =2AC C .AB <2ACD .AB >2AC8. 2018·黑龙江如图在△ABC 中,AB =5,AC =3,BC =4,将△ABC 绕点A 按逆时针方向旋转40°得到△ADE ,点B 经过的路径为弧BD ,则图阴影部分的面积为( )图A.143π-6B.259πC.338π-3 D.33+π9. 已知正六边形的半径为r ,则它的边长、边心距、面积分别为( ) A.233r ,r ,3r 2 B .r ,r2,23r 2 C.33r ,r ,3r 2D .r ,3r 2,332r 210. 如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以点A 为圆心,以AC长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是( )A.4π-4 B.4π-8C.8π-4 D.8π-8二、填空题(本大题共8道小题)11.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.12. 设⊙O的半径为3,点O到直线l的距离为d,若直线l与⊙O至少有一个公共点,则d的取值范围是________.13. 如图,AB为⊙O的直径,圆周角∠ABC=40°,当∠BCD=________°时,CD 为⊙O的切线.14. 如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交⊙O 于点C,连接BC.若∠A=26°,则∠C的度数为________.15. (2020·重庆A卷)如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO长为半径画弧,分别与正方形的边相交,则图中的阴影部分面积为__________.(结果保留π)16. 如图,半圆的圆心O与坐标原点重合,半圆的半径为1,直线l的解析式为y=x+t.若直线l与半圆只有一个公共点,则t的取值范围是________.17. 如图,在Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB=2,以OB 长为半径的⊙O与AC相切于点D,交BC于点F,OE⊥BC于点E,则弦BF的长为________.18. 如图,⊙M的圆心为M(-2,2),半径为2,直线AB过点A(0,-2),B(2,0),则⊙M关于y轴对称的⊙M′与直线AB的位置关系是________.三、解答题(本大题共4道小题)19.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=23,BF=2,求阴影部分的面积(结果保留π).20. 已知AB =4 cm ,画图并用文字说明满足下列条件的图形.(1)到点A 和点B 的距离都等于3 cm 的所有点组成的图形; (2)到点A 和点B 的距离都不大于3 cm 的所有点组成的图形;(3)到点A 的距离大于3 cm ,且到点B 的距离小于3 cm 的所有点组成的图形.21.如图,△ABC 和△ABD 都是直角三角形,且∠C =∠D =90°.求证:A ,B ,C ,D 四点在同一个圆上.22. (2019•襄阳)如图,点E 是ABC △的内心,AE 的延长线和ABC △的外接圆圆O相交于点D ,过D 作直线DG BC ∥. (1)求证:DG 是圆O 的切线;(2)若6DE =,63BC =,求优弧BAC 的长.人教版九年级数学第24章圆综合巩固训练-答案一、选择题(本大题共10道小题)1. 【答案】A[解析] ∵正三角形一条边所对的圆心角是360°÷3=120°,正方形一条边所对的圆心角是360°÷4=90°,正五边形一条边所对的圆心角是360°÷5=72°,正六边形一条边所对的圆心角是360°÷6=60°,∴一条边所对的圆心角最大的图形是正三角形.故选A.2. 【答案】B 【解析】∵AB和⊙O相切于点B,∴OB⊥AB,∴∠ABO=90°,∵∠AOB=60°,∴∠A=90°-∠AOB=90°-60°=30°.3. 【答案】B4. 【答案】D【解析】如解图,由题意可知,OA=4 cm,AB=5 cm,在Rt△AOB中,利用勾股定理可求得OB=3 cm,∴该圆锥的底面周长是6π cm.5. 【答案】A[解析] 设所需扇形铁皮的圆心角为n°,圆锥底面圆的半径为4x,则母线长为5x,所以底面圆周长为2π×4x=8πx,所以n180×π×5x=8πx,解得n=288.6. 【答案】B[解析] 连接OC,则OC=4,OE=3.在Rt△OCE中,CE=OC2-OE2=42-32=7.因为AB⊥CD,所以CD=2CE=2 7.7. 【答案】C[解析] 取AB ︵的中点D ,则AD ︵=BD ︵=AC ︵,所以AD =BD =AC ,而AD +BD >AB ,所以2AC >AB .8. 【答案】B[解析] ∵AB =5,AC =3,BC =4,∴AC 2+BC 2=25=AB 2,∴△ABC为直角三角形.由旋转的性质得,△ADE 的面积=△ABC 的面积,由图可知,阴影部分的面积=△ADE 的面积+扇形ADB 的面积-△ABC 的面积, ∴阴影部分的面积=扇形ADB 的面积=40π×52360=259π.9. 【答案】D10. 【答案】A[解析] 由正方形与圆的轴对称性可知S 弓形AB =S 弓形BC ,S弓形AD =S 弓形CD ,∴S 阴影=S 扇形AEF -S △ABD =90π×42360-12×4×2=4π-4.故选A.二、填空题(本大题共8道小题)11.【答案】50° 【解析】∵AT 是⊙O 的切线,AB 是⊙O 的直径,∴∠BAT =90°,在Rt △BAT 中,∵∠ABT =40°,∴∠ATB =50°.12. 【答案】0≤d≤313. 【答案】50[解析] 连接OC .∵OC =OB ,∴∠OCB =∠ABC =40°. ∵∠BCD =50°,∴∠OCD =90°, ∴CD 为⊙O 的切线.14. 【答案】32°[解析] 连接OB ,由切线的性质得OB ⊥AB ,∴∠AOB =90°-∠A =90°-26°=64°. 又∵OB =OC ,∴∠C =12∠AOB =12×64°=32°.15. 【答案】4-π【解析】因为正方形ABCD 的边长为2,所以AO=12AC=2212+2=22⨯,阴影部分的面积等于正方形ABCD 的面积减去半径为2的半圆的面积.∵ S 正方形ABCD=22=4,S 扇形EAF=2π,∴S 阴影部分=4-2×2π=4-π.16. 【答案】t =2或-1≤t <1 [解析] 若直线与半圆只有一个公共点,则有两种情况:直线和半圆相切于点C 或从直线过点A 开始到直线过点B 结束(不包括直线过点A ).直线y =x +t 与x 轴所形成的锐角是45°.当点O 到直线l 的距离OC =1时,直线l 与半圆O 相切,设直线l 与y 轴交于点D ,则OD =2,即t = 2.当直线过点A 时,把A (-1,0)代入直线l 的解析式,得t =y -x =1. 当直线过点B 时,把B (1,0)代入直线l 的解析式,得t =y -x =-1. 即当t =2或-1≤t <1时,直线和半圆只有一个公共点. 故答案为t =2或-1≤t <1.17. 【答案】2[解析] 如图,连接OD.∵OE ⊥BF 于点E ,∴BE =12BF.∵AC 是⊙O 的切线,∴OD ⊥AC ,∴∠ODC =∠C =∠OEC =90°, ∴四边形ODCE 是矩形, ∴EC =OD =OB =2.又∵BC=3,∴BE=BC-EC=3-2=1,∴BF=2BE=2.18. 【答案】相交[解析] ∵⊙M的圆心为M(-2,2),则⊙M关于y轴对称的⊙M′的圆心为M′(2,2).因为M′B=2>点M′到直线AB的距离,所以直线AB与⊙M′相交.三、解答题(本大题共4道小题)19. 【答案】(1)解:BC与⊙O相切.理由如下:解图如解图,连接OD,∵AD平分∠BAC,∴∠CAD=∠OAD.又∵∠OAD=∠ODA,∴∠CAD=∠ODA.∴OD∥AC,(2分)∴∠BDO=∠C=90°,又∵OD是⊙O的半径,∴BC与⊙O相切.(4分)(2)解:设⊙O的半径为r,则OD=r,OB=r+2,由(1)知∠BDO=90°,∴在Rt△BOD中,OD2+BD2=OB2,即r2+(23)2=(r+2)2.解得r=2.(5分)∵tan∠BOD=BDOD=232=3,∴∠BOD=60°.(7分)∴S阴影=S△OBD-S扇形ODF=12·OD·BD-60πr2360=23-23π.(8分)20. 【答案】解:(1)如图①中的点C和点D.(2)如图①中的阴影部分(包括边界).(3)如图②中的阴影部分(不包括边界).21. 【答案】证明:如图,取AB的中点O,连接OC,OD.∵△ABC和△ABD都是直角三角形,且∠ACB=∠ADB=90°,∴OC,OD分别为Rt△ABC和Rt△ABD斜边上的中线,∴OC=OA=OB,OD=OA=OB,∴OA=OB=OC=OD,∴A,B,C,D四点在同一个圆上.22. 【答案】(1)连接OD交BC于H,如图,∵点E是ABC△的内心,∴AD平分BAC∠,即BAD CAD∠=∠,∴BD CD=,∴OD BC,BH CH=,∵DG BC∥,11 / 11 ∴OD DG ⊥,∴DG 是圆O 的切线.(2)连接BD 、OB ,如图,∵点E 是ABC △的内心,∴ABE CBE ∠=∠,∵DBC BAD ∠=∠,∴DEB BAD ABE DBC CBE DBE ∠=∠+∠=∠+∠=∠, ∴6DB DE ==,∵12BH BC == 在Rt BDH △中,sin BH BDH BD ∠=== ∴60BDH ∠=︒,而OB OD =,∴OBD △为等边三角形,∴60BOD ∠=︒,6OB BD ==,∴120BOC ∠=︒,∴优弧BAC 的长=(360120)π68π180-⋅⋅=.。

初三圆基础测试题及答案

初三圆基础测试题及答案

初三圆基础测试题及答案一、选择题(每题2分,共10分)1. 圆的半径为3,那么圆的直径是多少?A. 6B. 9C. 12D. 152. 已知圆的周长为12π,那么圆的半径是多少?A. 2B. 4C. 6D. 83. 圆的面积公式是什么?A. πr²B. πdC. 2πrD. πd²4. 如果一个点到圆心的距离等于圆的半径,那么这个点位于圆的什么位置?A. 圆内B. 圆上C. 圆外D. 无法确定5. 圆的切线与半径在切点处的关系是什么?A. 垂直B. 平行C. 相交D. 重合二、填空题(每题2分,共10分)6. 圆的周长公式为C=________。

7. 如果一个圆的半径为5,则其面积为________π。

8. 半径为r的圆内接正六边形的边长为________。

9. 圆的直径与半径的关系是d=________r。

10. 圆的切线与半径在切点处相互________。

三、计算题(每题5分,共20分)11. 已知圆的半径为4,求圆的周长和面积。

12. 已知圆的周长为18.84,求圆的半径。

13. 已知圆的面积为28.26平方厘米,求圆的半径。

14. 已知圆的直径为10厘米,求圆的周长和面积。

四、解答题(每题5分,共10分)15. 如何判断一个点是否在圆上?请给出判断方法。

16. 解释圆的切线的性质,并给出一个实际应用的例子。

五、综合题(每题5分,共10分)17. 已知圆O的半径为5厘米,点A在圆O上,点B在圆O外,AB=6厘米,求圆心O到直线AB的距离。

18. 已知圆的半径为3厘米,圆内接正三角形的边长是多少?答案:1. A2. B3. A4. B5. A6. 2πr7. 258. 2r sin(π/6)9. 210. 垂直11. 周长=8π,面积=16π12. 半径=313. 半径=√(28.26/π)14. 周长=10π,面积=25π15. 判断方法:如果点到圆心的距离等于圆的半径,则点在圆上。

中考数学总复习《圆的综合题》练习题-附带答案

中考数学总复习《圆的综合题》练习题-附带答案

中考数学总复习《圆的综合题》练习题-附带答案一、单选题(共12题;共24分)1.如图,AB是半圆O的直径,C,D是半圆上的两点,若∠BAC=20°.则∠D的大小为()A.100°B.110°C.120°D.130°2.如图,矩形ABCD为∠O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长AE交∠O于点F,则线段AF的长为()A.B.5C.+1D.3.如图,在⊙O中∠AOB=90°,点C是优弧AB上一点,则∠ACB的度数为()A.35°B.45°C.50°D.60°4.如图,∠O中弦AD∠BC,DA=DC,∠AOC=160°,则∠BCO等于()A.20°B.30°C.40°D.50°5.如图,∠O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD所对的圆心角∠BOD的大小为()A.108°B.118°C.144°D.120°6.已知AB,CD是两个不同圆的弦,如AB=CD,那么AB⏜与CD⏜的关系是()A.AB=CD B.AB>CD C.AB<CD D.不能确定7.如图,在△ABC中∠C=90°,AB=7 ,AC=4以点C为圆心、CA为半径的圆交AB于点D,求弦AD的长为()A.4√337B.327C.2√337D.1678.如图,AB是∠O的直径,弦MN∠AB,分别过M,N作AB的垂线,垂足为C,D.以下结论:①AC=BD;②AM⌢=BN⌢;③若四边形MCDN是正方形,则MN=12AB;④若M为AN⌢的中点,则D为OB中点;所有正确结论的序号是()A.①②③B.①②④C.①②D.①②③④9.将一个半径为8cm,面积为32πcm2的扇形铁皮围成一个圆锥形容器(不计接缝),那么这个圆锥形容器的高为()A.4B.4√3C.4√5D.2√14 10.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是()m.A.4√2B.5 C.√30D.2√1511.如图,在矩形ABCD中AB=3cm,AD=4cm若以点B为圆心,以4cm长为半径作OB,则下列选项中的各点在⊙B外的是()A.点A B.点B C.点C D.点D 12.如图,⊙O的直径AB=6,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP= 1:5,则CD的长为().A.3B.4C.2√5D.√5二、填空题(共6题;共7分)13.若圆弧的度数为60°,弧长为6π,则圆弧的半径为.14.如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,AB⌢m__=90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为.15.如图,点E(0,3),O(0,0),C(4,0)在∠A上,BE是∠A上的一条弦.则sin∠OBE=.16.如图,在平面直角坐标系xOy中A(4,0),B(0,3),C(4,3),点I是∠ABC 的内心,则点I的坐标为;点I关于原点对称的点的坐标为.17.如图:P是∠O的直径BA延长线上一点,PD交∠O于点C,且PC=OD,如果∠P=24°,则∠DOB=18.已知AB是⊙O的弦,AB=8cm,OD⊥AB于点C,OC=3cm,则⊙O的半径是cm.三、综合题(共6题;共69分)19.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作∠O,分别与∠EPF的两边相交于A、B和C、D,连接OA,此时有OA∠PE.(1)求证:AP=AO;(2)若tan∠OPB= 12,求弦AB的长;(3)若以图中已标明的点(即P、A、B、C、D、O)构造四边形,则能构成菱形的四个点为 ,能构成等腰梯形的四个点为 或 或 .20.如图,PA 、PB 是∠O 的切线,A 、B 为切点,∠APB=60°,连接PO 并延长与∠O交于C 点,连接AC ,BC .(1)求证:四边形ACBP 是菱形;(2)若∠O 半径为1,求菱形ACBP 的面积.21.已知,如图,在Rt∠ABC 中∠C =90°,AD 平分∠CAB .(1)按要求尺规作图:作AD 的垂直平分线(保留作图痕迹);(2)若AD 的垂直平分线与AB 相交于点O ,以O 为圆心作圆,使得圆O 经过AD 两点.①求证:BC 是∠O 的切线;②若 CD =2√2,AD =2√6 ,求∠O 的半径.22.如图,已知AB 是∠O 的直径,弦CD 与直径AB 相交于点F .点E 在∠O 外,作直线AE ,且∠EAC=∠D .(1)求证:直线AE 是∠O 的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF 的长.23.如图,AH 是∠O 的直径,AE 平分∠FAH ,交∠O 于点E ,过点E 的直线FG∠AF ,垂足为F ,B 为半径OH 上一点,点E 、F 分别在矩形ABCD 的边BC 和CD上.(1)求证:直线FG是∠O的切线(2)若CD=10,EB=5,求∠O的直径24.如图,∠O是∠ABC的外接圆,AB为直径,D是∠O上一点,且弧CB=弧CD,CE∠DA交DA的延长线于点E.(1)求证:∠CAB=∠CAE;(2)求证:CE是∠O的切线;(3)若AE=1,BD=4,求∠O的半径长.参考答案1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】B 5.【答案】C 6.【答案】D 7.【答案】B 8.【答案】B 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】C 13.【答案】1814.【答案】(32+48π)cm² 15.【答案】3516.【答案】(3,2);(-3,-2) 17.【答案】72° 18.【答案】519.【答案】(1)证明:∵PG 平分∠EPF∴∠DPO=∠BPO ∵OA∠PE ∴∠DPO=∠POA ∴∠BPO=∠POA ∴PA=OA(2)解:过点O 作OH∠AB 于点H ,则AH=HB= 12AB∵tan∠OPB= OH PH =12,∴PH=2OH设OH=x ,则PH=2x由(1)可知PA=OA=10,∴AH=PH ﹣PA=2x ﹣10 ∵AH 2+OH 2=OA 2,∴(2x ﹣10)2+x 2=102 解得x 1=0(不合题意,舍去),x 2=8 ∴AH=6,∴AB=2AH=12(3)P、A、O、C;A、B、D、C;P、A、O、D;P、C、O、B 20.【答案】(1)证明:连接AO,BO,∵PA、PB是∠O的切线,∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO= 1 2∠APB=30°∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°∴∠ACO=∠APO,∴AC=AP同理BC=PB,∴AC=BC=BP=AP,∴四边形ACBP是菱形(2)解:连接AB交PC于D∴AD∠PC,∴OA=1,∠AOP=60°,∴AD= √32OA= √32∴PD= 32,∴PC=3,AB= √3∴菱形ACBP的面积= 12AB•PC=2√32.21.【答案】(1)解:如图所示:(2)①证明:如图,连接OD,∵AD为∠BAC的角平分线∴∠CAD=∠BAD∵OA=OD,∴∠BAD=∠ODA∴∠CAD=∠ODA∴OD∠AC∴∠ODB=∠C=90°∴OD∠BC∵OD为∠O半径∴BC是∠O的切线.②如图,过点D作DH∠AB于H∵∠C=90°∴DC∠AC∵AD为∠BAC的角平分线∴DH=CD= 2√2在Rt∠ADH中AH=√AD2−DH2=√(2√6)2−(2√2)2=4设∠O半径为r,∴OA=OD=r∴OH=AH-OA=4-r在Rt∠OHD中∴r2=(4−r)2+(2√2)2∴r=3即∠O的半径为3.22.【答案】(1)解:连接BD ,如图∵AB 是∠O 的直径∴∠ADB=90°,即∠ADC+∠CDB=90° ∵∠EAC=∠ADC ,∠CDB=∠BAC ∴∠EAC+∠BAC=90°,即∠BAE=90° ∴直线AE 是∠O 的切线; (2)解:∵AB 是∠O 的直径∴∠ACB=90°在Rt∠ACB 中∠BAC=30° ∴AB=2BC=2×4=8由勾股定理得:AC=√82−42=4√3 在Rt∠ADB 中cos∠BAD =34=ADAB∴34=AD 8 ∴AD=6∴BD=√82−62 =2√7∵∠BDC=∠BAC ,∠DFB=∠AFC ∴∠DFB∠∠AFC ∴BF FC =BD AC∴BF103=2√74√3∴BF=5√219. 23.【答案】(1)【解答】解:如图1,连接OE∵OA=OE∴∠EAO=∠AEO∵AE 平分∠FAH∴∠EAO=∠FAE∴∠FAE=∠AEO∴AF∠OE∴∠AFE+∠OEF=180°∵AF∠GF∴∠AFE=∠OEF=90°∴OE∠GF∵点E 在圆上,OE 是半径∴GF 是∠O 的切线.(2)【解答】∵四边形ABCD 是矩形,CD=10∴AB=CD=10,∠ABE=90°设OA=OE=x ,则OB=10﹣x在Rt∠OBE 中∠OBE=90°,BE=5由勾股定理得:OB 2+BE 2=OE 2∴(10﹣x )2+52=x 2∴x =54AH =2×254=254∴∠O 的直径为252.24.【答案】(1)证明:连接BD∵弧CB=弧CD∴∠CDB=∠CBD,CD=BC∵四边形ACBD是圆内接四边形∴∠CAE=∠CBD,且∠CAB=∠CDB∴∠CAB=∠CAE(2)证明:连接OC∵AB为直径∴∠ACB=90°=∠AEC又∵∠CAB=∠CAE∴∠ABC=∠ACE∵OB=OC∴∠BCO=∠CBO∴∠BCO=∠ACE∴∠ECO=∠ACE+∠ACO=∠BCO+∠ACO=∠ACB=90°∴EC∠OC∵OC是∠O的半径∴CE是∠O的切线(3)证明:过点C作CF∠AB于点F又∵∠CAB=∠CAE,CE∠DA∴AE=AF在∠CED和∠CFB中∵∠DEC=∠BFC=90°∠EDC=∠BFCCD=BC∴∠CED∠∠CFB(AAS)∴ED=FB设AB=x,则AD=x﹣2在∠ABD中由勾股定理得,x2=(x﹣2)2+42解得,x=5∴∠O的半径的长为5 2。

2020年九年级数学中考复习: 圆的专题巩固(含部分答案)

2020年九年级数学中考复习: 圆的专题巩固(含部分答案)

圆一、单选题1.如图,AB 是⊙O 的直径,弦CD ⊙AB 于点E ,5,8OC cm CD cm ==,则AE =( )A .8cmB .5cmC .3cmD .2cm2.如图,点P 为圆O 外一点,PA 为圆的切线,PO 交圆O 于点B ,⊙P=30°,OB=4,则线段BP 的长为( )A .6B .C .4D .83.如图,圆锥形烟囱帽的底面直径为80cm ,母线长为50cm ,则这样的烟囱帽的侧面积是( ).A .4000πcm 2B .3600πcm 2C .2000πcm 2D .1000πcm 2 4.若正方形的边长为a ,其内切圆的半径为r ,外接圆的半径为R ,则r ⊙R ⊙a =…( )A .1:1:B .1:2C .D :2:4 5.如图,在⊙O 中,点C 是圆上一点,以点C 为圆心、以⊙O 的半径为半径作弧交O e 于点A 、B ,连接OA 、OB ,则AOB ∠的度数为( )A .120°B .130°C .135°D .150°6.如图,AB 为⊙O 的直径,点C 在⊙O 上,若50OCA ∠=︒,4AB =,则»BC 的长为( )A .103πB .109πC .59π D .518π 7.如图,⊙O 是⊙ABC 的外接圆,⊙ACO=45°,则⊙B 的度数为( )A .30°B .35°C .40°D . 45°8.如图,在⊙O 中,点A 、B 、C 在⊙O 上,且⊙ACB =100°,则⊙α=( )A .80°B .100°C .120°D .160°9.如图,PA 、PB 切⊙O 于点A 、B ,10PA =,CD 切⊙O 于点E ,交PA 、PB 于C 、D两点,则PCD的周长是()A.10B.18C.20D.2210.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则⊙BED 的余弦值为()A B C.2D.1 211.如图,在⊙O中,直径AB⊙弦CD于点M,AB=10,BM=2,则CD的长为()A.4B.6C.10D.812.如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若⊙BCD=125°,则⊙ADP的大小为()A.25°B.40°C.35°D.30°二、填空题13.如图,在Rt⊙ABC中,⊙ACB=90°,AC=BC=3,将Rt⊙ABC绕点A逆时针旋转30°后得到Rt⊙ADE,则点B经过的路径为弧BD,则图中阴影部分的面积为_____.14.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是_____cm2.15.如图,在扇形AOB中,⊙AOB=90°,以点A为圆心,OA的长为半径作»»OC AB和于点C,若OA=2,则阴影部分的面积为_____.16.如图,AB是⊙O的直径,⊙AOE=78°,点C、D是弧BE的三等分点,则⊙COE=_____.17.如图,AB是⊙O的直径,C、D、E都是⊙O上的点,则⊙1+⊙2=______.18.已知,如图,AB 是⊙O 的直径,点D ,C 在O e 上,连接AD 、BD 、DC 、AC ,如果25BAD ∠=o ,那么C ∠的度数是________.19.以正方形ABCD 的AB 边为直径作半圆O ,过点C 作直线切半圆于点F ,交AB 边于点E ,若CDE ∆的周长为12,则直角梯形ABCE 周长为___________.20.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆相交于点D 、E ,量出半径OC =5cm ,弦DE =8cm ,求直尺的宽度.三、解答题21.如图,线段AB 是⊙O 的直径,PC 是半径OB 的垂直平分线,垂足为点E ,点M 是线段DE 上的点(异于两端),连接BM 并延长交O e 于点N ,且PM PN =.e的切线.(1)求证:PN是OBE ,且点D是线段PE的中点,求EM的长.(2)若122.如图,点O为Rt⊙ABC斜边AB上的一点,以OA为半径的⊙O与边BC交于点D,与边AC交于点E,连接AD,且AD平分⊙BAC.(1)试判断BC与⊙O的位置关系,并说明理由;(2)若⊙BAC=60°,OA=2,求阴影部分的面积(结果保留π).23.如图,在Rt⊙ABC中,⊙C=90°,BE平分⊙ABC交AC于点E,点D在AB边上且DE⊙BE.(1)判断直线AC与⊙DBE外接圆的位置关系,并说明理由;(2)若AD=6,AE=,求⊙DBE外接圆的半径及CE的长.24.如图,A、P、B、C是⊙O上四点,⊙APC=⊙CPB=60°.(1)求证:⊙ABC是等边三角形;(2)连接OA,OB,当点P位于什么位置时,四边形PBOA是菱形?并说明理由;(3)已知PA=a,PB=b,求PC的长(用含a和b的式子表示).AB=,25.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分⊙BAC,交BC于点E,10 AD=,8⊥;(1)连结OD,求证OD CB(2)求CD的长;(3)求AE的长.26.如图,在⊙ABC中,AB=AC,以为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊙AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若FDEF=32,求证A为EH的中点;(3)若EA=EF=2,求圆O的半径.参考答案1.A2.C3.C4.B5.A6.B7.D8.D9.C10.A11.D12.C13.3 2π14.6π151 3π-16.68°17.90°18.65o19.21 220.3cm.21.(1)略;(2)3EM=22.(1)BC与⊙O相切;(2)23π.23.(1)直线AC与⊙DBE外接圆相切,理由见解析;(2)外接圆的半径为3,CE的长为224.(1)略;(2)当点P位于»AB的中点时,四边形PBOA是菱形;(3)a+b.25.(1)略;(2)6;(3)7 2 .26.(1)略;(2)略;(3)⊙O的半径为。

2022年人教版初中数学9年级上册《圆》全章复习与巩固—巩固练习(基础)及答案

2022年人教版初中数学9年级上册《圆》全章复习与巩固—巩固练习(基础)及答案

2022年人教版初中数学9年级上册《圆》全章复习与巩固—巩固练习(基础)【巩固练习】一、选择题1.对于下列命题:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.其中,正确的有().A.1个B.2个C.3个D.4个2.(2020•海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°3.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在最高处踩板离地面2米(左右对称),如图所示,则该秋千所荡过的圆弧长为().A.米B.米C.米D.米4.已知两圆的半径分别为2、5,且圆心距等于2,则两圆位置关系是().A.外离B.外切C.相切D.内含5.如图所示,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于E、F,OE=8,OF=6,则圆的直径长为().A.12B.10C.4D.15第3题图第5题图第6题图第7题图6.如图所示,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为().A.(2,-1)B.(2,2)C.(2,1)D.(3,1)7.如图所示,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于().A.55°B.90°C.110°D.120°8.一个圆锥的侧面积是底面积的3倍,这个圆锥的侧面展开图的圆心角是().A.60°B.90°C.120°D.180°二、填空题9.如图所示,△ABC内接于⊙O,要使过点A的直线EF与⊙O相切于A点,则图中的角应满足的条件是________________(只填一个即可).10.已知两圆的圆心距为3,的半径为1.的半径为2,则与的位置关系为________.11.如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________.第9题图第11题图第12题图第15题图12.如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有________________.13.点M到⊙O上的最小距离为2cm,最大距离为10cm,那么⊙O的半径为________.14.已知半径为R的半圆O,过直径AB上一点C,作CD⊥AB交半圆于点D,且32CD R=,则AC的长为________.15.如图所示,⊙O是△ABC的外接圆,D是弧AB上一点,连接BD,并延长至E,连接AD,若AB=AC,∠ADE=65°,则∠BOC=________.16.(2020•衢州)一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于m.三、解答题17.如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使BED C∠=∠.试判断直线AC与圆O的位置关系,并证明你的结论;CA O BE D18.在直径为20cm的圆中,有一弦长为16cm,求它所对的弓形的高。

中考数学总复习《圆的综合题》专项测试卷(带有答案)

中考数学总复习《圆的综合题》专项测试卷(带有答案)

中考数学总复习《圆的综合题》专项测试卷(带有答案)学校:___________班级:___________姓名:___________考号:___________类型一 与圆的性质有关的证明与计算典例精讲例 (一题多设问) 如图,在⊙O 中,AC 为⊙O 的直径,AB 为⊙O 的弦,点E 是AC ︵的中点,过点E 作AB 的垂线,交AB 于点M ,交⊙O 于点N ,分别连接EB ,CN . (1)EM 与BE 的数量关系是________; (2)求证:EB ︵=CN ︵;(3)若AM =3,MB =1,求阴影部分图形的面积.例题图拓展设问(4)若∠BAC =15°,AM =3,求⊙O 的半径及EN 的长.针对演练1.如图,AB是⊙O的直径,弦CD与AB交于点M,过点D作DE⊥CD交⊙O于点E,连接AD,OE,若M为CD的中点.(1)求证:DE∥AB;(2)若OE∥AD①连接AC,求证:AC=DE;②若CD=23,求图中阴影部分的面积.第1题图类型二与切线有关的证明与计算典例精讲例(一题多设问) 如图①,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作⊙O的切线DF,与AC交于点F.(1)求证:CF=EF;【思维教练】要证CF=EF,可连接OD、DE,利用切线的性质及AB=AC可证明DF⊥AC,则只需证明△CDE是等腰三角形,利用三线合一的性质即可求证.例题图①(2)如图②,连接BE,求证:DF∥BE;【思维教练】根据AB是⊙O的直径,可以得到BE⊥AC,要证DF∥BE,只需证明DF⊥AC 即可,由(1)即可得知.例题图②(3)如图③,若③O的半径为4,③CDF=30°,求CF的长;【思维教练】要求CF的长,可将其放在Rt△CDF中,利用三角函数求解,连接AD,由⊙O 的半径可得CD的长,即可求解.例题图③(4)如图④,若tan C=2,CE=4,求⊙O的半径;【思维教练】要求⊙O的半径,只需求出AB的长,连接BE,构造出Rt△ABE,在直角三角形中求解即可.例题图④(5)如图③,若③A =45°,AB =4,求阴影部分的面积.【思维教练】要求阴影部分的面积,可将其分为△AOE 、△BOD 及扇形DOE 三部分,利用和差法求解即可.例题图⑤针对演练1. 如图,在Rt △ABC 中,∠C =90°,以点B 为圆心,适当的长为半径作弧,分别交AB 、BC 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径作弧,两弧交于点P ,作射线BP ,交AC 于点F .点O 是斜边AB 上一点,以点O 为圆心,OB 的长为半径的圆恰好与AC 相切于点F .第1题图(1)若∠A =30°,求证:△ABF 是等腰三角形;(2)若BC =6,tan A =34,求⊙O 的半径.参考答案类型一 与圆的性质有关的证明与计算典例精讲例 (1)解:BE =2EM ;(2分)【解法提示】∵AC 为⊙O 的直径,E 是AC ︵的中点,∴∠ABE =45°.∵AB ⊥EN ,∴△EMB 为等腰直角三角形,∴BE =2EM . (2)证明:如解图①,连接EO∵AC 是⊙O 的直径,点E 是AC ︵的中点 ∴∠AOE =90°∴∠ABE =12∠AOE =45°.∵EN ⊥AB ,垂足为M ∴∠EMB =90° ∴∠ABE =∠BEN =45° ∴AE ︵=BN ︵. ∵点E 是AC ︵的中点 ∴AE ︵=EC ︵ ∴EC ︵=BN ︵∴EC ︵-BC ︵=BN ︵-BC ︵ ∴EB ︵=CN ︵;(7分)例题解图①(3)解:如解图①,连接AE ,OB ,ON ∵EN ⊥AB ,垂足为M ∴∠AME =∠EMB =90°.∵BM =1,由(2)得∠ABE =∠BEN =45° ∴EM =1,BE = 2.∵在Rt △AEM 中,EM =1,AM =3 ∴tan ∠EAB =13=33∴∠EAB =30°. ∵∠EAB =12∠EOB∴∠EOB =60°. 又∵OE =OB∴△EOB 是等边三角形 ∴OE =BE = 2. 又∵EB ︵=CN ︵∴CN =BE =2,∠CON =∠BOE =60°.又∵S 扇形CON =60π×(2)2360=π3,S △OCN =12CN ·32CN =12×2×32×2=32∴S 阴影=S 扇形CON -S △OCN =π3-32.(12分)拓展设问(4)解:如解图②,连接AE ,AN ,OE ∵点E 是AC ︵的中点 ∴∠AOE =90°.∵OA=OE∴∠EAC=45°.∵∠BAC=15°∴∠EAB=45°-15°=30°.∵EM⊥AB∴在Rt△AEM中,EM=AM·tan30°=3,AE=AMcos30°=23∴在Rt△AOE中,OA=AE·cos45°= 6.∵∠BAN=∠BEN=45°,EM⊥AB∴在Rt△AMN中,MN=AM=3∴EN=EM+MN=3+3∴⊙O的半径为6,EN的长为3+3.例题解图②针对演练1. (1)证明:∵AB是⊙O的直径,CM=DM∴AB⊥CD.∵DE⊥CD∴∠CMB=∠CDE=90°∴DE∥AB;(2)①证明:∵OE∥AD,OA∥DE∴四边形AOED是平行四边形.∵OA=OE∴四边形AOED是菱形∴AD=DE.∵AB⊥CD∴AD=AC∴AC=DE;②解:如解图,连接OC ∵DE ⊥CD∴CE 为⊙O 的直径,即点O 在CE 上. ∵M 为CD 的中点∴CM =12CD =3,AC =AD =OE =OA =OC∴△AOC 是等边三角形∴∠AOC =60°,OC =CMsin ∠AOC =2.∵AD ∥OE∴∠OAD =∠AOC ,∠ADC =∠DCE . ∵AD =OC ∴△ADM ≌△OCM∴S 阴影=S 扇形AOC =60π×22360=2π3.第1题解图类型二 与切线有关的证明与计算典例精讲例 (1)证明:如解图①,连接OD ,DE ∵AB =AC ∴∠ABC =∠ACB . ∵OB =OD ∴∠OBD =∠ODB ∴∠ODB =∠ACB ∴OD ∥AC . ∵DF 是⊙O 的切线 ∴DF ⊥OD ∴DF ⊥AC .∵∠DEC =∠ABC ∴∠DEC =∠ACB ∴DE =CD ∴CF =EF ;例题解图①(2)证明:由(1)知DF ⊥AC ∵AB 是⊙O 的直径 ∴∠AEB =90°,即BE ⊥AC ∴DF ∥BE ;(3)解:如解图②,连接AD ∵∠CDF =30°,DF ⊥AC ∴∠ACB =60°∴∠ABC =∠ACB =60°. ∵AB 是⊙O 的直径 ∴∠ADB =90° ∴BD =CD .在Rt △ABD 中,∵AB =2AO =8 ∴BD =AB ·cos ∠ABC =4 ∴CD =4在Rt △CDF 中,∵∠CDF =30° ∴CF =12CD =2;例题解图②(4)解:如解图③,连接BE∵CE =4,点F 是CE 的中点 ∴CF =2 ∵tan C =DFCF =2∴DF =4 ∴BE =2DF =8设AE =x ,则AB =AC =x +4在Rt △ABE 中,由勾股定理得AB 2=AE 2+BE 2,即(x +4)2=x 2+82 解得x =6 ∴AB =x +4=10 即⊙O 的半径为5;例题解图③(5)解:如解图④,连接OE 、OD ,过点D 作DH ⊥AB 于点H ∵∠A =45°,OA =OE ,AB =AC ∴∠AEO =∠A =45°,∠AOE =90°. ∵AC ∥OD∴∠DOE =∠AEO =45°,∠BOD =∠A =45° ∴DH =22OD =2 ∴S 阴影=S △AOE +S 扇形DOE +S △BOD =12OA 2+45π×22360+12OB ·DH =2+π2+2∴阴影部分的面积为2+π2+ 2.例题解图④针对演练1. (1)证明:∵∠A =30°,∠C =90°第 11 页 共 11 页 ∴∠ABC =60°由作图步骤可知,BP 是∠ABC 的平分线 ∴∠ABF =12∠ABC =30°∴∠A =∠ABF ,即AF =BF∴△ABF 是等腰三角形;(2)解:∵BC =6,tan A =34∴tan A =BC AC =34,即AC =8∴AB =AC 2+BC 2=10如解图,连接OF∵AC 是⊙O 的切线∴∠AFO =90°∴△AOF ∽△ABC∴OF BC =AO AB ,即OF 6=10-OF 10解得OF =154∴⊙O 的半径为154.第1题解图。

中考数学总复习《圆的综合题》练习题附带答案

中考数学总复习《圆的综合题》练习题附带答案

中考数学总复习《圆的综合题》练习题附带答案一、单选题(共12题;共24分)1.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E、F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线EC,则AC是⊙O的切线D.若BE= √322.如图所示,A,B,C是⊙O上的三点,若∠O=58°,则∠C的度数为()A.23°B.26°C.29°D.32°3.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8B.10C.4√3D.4√5 4.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径5.如图,点O是半径为6的正六边形ABCDEF的中心,则扇形AOE的面积是()A.2πB.4πC.12πD.24π6.如图,CD为⊙O的直径,AB为弦,AB⊥CD,点E在圆上,若OF=DF,则∠AEB的度数为()A.135°B.120°C.150°D.110°7.如图,⊙O的半径长6cm,点C在⊙O上,弦AB垂直平分OC于点D,则弦AB的长为()A.9cm B.6√3cm C.92cm D.3√3cm8.如图所示,已知△ACD和△ABE都内接于同一个圆,则∠ADC+∠AEB+∠BAC=()A.90°B.180°C.270°D.360°9.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°10.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8B.10C.13D.14 11.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°12.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作弧PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于弧PQ点M,N;(3)连接OM,MN. 根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD二、填空题(共6题;共6分)13.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为.14.如图,正六边形ABCDEF的边长为2√3,分别以点A,D为圆心,以AB,DC为半径作扇形ABF,扇形DCE.则图中阴影部分的面积是.(结果保留根号和π)15.如图所示,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=15,则△PCD的周长为.16.如图,将弧AC沿弦AC折叠交直径AB于圆心O,则弧AC的度数是.17.如图中每个阴影部分是以多边形各顶点为圆心,1为半径的扇形,并且所有多边形的每条边长都>2,则第n个多边形中,所有扇形面积之和是.(结果保留π)18.如图,扇形AOB中OB=4,∠AOB=90°点E为AB的中点,过点E作AO的平行线DF,则阴影部分的面积为.三、综合题(共6题;共65分)19.如图,已知AB是⊙O的直径,弦AC与半径OD平行.⌢的中点.(1)求证:点D是BC(2)若AC=OD=6,求阴影部分(弓形AC)的面积.20.如图,PA、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:(1)PA的长;(2)∠COD的度数.21.如图,D、E分别是⊙O两条半径OA、OB的中点AC⌢=CB⌢.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.22.如图,一次函数y=kx﹣2(k≠0)的图象与y轴交于点A,与反比例函数y=3 x(x>0)的图象交于点B(3,b).点C是线段AB上的动点(与点A、B不重合),过点C且平行于y轴的直线CD交这个反比例函数的图象于点D,O为坐标原点.(1)求△OCD面积为32时,则点D的坐标;(2)求△OCD面积的最大值;(3)当△OCD面积最大时,则以点O为圆心,r为半径画⊙O,是否存在r的值,使得A、B、C、D四个点中恰好有2个在圆内?如果存在,求出r的取值范围;如果不存在,请说明理由.23.如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形24.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D 作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.参考答案1.【答案】C 2.【答案】C 3.【答案】D 4.【答案】B 5.【答案】C 6.【答案】B 7.【答案】B 8.【答案】B 9.【答案】D 10.【答案】C 11.【答案】C 12.【答案】D 13.【答案】π4−1214.【答案】18√3−8π 15.【答案】30 16.【答案】120° 17.【答案】nπ218.【答案】8π3−2√3−219.【答案】(1)证明:连接BC 交OD 于E∵AB 是⊙O 的直径 ∴∠ACB=90° ∵AC ∥OD∴∠OEB=∠ACB=90° 即OD ⊥BC ∵OD 过圆心O∴CD⌢=BD ⌢ ∴点D 是BC⌢的中点. (2)解:作CE ⊥AB 于E 如图2,∵AC =OD =OC =OA∴△AOC 是等边三角形∴∠AOC =60°∴S 扇形AOC =60π×62360=6π∴∠OCE =30°∴OE =12OC =12×6=3∴CE =√3OE =3√3∴S △AOC =12AO ⋅CE =12×6×3√3=9√3 ∴S 阴影=S 扇形AOC −S △AOC =6π−9√3.20.【答案】(1)解:∵CA ,CE 都是圆O 的切线 ∴CA=CE同理DE=DB ,PA=PB∴三角形PDE 的周长=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12 即PA 的长为6. (2)解: ∵∠P=60°∴∠PCE+∠PDE=120°∴∠ACD+∠CDB=360°﹣120°=240° ∵CA ,CE 是圆O 的切线∴∠OCE=∠OCA=12∠ACD ;同理:∠ODE=12∠CDB∴∠OCE+∠ODE=12(∠ACD+∠CDB )=120°∴∠COD=180﹣120°=60°.21.【答案】(1)证明:连接OC∵弧AC=弧CB ∴∠COA=∠COB∵D 和E 为OA 和OB 的中点 ∴OD=OE ∴△COD ≌△COE ∴CD=CE (2)连接AC ∵∠AOB=120°∴∠AOC=60°,∵OA=OC ∴△AOC 为等边三角形 ∵点D 为OA 的中点 ∴CD ⊥OA ,OD=12OA=12x在直角三角形COD 中,CD=OD ×tan ∠COD=√32x∴四边形ODCE 的面积y=12×OD ×CD ×2=√34x 222.【答案】(1)解:∵点B (3,b )在反比例函数y = 3x的图象上∴3b =3 ∴b =1 ∴B (3,1)∵点B (3,1)在一次函数y =kx ﹣2(k ≠0)的图象上 ∴3k ﹣2=1 ∴k =1∴直线AB 的解析式为y =x ﹣2设点C 的坐标为(m ,m ﹣2)(0<m <3)∵C 且平行于y 轴的直线CD 交这个反比例函数的图象于点D ∴D (m , 3m)∴CD = 3m ﹣(m ﹣2)= 3m+2﹣m∴S △OCD = 12 CD •m = 12 ( 3m +2﹣m )×m =﹣ 12(m 2﹣2m ﹣3)∵△OCD面积为3 2∴﹣12(m2﹣2m﹣3)=32∴m=0(舍)或m=2∴D(2,3 2)(2)解:由(1)知,S△OCD=﹣12(m2﹣2m﹣3)=﹣12(m﹣1)2+2∵0<m<3∴m=1时,则△OCD面积的最大值为2(3)解:存在理由:∵直线AB的解析式为y=x﹣2∴A(0,﹣2)∴OA=2由(1)知,B(3,1)∴OB=√32+12=√10由(2)知,m=1∴C(1,﹣1),D(1,3)∴OC=√12+12=√2,OD=√12+32=√10∴OC<OA<OB=OD∵以点O为圆心,r为半径画⊙O,使得A、B、C、D四个点中恰好有2个在圆内.∴2<r≤√1023.【答案】(1)证明:∵四边形ABCD是⊙O的内接四边形∴∠A+∠BCD=180°∵∠DCE+∠BCD=180°∴∠A=∠DCE∵DC=DE∴∠DCE=∠AEB∴∠A=∠AEB(2)证明:∵∠A=∠AEB∴△ABE是等腰三角形∵EO⊥CD∴CF=DF∴EO是CD的垂直平分线∴ED=EC∵DC=DE∴DC=DE=EC∴△DCE是等边三角形∴∠AEB=60°∴△ABE是等边三角形.24.【答案】(1)证明:∵ED与⊙O相切于D∴OD⊥DE∵F为弦AC中点∴OD⊥AC∴AC∥DE.(2)解:作DM⊥OA于M,连接CD,CO,AD.首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.∵AC∥DE,AE=AO∴OF=DF∵AF⊥DO∴AD=AO∴AD=AO=OD∴△ADO是等边三角形,同理△CDO也是等边三角形∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DD=a∴AO∥CD,又AE=CD∴四边形ACDE是平行四边形,易知DM= √3a2a2.∴平行四边形ACDE面积= √32。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考总复习:圆综合复习—巩固练习(基础)【巩固练习】一、选择题1.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是( )A.弦AB的长等于圆内接正六边形的边长 B.弦AC的长等于圆内接正十二边形的边长C.»»AC BCD.∠BAC=30°2.如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为( ) A.7 B.72 C.82 D.9第1题第2题第3题3.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6cm,OD=4cm,则DC的长为( ) A.5 cm B.2.5 cm C.2 cm D.1 cm4.已知:⊙O的半径为13cm,弦AB∥CD,AB=24cm,CD=10cm,则AB,CD之间的距离为( ) A.17cm B.7cm C.12cm D.17cm或7cm5.(2015•西藏)已知⊙O1与⊙O2相交,且两圆的半径分别为2cm和3cm,则圆心距O1O2可能是()A.1cm B.3cm C.5cm D.7cm6.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )A.1 B.34C.12D.13二、填空题7.在⊙O中直径为4,弦AB=23,点C是圆上不同于A,B的点,那么∠ACB度数为________.8.如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是¼BAC上一点,则∠D=________.第8题第9题9.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是________度.10.若两圆相切,圆心距是7,其中一圆的半径为10,则另一个圆的半径为________.11.(2015•盐城校级模拟)如图,将一个圆心角为120°,半径为6cm的扇形围成一圆锥侧面(OA、OB 重合),则围成的圆锥底面半径是cm.12.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB的弧长等于________.(结果保留根号及π)三、解答题13.(2014秋•北京期末)如图,AB为⊙O的直径,直线l与⊙O相切于点C,过点A作AD⊥l于点D,交⊙O于点E.(1)求证:∠CAD=∠BAC;(2)若sin∠BAC=,BC=6,求DE的长.14.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,3sin5P ,求⊙O的直径.15.如图,已知⊙O1与⊙O2都过点A,AO1是⊙O2的切线,⊙O1交O1O2于点B,连接AB并延长交⊙O2于点C,连接O2C.(1)求证:O2C⊥O1O2;(2)证明:AB·BC=2O2B•BO1;(3)如果AB•BC=12,O2C=4,求AO1的长.16.如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F.(1)求证:OE∥AB;(2)求证:12EH AB=;(3)若1B4BHE=,求BHCE的值.【答案与解析】一、选择题1.【答案】D ;【解析】∵ OA=AB=OB,∴∠AOB=60°.又∵ CO⊥AB,∴11603022BOC AOB∠=∠=⨯=°°.又∠BOC和∠BAC分别是»BC对的圆心角和圆周角,∴11301522BAC BOC∠=∠=⨯=°°.∴ D错.2.【答案】B ;【解析】连接AD,BD,由AB是⊙O的直径得∠ACB=∠ADB=90°,故∠ACO=∠BCO=45°,BC=8,AD=BD=52ACD∽△OCB,得AC CDCO BC=,即CO·CD=6×8=48.由△DOB ∽△DBC ,得CD BD Bd OD =,即OD ·CD =525250⨯=. ∴ CO ·CD+OD ·CD =(CO+OD)·CD =CD 2=98.∴ 9872CD ==.3.【答案】D ;【解析】连接AO ,由垂径定理知132AD AB ==, 所以Rt △AOD 中,2222435AO OD AD =+=+=.所以DC =OC-OD =OA-OD =5-4=1.4.【答案】D ;【解析】如图,在Rt △OAE 中,222213125OE OA AE =-=-=(cm).在Rt △OCF 中,222213512OF OC CF =--=(cm).∴ EF =OF-OE =12-5=7(cm).同理可求出OG =12(cm).∴ EG =5+12=17(cm).则AB ,CD 的距离为17cm 或7cm .5.【答案】B ;【解析】两圆半径差为1,半径和为5,两圆相交时,圆心距大于两圆半径差,且小于两圆半径和,所以,1<O 1O 2<5.符合条件的数只有B .6.【答案】C ;【解析】圆锥底面的周长等于其侧面展开图半圆弧的长度,设圆锥底面圆的半径为r ,则12212r ππ=⨯⨯, ∴ 12r =.二、填空题7.【答案】120°或60°;【解析】如图,过O 作OD ⊥AB 于D ,在Rt △ODB 中,OB =2,12332BD =⨯=. ∴ 3sin BD DOB OB ∠==. ∴ ∠DOB =60°,∴ ∠AOB =60°×2=120°.如图中点C 有两种情况:∴ 1120602ACB ∠=⨯=°°或1(360120)1202ACB ∠=-=°°°. 8.【答案】40°;【解析】∵ AC 是⊙O 的直径,∴ ∠ABC =90°,∴ ∠A =40°,∴ ∠D =∠A =40°.9.【答案】100;【解析】在△ABC 中,∠A =180°-∠B-∠C =180°-60°-70°=50°,∵ OA =OD ,∴ ∠ODA =∠A =50°,∴ ∠BOD =∠A+∠ODA =100°.10.【答案】3或17;【解析】显然两圆只能内切,设另一圆半径为r ,则|r-10|=7,∴ r =3或17.11.【答案】2;【解析】设此圆锥的底面半径为r ,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=2cm .故答案为2.12.2π ;【解析】∠AOB =45°+45°=90°,OA 222222+=. ∴ »AB 9022180l ππ⨯==.三、解答题13.【答案与解析】(1)证明:连接OC ,∵CD为⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴OC∥AD,∴∠CAD=∠ACO.又∵OC=OA,∴∠ACO=∠OAC,∴∠CAD=∠OAC,即∠CAD=∠BAC.(2)过点B作BF⊥l于点F,连接BE,∵AB为⊙O的直径,∴∠AEB=90°,又AD⊥l于点D,∴∠AEB=∠ADF=∠BFD=90°,∴四边形DEBF是矩形,∴DE=BF.∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCF=90°.∵∠ADC=90°,∴∠ACD+∠CAD=90°,∴∠BCF=∠CAD.∵∠CAD=∠BAC,∴∠BCF=∠BAC.在Rt△BCF中,BC=6,sin∠BCF==sin∠BAC=,∴BF==,∴DE=BF=.14.【答案与解析】(1)证明:∵ »»BDBD =,∴ ∠BCD =∠P . 又∵ ∠1=∠BCD ,∴ ∠1=∠P .∴ CB ∥PD .(2)解:连接AC .∵ AB 为⊙O 的直径,∴∠ACB =90°.又∵ CD ⊥AB ,∴ »»BCBD =. ∴ ∠A =∠P ,∴ sin A =sin P .在Rt △ABC 中,sin BC A AB=, ∵ 3sin 5P =,∴ 35BC AB =. 又∵ BC =3,∴ AB =5,即⊙O 的直径为5.15.【答案与解析】(1)证明:∵ AO 1是⊙O 2的切线,∴ O 1A ⊥AO 2, ∴ ∠O 2AB+∠BAO 1=90°.又O 2A =O 2C ,O 1A =O 1B ,∴ ∠O 2CB =∠O 2AB ,∠O 2BC =∠ABO 1=∠BAO 1. ∴ ∠O 2CB+∠O 2BC =∠O 2AB+∠BAO 1=90°.∴ O 2C ⊥O 2B ,即O 2C ⊥O 1O 2.(2)证明:延长O 2O 1,交⊙O 1于点D ,连接AD . ∵ BD 是⊙O 1的直径,∴ ∠BAD =90°.又由(1)可知∠BO 2C =90°,∴ ∠BAD =∠BO2C ,又∠ABD =∠O 2BC ,∴ 2O B BC AB BD=. ∴ AB ·BC =O 2B ·BD .又BD =2BO 1,∴ AB ·BC =2O 2B ·BO 1.(3)解:由(2)证可知∠D =∠C =∠O 2AB ,即∠D =∠O 2AB . 又∠AO 2B =∠DO 2A ,∴ △AO 2B ∽△DO 2A .∴ 2222AO O B DO O A=,∴ 2222AO O B O D =g .∵ 22O C O A =,∴ 2222O C O B O D =g . ①又由(2)AB ·BC =O 2B ·BD . ②由①-②得2222O C AB BC O B -=g ,即222412O B -=.∴ O 2B =2,又O 2B ·BD =AB ·BC =12,∴ BD =6.∴ 2AO 1=BD =6,∴ AO 1=3.16.【答案与解析】(1)证明:在等腰梯形ABCD 中,AB =DC ,∴ ∠B =∠C .∵ OE =OC ,∴ ∠OEC =∠C .∴ ∠B =∠OEC .∴ OE ∥AB .(2)证明:连接OF ,如图.∵ ⊙O 与AB 切于点F ,∴ OF ⊥AB .∵ EH ⊥AB ,∴ OF ∥EH .又∵ OE ∥AB ,∴ 四边形OEHF 为平行四边形.∴ EH =OF .∵ 1122OF CD AB ==, ∴ 12EH AB =. (3)解:连接DE ,如图.∵ CD 是直径,∴ ∠DEC =90°.∴ ∠DEC =∠EHB .又∵ ∠B =∠C ,∴ △EHB ∽△DEC .∴BH BE CE CD=. ∵ 14BH BE =,设BH =k ,∴ BE =4k ,EH ==,∴ 2CD EH ==.∴15BH CE ==.。

相关文档
最新文档